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10. Bounded Linear Functionals in L2

In the following, (Ω,F , µ) is a measure space.

Definition 78 We call subsequence of a sequence (xn)n≥1, any sequence of
the form (xφ(n))n≥1 where φ : N∗ → N∗ is a strictly increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology T . Let (xn)n≥1

be a sequence in E. For all n ≥ 1, let Fn be the closure of the set {xk : k ≥ n}.

1. Show that for all x ∈ E, xn
T→ x is equivalent to:

∀ε > 0 , ∃n0 ≥ 1 , n ≥ n0 ⇒ d(xn, x) ≤ ε

2. Show that (Fn)n≥1 is a decreasing sequence of closed sets in E.

3. Show that if Fn ↓ ∅, then (F cn)n≥1 is an open covering of E.

4. Show that if (E, T ) is compact then ∩+∞
n=1Fn 6= ∅.

5. Show that if (E, T ) is compact, there exists x ∈ E such that for all n ≥ 1
and ε > 0, we have B(x, ε) ∩ {xk , k ≥ n} 6= ∅.

6. By induction, construct a subsequence (xnp)p≥1 of (xn)n≥1 such that
xnp ∈ B(x, 1/p) for all p ≥ 1.

7. Conclude that if (E, T ) is compact, any sequence (xn)n≥1 in E has a
convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology T . We assume
that any sequence (xn)n≥1 in E has a convergent subsequence. Let (Vi)i∈I be
an open covering of E. For x ∈ E, let:

r(x)
4
= sup{r > 0 : B(x, r) ⊆ Vi , for some i ∈ I}

1. Show that ∀x ∈ E, ∃i ∈ I, ∃r > 0, such that B(x, r) ⊆ Vi.

2. Show that ∀x ∈ E, r(x) > 0.

Exercise 3. Further to ex. (2), suppose infx∈E r(x) = 0.

1. Show that for all n ≥ 1, there is xn ∈ E such that r(xn) < 1/n.

2. Extract a subsequence (xnk)k≥1 of (xn)n≥1 converging to some x∗ ∈ E.
Let r∗ > 0 and i ∈ I be such that B(x∗, r∗) ⊆ Vi. Show that we can find
some k0 ≥ 1, such that d(x∗, xnk0

) < r∗/2 and r(xnk0
) ≤ r∗/4.

3. Show that d(x∗, xnk0
) < r∗/2 implies that B(xnk0

, r∗/2) ⊆ Vi. Show that
this contradicts r(xnk0

) ≤ r∗/4, and conclude that infx∈E r(x) > 0.
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Exercise 4. Further to ex. (3), Let r0 with 0 < r0 < infx∈E r(x). Suppose that
E cannot be covered by a finite number of open balls with radius r0.

1. Show the existence of a sequence (xn)n≥1 in E, such that for all n ≥ 1,
xn+1 6∈ B(x1, r0) ∪ . . . ∪B(xn, r0).

2. Show that for all n > m we have d(xn, xm) ≥ r0.

3. Show that (xn)n≥1 cannot have a convergent subsequence.

4. Conclude that there exists a finite subset {x1, . . . , xn} of E such that
E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Show that for all x ∈ E, we have B(x, r0) ⊆ Vi for some i ∈ I.

6. Conclude that (E, T ) is compact.

7. Prove the following:

Theorem 47 A metrizable topological space (E, T ) is compact, if and only if
for every sequence (xn)n≥1 in E, there exists a subsequence (xnk)k≥1 of (xn)n≥1

and some x ∈ E, such that xnk
T→ x.

Exercise 5. Let a, b ∈ R , a < b and (xn)n≥1 be a sequence in ]a, b[.

1. Show that (xn)n≥1 has a convergent subsequence.

2. Can we conclude that ]a, b[ is a compact subset of R?

Exercise 6. Let E = [−M,M ] × . . . × [−M,M ] ⊆ Rn, where n ≥ 1 and
M ∈ R+. Let TRn be the usual product topology on Rn, and TE = (TRn)|E be
the induced topology on E.

1. Let (xp)p≥1 be a sequence in E. Let x ∈ E. Show that xp
TE→ x is

equivalent to xp
TRn→ x.

2. Propose a metric on Rn, inducing the topology TRn .

3. Let (xp)p≥1 be a sequence in Rn. Let x ∈ Rn. Show that xp
TRn→ x if and

only if, xip
TR→ xi for all i ∈ Nn.

Exercise 7. Further to ex. (6), suppose (xp)p≥1 is a sequence in E.

1. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, such that

x1
φ(p)

T[−M,M]→ x1 for some x1 ∈ [−M,M ].

2. Explain why the above convergence is equivalent to x1
φ(p)

TR→ x1.
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3. Suppose that 1 ≤ k ≤ n− 1 and (yp)p≥1 = (xφ(p))p≥1 is a subsequence of
(xp)p≥1 such that:

∀j = 1, . . . , k , xjφ(p)

TR→ xj for some xj ∈ [−M,M ]

Show the existence of a subsequence (yψ(p))p≥1 of (yp)p≥1 such that yk+1
ψ(p)

TR→
xk+1 for some xk+1 ∈ [−M,M ].

4. Show that φ ◦ ψ : N∗ → N∗ is strictly increasing.

5. Show that (xφ◦ψ(p))p≥1 is a subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k + 1 , xjφ◦ψ(p)

TR→ xj ∈ [−M,M ]

6. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, and x ∈ E,

such that xφ(p)
TE→ x

7. Show that (E, TE) is a compact topological space.

Exercise 8. Let A be a closed subset of Rn, n ≥ 1, which is bounded with
respect to the usual metric of Rn.

1. Show that A ⊆ E = [−M,M ]×. . .×[−M,M ], for some M ∈ R+.

2. Show from E \A = E ∩Ac that A is closed in E.

3. Show (A, (TRn)|A) is a compact topological space.

4. Conversely, let A is a compact subset of Rn. Show that A is closed and
bounded.

Theorem 48 A subset of Rn is compact if and only if it is closed and bounded
with respect to its usual metric.

Exercise 9. Let n ≥ 1. Consider the map:

φ :
{

Cn → R2n

(a1 + ib1, . . . , an + ibn) → (a1, b1, . . . , an, bn)

1. Recall the expressions of the usual metrics dCn and dR2n of Cn and R2n

respectively.

2. Show that for all z, z′ ∈ Cn, dCn(z, z′) = dR2n(φ(z), φ(z′)).

3. Show that φ is a homeomorphism from Cn to R2n.

4. Show that a subset K of Cn is compact, if and only if φ(K) is a compact
subset of R2n.

5. Show that K is closed, if and only if φ(K) is closed.
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6. Show that K is bounded, if and only if φ(K) is bounded.

7. Show that a subset K of Cn is compact, if and only if it is closed and
bounded with respect to its usual metric.

Definition 79 Let (E, d) be a metric space. A sequence (xn)n≥1 in E is said
to be a Cauchy sequence with respect to the metric d, if and only if for all
ε > 0, there exists n0 ≥ 1 such that:

n,m ≥ n0 ⇒ d(xn, xm) ≤ ε

Definition 80 We say that a metric space (E, d) is complete, if and only if
for any Cauchy sequence (xn)n≥1 in E, there exists x ∈ E such that (xn)n≥1

converges to x.

Exercise 10.

1. Explain why strictly speaking, given p ∈ [1,+∞], definition (77) of Cauchy
sequences in LpC(Ω,F , µ) is not a covered by definition (79).

2. Explain why LpC(Ω,F , µ) is not a complete metric space, despite theo-
rem (46) and definition (80).

Exercise 11. Let (zk)k≥1 be a Cauchy sequence in Cn, n ≥ 1, with respect to
the usual metric d(z, z′) = ‖z − z′‖, where:

‖z‖ 4=

√√√√ n∑
i=1

|zi|2

1. Show that the sequence (zk)k≥1 is bounded, i.e. that there exists M ∈ R+

such that ‖zk‖ ≤M , for all k ≥ 1.

2. Define B = {z ∈ Cn , ‖z‖ ≤ M}. Show that δ(B) < +∞, and that B is
closed in Cn.

3. Show the existence of a subsequence (zkp)p≥1 of (zk)k≥1 such that zkp
TCn→

z for some z ∈ B.

4. Show that for all ε > 0, there exists p0 ≥ 1 and n0 ≥ 1 such that
d(z, zkp0

) ≤ ε/2 and:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2

5. Show that zk
TCn→ z.

6. Conclude that Cn is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of C used?
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Exercise 12. Let (xk)k≥1 be a sequence in Rn such that xk
TCn→ z, for some

z ∈ Cn.

1. Show that z ∈ Rn.

2. Show that Rn is complete with respect to its usual metric.

Theorem 49 Cn and Rn are complete w.r. to their usual metrics.

Exercise 13. Let (E, d) be a metric space, with metric topology T . Let F ⊆ E,
and F̄ denote the closure of F .

1. Explain why, for all x ∈ F̄ and n ≥ 1, we have F ∩B(x, 1/n) 6= ∅.

2. Show that for all x ∈ F̄ , there exists a sequence (xn)n≥1 in F , such that
xn
T→ x.

3. Show conversely that if there is a sequence (xn)n≥1 in F with xn
T→ x,

then x ∈ F̄ .

4. Show that F is closed if and only if for all sequence (xn)n≥1 in F such

that xn
T→ x for some x ∈ E, we have x ∈ F .

5. Explain why (F, T|F ) is metrizable.

6. Show that if F is complete with respect to the metric d|F×F , then F is
closed in E.

7. Let dR̄ be a metric on R̄, inducing the usual topology TR̄. Show that
d′ = (dR̄)|R×R is a metric on R, inducing the topology TR.

8. Find a metric on [−1, 1] which induces its usual topology.

9. Show that {−1, 1} is not open in [−1, 1].

10. Show that {−∞,+∞} is not open in R̄.

11. Show that R is not closed in R̄.

12. Let dR be the usual metric of R. Show that d′ = (dR̄)|R×R and dR induce
the same topology on R, but that however, R is complete with respect to
dR, whereas it cannot be complete with respect to d′.

Definition 81 Let H be a K-vector space, where K = R or C. We call inner-
product on H, any map 〈·, ·〉 : H×H → K with the following properties:

(i) ∀x, y ∈ H , 〈x, y〉 = 〈y, x〉
(ii) ∀x, y, z ∈ H , 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉

(iii) ∀x, y ∈ H, ∀α ∈ K , 〈αx, y〉 = α〈x, y〉
(iv) ∀x ∈ H , 〈x, x〉 ≥ 0
(v) ∀x ∈ H , (〈x, x〉 = 0 ⇔ x = 0)
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where for all z ∈ C, z̄ denotes the complex conjugate of z. For all x ∈ H, we
call norm of x, denoted ‖x‖, the number defined by:

‖x‖ 4=
√
〈x, x〉

Exercise 14. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all y ∈ H, the map x→ 〈x, y〉 is linear.

2. Show that for all x ∈ H, the map y → 〈x, y〉 is linear if K = R, and
conjugate-linear if K = C.

Exercise 15. Let 〈·, ·〉 be an inner-product on a K-vector space H. Let x, y ∈
H. Let A = ‖x‖2, B = |〈x, y〉| and C = ‖y‖2. let α ∈ K be such that |α| = 1
and:

B = α〈x, y〉

1. Show that A,B,C ∈ R+.

2. For all t ∈ R, show that 〈x− tαy, x− tαy〉 = A− 2tB + t2C.

3. Show that if C = 0 then B2 ≤ AC.

4. Suppose that C 6= 0. Show that P (t) = A − 2tB + t2C has a minimal
value which is in R+, and conclude that B2 ≤ AC.

5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz inequality:second) Let H be a K-vector
space, where K = R or C, and 〈·, ·〉 be an inner-product on H. Then, for all
x, y ∈ H, we have:

|〈x, y〉| ≤ ‖x‖.‖y‖

Exercise 16. For all f, g ∈ L2
C(Ω,F , µ), we define:

〈f, g〉 4=
∫

Ω

f ḡdµ

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all f, g ∈
L2

C(Ω,F , µ), we have f ḡ ∈ L1
C(Ω,F , µ). Conclude that 〈f, g〉 is a well-

defined complex number.

2. Show that for all f ∈ L2
C(Ω,F , µ), we have ‖f‖2 =

√
〈f, f〉.

3. Make another use of the first Cauchy-Schwarz inequality to show that for
all f, g ∈ L2

C(Ω,F , µ), we have:

|〈f, g〉| ≤ ‖f‖2.‖g‖2 (1)
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4. Go through definition (81), and indicate which of the properties (i)− (v)
fails to be satisfied by 〈·, ·〉. Conclude that 〈·, ·〉 is not an inner-product
on L2

C(Ω,F , µ), and therefore that inequality (*) is not a particular case
of the second Cauchy-Schwarz inequality (50).

5. Let f, g ∈ L2
C(Ω,F , µ). By considering

∫
(|f |+ t|g|)2dµ for t ∈ R, imitate

the proof of the second Cauchy-Schwarz inequality to show that:∫
Ω

|fg|dµ ≤
(∫

Ω

|f |2dµ
) 1

2
(∫

Ω

|g|2dµ
) 1

2

6. Let f, g : (Ω,F) → [0,+∞] non-negative and measurable. Show that if∫
f2dµ and

∫
g2dµ are finite, then f and g are µ-almost surely equal to

elements of L2
C(Ω,F , µ). Deduce from 5. a new proof of the first Cauchy-

Schwarz inequality:∫
Ω

fgdµ ≤
(∫

Ω

f2dµ

) 1
2
(∫

Ω

g2dµ

) 1
2

Exercise 17. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all x, y ∈ H, we have:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈x, y〉

2. Using the second Cauchy-Schwarz inequality (50), show that:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. Show that d〈·,·〉(x, y) = ‖x− y‖ defines a metric on H.

Definition 82 Let H be a K-vector space, where K = R or C, and 〈·, ·〉 be an
inner-product on H. We call norm topology on H, denoted T〈·,·〉, the metric
topology associated with d〈·,·〉(x, y) = ‖x− y‖.

Definition 83 We call Hilbert space over K where K = R or C, any
ordered pair (H, 〈·, ·〉) where 〈·, ·〉 is an inner-product on a K-vector space H,
which is complete w.r. to d〈·,·〉(x, y) = ‖x− y‖.

Exercise 18. Let (H, 〈·, ·〉) be a Hilbert space over K and let M be a closed
linear subspace of H, (closed with respect to the norm topology T〈·,·〉). Define
[·, ·] = 〈·, ·〉|M×M.

1. Show that [·, ·] is an inner-product on the K-vector space M.

2. With obvious notations, show that d[·,·] = (d〈·,·〉)|M×M.

3. Deduce that T[·,·] = (T〈·,·〉)|M.
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Exercise 19. Further to ex. (18), Let (xn)n≥1 be a Cauchy sequence in M,
with respect to the metric d[·,·].

1. Show that (xn)n≥1 is a Cauchy sequence in H.

2. Explain why there exists x ∈ H such that xn
T〈·,·〉→ x.

3. Explain why x ∈M.

4. Explain why we also have xn
T[·,·]→ x.

5. Explain why (M, 〈·, ·〉|M×M) is a Hilbert space over K.

Exercise 20. For all z, z′ ∈ Cn, n ≥ 1, we define:

〈z, z′〉 4=
n∑
i=1

ziz̄i
′

1. Show that 〈·, ·〉 is an inner-product on Cn.

2. Show that the metric d〈·,·〉 is equal to the usual metric of Cn.

3. Conclude that (Cn, 〈·, ·〉) is a Hilbert space over C.

4. Show that Rn is a closed subset of Cn.

5. Show however that Rn is not a linear subspace of Cn.

6. Show that (Rn, 〈·, ·〉|Rn×Rn) is a Hilbert space over R.

Definition 84 We call usual inner-product in Kn, where K = R or C, the
inner-product denoted 〈·, ·〉 and defined by:

∀x, y ∈ Kn , 〈x, y〉 =
n∑
i=1

xiȳi

Theorem 51 Cn and Rn together with their usual inner-products, are Hilbert
spaces over C and R respectively.

Definition 85 Let H be a K-vector space, where K = R or C. Let C ⊆ H.
We say that C is a convex subset or H, if and only if, for all x, y ∈ C and
t ∈ [0, 1], we have tx+ (1 − t)y ∈ C.

Exercise 21. Let (H, 〈·, ·〉) be a Hilbert space over K. Let C ⊆ H be a non-
empty closed convex subset of H. Let x0 ∈ H. Define:

δmin
4
= inf{‖x− x0‖ : x ∈ C}
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1. Show the existence of a sequence (xn)n≥1 in C such that
‖xn − x0‖ → δmin.

2. Show that for all x, y ∈ H, we have:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥2

3. Explain why for all n,m ≥ 1, we have:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥
4. Show that for all n,m ≥ 1, we have:

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2
min

5. Show the existence of some x∗ ∈ H, such that xn
T〈·,·〉→ x∗.

6. Explain why x∗ ∈ C

7. Show that for all x, y ∈ H, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. Show that ‖xn − x0‖ → ‖x∗ − x0‖.

9. Conclude that we have found x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

10. Let y∗ be another element of C with such property. Show that:

‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2
min

11. Conclude that x∗ = y∗.

Theorem 52 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R or C. Let
C be a non-empty, closed and convex subset of H. For all x0 ∈ H, there exists
a unique x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Definition 86 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R or C.
Let G ⊆ H. We call orthogonal of G, the subset of H denoted G⊥ and defined
by:

G⊥ 4= { x ∈ H : 〈x, y〉 = 0 , ∀y ∈ G }

Exercise 22. Let (H, 〈·, ·〉) be a Hilbert space over K and G ⊆ H.

1. Show that G⊥ is a linear subspace of H, even if G isn’t.
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2. Show that φy : H → K defined by φy(x) = 〈x, y〉 is continuous.

3. Show that G⊥ = ∩y∈Gφ−1
y ({0}).

4. Show that G⊥ is a closed subset of H, even if G isn’t.

5. Show that ∅⊥ = {0}⊥ = H.

6. Show that H⊥ = {0}.

Exercise 23. Let (H, 〈·, ·〉) be a Hilbert space over K. LetM be a closed linear
subspace of H, and x0 ∈ H.

1. Explain why there exists x∗ ∈M such that:

‖x∗ − x0‖ = inf{ ‖x− x0‖ : x ∈M }

2. Define y∗ = x0 − x∗ ∈ H. Show that for all y ∈ M and α ∈ K:

‖y∗‖2 ≤ ‖y∗ − αy‖2

3. Show that for all y ∈ M and α ∈ K, we have:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉+ |α|2.‖y‖2

4. For all y ∈ M \ {0}, taking α = 〈y, y∗〉/‖y‖2, show that:

0 ≤ −|〈y, y
∗〉|2

‖y‖2

5. Conclude that x∗ ∈ M, y∗ ∈M⊥ and x0 = x∗ + y∗.

6. Show that M∩M⊥ = {0}

7. Show that x∗ ∈M and y∗ ∈M⊥ with x0 = x∗ + y∗, are unique.

Theorem 53 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R or C.
Let M be a closed linear subspace of H. Then, for all x0 ∈ H, there is a unique
decomposition:

x0 = x∗ + y∗

where x∗ ∈M and y∗ ∈M⊥.

Definition 87 Let H be a K-vector space, where K = R or C. We call linear
functional, any map λ : H → K, such that for all x, y ∈ H and α ∈ K:

λ(x + αy) = λ(x) + αλ(y)

Exercise 24. Let λ be a linear functional on a K-Hilbert1 space H.
1Norm vector spaces are introduced later in these tutorials.
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1. Suppose that λ is continuous at some point x0 ∈ H. Show the existence
of η > 0 such that:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1

Show that for all x ∈ H with x 6= 0, we have |λ(ηx/‖x‖)| ≤ 1.

2. Show that if λ is continuous at x0, there exits M ∈ R+, with:

∀x ∈ H , |λ(x)| ≤M‖x‖ (2)

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let (H, 〈·, ·〉) be a Hilbert2 space over K = R or C. Let λ be a
linear functional on H. Then, the following are equivalent:

(i) λ : (H, T〈·,·〉)→ (K, TK) is continuous

(ii) ∃M ∈ R+ , ∀x ∈ H , |λ(x)| ≤M.‖x‖
In which case, we say that λ is a bounded linear functional.

Exercise 25. Let (H, 〈·, ·〉) be a Hilbert space over K. Let λ be a bounded
linear functional on H, such that λ(x) 6= 0 for some x ∈ H, and define M =
λ−1({0}).

1. Show the existence of x0 ∈ H, such that x0 6∈ M.

2. Show the existence of x∗ ∈M and y∗ ∈M⊥ with x0 = x∗ + y∗.

3. Deduce the existence of some z ∈M⊥ such that ‖z‖ = 1.

4. Show that for all α ∈ K \ {0} and x ∈ H, we have:

λ(x)
ᾱ
〈z, αz〉 = λ(x)

5. Show that in order to have:

∀x ∈ H , λ(x) = 〈x, αz〉
it is sufficient to choose α ∈ K \ {0} such that:

∀x ∈ H ,
λ(x)z
ᾱ
− x ∈M

6. Show the existence of y ∈ H such that:

∀x ∈ H , λ(x) = 〈x, y〉

7. Show the uniqueness of such y ∈ H.

2Norm vector spaces are introduced later in these tutorials.
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Theorem 54 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R or C.
Let λ be a bounded linear functional on H. Then, there exists a unique y ∈ H
such that: ∀x ∈ H , λ(x) = 〈x, y〉.

Definition 89 Let K = R or C. We call K-vector space, any set H,
together with operators ⊕ and ⊗ for which there exits an element 0H ∈ H such
that for all x, y, z ∈ H and α, β ∈ K, we have:

(i) 0H ⊕ x = x

(ii) ∃(−x) ∈ H , (−x)⊕ x = 0H
(iii) x⊕ (y ⊕ z) = (x ⊕ y)⊕ z
(iv) x⊕ y = y ⊕ x
(v) 1⊗ x = x

(vi) α⊗ (β ⊗ x) = (αβ) ⊗ x
(vii) (α+ β)⊗ x = (α⊗ x)⊕ (β ⊗ x)

(viii) α⊗ (x⊕ y) = (α ⊗ x)⊕ (α⊗ y)

Exercise 26. For all f ∈ L2
K(Ω,F , µ), define:

H 4= { [f ] : f ∈ L2
K(Ω,F , µ) }

where [f ] = {g ∈ L2
K(Ω,F , µ) : g = f, µ-a.s.}. Let 0H = [0], and for all

[f ], [g] ∈ H, and α ∈ K, we define:

[f ]⊕ [g]
4
= [f + g]

α⊗ [f ]
4
= [αf ]

We assume f, f ′, g and g′ are elements of L2
K(Ω,F , µ).

1. Show that for f = g µ-a.s. is equivalent to [f ] = [g].

2. Show that if [f ] = [f ′] and [g] = [g′], then [f + g] = [f ′ + g′].

3. Conclude that ⊕ is well-defined.

4. Show that ⊗ is also well-defined.

5. Show that (H,⊕,⊗) is a K-vector space.

Exercise 27. Further to ex. (26), we define for all [f ], [g] ∈ H:

〈[f ], [g]〉H
4
=
∫

Ω

f ḡdµ

1. Show that 〈·, ·〉H is well-defined.

2. Show that 〈·, ·〉H is an inner-product on H.
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3. Show that (H, 〈·, ·〉H) is a Hilbert space over K.

4. Why is 〈f, g〉 4=
∫

Ω
f ḡdµ not an inner-product on L2

K(Ω,F , µ)?

Exercise 28. Further to ex. (27), Let λ : L2
K(Ω,F , µ) → K be a continuous

linear functional3. Define Λ : H → K by Λ([f ]) = λ(f).

1. Show the existence of M ∈ R+ such that:

∀f ∈ L2
K(Ω,F , µ) , |λ(f)| ≤M.‖f‖2

2. Show that if [f ] = [g] then λ(f) = λ(g).

3. Show that Λ is a well defined bounded linear functional on H.

4. Conclude with the following:

Theorem 55 Let λ : L2
K(Ω,F , µ) → K be a continuous linear functional,

where K = R or C. There exists g ∈ L2
K(Ω,F , µ) such that:

∀f ∈ L2
K(Ω,F , µ) , λ(f) =

∫
Ω

f ḡdµ

3As defined in these tutorials, L2
K(Ω,F , µ) is not a Hilbert space (not even a norm vector

space). However, both L2
K(Ω,F , µ) and K have natural topologies and it is therefore mean-

ingful to speak of continuous linear functional. Note however that we are slightly outside the
framework of definition (88).
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Solutions to Exercises
Exercise 1.

1. Let (xn)n≥1 be a sequence in E, and x ∈ E. Suppose that xn
T→ x. Let

ε > 0. The open ball B(x, ε) being open in E, there exists n0 ≥ 1, such
that n ≥ n0 ⇒ xn ∈ B(x, ε). In other words, we have:

n ≥ n0 ⇒ d(xn, x) ≤ ε (3)

Conversely, suppose that for all ε > 0, there exists n0 ≥ 1 such that (3)
holds. Let U be open in E, with x ∈ U . By definition (30) of the metric
topology, there exists ε > 0 such that B(x, ε) ⊆ U . Since, there exists
n0 ≥ 1 such that (3) holds, we have found n0 ≥ 1 such that:

n ≥ n0 ⇒ xn ∈ U

This proves that xn
T→ x.

2. Fn = {xk : k ≥ n}. So Fn+1 ⊆ Fn for all n ≥ 1. Being the closure of some
subset of E, for all n ≥ 1, Fn is a closed subset of E, (see definition (37)
and following exercise). It follows that (Fn)n≥1 is a decreasing sequence
of closed subsets of E.

3. Suppose Fn ↓ ∅, i.e. Fn+1 ⊆ Fn with ∩n≥1Fn = ∅. Then:

E = ∅c =

(
+∞⋂
n=1

Fn

)c
=

+∞⋃
n=1

F cn

Since each Fn is closed in E, each F cn is an open subset of E. We conclude
that (F cn)n≥1 is an open covering of E.

4. Suppose (E, T ) is compact. If ∩n≥1Fn = ∅, then from 3. (F cn)n≥1 is an
open covering of E, of which we can extract a finite sub-covering (see
definition (65)). There exists a finite subset {n1, . . . , np} of N∗ such that:

E = F cn1
∪ . . . ∪ F cnp

and therefore Fn1 ∩ . . . ∩ Fnp = ∅. However, without loss of generality,
we can assume that np ≥ nk for all k = 1, . . . , p. Since Fn+1 ⊆ Fn for all
n ≥ 1, it follows that:

Fnp = Fn1 ∩ . . . ∩ Fnp = ∅
This is a contradiction since Fnp contains all xk’s for k ≥ np. We conclude
that if (E, T ) is a compact, then ∩n≥1Fn 6= ∅.

5. Suppose (E, T ) is compact. From 4., there exists x ∈ ∩n≥1Fn. Then, for
all n ≥ 1, we have x ∈ Fn = {xk : k ≥ n}, i.e. x lies in the closure of
{xk : k ≥ n}. It follows that for all ε > 0:

{xk : k ≥ n} ∩B(x, ε) 6= ∅ (4)
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We have proved the existence of x ∈ E, such that (4) holds for all n ≥ 1
and ε > 0.

6. Let x ∈ E be as in 5. Take n = 1 and ε = 1. Then, we have {xk : k ≥
1} ∩ B(x, 1) 6= ∅. There exists n1 ≥ 1, such that xn1 ∈ B(x, 1). Suppose
we have found n1 < . . . < np (p ≥ 1), such that xnk ∈ B(x, 1/k) for all
k ∈ Np. Take n = np + 1 and ε = 1/(p+ 1) in 5. We have:

{xk : k ≥ np + 1} ∩B(x, 1/(p+ 1)) 6= ∅
So there exists np+1 > np, such that xnp+1 ∈ B(x, 1/(p + 1)). Follow-
ing this induction argument, we can construct a subsequence (xnp)p≥1 of
(xn)n≥1, such that xnp ∈ B(x, 1/p) for all p ≥ 1.

7. If (E, T ) is compact, then from 5. and 6., given a sequence (xn)n≥1 in E,
there exists x ∈ E and a subsequence (xnp)p≥1 such that d(x, xnp ) < 1/p

for all p ≥ 1. From 1., it follows that xnp
T→ x as p → +∞, and we have

proved that any sequence in a compact metric space, has a convergent
subsequence.

Exercise 1

Exercise 2.

1. Let x ∈ E. By assumption, (Vi)i∈I is an open covering of E, so in partic-
ular E = ∪i∈IVi. There exists i ∈ I, such that x ∈ Vi. Furthermore, Vi is
open with respect to the metric topology on E. There exists r > 0, such
that B(x, r) ⊆ Vi. We have proved that for all x ∈ E, there exists i ∈ I
and r > 0, such that B(x, r) ⊆ Vi.

2. Let x ∈ E. Then r(x) = supA(x), where:

A(x)
4
= {r > 0 : ∃i ∈ I , B(x, r) ⊆ Vi}

From 1., the set A(x) is non-empty. There exists r > 0 such that r ∈ A(x).
r(x) being an upper-bound of A(x), we have r ≤ r(x). In particular,
r(x) > 0. We have proved that for all x ∈ E, r(x) > 0.

Exercise 2

Exercise 3.

1. Let α = infx∈E r(x). We assume that α = 0. Let n ≥ 1. Then α < 1/n.
α being the greatest lower bound of all r(x)′s for x ∈ E, 1/n cannot be
such lower bound. There exists xn ∈ E, such that r(xn) < 1/n.

2. From 1., we have constructed a sequence (xn)n≥1 in E, such that r(xn) <
1/n for all n ≥ 1. By assumption (see previous exercise (2)), the metric
space (E, d) is such that any sequence has a convergent sub-sequence. Let
(xnk )k≥1 be a sub-sequence of (xn)n≥1 and let x∗ ∈ E, be such that xnk

T→
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x∗. From exercise (2), there exists r∗ > 0 and i ∈ I, with B(x∗, r∗) ⊆ Vi.
Since r∗ > 0 and xnk

T→ x∗, there exists k′0 ≥ 1, such that:

k ≥ k′0 ⇒ d(x∗, xnk) < r∗/2

Since nk ↑ +∞ as k→ +∞, there exists k′′0 ≥ 1, such that:

k ≥ k′′0 ⇒
1
nk
≤ r∗/4

It follows that for all k ≥ k′′0 , we have r(xnk ) ≤ 1/nk ≤ r∗/4. Take
k0 = max(k′0, k

′′
0 ). We have both d(x∗, xnk0

) < r∗/2 and r(xnk0
) ≤ r∗/4.

3. From 2., we have found k0 ≥ 1, such that d(x∗, xnk0
) < r∗/2. Let y ∈

B(xnk0
, r∗/2). Then, from the triangle inequality:

d(x∗, y) ≤ d(x∗, xnk0
) + d(xnk0

, y) <
r∗

2
+
r∗

2
= r∗

So y ∈ B(x∗, r∗). Hence, we see that B(xnk0
, r∗/2) ⊆ B(x∗, r∗). However,

from 2., B(x∗, r∗) ⊆ Vi. So B(xnk0
, r∗/2) ⊆ Vi. It follows that r∗/2

belongs to the set:

A(xnk0
) = {r > 0 : ∃i ∈ I , B(xnk0

, r) ⊆ Vi}
and consequently, r∗/2 ≤ r(xnk0

) = supA(xnk0
). This contradicts the

fact that r(xnk0
) ≤ r∗/4, as obtained in 2. We conclude that our initial

hypothesis of α = infx∈E r(x) = 0 is absurd, and we have proved that
infx∈E r(x) > 0.

Exercise 3

Exercise 4.

1. Let r0 > 0 be such that 0 < r0 < infx∈E r(x). We assume that E cannot
be covered by a finite number of open balls with radius r0. Let x1 be
an arbitrary element of E. Then, by assumption, B(x1, r0) cannot cover
the whole of E. There exists x2 ∈ E, such that x2 6∈ B(x1, r0). By
assumption, B(x1, r0) ∪ B(x2, r0) cannot cover the whole of E. There
exists x3 ∈ E, such that x3 6∈ B(x1, r0) ∪B(x2, r0). By induction, we can
construct a sequence (xn)n≥1 in E, such that for all n ≥ 1:

xn+1 6∈ B(x1, r0) ∪ . . . ∪B(xn, r0)

2. Let n > m. Then xn 6∈ B(xm, r0). So d(xn, xm) ≥ r0.

3. Suppose (xn)n≥1 has a convergent sub-sequence, There exists x∗ ∈ E, and
a sub-sequence (xnk )k≥1 such that xnk

T→ x∗. Take ε = r0/4 > 0. There
exists k0 ≥ 1, such that:

k ≥ k0 ⇒ d(x∗, xnk) < r0/4
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It follows that for all k, k′ ≥ k0, we have:

d(xnk , xnk′ ) ≤ d(x∗, xnk) + d(x∗, xnk′ ) < r0/2

This contradicts 2., since d(xnk , xnk′ ) ≥ r0 for k 6= k′. So (xn)n≥1 cannot
have a convergent sub-sequence.

4. From 3., (xn)n≥1 cannot have a convergent sub-sequence. This is a con-
tradiction to our initial assumption (see exercise (2)), that any sequence in
E should have a convergent sub-sequence. It follows that the hypothesis
in 1. is absurd, and we conclude that E can indeed be covered by a finite
number of open balls of radius r0. In other words, there exists a finite
subset {x1, . . . , xn} of E, such that E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Let x ∈ E. By assumption, r0 < infx∈E r(x). In particular, we have
r0 < r(x) = supA(x), where:

A(x) = {r > 0 : ∃i ∈ I , B(x, r) ⊆ Vi}
r(x) being the smallest upper-bound of A(x), it follows that r0 cannot be
such upper bound. There exists r > 0, r ∈ A(x), such that r0 < r. Since
r ∈ A(x), there exists i ∈ I, such that B(x, r) ⊆ Vi. But from r0 < r,
we conclude that B(x, r0) ⊆ Vi. We have proved that for all x ∈ E, there
exists i ∈ I, such that B(x, r0) ⊆ Vi.

6. From 4., we have E = B(x1, r0) ∪ . . . ∪ B(xn, r0). However, from 5., for
all k ∈ Nn, there exists ik ∈ I, such that B(xk, r0) ⊆ Vik . It follows that:

E = Vi1 ∪ . . . ∪ Vin (5)

Given a family of open sets (Vi)i∈I such that E = ∪i∈IVi (see exercise (2)),
we have been able to find a finite subset {i1, . . . , in} of I, such that (5)
holds. We conclude that the metrizable space (E, T ) is a compact topo-
logical space.

7. Let (E, T ) be a metrizable topological space. If (E, T ) is compact, then
from exercise (1), any sequence in E has a convergent sub-sequence. Con-
versely, if E is such that any sequence in E has a convergent sub-sequence,
then as proved in 6., (E, T ) is a compact topological space. This proves
the difficult and very important theorem (47).

Exercise 4

Exercise 5.

1. Let a, b ∈ R, a < b. Let (xn)n≥1 be a sequence in ]a, b[. In particular,
(xn)n≥1 is a sequence in [a, b]. From theorem (34), [a, b] is a compact sub-
set of R. Applying theorem (47), there exists a subsequence (xnk)k≥1 of
(xn)n≥1, and x ∈ [a, b], such that xnk → x4. So (xn)n≥1 has a convergent
subsequence.

4In a clear context, we shall omit notations such as xnk
TR→ x or xnk

T[a,b]→ x.
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2. No. One cannot conclude that ]a, b[ is compact. In fact, R being Haus-
dorff, from theorem (35), if ]a, b[ was compact, it would be closed, and
]−∞, a] ∪ [b,+∞[ would be open in R. . . One has to be careful with the
phrase having a convergent subsequence. As proved in 1., any sequence in
]a, b[ has a convergent subsequence, but the limit of such subsequence may
not lie in ]a, b[ itself (we only know for sure it lies in [a, b]). This is why,
one cannot apply theorem (47) to conclude that ]a, b[ is compact.

Exercise 5

Exercise 6.

1. The equivalence between xp
TE→ x and xp

TRn→ x has already been proved
in exercise (7) of the previous tutorial. Since the topology TE is induced
by the topology TRn on E, whether we regard (xp)p≥1 and x as belonging
to E or Rn, is irrelevant as far as the convergence xp → x is concerned.
Note however that it is important to have xp ∈ E for all p ≥ 1, and x ∈ E.

2. As seen in exercise (14) of Tutorial 6, various metrics will induce the
product topology TRn on Rn. The most common, viewed as the usual
metric on Rn, is:

d2(x, y)
4
=

√√√√ n∑
i=1

(xi − yi)2

Other possible metrics are:

d1(x, y)
4
=

n∑
i=1

|xi − yi|

or:
d∞(x, y)

4
= max

i∈Nn
|xi − yi|

3. Let (xp)p≥1 be a sequence in Rn and x ∈ Rn. Suppose that xp → x5.
Then for all ε > 0, there exists p0 ≥ 1, such that:

p ≥ p0 ⇒ d1(x, xp) =
n∑
i=1

|xi − xip| ≤ ε

In particular, for all i ∈ Nn, we have:

p ≥ p0 ⇒ |xi − xip| ≤ ε

So xip → xi6 for all i ∈ Nn. Conversely, suppose xip → xi for all i’s. Given
ε > 0, for all i ∈ Nn, there exists pi ≥ 1, such that:

p ≥ pi ⇒ |xi − xip| ≤ ε/n

5i.e. xp
TRn→ x, as should be clear from context.

6i.e. xip
TR→ xi, as should be clear from context.
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Taking p0 = max(p1, . . . , pn), we obtain:

p ≥ p0 ⇒ d1(x, xp) =
n∑
i=1

|xi − xip| ≤ ε

So xp → x, which is equivalent to [xip → xi for all i ∈ Nn]. Note that
although we used the metric structure of R and Rn to prove this equiv-
alence, we had no need to do so. In fact, any sequence with values in
an arbitrary product, even uncountable, of topological spaces, even non-
metrizable, will converge if and only if each coordinate sequence itself
converges. For those interested in this small digression, here is a quick
proof: let (xp)p≥1 be a sequence in the product Πi∈IΩi. Let x be an
element of Πi∈IΩi. Suppose xp → x, with respect to the product topol-
ogy. Let i ∈ I and U be an arbitrary open set in Ωi containing xi. Then
U × Πj 6=iΩj is an open set in Πi∈IΩi containing x. Since xp → x, xp is
eventually7 in U × Πj 6=iΩj . It follows that xip is eventually in U , and we
see that xip → xi. Conversely, suppose xip → xi for all i ∈ I. Let U be
an open set in Πi∈IΩi containing x. There exists a rectangle V = Πi∈IAi
such that x ∈ V ⊆ U . The set J = {i ∈ I : Ai 6= Ωi} is finite, and for all
j ∈ J , Aj is an open set in Ωj containing xj . From xjp → xj we see that
xjp is eventually in Aj . J being finite, it follows that xp is eventually in
(Πj∈JAj) × (Πi6∈JΩi) = V . Since V ⊆ U , xp is eventually in U , and we
have proved that xp → x.

Exercise 6

Exercise 7.

1. Let (xp)p≥1 be a sequence in E. Then (x1
p)p≥1 is a sequence in [−M,M ],

which is a compact subset of R. From theorem (47), we can extract
a subsequence of (x1

p)p≥1, converging to some x1 ∈ [−M,M ]. In other
words, from definition (78), there exists a strictly increasing map φ : N∗ →
N∗, and x1 ∈ [−M,M ] such that8 x1

φ(p) → x1. Hence, we have found a
subsequence (xφ(p))p≥1 such that x1

φ(p) → x1, for some x1 ∈ [−M,M ].

2. The topology on [−M,M ] being induced by the topology on R, the con-
vergence x1

φ(p) → x1 is independent of the particular topology (that of R
or [−M,M ]) with respect to which, it is being considered.

3. Let 1 ≤ k ≤ n− 1. Let (yp)p≥1 = (xφ(p))p≥1 be a subsequence of (xp)p≥1,
with the property that for all j ∈ Nk, we have yjp → xj for some xj ∈
[−M,M ]. Then, (yk+1

p )p≥1 is a sequence in the compact interval [−M,M ].
From theorem (47), there exists a strictly increasing map ψ : N∗ → N∗

such that yk+1
ψ(p) → xk+1, for some xk+1 ∈ [−M,M ].

7there exists p0 ≥ 1 such that p ≥ p0 ⇒ xp ∈ U × Πj 6=iΩj .

8i.e. x1
φ(p)

T[−M,M]→ x1, which is the same as x1
φ(p)

TR→ x1.
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4. If both φ, ψ : N∗ → N∗ are strictly increasing, so is φ ◦ ψ.

5. Since φ ◦ ψ is strictly increasing, (xφ◦ψ(p))p≥1 is indeed a subsequence
of (xp)p≥1, which furthermore coincides with (yψ(p))p≥1, as defined in 3.
It follows that xk+1

φ◦ψ(p) → xk+1. Furthermore, from 3. the subsequence
(yp)p≥1 is assumed to be such that yjp → xj for all j ∈ Nk. Hence, we
also have yjψ(p) → xj , i.e. xjφ◦ψ(p) → xj for all j ∈ Nk. We conclude that

(xφ◦ψ(p))p≥1 is a subsequence of (xp)p≥1 such that xjφ◦ψ(p) → xj for all
j ∈ Nk+1.

6. From 1., given a sequence (xp)p≥1 in E, we can extract a subsequence
(xφ(p))p≥1 of (xp)p≥1 such that x1

φ(p) → x1 for some x1 ∈ [−M,M ]. Given
1 ≤ k ≤ n− 1, and a subsequence (xφ(p))p≥1 of (xp)p≥1, such that for all
j ∈ Nk, xjφ(p) → xj for some xj ∈ [−M,M ], we showed in 5. that we could
extract a further subsequence (xφ◦ψ(p))p≥1 having a similar property for
all j ∈ Nk+1. By induction, it follows that there exists a subsequence
(xφ(p))p≥1 of (xp)p≥1, such that for all j ∈ Nn, we have xjφ(p) → xj

for some xj ∈ [−M,M ]. Hence, taking x = (x1, . . . , xn), we see that
xφ(p) → x9.

7. Let (xp)p≥1 be a sequence in E. From 6., there exists x ∈ E, and a
subsequence (xφ(p))p≥1 of (xp)p≥1, with xφ(p) → x. From theorem (47),
we conclude that (E, TE) is a compact topological space, or equivalently,
that E is a compact subset of Rn. The purpose of this exercise is to prove
that the n-dimensional product [−M,M ]× . . .× [−M,M ] is compact10.

Exercise 7

Exercise 8.

1. If A = ∅ then A ⊆ [−M,M ]× . . .× [−M,M ], for all M ∈ R+. We assume
that A 6= ∅. Let δ(A) be the diameter of A (see definition (68)) with
respect to the usual metric:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

i.e. δ(A) = sup{d(x, y) : x, y ∈ A}. Since A 6= ∅, δ(A) ≥ 0. Furthermore,
A being assumed to be bounded with respect to the usual metric of Rn,
we have δ(A) < +∞. So δ(A) ∈ R+. Let y be an arbitrary element of A.
For all x ∈ A, we have:

|xi − yi| ≤ d(x, y) ≤ δ(A)

So |xi| ≤ |yi| + δ(A), and taking M = max(|y1|, . . . , |yn|) + δ(A), we
conclude that A ⊆ [−M,M ]× . . .× [−M,M ], with M ∈ R+.

9Both with respect to TE and TRn .
10Tychonoff theorem will hopefully be the subject of some future tutorial :-)

www.probability.net

http://www.probability.net


Solutions to Exercises 21

2. By assumption, A is a closed subset of Rn. So Ac is open. It follows
that E \ A = E ∩ Ac is an element of the topology induced on E, by
the topology on Rn . In other words, E \ A is an open subset of E. We
conclude that A is a closed subset of E.

3. From ex. (7), (E, TE) is a compact topological space. From 2., A is a closed
subset of E. Using exercise (2)[6.] of Tutorial 8, we conclude that A is a
compact subset of E. In other words, (A, (TE)|A) is a compact topological
space. However, the topology TE is induced by TRn , i.e. TE = (TRn)|E . It
follows that (TE)|A = (TRn)|A. So (A, (TRn)|A) is a compact topological
space, or equivalently, A is a compact subset of Rn.

4. LetA be a compact subset of Rn. From theorem (35), Rn being Hausdorff,
A is closed in Rn. From exercise (6)[4.] of Tutorial 8, A is bounded with
respect to any metric inducing the usual topology of Rn. This proves
theorem (48).

Exercise 8

Exercise 9.

1. dCn and dR2n are defined by:

dCn(z, z′) =

√√√√ n∑
i=1

|zi − z′i|2

dR2n(x, x′) =

√√√√ 2n∑
i=1

(xi − x′i)2

for all z, z′ ∈ Cn and x, x′ ∈ R2n.

2. Given z, z′ ∈ Cn, we have:

dCn(z, z′) =

√√√√ n∑
i=1

(Re(zi)−Re(z′i))2 +
n∑
i=1

(Im(zi)− Im(z′i))2

It follows that dCn(z, z′) = dR2n(φ(z), φ(z′)).

3. φ is clearly a bijection between Cn and R2n. From 2., we see that φ is
continuous, and furthermore that:

dCn(φ−1(x), φ−1(x′)) = dR2n(x, x′)

for all x, x′ ∈ R2n. So φ−1 is also continuous. From definition (31), φ is a
homeomorphism from Cn to R2n.

4. Let K ⊆ Cn. Suppose K is a compact subset of Cn. Then, (K, (TCn)|K)
is a compact topological space. φ being continuous, its restriction φ|K
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is also continuous.11 Using exercise (8) of Tutorial 8., the direct image
φ|K(K) is a compact subset of R2n. In other words, φ(K) is a compact
subset of R2n. Conversely, suppose φ(K) is a compact subset of R2n.
Since K can be written as the direct image K = φ−1(φ(K)) of φ(K) by
φ−1, and φ−1 is continuous, we conclude similarly that K is a compact
subset of Cn. We have proved that for all K ⊆ Cn, K is compact if and
only if φ(K) is compact.

5. Let K ⊆ Cn. Suppose K is a closed subset of Cn. Since φ(K) can be
written as the inverse image φ(K) = (φ−1)−1(K) of K by φ−1, and φ−1

is continuous, we see that φ(K) is a closed subset of R2n. Conversely,
suppose φ(K) is a closed subset of R2n. Since K can be written as the
inverse image K = φ−1(φ(K)) of φ(K) by φ, and φ is continuous, we see
that K is a closed subset of Cn. We have proved that for all K ⊆ Cn, K
is closed if and only if φ(K) is closed.

6. Let K ⊆ Cn and δ(φ(K)) be the diameter of φ(K) in R2n:

δ(φ(K)) = sup{dR2n(x, x′) : x, x′ ∈ φ(K)}
= sup{dR2n(φ(z), φ(z′)) : z, z′ ∈ K}
= sup{dCn(z, z′) : z, z′ ∈ K}

i.e. δ(φ(K)) = δ(K), where δ(K) is the diameter of K in Cn. It follows
that δ(K) < +∞ is equivalent to δ(φ(K)) < +∞. we have proved that
for all K ⊆ Cn, K is bounded if and only if φ(K) is bounded.

7. Let K ⊆ Cn. From 4., K is compact, if and only if φ(K) is compact.
From theorem (48), φ(K) being a subset of R2n, it is compact if and only
if, it is closed and bounded. From 5. and 6., this in turn is equivalent to
K being itself closed and bounded. We have proved that for all K ⊆ Cn,
K is compact if and only if K is closed and bounded.

Exercise 9

Exercise 10.

1. Definition (79) defines the notion of Cauchy sequences in a metric space.
In contrast, definition (77) defines the notion of Cauchy sequences in
LpC(Ω,F , µ). Since that latter was defined in (73) as a set of functions,
as opposed to a set of µ-almost sure equivalence classes, strictly speaking
LpC(Ω,F , µ) is not a metric space. So definition (77) is not a particular
case of definition (79).

2. Definition (80) defines the notion of complete metric space, as a met-
ric space where all Cauchy sequences converge.12 Theorem (46) does
state that all Cauchy sequences in LpC(Ω,F , µ) converge. However, since
LpC(Ω,F , µ) is not strictly speaking a metric space, it cannot be said to
be a complete metric space.

11 If uneasy with K = ∅ and φ|K = ∅, consider the case separately.
12to a limit belonging to that same metric space. . .
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Exercise 10

Exercise 11.

1. Let (zk)k≥1 be a Cauchy sequence in Cn. Taking ε = 1, there exists
k0 ≥ 1, such that:

k, k′ ≥ k0 ⇒ ‖zk − zk′‖ ≤ 1

Since | ‖z‖ − ‖z′‖ | ≤ ‖z − z′‖ for all z, z′ ∈ Cn, we have:

k ≥ k0 ⇒ ‖zk‖ ≤ 1 + ‖zk0‖

Taking M = max(1 + ‖zk0‖, ‖z1‖, . . . , ‖zk0−1‖), we see that ‖zk‖ ≤M for
all k ≥ 1. We have proved that (zk)k≥1 is a bounded sequence in Cn.

2. Let B = {z ∈ Cn : ‖z‖ ≤ M}. For all z, z′ ∈ B, we have ‖z − z′‖ ≤
‖z‖+ ‖z′‖ ≤ 2M . It follows that δ(B) ≤ 2M , where δ(B) is the diameter
of B in Cn. So δ(B) < +∞, i.e. B is a bounded subset of Cn. Let
z0 ∈ Bc. Then M < ‖z0‖. Let ε = ‖z0‖ − M > 0, and z ∈ Cn with
‖z − z0‖ < ε. Then, we have ‖z0‖ − ‖z‖ ≤ ‖z − z0‖ < ε = ‖z0‖ −M , and
consequently M < ‖z‖, i.e. z ∈ Bc. So B(z0, ε) ⊆ Bc. For all z0 ∈ Bc, we
have found ε > 0, such that B(z0, ε) ⊆ Bc. This proves that Bc is open
with respect to the (metric) topology of Cn. So B is a closed subset of
Cn.

3. From 2., B is a closed and bounded subset of Cn. From exercise (9), it
follows that B is a compact subset of Cn. In other words, (B, (TCn)|B) is
a compact topological space. However, from 1., (zk)k≥1 is a sequence of
elements of B. Using theorem (47), (zk)k≥1 has a convergent subsequence,
i.e. there exists z ∈ B, and a subsequence (zkp)p≥1, such that zkp → z.13

4. (zk)k≥1 being Cauchy, given ε > 0, there exist n0 ≥ 1, such that:

k, k′ ≥ n0 ⇒ d(zk, zk′) ≤ ε/2
Furthermore, since zkp → z, there exists p′0 ≥ 1, such that:

p ≥ p′0 ⇒ d(z, zkp) ≤ ε/2
Moreover, since kp ↑ +∞ as p → +∞, there exists p′′0 ≥ 1, such that
p ≥ p′′0 ⇒ kp ≥ n0. Take p0 = max(p′0, p

′′
0). Then, d(z, zkp0

) ≤ ε/2, and
we have:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2

5. From 4., we have found n0 ≥ 1, such that:

k ≥ n0 ⇒ d(z, zk) ≤ ε

It follows that zk → z.
13Both with respect to TCn and the induced topology (TCn )|B .
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6. From 5., we see that every Cauchy sequence (zk)k≥1 in Cn, converges to
some limit z ∈ Cn. From definition (80), we conclude that Cn is complete
metric space.

7. The completeness of C was used in exercise (12)[6.] of Tutorial 9, leading
to theorem (44) where we proved that any sequence (fn)n≥1 in LpC(Ω,F , µ)
such that:

+∞∑
k=1

‖fk+1 − fk‖p < +∞

converges to some f ∈ LpC(Ω,F , µ). This, in turn, was crucially important
in proving theorem (46), where LpC(Ω,F , µ) is shown to be complete.

Exercise 11

Exercise 12.

1. Let (xk)k≥1 be a sequence in Rn, such that xk → z, for some z ∈ Cn. For
all k ≥ 1 and i ∈ Nn, we have:

|Im(zi)| = |Im(zi)− Im(xik)| ≤ ‖z − xk‖
Taking the limit as k → +∞, we obtain Im(zi) = 0. This being true for
all i ∈ Nn, we have proved that z ∈ Rn.

2. Let (xk)k≥1 be a Cauchy sequence in Rn. In particular, it is a Cauchy
sequence in Cn. From exercise (11), Cn is a complete metric space. Hence,
there exists z ∈ Cn, such that xk → z. From 1., z is in fact an element of
Rn. We have proved that any Cauchy sequence (xk)k≥1 in Rn, converges
to some z ∈ Rn. From definition (80), we conclude that Rn is a complete
metric space. This, together with exercise (11), proves theorem (49).

Exercise 12

Exercise 13.

1. Let x ∈ F̄ . From definition (37), if U is an open set with x ∈ U , then
F ∩ U 6= ∅. Given n ≥ 1, the open ball B(x, 1/n) is an open set with
x ∈ B(x, 1/n). So F ∩B(x, 1/n) 6= ∅.

2. Let x ∈ F̄ . From 1., for all n ≥ 1, we can choose an arbitrary element
xn ∈ F ∩ B(x, 1/n). This defines a sequence (xn)n≥1 of elements of F ,
such that d(x, xn) < 1/n for all n ≥ 1. So xn → x.

3. Let x ∈ E. We assume that there exists a sequence (xn)n≥1 of elements
of F , with xn → x. Let U be an open set containing x. Since xn → x,
there exists n0 ≥ 1, such that:

n ≥ n0 ⇒ xn ∈ U
In particular, xn0 ∈ U . But xn0 is also an element of F . So xn0 ∈ F ∩ U .
We have proved that for all open set U containing x, we have F ∩ U 6= ∅.
From definition (37), we conclude that x ∈ F̄ .
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4. Suppose that F is closed, and let (xn)n≥1 be a sequence in F such that
xn → x for some x ∈ E. From 3. we have x ∈ F̄ . However from exer-
cise (21) of Tutorial 4, we have F = F̄ . So x ∈ F . Conversely, suppose
that for any sequence (xn)n≥1 in F such that xn → x for some x ∈ E, we
have x ∈ F . We claim that F is closed. From exercise (21) of Tutorial 4.,
it is sufficient to show that F̄ = F , or equivalently that F̄ ⊆ F . So let
x ∈ F̄ . From 2. there exists a sequence (xn)n≥1 in F such that xn → x.
By assumption, this implies that x ∈ F . It follows that F̄ ⊆ F .

5. The fact that the induced topological space (F, T|F ) is metrizable, is a
consequence of theorem (12). The induced topology T|F is nothing but
the metric topology associated with the induced metric d|F = d|F×F .

6. Suppose F is complete with respect to the induced metric d|F . Let x ∈ E
and (xn)n≥1 be a sequence of elements of F , with xn → x. In particular,
(xn)n≥1 is a Cauchy sequence with respect to the metric d. (xn)n≥1 being
a sequence of elements of F , it is also a Cauchy sequence with respect to
the induced metric d|F . F being complete, there exists y ∈ F , such that
xn → y. This convergence, with respect to T|F , is also valid with respect
T . Since we also have xn → x, we see that x = y. It follows that x ∈ F .
Given x ∈ E, and a sequence (xn)n≥1 of elements of F such that xn → x,
we have proved that x ∈ F . From 4., this shows that F is a closed subset
of E. We conclude that if F is complete (with respect to its natural metric
d|F ), then it is a closed subset of E.

7. From theorem (12), the induced metric d′ = (dR̄)|R induces the induced
topology (TR̄)|R. Such topology is nothing but the usual topology on R.
It follows that d′ induces TR.

8. Let dR be the usual metric on R. From theorem (12), the induced met-
ric (dR)|[−1,1] induces the induced topology on [−1, 1]. Such topology is
nothing but the usual topology on [−1, 1].

9. From 8., if {−1, 1} was open in [−1, 1], there would exists ε > 0, such that
]1− ε, 1] ⊆ {−1, 1}, which is absurd.

10. If {−∞,+∞} was open in R̄, then {−1, 1} would be open in [−1, 1], since
one is the inverse image of the other, by a strictly increasing homeomor-
phism.

11. If R was closed in R̄, then {−∞,+∞} would be open in R̄.

12. Let dR be the usual metric on R. Then dR induces the usual topology
on R. However, from 7., the metric d′ also induces the usual topology
on R. It follows that dR and d′ both induce the same topology. From
theorem (49), R is complete with respect to its usual metric dR. If R was
complete with respect to d′ = (dR̄)|R, then from 6., R would be a closed
subset of R̄, contradicting 11. So R is not complete with respect to d′.
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We conclude that although the two metric spaces (R, dR) and (R, d′) are
identical in the topological sense, one is complete whereas the other is not.

Exercise 13

Exercise 14.

1. Let y ∈ H. For all x, x′ ∈ H and α ∈ K, using (ii) and (iii) of defini-
tion (81), we obtain:

〈x + αx′, y〉 = 〈x, y〉+ α〈x′, y〉
We conclude that x→ 〈x, y〉 is linear for all y ∈ H.

2. Let x ∈ H. For all y, y′ ∈ H and α ∈ K, using (i), (ii) and (iii) of
definition (81), we obtain:

〈x, y + αy′〉 = 〈x, y〉+ ᾱ〈x, y′〉
where ᾱ is the complex conjugate of α. Hence, y → 〈x, y〉 is conjugate-
linear for all x ∈ H. In the case when K = R, it is in fact linear.

Exercise 14

Exercise 15.

1. The inner-product 〈·, ·〉 has values in K. From (iv) of definition (81),
〈x, x〉 ≥ 0 for all x ∈ H. It follows that ‖x‖ =

√
〈x, x〉 is a well-defined

element of R+, for all x ∈ H. Hence, we see that A = ‖x‖2 and C = ‖y‖2
are both well-defined elements of R+. Furthermore, B = |〈x, y〉| being the
modulus of an element of K, is a well-defined element of R+.

2. Let t ∈ R. Using the linearity properties of exercise (14):

〈x− tαy, x− tαy〉 = 〈x, x〉 − tα〈x, y〉 − tᾱ〈x, y〉+ t2αᾱ〈y, y〉
Since B = B̄ = α〈x, y〉 and αᾱ = 1, we conclude that:

〈x − tαy, x− tαy〉 = A− 2tB + t2C

3. Suppose C = 0. Then 〈y, y〉 = 0. From (v) of definition (81), we see that
y = 0. From the conjugate linearity of y′ → 〈x, y′〉, we have 〈x, 0〉 = 0 for
all x ∈ H, and consequently 〈x, y〉 = 0. So B = 0, and finally B2 ≤ AC.

4. Suppose C 6= 0. Let P (t) = A− 2tB+ t2C for all t ∈ R. Since C > 0 and
P ′(t) = 2tC − 2B, the second degree polynomial P has a minimum value
at t = B/C. From 2., for all t ∈ R:

P (t) = 〈x− tαy, x− tαy〉 ≥ 0

In particular, P (B/C) ≥ 0. It follows that B2 ≤ AC.

5. From B2 ≤ AC, since A,B,C ∈ R+, we obtain B ≤
√
AC, i.e.

|〈x, y〉| ≤ ‖x‖.‖y‖
This proves theorem (50).
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Exercise 15

Exercise 16.

1. Let f, g ∈ L2
C(Ω,F , µ). Then, f ḡ is a complex-valued and measurable

map. Furthermore, from theorem (42):∫
|f ||g|dµ ≤

(∫
|f |2dµ

) 1
2
(∫
|g|2dµ

) 1
2

So
∫
|f ḡ|dµ < +∞ and f ḡ ∈ L1

C(Ω,F , µ). It follows that 〈f, g〉 =
∫
f ḡdµ

is a well-defined complex number.

2. Let f ∈ L2
C(Ω,F , µ). From definition (73), ‖f‖2 is defined as ‖f‖2 =

(
∫
|f |2dµ)1/2. It follows that:

‖f‖2 =
(∫

f f̄dµ

) 1
2

=
√
〈f, f〉

3. Let f, g ∈ L2
C(Ω,F , µ). From theorems (24) and (42) , we have:

|〈f, g〉| =
∣∣∣∣∫ f ḡdµ

∣∣∣∣ ≤ ∫ |f ||g|dµ ≤ ‖f‖2.‖g‖2
4. Among properties (i) − (v) of definition (81), only (v) fails to be satis-

fied. Indeed, although f = 0 does imply that 〈f, f〉 =
∫
|f |2dµ = 0, the

converse is not true. Having
∫
|f |2dµ = 0 only guarantees that f = 0

µ-almost surely, and not necessarily everywhere. We conclude that 〈·, ·〉
is not strictly speaking an inner-product on L2

C(Ω,F , µ), as defined by
definition (81). It follows that equation (1) which we proved in 3., cannot
be viewed as a consequence of theorem (50).

5. Let f, g ∈ L2
C(Ω,F , µ). Let P (t) =

∫
(|f | + t|g|)2dµ for all t ∈ R. Then,

P (t) ≥ 0 for all t ∈ R, and furthermore:

P (t) = A+ 2tB + t2C

where A =
∫
|f |2dµ, B =

∫
|f ||g|dµ and C =

∫
|g|2dµ. All three numbers

A,B and C are elements of R+.14 If C = 0, then g = 0 µ-a.s. and
consequently B = 0. In particular, the inequality B2 ≤ AC holds. If
C 6= 0, from P (−B/C) ≥ 0 we obtain B2 ≤ AC, and consequently:∫

|fg|dµ ≤
(∫
|f |2dµ

) 1
2
(∫
|g|2dµ

) 1
2

6. Let f, g : (Ω,F) → [0,+∞] be non-negative and measurable. Suppose
both integrals

∫
f2dµ and

∫
g2dµ are finite. Then f and g are µ-almost

surely finite, and therefore µ-almost surely equal to f1{f<+∞} and g1{g<+∞}

14B can be shown to be finite from |fg| ≤ (|f |2 + |g|2)/2.
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respectively. It follows that f and g are µ-almost surely equal to elements
of L2

C(Ω,F , µ). Applying 5. to f1{f<+∞} and g1{g<+∞}, we obtain:∫
fgdµ ≤

(∫
f2dµ

) 1
2
(∫

g2dµ

) 1
2

If
∫
f2dµ = +∞ or

∫
g2dµ = +∞, such inequality still holds. We have

effectively proved theorem (42), without using holder inequality (41).

Exercise 16

Exercise 17.

1. Let x, y ∈ H. Using (ii) of definition (81), we have:

‖x+ y‖2 = 〈x + y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉

Furthermore, using (i) and (ii):

〈x, x+ y〉 = 〈x+ y, x〉 = 〈x, x〉 + 〈y, x〉 = ‖x‖2 + 〈x, y〉

and also:
〈y, x+ y〉 = 〈x+ y, y〉 = ‖y‖2 + 〈x, y〉

We conclude that:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈x, y〉

2. From the Cauchy-Schwarz inequality of theorem (50):

|〈x, y〉| = |〈x, y〉| ≤ ‖x‖.‖y‖

Consequently, using 1., we have:

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖.‖y‖ = (‖x‖+ ‖y‖)2

We conclude that for all x, y ∈ H, we have:

‖x+ y‖ ≤ ‖x‖+ ‖y‖

3. Let d = d〈·,·〉 be the map defined by d(x, y) = ‖x − y‖. Note that from
(iv) of definition (81):

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

is well-defined, and non-negative. So d is indeed a map from H×H, with
values in R+. Let x, y, z ∈ H. d(x, y) = 0 is equivalent to 〈x−y, x−y〉 = 0,
which from (v) of definition (81), is itself equivalent to x = y. So (i) of
definition (28) is satisfied by d. Furthermore, we have:

‖ − x‖2 = 〈−x,−x〉 = −〈−x, x〉 = ‖x‖2

and consequently, d(x, y) = ‖x − y‖ = ‖y − x‖ = d(y, x). So (ii) of
definition (28) is satisfied by d. Finally, using 2.:

‖x− y‖ = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖
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and we see that d(x, y) ≤ d(x, z) + d(z, y). So (iii) of definition (28) is
also satisfied by d. Having checked conditions (i), (ii) and (iii) of defini-
tion (28), we conclude that d is indeed a metric on H.

Exercise 17

Exercise 18.

1. M being a linear subspace of the K-vector space H, is itself a K-vector
space. [·, ·] being the restriction of 〈·, ·〉 to M ×M, is indeed a map
[·, ·] :M×M→ K. For all x, y ∈ M, we have:

[x, y] = 〈x, y〉 = 〈y, x〉 = [y, x]

So (i) of definition (81) is satisfied by [·, ·]. Similarly, it is clear that all
properties (ii)−(v) of definition (81) are also satisfied by [·, ·]. We conclude
that [·, ·] is indeed an inner-product on the K-vector space M.

2. Recall that from definition (83), the metric d[·,·] is defined by:

d[·,·](x, y) =
√

[x− y, x− y]

[·, ·] being the restriction of 〈·, ·〉 to M×M, we have:

d[·,·](x, y) =
√
〈x− y, x− y〉 = d〈·,·〉(x, y)

We conclude that the metric d[·,·] is nothing but the restriction of the
metric d〈·,·〉 to M×M, i.e. d[·,·] = (d〈·,·〉)|M×M.

3. From theorem (12), the topology induced on M by the norm topology
T〈·,·〉 (the latter being the metric topology associated with d〈·,·〉, by defini-
tion (82)), is nothing but the metric topology associated with (d〈·,·〉)M×M =
d[·,·] (which by definition (82), is the norm topology on M, i.e. T[·,·]). So
(T〈·,·〉)|M = T[·,·].

Exercise 18

Exercise 19.

1. Since (xn)n≥1 is a Cauchy sequence inM, with respect to the metric d[·,·],
from definition (79), for all ε > 0, there exists an integer n0 ≥ 1, such that:

n,m ≥ n0 ⇒ d[·,·](xn, xm) ≤ ε
However, since d[·,·] is the restriction of d〈·,·〉 toM×M, we have d[·,·](x, y) =
d〈·,·〉(x, y) for all x, y ∈ M. It follows that (xn)n≥1 is also a Cauchy se-
quence in H, with respect to the metric d〈·,·〉.

2. (H, 〈·, ·〉) being a Hilbert space, from definition (83), H is a also a complete
metric space. From definition (80), (xn)n≥1 being a Cauchy sequence in
H, there exists x ∈ H such that xn → x.

3. M is a closed subset of H, and (xn)n≥1 is a sequence of elements of M
converging to x ∈ H. From exercise (13) [4.], we conclude that x ∈M.
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4. As seen in the previous exercise, the norm topology T[·,·] onM is induced
by the norm topology T〈·,·〉 on H. Since (xn)n≥1 is a sequence in M and
x ∈M, the convergence xn → x relative to the topology T[·,·], is equivalent
to the convergence xn → x relative to the topology T〈·,·〉.

5. Given a Cauchy sequence (xn)n≥1 inM, we have found an element x ∈M,
such that xn → x. From definition (80), this shows that (M, d[·,·]) is a
complete metric space. It follows thatM is a K-vector space, that [·, ·] is
an inner-product onM, under whichM is complete. From definition (83),
we conclude that (M, [·, ·]) = (M, 〈·, ·〉|M×M) is a Hilbert space over K.
The purpose of this exercise is to show that any closed linear subspace
of a Hilbert space, is itself a Hilbert space, together with its restricted
inner-product.

Exercise 19

Exercise 20.

1. Let z, z′, z′′ ∈ Cn and α ∈ C. We have:

〈z, z′〉 =
n∑
i=1

ziz̄i
′ =

n∑
i=1

z̄iz′i = 〈z′, z〉

〈z + z′, z′′〉 =
n∑
i=1

(zi + z′i)z̄i
′′ = 〈z, z′′〉+ 〈z′, z′′〉

〈αz, z′〉 =
n∑
i=1

(αzi)z̄i′ = α〈z, z′〉

〈z, z〉 =
n∑
i=1

ziz̄i =
n∑
i=1

|zi|2 ≥ 0

and finally, 〈z, z〉 = 0 is equivalent to zi = 0 for all i ∈ Nn, itself equivalent
to z = 0. Hence, we see that all five conditions (i)− (v) of definition (81)
are satisfied by 〈·, ·〉. So 〈·, ·〉 is indeed an inner-product on Cn.

2. The metric d〈·,·〉 is defined by:

d〈·,·〉(z, z′) =
√
〈z − z′, z − z′〉 =

√√√√ n∑
i=1

|zi − z′i|2

It therefore coincides with the usual metric on Cn.

3. From theorem (49), Cn is a complete metric space, with respect to its
usual metric. The latter being the same as the metric d〈·,·〉, we conclude
from definition (83) that (Cn, 〈·, ·〉) is a Hilbert space over C.
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4. For all i ∈ Nn, let φi : Cn → R be defined by φi(z) = Im(zi). For all
z, z′ ∈ Cn, we have:

|φi(z)− φi(z′)| = |Im(zi − z′i)| ≤ ‖z − z′‖ = dCn(z, z′)

So each φi is a continuous map. The set {0} being a closed subset of
R, the inverse image φ−1

i ({0}) is a closed subset of Cn. It follows that
Rn = ∩ni=1φ

−1
i ({0}) as an intersection of closed subsets of Cn, is itself a

closed subset of Cn.

5. Given x ∈ Rn and α ∈ C, α.x is not in general an element of Rn. So Rn

is not a linear subspace of Cn. It is of course an R-vector space. . .

6. Since Rn is not a linear subspace of Cn, we cannot rely on exercise (19)
to argue that (Rn, 〈·, ·〉) is a Hilbert space. In fact, we want to show
that Rn is a Hilbert space over R, (not C), so exercise (19) is no good
to us. . . However, the restriction of 〈·, ·〉 to Rn × Rn also satisfies con-
ditions (i) − (v) of definition (81), and is therefore an inner-product on
Rn, which furthermore induces the usual metric on Rn. Since from the-
orem (49), Rn is complete with respect to its usual metric, we conclude
from definition (83) that it is a Hilbert space over R.

Exercise 20

Exercise 21.

1. Since C 6= ∅, there exists y ∈ C. From δmin ≤ ‖y − x0‖, we obtain
δmin < +∞. In particular, δmin < δmin + 1/n for all n ≥ 1. δmin being
the greatest of all lower-bound of ‖x − x0‖ for x ∈ C, it follows that
δmin + 1/n cannot be such lower-bound. There exists xn ∈ C, such that
‖xn − x0‖ < δmin + 1/n. This being true for all n ≥ 1, we have found a
sequence (xn)n≥1 in C, such that δmin ≤ ‖xn − x0‖ < δmin + 1/n, for all
n ≥ 1. In particular, ‖xn − x0‖ → δmin.

2. For all x, y ∈ H:

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 + ‖y‖2 − 〈x, y〉 − 〈x, y〉
‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈x, y〉

and therefore:

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2

or equivalently:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥2

(6)

3. Let n,m ≥ 1. xn and xm are both elements of C. Since we have 1/2 ∈ [0, 1],
from definition (85), C being convex, (xn + xm)/2 is also an element of C.
Since δmin is a lower-bound of ‖x− x0‖ for x ∈ C, we conclude that:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥ (7)

www.probability.net

http://www.probability.net


Solutions to Exercises 32

4. Let n,m ≥ 1. Applying (6) to x = xn − x0 and y = xm − x0:

‖xn − xm‖2 = 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4
∥∥∥∥xn + xm

2
− x0

∥∥∥∥2

and therefore, from (7):

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2
min (8)

5. Let ε > 0. Since (xn)n≥1 is such that ‖xn − x0‖ → δmin, in particular,
there exists N ≥ 1 such that:

n ≥ N ⇒ 2‖xn − x0‖2 ≤ 2δ2
min + ε2/2

Using (8), we have:

n,m ≥ N ⇒ ‖xn − xm‖2 ≤ ε2

It follows from definition (79) that (xn)n≥1 is a Cauchy sequence in H.
Since H is a Hilbert space, it is also a complete metric space. So (xn)n≥1

has a limit in H. There exists x∗ ∈ H, such that xn → x∗15.

6. From 5., we have xn → x∗, while (xn)n≥1 is a sequence of elements of C.
Since by assumption, C is a closed subset of H, using exercise (13) [4.], we
conclude that x∗ ∈ C.

7. Let x, y ∈ H. From exercise (17), we have:

‖x‖ ≤ ‖x− y‖+ ‖y‖
‖y‖ ≤ ‖x− y‖+ ‖x‖

where we have used the fact that ‖x− y‖ = ‖y − x‖. Hence:

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖

or equivalently | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. For all n ≥ 1, from 7., we have:

| ‖xn − x0‖ − ‖x∗ − x0‖ | ≤ ‖x∗ − xn‖

Since xn → x∗, ‖x∗ − xn‖ → 0, and so ‖xn − x0‖ → ‖x∗ − x0‖.

9. By construction, (xn)n≥1 is such that ‖xn − x0‖ → δmin. However, from
8., ‖xn − x0‖ → ‖x∗ − x0‖. So ‖x∗ − x0‖ = δmin. Since x∗ ∈ C, we have
found x∗ ∈ C, such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

15Convergence relative to the norm topology, so xn
T〈·,·〉→ x∗.
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10. Suppose y∗ is another element of C, such that:

‖y∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Applying (6) to x = x∗ − x0 and y = y∗ − x0, we obtain:

‖x∗ − y∗‖2 = 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4
∥∥∥∥x∗ + y∗

2
− x0

∥∥∥∥2

Since C is convex and x∗, y∗ are elements of C, (x∗ + y∗)/2 is also an
element of C. It follows that:

δmin ≤
∥∥∥∥x∗ + y∗

2
− x0

∥∥∥∥
and finally ‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2

min.

11. Since δmin = ‖x∗ − x0‖ = ‖y∗ − x0‖, we see from 10. that ‖x∗ − y∗‖ = 0,
and finally x∗ = y∗. This proves theorem (52).

Exercise 21

Exercise 22.

1. For all y ∈ G, 〈0, y〉 = 0.〈0, y〉 = 0. So 0 ∈ G⊥ and in particular G⊥ 6= ∅.
Let x1, x2 ∈ G⊥ and α ∈ K. For all y ∈ G, we have 〈x1, y〉 = 0 and
〈x2, y〉 = 0. Hence:

〈x1 + αx2, y〉 = 〈x1, y〉+ α〈x2, y〉 = 0

This being true for all y ∈ G, x1 + αx2 ∈ G⊥. We conclude that G⊥ is a
linear sub-space of H. Note that no assumption was made, as to whether
G is itself a linear sub-space or not.

2. Given y ∈ H, let φy : H → K be defined by φy(x) = 〈x, y〉. From
the Cauchy-Schwarz inequality of theorem (50), if x1, x2 ∈ H, we have
|φy(x1)−φy(x2)| = |〈x1−x2, y〉| ≤ ‖y‖.‖x1−x2‖ or equivalently dK(φy(x1), φy(x2)) ≤
‖y‖.d〈·,·〉(x1, x2), where dK is the usual metric on K. It follows that
φy : H → K is a continuous map, with respect to the norm topology
on H, and the usual topology on K.

3. Suppose x ∈ G⊥. For all y ∈ G, we have 〈x, y〉 = 0 = φy(x). So x ∈
∩y∈Gφ−1

y ({0}). Conversely, if x ∈ ∩y∈Gφ−1
y ({0}), then for all y ∈ G,

we have φy(x) = 0 = 〈x, y〉, and therefore x ∈ G⊥. This proves that
G⊥ = ∩y∈Gφ−1

y ({0}).

4. The set {0} is a closed subset of K. Since φy : H → K is a continuous map
for all y ∈ H, the inverse image φ−1

y ({0}) is a closed subset of H. From
3., G⊥ being an arbitrary intersection of closed subsets of H, we conclude
that G⊥ is itself a closed subset of H.

www.probability.net

http://www.probability.net


Solutions to Exercises 34

5. ∅⊥ ⊆ H and {0}⊥ ⊆ H are obviously true. Furthermore, a statement such
that [∀y ∈ ∅, 〈x, y〉 = 0] is also true for any x ∈ H. So H ⊆ ∅⊥. Moreover,
for all x ∈ H, 〈x, 0〉 = 0, i.e. x ∈ {0}⊥. So H ⊆ {0}⊥. We have proved
that H = ∅⊥ = {0}⊥.

6. For all y ∈ H, 〈0, y〉 = 0. So {0} ⊆ H⊥. Conversely, if x ∈ H⊥, then
〈x, x〉 = 0 and therefore x = 0. So H⊥ ⊆ {0}.

Exercise 22

Exercise 23.

1. M being a linear sub-space of H, it has at least one element, namely
0. So M 6= ∅. Furthermore, for all x, y ∈ M and α, β ∈ K, we have
αx + βy ∈ M. In particular, for all t ∈ [0, 1], tx + (1 − t)y ∈ M. From
definition (85), it follows that M is also a convex subset of H. Having
assumed M to be closed, it is therefore a non-empty, closed and convex
subset of H. Applying theorem (52), there exists x∗ ∈M such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈M}

2. Let y∗ = x0 − x∗. Since x∗ ∈ M, for all y ∈ M and α ∈ K, x∗ + αy is
also an element ofM. It follows that:

‖x∗ − x0‖ ≤ ‖x∗ + αy − x0‖

or equivalently:
‖y∗‖2 ≤ ‖y∗ − αy‖2 (9)

3. Let y ∈M and α ∈ K. We have:

‖y∗ − αy‖2 = ‖y∗‖2 − α〈y, y∗〉 − α〈y, y∗〉+ |α|2‖y‖2

Hence, using (9), we obtain:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉+ |α|2‖y‖2 (10)

4. Given y ∈ M \ {0}, take α = 〈y, y∗〉/‖y‖2 in (10). We obtain:

0 ≤ −|〈y, y
∗〉|2

‖y‖2

5. It follows from 4. that |〈y, y∗〉|2 ≤ 0 for all y ∈ M \ {0}. So 〈y∗, y〉 =
〈y, y∗〉 = 0, for all y ∈ M \ {0}. Since 〈y∗, 0〉 = 0, we in fact have
〈y∗, y〉 = 0 for all y ∈ M, and we see that y∗ ∈ M⊥. So x∗ ∈ M,
y∗ ∈ M⊥, and since y∗ = x0 − x∗, we conclude that x0 = x∗ + y∗.

6. M andM⊥ being linear sub-spaces of H, 0 is an element of bothM and
M⊥. So {0} ⊆ M ∩M⊥. Conversely, suppose x ∈ M ∩M⊥. From
x ∈ M⊥, we have 〈x, y〉 = 0 for all y ∈ M. From x ∈ M, we see in
particular that 〈x, x〉 = 0. From (v) of definition (81), we conclude that
x = 0. So M∩M⊥ = {0}.
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7. Suppose there exist x̄ ∈ M and ȳ ∈ M⊥, such that x0 = x̄ + ȳ. Then
x∗ + y∗ = x̄ + ȳ and consequently x∗ − x̄ = ȳ − y∗, while x∗ − x̄ ∈ M
and ȳ − y∗ ∈ M⊥. Since M∩M⊥ = {0}, we conclude that x∗ = x̄ and
y∗ = ȳ. So x∗ ∈ M and y∗ ∈ M⊥ such that x0 = x∗ + y∗ are unique.
This proves theorem (53).

Exercise 23

Exercise 24.

1. Let λ : H → K be a linear functional, which is continuous at x0 ∈ H16.
Given an open set V in K containing λ(x0), there exists an open set U in
H containing x0, such that f(U) ⊆ V . Since the two topologies on H and
K are metric, this is easily shown to be equivalent to the property that
for all ε > 0, there exists δ > 0, such that:

∀x ∈ H , ‖x− x0‖ < δ ⇒ |λ(x) − λ(x0)| < ε

In particular, taking ε = 1 and some η > 0 strictly smaller than the
associated δ, we have:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1

Hence, given x ∈ H, x 6= 0, we have:

|λ(ηx/‖x‖)| = |λ(x0 + ηx/‖x‖)− λ(x0)| ≤ 1

2. If λ is continuous at some x0 ∈ H, from 1., there exists η > 0 such that
|λ(ηx/‖x‖)| ≤ 1 for all x ∈ H\ {0}. So |λ(x)| ≤ ‖x‖/η for all x ∈ H\ {0},
which is obviously still valid if x = 0. We have found M = 1/η ∈ R+,
such that:

∀x ∈ H , |λ(x)| ≤M‖x‖ (11)

3. Suppose λ : H → K is a linear functional, such that (11) holds for some
M ∈ R+. Then for all x1, x2 ∈ H, we have:

|λ(x1)− λ(x2)| = |λ(x1 − x2)| ≤M‖x1 − x2‖
So λ is continuous (everywhere).

Exercise 24

Exercise 25.

1. Let x0 ∈ H such that λ(x0) 6= 0. Then x0 6∈ M = λ−1({0}).

2. M = λ−1({0}) is a linear sub-space of H. Indeed, it is not empty (λ(0) =
0), and if λ(x1) = λ(x2) = 0 and α ∈ K, then:

λ(x1 + αx2) = λ(x1) + αλ(x2) = 0

16Continuity at a given point is defined in what follows.
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Furthermore, λ being a bounded linear functional, is continuous, andM =
λ−1({0}) is therefore a closed subset of H. So M is a closed linear sub-
space of H. From theorem (53), there exists x∗ ∈ M, y∗ ∈M⊥, such that
x0 = x∗ + y∗.

3. Since x∗ ∈ M, λ(y∗) = λ(x0) and therefore λ(y∗) 6= 0. In particular,
y∗ 6= 0. Taking z = y∗/‖y∗‖, we have found z ∈M⊥, such that ‖z‖ = 1.

4. Let α ∈ K \ {0}. We have 〈z, αz〉/ᾱ = 〈z, (αz)/α〉 = 〈z, z〉 = 1. It follows
that λ(x)〈z, αz〉/ᾱ = λ(x) for all x ∈ H.

5. In order to have λ(x) = 〈x, αz〉 for all x ∈ H, we need:

0 = λ(x)− 〈x, αz〉 = λ(x)〈z, αz〉/ᾱ− 〈x, αz〉 = 〈λ(x)z/ᾱ − x, αz〉
Since z ∈ M⊥, it is sufficient to choose α ∈ K \ {0}, with:

∀x ∈ H ,
λ(x)z
ᾱ
− x ∈M (12)

6. Since M = λ−1({0}), property (12) is equivalent to:

0 = λ

(
λ(x)z
ᾱ
− x
)

= λ(x)λ(z)/ᾱ − λ(x)

for all x ∈ H, which is satisfied for α = λ(z), provided λ(z) 6= 0. But if
λ(z) = 0, then z ∈ M. So z ∈ M ∩M⊥ and 〈z, z〉 = 0, contradicting
the fact that ‖z‖ = 1. Hence, if we take α = λ(z), then condition (12) is
satisfied, and therefore λ(x) = 〈x, αz〉 for all x ∈ H. Taking y = αz =
λ(z)z, we have found y ∈ H, with:

∀x ∈ H , λ(x) = 〈x, y〉 (13)

In case one has any doubt about (13), one can quickly check:

λ(x) − 〈x, λ(z)z〉 = λ(x)〈z, z〉 − λ(z)〈x, z〉
= 〈λ(x)z − λ(z)x, z〉
= 0

the last equality arising from λ(x)z − λ(z)x ∈M and z ∈ M⊥.

7. Suppose ȳ ∈ H is such that λ(x) = 〈x, ȳ〉 for all x ∈ H. Then 〈x, y− ȳ〉 = 0
for all x ∈ H, and in particular ‖y − ȳ‖2 = 0, i.e. ȳ = y. So y ∈ H
satisfying (13) is unique. This proves theorem (54) 17 .

Exercise 25

Exercise 26.
17The case λ = 0 is easy to handle.
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1. Suppose f = g µ-a.s. For all h ∈ [f ], we have h = f µ-a.s. and therefore
h = g µ-a.s., i.e. h ∈ [g]. So [f ] ⊆ [g], and similarly [g] ⊆ [f ]. Conversely,
if [f ] = [g], then in particular f ∈ [g] and therefore f = g µ-a.s. We have
proved that f = g µ-a.s. is equivalent to [f ] = [g].

2. Suppose [f ] = [f ′] and [g] = [g′]. Then f = f ′ µ-a.s. and g = g′ µ-a.s. So
f + g = f ′ + g′ µ-a.s. and [f + g] = [f ′ + g′].

3. ⊕ is defined as [f ]⊕ [g] = [f + g]. This definition may not be legitimate,
as [f ]⊕ [g] is defined in terms of particular representatives f and g of the
equivalence classes [f ] and [g]. Since such representative are normally far
from being unique, this may lead to different values of [f + g], as f and g
range over all possible choices. However, as shown in 2., [f + g] is in fact
independent of the particular choice of f ∈ [f ] and g ∈ [g]. So [f ]⊕ [g] is
unambiguously defined, i.e. the operator ⊕ is well-defined.

4. Let α ∈ K. If [f ] = [f ′], then f = f ′ µ-a.s. and αf = αf ′ µ-a.s. So
[αf ] = [αf ′]. It follows that [αf ] is independent of the particular choice
of f ∈ [f ]. So α ⊗ [f ] is unambiguously defined, i.e. the operator ⊗ is
well-defined.

5. For all [f ], [g], [h] ∈ H and α, β ∈ K, we have:

(i) [0]⊕ [f ] = [0 + f ] = [f ]
(ii) [−f ]⊕ [f ] = [−f + f ] = [0]

(iii) [f ]⊕ ([g]⊕ [h]) = [f + g + h] = ([f ]⊕ [g])⊕ [h]
(iv) [f ]⊕ [g] = [f + g] = [g]⊕ [f ]
(v) 1⊗ [f ] = [1.f ] = [f ]

(vi) α⊗ (β ⊗ [f ]) = [αβf ] = (αβ) ⊗ [f ]
(vii) (α+ β)⊗ [f ] = [αf + βf ] = (α⊗ [f ])⊕ (β ⊗ [f ])

(viii) α⊗ ([f ]⊕ [g]) = [αf + αg] = (α⊗ [f ])⊕ (α⊗ [g])

Exercise 26

Exercise 27.

1. Suppose [f ] = [f ′] and [g] = [g′]. Then f = f ′ µ-a.s. and g = g′ µ-a.s. So
f ḡ = f ′ḡ′ µ-a.s. and therefore:∫

f ḡdµ =
∫
f ′ḡ′dµ (14)

It follows that (14) is independent of the of choice of f ∈ [f ] and g ∈ [g].
We conclude that 〈[f ], [g]〉H is unambiguously defined, i.e. 〈·, ·〉H is well-
defined.
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2. Let [f ], [g] ∈ H, α ∈ K and 〈·, ·〉 = 〈·, ·〉H. We have:

(i) 〈[f ], [g]〉 =
∫
f ḡdµ = 〈[g], [f ]〉

(ii) 〈[f ]⊕ [g], [h]〉 =
∫

(f + g)h̄dµ = 〈[f ], [h]〉+ 〈[g], [h]〉

(iii) 〈α⊗ [f ], [g]〉 =
∫

(αf)ḡdµ = α〈[f ], [g]〉

(iv) 〈[f ], [f ]〉 =
∫
|f |2dµ ∈ R+

and finally, 〈[f ], [f ]〉 = 0 is equivalent to
∫
|f |2dµ = 0, which is in turn

equivalent to f = 0 µ-a.s., i.e. [f ] = [0]. From definition (81), we conclude
that 〈·, ·〉 is an inner-product on H.

3. H is a K-vector space, and 〈·, ·〉H is an inner-product on H. From defini-
tion (83), to show that (H, 〈·, ·〉H) is a Hilbert space over K, we need to
prove that H is in fact complete with respect to the metric induced by the
inner-product. Let ([fn])n≥1 be a Cauchy sequence in H. For all ε > 0,
there exists n0 ≥ 1 with:

n,m ≥ n0 ⇒ ‖[fn]− [fm]‖H ≤ ε18

However, for all f ∈ L2
K(Ω,F , µ), we have:

‖[f ]‖H = (〈[f ], [f ]〉H)
1
2 =

(∫
|f |2dµ

) 1
2

= ‖f‖2

It follows that (fn)n≥1 is a Cauchy sequence in L2
K(Ω,F , µ). From theo-

rem (46), there exists f ∈ L2
K(Ω,F , µ), such that fn → f in L2. In other

words, for all ε > 0, there exists n0 ≥ 1, such that:

n ≥ n0 ⇒ ‖fn − f‖2 ≤ ε

Since ‖fn− f‖2 = ‖[fn]− [f ]‖H, we conclude that [fn]→ [f ] with respect
to the norm topology on H. Having found a limit for the Cauchy sequence
([fn])n≥1, we have proved that H is complete, and (H, 〈·, ·〉H) is finally a
Hilbert space over K.

4. 〈f, g〉 =
∫
f ḡdµ is not an inner-product on L2

K(Ω,F , µ), as property (v)
of definition (81) fails to be satisfied. If 〈f, f〉 = 0, then we know for sure
that f = 0 µ-a.s. There is no reason why f should be 0 everywhere. This
is the very reason why in this exercise, we go through so much trouble
considering the quotient set H = (L2

K(Ω,F , µ))|R, where R is the µ-a.s.
equivalence relation on L2

K(Ω,F , µ).

Exercise 27

Exercise 28.
18[fn]− [fm] is a light notation to indicate [fn]⊕ [−fm].
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1. Since L2
K(Ω,F , µ) is not a Hilbert space, we cannot use exercise (24) in

its literal form. However, most of what we did then, can be reproduced
here. Let λ : L2

K(Ω,F , µ) → K be a continuous linear functional. The
open ball B(0, 1) = {z ∈ K : |z| < 1} being open in K, the inverse image
λ−1(B(0, 1)) is an open subset of L2

K(Ω,F , µ). Since 0 ∈ λ−1(B(0, 1)),
there exists δ > 0, such that B(0, δ) ⊆ λ−1(B(0, 1)), where B(0, δ) is the
open ball in L2

K(Ω,F , µ). Taking an arbitrary η > 0, strictly smaller than
δ, for all f ∈ L2

K(Ω,F , µ), we have:

‖f‖2 ≤ η ⇒ |λ(f)| ≤ 1

It follows that |λ(ηf/‖f‖2)| ≤ 1 for all f ∈ L2
K(Ω,F , µ), f 6= 0, and

finally:

∀f ∈ L2
K(Ω,F , µ) , |λ(f)| ≤ 1

η
‖f‖2 (15)

2. If [f ] = [g], then f − g = 0 µ-a.s. and ‖f − g‖2 = 0. It follows from (15)
that λ(f) = λ(g).

3. Λ : H → K is defined by Λ([f ]) = λ(f). Since λ(f) is independent of
the particular choice of f ∈ [f ], Λ([f ]) is unambiguously defined, i.e. Λ is
well-defined. For all [f ], [g] ∈ H and α ∈ K:

Λ([f ]⊕ (α⊗ [g])) = Λ([f + αg]) = λ(f) + αλ(g) = Λ([f ]) + αΛ([g])

So Λ is a linear functional on H. Furthermore, since we have ‖[f ]‖H =
‖f‖2 for all f ∈ L2

K(Ω,F , µ), we obtain immediately from (15) that:

∀[f ] ∈ H , |Λ([f ])| ≤ 1
η
‖[f ]‖H

and we conclude from definition (88) that Λ is a well-defined bounded
linear functional on H.

4. Let λ : L2
K(Ω,F , µ)→ K be a continuous linear functional. Then from 3.,

Λ : H → K defined by Λ([f ]) = λ(f) is a bounded linear functional on the
Hilbert space H. Applying theorem (54), there exists [g] ∈ H, such that:

∀[f ] ∈ H , Λ([f ]) = 〈[f ], [g]〉H
It follows that:

∀f ∈ L2
K(Ω,F , µ) , λ(f) =

∫
f ḡdµ

This proves theorem (55).

Exercise 28
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