2. Caratheodory's Extension

In the following, Ω is a set. Whenever a union of sets is denoted \uplus as opposed to \cup, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Ω is a subset \mathcal{S} of the power set $\mathcal{P}(\Omega)$ with the following properties:
(i) $\emptyset \in \mathcal{S}$
(ii) $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$

$$
\begin{equation*}
A, B \in \mathcal{S} \Rightarrow \exists n \geq 0, \exists A_{i} \in \mathcal{S}: A \backslash B=\biguplus_{i=1}^{n} A_{i} \tag{iii}
\end{equation*}
$$

The last property (iii) says that whenever $A, B \in \mathcal{S}$, there is $n \geq 0$ and A_{1}, \ldots, A_{n} in \mathcal{S} which are pairwise disjoint, such that $A \backslash B=A_{1} \uplus \ldots \uplus A_{n}$. If $n=0$, it is understood that the corresponding union is equal to \emptyset, (in which case $A \subseteq B$).

Definition $7 \quad A$ ring on Ω is a subset \mathcal{R} of the power set $\mathcal{P}(\Omega)$ with the following properties:

$$
\begin{array}{cl}
(\text { (i) } & \emptyset \in \mathcal{R} \\
\text { (ii) } & A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R} \\
\text { (iii) } & A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}
\end{array}
$$

Exercise 1. Show that $A \cap B=A \backslash(A \backslash B)$ and therefore that a ring is closed under pairwise intersection.
Exercise 2.Show that a ring on Ω is also a semi-ring on Ω.
EXERCISE 3.Suppose that a set Ω can be decomposed as $\Omega=A_{1} \uplus A_{2} \uplus A_{3}$ where A_{1}, A_{2} and A_{3} are distinct from \emptyset and Ω. Define $\mathcal{S}_{1} \triangleq\left\{\emptyset, A_{1}, A_{2}, A_{3}, \Omega\right\}$ and $\mathcal{S}_{2} \triangleq\left\{\emptyset, A_{1}, A_{2} \uplus A_{3}, \Omega\right\}$. Show that \mathcal{S}_{1} and \mathcal{S}_{2} are semi-rings on Ω, but that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ fails to be a semi-ring on Ω.
Exercise 4. Let $\left(\mathcal{R}_{i}\right)_{i \in I}$ be an arbitrary family of rings on Ω, with $I \neq \emptyset$. Show that $\mathcal{R} \triangleq \cap_{i \in I} \mathcal{R}_{i}$ is also a ring on Ω.
Exercise 5 . Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define:

$$
R(\mathcal{A}) \triangleq\{\mathcal{R} \text { ring on } \Omega: \mathcal{A} \subseteq \mathcal{R}\}
$$

Show that $\mathcal{P}(\Omega)$ is a ring on Ω, and that $R(\mathcal{A})$ is not empty. Define:

$$
\mathcal{R}(\mathcal{A}) \triangleq \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R}
$$

Show that $\mathcal{R}(\mathcal{A})$ is a ring on Ω such that $\mathcal{A} \subseteq \mathcal{R}(\mathcal{A})$, and that it is the smallest ring on Ω with such property, (i.e. if \mathcal{R} is a ring on Ω and $\mathcal{A} \subseteq \mathcal{R}$ then $\mathcal{R}(\mathcal{A}) \subseteq \mathcal{R})$.

Definition 8 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. We call ring generated by \mathcal{A}, the ring on Ω, denoted $\mathcal{R}(\mathcal{A})$, equal to the intersection of all rings on Ω, which contain \mathcal{A}.

Exercise 6 .Let \mathcal{S} be a semi-ring on Ω. Define the set \mathcal{R} of all finite unions of pairwise disjoint elements of \mathcal{S}, i.e.

$$
\mathcal{R} \triangleq\left\{A: A=\uplus_{i=1}^{n} A_{i} \text { for some } n \geq 0, A_{i} \in \mathcal{S}\right\}
$$

(where if $n=0$, the corresponding union is empty, i.e. $\emptyset \in \mathcal{R}$). Let $A=\uplus_{i=1}^{n} A_{i}$ and $B=\uplus_{j=1}^{p} B_{j} \in \mathcal{R}$:

1. Show that $A \cap B=\uplus_{i, j}\left(A_{i} \cap B_{j}\right)$ and that \mathcal{R} is closed under pairwise intersection.
2. Show that if $p \geq 1$ then $A \backslash B=\cap_{j=1}^{p}\left(\uplus_{i=1}^{n}\left(A_{i} \backslash B_{j}\right)\right)$.
3. Show that \mathcal{R} is closed under pairwise difference.
4. Show that $A \cup B=(A \backslash B) \uplus B$ and conclude that \mathcal{R} is a ring on Ω.
5. Show that $\mathcal{R}(\mathcal{S})=\mathcal{R}$.

Exercise 7. Everything being as before, define:

$$
\mathcal{R}^{\prime} \triangleq\left\{A: A=\cup_{i=1}^{n} A_{i} \text { for some } n \geq 0, A_{i} \in \mathcal{S}\right\}
$$

(We do not require the sets involved in the union to be pairwise disjoint). Using the fact that \mathcal{R} is closed under finite union, show that $\mathcal{R}^{\prime} \subseteq \mathcal{R}$, and conclude that $\mathcal{R}^{\prime}=\mathcal{R}=\mathcal{R}(\mathcal{S})$.

Definition 9 Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$. We call measure on \mathcal{A}, any map $\mu: \mathcal{A} \rightarrow[0,+\infty]$ with the following properties:
(i) $\quad \mu(\emptyset)=0$

$$
\begin{equation*}
A \in \mathcal{A}, A_{n} \in \mathcal{A} \text { and } A=\biguplus_{n=1}^{+\infty} A_{n} \Rightarrow \mu(A)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right) \tag{ii}
\end{equation*}
$$

The \uplus indicates that we assume the A_{n} 's to be pairwise disjoint in the l.h.s. of (ii). It is customary to say in view of condition (ii) that a measure is countably additive.

EXERCISE 8.If \mathcal{A} is a σ-algebra on Ω explain why property (ii) can be replaced by:

$$
(i i)^{\prime} A_{n} \in \mathcal{A} \text { and } A=\biguplus_{n=1}^{+\infty} A_{n} \Rightarrow \mu(A)=\sum_{n=1}^{+\infty} \mu\left(A_{n}\right)
$$

ExERCISE 9. Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$ and $\mu: \mathcal{A} \rightarrow[0,+\infty]$ be a measure on \mathcal{A}.

1. Show that if $A_{1}, \ldots, A_{n} \in \mathcal{A}$ are pairwise disjoint and the union $A=$ $\uplus_{i=1}^{n} A_{i}$ lies in \mathcal{A}, then $\mu(A)=\mu\left(A_{1}\right)+\ldots+\mu\left(A_{n}\right)$.
2. Show that if $A, B \in \mathcal{A}, A \subseteq B$ and $B \backslash A \in \mathcal{A}$ then $\mu(A) \leq \mu(B)$.

ExErcise 10. Let \mathcal{S} be a semi-ring on Ω, and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. Suppose that there exists an extension of μ on $\mathcal{R}(\mathcal{S})$, i.e. a measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

1. Let A be an element of $\mathcal{R}(\mathcal{S})$ with representation $A=\uplus_{i=1}^{n} A_{i}$ as a finite union of pairwise disjoint elements of \mathcal{S}. Show that $\bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$
2. Show that if $\bar{\mu}^{\prime}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ is another measure with $\bar{\mu}_{\mid \mathcal{S}}^{\prime}=\mu$, i.e. another extension of μ on $\mathcal{R}(\mathcal{S})$, then $\bar{\mu}^{\prime}=\bar{\mu}$.

Exercise 11. Let \mathcal{S} be a semi-ring on Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure. Let A be an element of $\mathcal{R}(\mathcal{S})$ with two representations:

$$
A=\biguplus_{i=1}^{n} A_{i}=\biguplus_{j=1}^{p} B_{j}
$$

as a finite union of pairwise disjoint elements of \mathcal{S}.

1. For $i=1, \ldots, n$, show that $\mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)$
2. Show that $\sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(B_{j}\right)$
3. Explain why we can define a $\operatorname{map} \bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ as:

$$
\bar{\mu}(A) \triangleq \sum_{i=1}^{n} \mu\left(A_{i}\right)
$$

4. Show that $\bar{\mu}(\emptyset)=0$.

Exercise 12. Everything being as before, suppose that $\left(A_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, each A_{n} having the representation:

$$
A_{n}=\biguplus_{k=1}^{p_{n}} A_{n}^{k}, n \geq 1
$$

as a finite union of disjoint elements of \mathcal{S}. Suppose moreover that $A=\uplus_{n=1}^{+\infty} A_{n}$ is an element of $\mathcal{R}(\mathcal{S})$ with representation $A=\uplus_{j=1}^{p} B_{j}$, as a finite union of pairwise disjoint elements of \mathcal{S}.

1. Show that for $j=1, \ldots, p, B_{j}=\cup_{n=1}^{+\infty} \cup_{k=1}^{p_{n}}\left(A_{n}^{k} \cap B_{j}\right)$ and explain why B_{j} is of the form $B_{j}=\uplus_{m=1}^{+\infty} C_{m}$ for some sequence $\left(C_{m}\right)_{m \geq 1}$ of pairwise disjoint elements of \mathcal{S}.
2. Show that $\mu\left(B_{j}\right)=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k} \cap B_{j}\right)$
3. Show that for $n \geq 1$ and $k=1, \ldots, p_{n}, A_{n}^{k}=\uplus_{j=1}^{p}\left(A_{n}^{k} \cap B_{j}\right)$
4. Show that $\mu\left(A_{n}^{k}\right)=\sum_{j=1}^{p} \mu\left(A_{n}^{k} \cap B_{j}\right)$
5. Recall the definition of $\bar{\mu}$ of exercise (11) and show that it is a measure on $\mathcal{R}(\mathcal{S})$.

Exercise 13.Prove the following theorem:
Theorem 2 Let \mathcal{S} be a semi-ring on Ω. Let $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. There exists a unique measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$.

Definition 10 We define an outer-measure on Ω as being any map μ^{*} : $\mathcal{P}(\Omega) \rightarrow[0,+\infty]$ with the following properties:
(i) $\quad \mu^{*}(\emptyset)=0$
(ii) $\quad A \subseteq B \Rightarrow \mu^{*}(A) \leq \mu^{*}(B)$

$$
\begin{equation*}
\mu^{*}\left(\bigcup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right) \tag{iii}
\end{equation*}
$$

Exercise 14. Show that $\mu^{*}(A \cup B) \leq \mu^{*}(A)+\mu^{*}(B)$, where μ^{*} is an outermeasure on Ω and $A, B \subseteq \Omega$.

Definition 11 Let μ^{*} be an outer-measure on Ω. We define:

$$
\Sigma\left(\mu^{*}\right) \triangleq\left\{A \subseteq \Omega: \mu^{*}(T)=\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right), \forall T \subseteq \Omega\right\}
$$

We call $\Sigma\left(\mu^{*}\right)$ the σ-algebra associated with the outer-measure μ^{*}.
Note that the fact that $\Sigma\left(\mu^{*}\right)$ is indeed a σ-algebra on Ω, remains to be proved. This will be your task in the following exercises.

EXERCISE 15. Let μ^{*} be an outer-measure on Ω. Let $\Sigma=\Sigma\left(\mu^{*}\right)$ be the σ-algebra associated with μ^{*}. Let $A, B \in \Sigma$ and $T \subseteq \Omega$

1. Show that $\Omega \in \Sigma$ and $A^{c} \in \Sigma$.
2. Show that $\mu^{*}(T \cap A)=\mu^{*}(T \cap A \cap B)+\mu^{*}\left(T \cap A \cap B^{c}\right)$
3. Show that $T \cap A^{c}=T \cap(A \cap B)^{c} \cap A^{c}$
4. Show that $T \cap A \cap B^{c}=T \cap(A \cap B)^{c} \cap A$
5. Show that $\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}\left(T \cap A \cap B^{c}\right)=\mu^{*}\left(T \cap(A \cap B)^{c}\right)$
6. Adding $\mu^{*}(T \cap(A \cap B))$ on both sides 5 ., conclude that $A \cap B \in \Sigma$.
7. Show that $A \cup B$ and $A \backslash B$ belong to Σ.

Exercise 16. Everything being as before, let $A_{n} \in \Sigma, n \geq 1$. Define $B_{1}=A_{1}$ and $B_{n+1}=A_{n+1} \backslash\left(A_{1} \cup \ldots \cup A_{n}\right)$. Show that the B_{n} 's are pairwise disjoint elements of Σ and that $\cup_{n=1}^{+\infty} A_{n}=\uplus_{n=1}^{+\infty} B_{n}$.

Exercise 17. Everything being as before, show that if $B, C \in \Sigma$ and $B \cap C=\emptyset$, then $\mu^{*}(T \cap(B \uplus C))=\mu^{*}(T \cap B)+\mu^{*}(T \cap C)$ for any $T \subseteq \Omega$.
EXERCISE 18.Everything being as before, let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of pairwise disjoint elements of Σ, and let $B \triangleq \uplus_{n=1}^{+\infty} B_{n}$. Let $N \geq 1$.

1. Explain why $\uplus_{n=1}^{N} B_{n} \in \Sigma$
2. Show that $\mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)\right)=\sum_{n=1}^{N} \mu^{*}\left(T \cap B_{n}\right)$
3. Show that $\mu^{*}\left(T \cap B^{c}\right) \leq \mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)^{c}\right)$
4. Show that $\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right) \leq \mu^{*}(T)$, and:
5. $\mu^{*}(T) \leq \mu^{*}\left(T \cap B^{c}\right)+\mu^{*}(T \cap B) \leq \mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right)$
6. Show that $B \in \Sigma$ and $\mu^{*}(B)=\sum_{n=1}^{+\infty} \mu^{*}\left(B_{n}\right)$.
7. Show that Σ is a σ-algebra on Ω, and $\mu_{\mid \Sigma}^{*}$ is a measure on Σ.

Theorem 3 Let $\mu^{*}: \mathcal{P}(\Omega) \rightarrow[0,+\infty]$ be an outer-measure on Ω. Then $\Sigma\left(\mu^{*}\right)$, the so-called σ-algebra associated with μ^{*}, is indeed a σ-algebra on Ω and $\mu_{\mid \Sigma\left(\mu^{*}\right)}^{*}$, is a measure on $\Sigma\left(\mu^{*}\right)$.

Exercise 19. Let \mathcal{R} be a ring on Ω and $\mu: \mathcal{R} \rightarrow[0,+\infty]$ be a measure on \mathcal{R}. For all $T \subseteq \Omega$, define:

$$
\mu^{*}(T) \triangleq \inf \left\{\sum_{n=1}^{+\infty} \mu\left(A_{n}\right),\left(A_{n}\right) \text { is an } \mathcal{R} \text {-cover of } T\right\}
$$

where an \mathcal{R}-cover of T is defined as any sequence $\left(A_{n}\right)_{n \geq 1}$ of elements of \mathcal{R} such that $T \subseteq \cup_{n=1}^{+\infty} A_{n}$. By convention $\inf \emptyset \triangleq+\infty$.

1. Show that $\mu^{*}(\emptyset)=0$.
2. Show that if $A \subseteq B$ then $\mu^{*}(A) \leq \mu^{*}(B)$.
3. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of Ω, with $\mu^{*}\left(A_{n}\right)<+\infty$ for all $n \geq 1$. Given $\epsilon>0$, show that for all $n \geq 1$, there exists an \mathcal{R}-cover $\left(A_{n}^{p}\right)^{p \geq 1}$ of A_{n} such that:

$$
\sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)<\mu^{*}\left(A_{n}\right)+\epsilon / 2^{n}
$$

Why is it important to assume $\mu^{*}\left(A_{n}\right)<+\infty$.
4. Show that there exists an \mathcal{R}-cover $\left(R_{k}\right)$ of $\cup_{n=1}^{+\infty} A_{n}$ such that:

$$
\sum_{k=1}^{+\infty} \mu\left(R_{k}\right)=\sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)
$$

5. Show that $\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \epsilon+\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right)$
6. Show that μ^{*} is an outer-measure on Ω.

Exercise 20. Everything being as before, Let $A \in \mathcal{R}$. Let $\left(A_{n}\right)_{n \geq 1}$ be an \mathcal{R}-cover of A and put $B_{1}=A_{1} \cap A$, and:

$$
B_{n+1} \triangleq\left(A_{n+1} \cap A\right) \backslash\left(\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{n} \cap A\right)\right)
$$

1. Show that $\mu^{*}(A) \leq \mu(A)$.
2. Show that $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R} such that $A=\uplus_{n=1}^{+\infty} B_{n}$.
3. Show that $\mu(A) \leq \mu^{*}(A)$ and conclude that $\mu_{\mid \mathcal{R}}^{*}=\mu$.

Exercise 21. Everything being as before, Let $A \in \mathcal{R}$ and $T \subseteq \Omega$.

1. Show that $\mu^{*}(T) \leq \mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right)$.
2. Let $\left(T_{n}\right)$ be an \mathcal{R}-cover of T. Show that $\left(T_{n} \cap A\right)$ and $\left(T_{n} \cap A^{c}\right)$ are \mathcal{R}-covers of $T \cap A$ and $T \cap A^{c}$ respectively.
3. Show that $\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right) \leq \mu^{*}(T)$.
4. Show that $\mathcal{R} \subseteq \Sigma\left(\mu^{*}\right)$.
5. Conclude that $\sigma(\mathcal{R}) \subseteq \Sigma\left(\mu^{*}\right)$.

ExERCISE 22.Prove the following theorem:
Theorem 4 (Caratheodory's extension) Let \mathcal{R} be a ring on Ω and μ : $\mathcal{R} \rightarrow[0,+\infty]$ be a measure on \mathcal{R}. There exists a measure $\mu^{\prime}: \sigma(\mathcal{R}) \rightarrow[0,+\infty]$ such that $\mu_{\mid \mathcal{R}}^{\prime}=\mu$.

Exercise 23. Let \mathcal{S} be a semi-ring on Ω. Show that $\sigma(\mathcal{R}(\mathcal{S}))=\sigma(\mathcal{S})$.
ExERCISE 24.Prove the following theorem:
Theorem 5 Let \mathcal{S} be a semi-ring on Ω and $\mu: \mathcal{S} \rightarrow[0,+\infty]$ be a measure on \mathcal{S}. There exists a measure $\mu^{\prime}: \sigma(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\mu_{\mid \mathcal{S}}^{\prime}=\mu$.

Solutions to Exercises

Exercise 1.

- Let $x \in A \cap B$. Then $x \in B$. So $x \notin A \backslash B$. It follows that $x \in A \backslash(A \backslash B)$, and $A \cap B \subseteq A \backslash(A \backslash B)$. Let $x \in A \backslash(A \backslash B)$. Then $x \in A$ and $x \notin A \backslash B$. But $x \notin A \backslash B$ implies that either $x \notin A$ or $x \in B$. Hence, $x \in B$. finally, $x \in A \cap B$ and $A \backslash(A \backslash B) \subseteq A \cap B$. We have proved that $A \cap B=A \backslash(A \backslash B)$
- Let \mathcal{R} be a ring and $A, B \in \mathcal{R}$. From (iii) of definition (7), $A \backslash B \in \mathcal{R}$. Hence, $A \backslash(A \backslash B) \in \mathcal{R}$. It follows from the previous point that $A \cap B \in \mathcal{R}$. We have proved that a ring is closed under pairwise intersection.

Exercise 1
Exercise 2. Let \mathcal{R} be ring on Ω. Then (i) of definition (6) is immediately satisfied for \mathcal{R}. From exercise (1), we know that \mathcal{R} is closed under finite intersection. So (ii) of definition (6) is satisfied for \mathcal{R}. Let $A, B \in \mathcal{R}$. From (iii) of definition (7), $A \backslash B \in \mathcal{R}$. Therefore, if we take $n=1$ and $A_{1}=A \backslash B \in \mathcal{R}$, we see that $A \backslash B=\uplus_{i=1}^{n} A_{i}$ and (iii) of definition (6) is satisfied for \mathcal{R}. Finally, having checked (i), (ii) and (iii) of definition (6), we conclude that \mathcal{R} is a semi-ring on Ω. Any ring on Ω is therefore also a semi-ring on Ω.

Exercise 2

Exercise 3.

- $\emptyset \in \mathcal{S}_{1}$ so (i) of definition (6) is satisfied for \mathcal{S}_{1}. If $A, B \in \mathcal{S}_{1}$, then $A \cap B$ is equal to the empty set (remember that A_{1}, A_{2} and A_{3} are disjoint), unless A (resp. B) is Ω itself, or $A=B \neq \emptyset$, in which case $A \cap B$ is equal to B (resp. A). In any case, $A \cap B \in \mathcal{S}_{1}$ and condition (ii) of definition (6) is satisfied for \mathcal{S}_{1}. If $A, B \in \mathcal{S}_{1}$, since \mathcal{S}_{1} has 5 elements, $A \backslash B$ is one of 25 cases to consider. It is equal to $\emptyset,\left(\emptyset \backslash \emptyset, \emptyset \backslash A_{i}, \emptyset \backslash \Omega, A_{i} \backslash \Omega, A_{i} \backslash A_{i}\right.$, $\Omega \backslash \Omega)$ in 12 of those cases. It is equal to A itself $\left(A_{i} \backslash \emptyset, A_{i} \backslash A_{j}, j \neq i\right.$, $\Omega \backslash \emptyset)$ in 10 of those cases. The last three cases are $\Omega \backslash A_{1}=A_{2} \uplus A_{3}$, $\Omega \backslash A_{2}=A_{1} \uplus A_{3}$ and $\Omega \backslash A_{3}=A_{1} \uplus A_{2}$. Hence, we see that condition (iii) of definition (6) is satisfied for \mathcal{S}_{1}. We have proved that \mathcal{S}_{1} is indeed a semi-ring on Ω.
- If we put $B_{1}=A_{1}$ and $B_{2}=A_{2} \uplus A_{3}$, then $\Omega=B_{1} \uplus B_{2}$ where B_{1}, B_{2} are distinct from \emptyset and Ω. Moreover, $\mathcal{S}_{2}=\left\{\emptyset, B_{1}, B_{2}, \Omega\right\}$, and proving that \mathcal{S}_{2} is a semi-ring on Ω is identical to the previous point, but is just a little bit easier...
- $S_{1} \cap \mathcal{S}_{2}=\left\{\emptyset, A_{1}, \Omega\right\}$ (remember that all A_{i} 's are not empty and pairwise disjoint, so $A_{3} \neq A_{2} \uplus A_{3}$ and $\left.A_{2} \neq A_{2} \uplus A_{3}\right)$. Suppose that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is a semi-ring on Ω. Then from (iii) of definition (6), there exists $n \geq 0$ and $B_{1}, B_{2}, \ldots, B_{n}$ in $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ such that:

$$
\Omega \backslash A_{1}=B_{1} \uplus \ldots \uplus B_{n}
$$

Since A_{1} is assumed to be distinct from $\Omega, \Omega \backslash A_{1} \neq \emptyset$. It follows that $n \geq 1$ and at least one of the B_{i} 's is not empty. If $B_{i}=\Omega$ then $\Omega \backslash A_{1}=\Omega$ and this would be a contradiction since A_{1} is assumed to be not empty. If $B_{i}=A_{1}$ then $\Omega \backslash A_{1} \supseteq A_{1}$ would also be a contradiction. Hence, the initial assumption of $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ being a semi-ring on Ω is absurd. $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ fails to be a semi-ring on Ω. The purpose of this exercise is to show that contrary to Dynkin systems, σ-algebras and rings (as we shall see in the next exercise), taking intersections of semi-rings does not necessarily create another semi-ring. Hence, no attempt will be made to define the notion of generated semi-ring...

Exercise 3
Exercise 4. Each \mathcal{R}_{i} being a ring on $\Omega, \emptyset \in \mathcal{R}_{i}$. This being true for all $i \in I$, $\emptyset \in \cap_{i \in I} \mathcal{R}_{i}=\mathcal{R}$, and condition (i) of definition (7) is satisfied for \mathcal{R}. Let $A, B \in \mathcal{R}$. Then for all $i \in I, A, B$ belong to \mathcal{R}_{i}. It follows that $A \backslash B$ and $A \cup B$ belong to \mathcal{R}_{i}. This being true for all $i \in I$, both $A \backslash B$ and $A \cup B$ lie in $\cap_{i \in I} \mathcal{R}_{i}$, and conditions (ii) and (iii) of definition (7) are satisfied for \mathcal{R}. Having checked $(i),(i i)$ and (iii) of definition (7), we conclude that \mathcal{R} is indeed a ring on Ω. The purpose of this exercise is to show that an arbitrary (non-empty) intersection of rings on Ω, is still a ring on Ω.

Exercise 4

Exercise 5.

- \emptyset being a subset of $\Omega, \emptyset \in \mathcal{P}(\Omega)$ and condition (i) of definition (7) is satisfied for $\mathcal{P}(\Omega)$. Given two subsets A, B of $\Omega, A \backslash B$ and $A \cup B$ are still subsets of Ω, i.e. $A \backslash B \in \mathcal{P}(\Omega)$ and $A \cup B \in \mathcal{P}(\Omega)$. Hence, conditions (ii) and (iii) of definition (7) are satisfied for $\mathcal{P}(\Omega)$. It follows that $\mathcal{P}(\Omega)$ is a ring on Ω.
- By assumption, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. Moreover, $\mathcal{P}(\Omega)$ is a ring on Ω. Therefore, $\mathcal{P}(\Omega) \in R(\mathcal{A})$. In particular, $R(\mathcal{A})$ is not empty.
- $\mathcal{R}(\mathcal{A})$ is a non-empty intersection of rings on Ω. From exercise (4), it is therefore a ring on Ω.
- For all $\mathcal{R} \in R(\mathcal{A}), \mathcal{A} \subseteq \mathcal{R}$. Hence:

$$
\mathcal{A} \subseteq \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R} \triangleq \mathcal{R}(\mathcal{A})
$$

- Suppose \mathcal{R} is another ring on Ω, with $\mathcal{A} \subseteq \mathcal{R}$. Then, by definition of the set $R(\mathcal{A}), \mathcal{R} \in R(\mathcal{A})$. It follows that:

$$
\mathcal{R}(\mathcal{A}) \triangleq \bigcap_{\mathcal{R}^{\prime} \in R(\mathcal{A})} \mathcal{R}^{\prime} \subseteq \mathcal{R}
$$

So $\mathcal{R}(\mathcal{A})$ is indeed the smallest ring on Ω which contains \mathcal{A}.

Exercise 6.

1. If $x \in A_{i} \cap B_{j}$ for some $i=1, \ldots, n$ and $j=1, \ldots, p$, then $x \in A \cap B$. Conversely if $x \in A \cap B$, then $n \geq 1, p \geq 1$, and there exist $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, p\}$ such that $x \in A_{i} \cap B_{j}$. So $A \cap B=\cup_{i, j} A_{i} \cap B_{j}$. Suppose (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are such that $\left(A_{i} \cap B_{j}\right) \cap\left(A_{i^{\prime}} \cap B_{j^{\prime}}\right) \neq \emptyset$. In particular, $A_{i} \cap A_{i^{\prime}} \neq \emptyset$. Since the A_{i} 's are pairwise disjoint, we have $i=i^{\prime}$ and similarly $j=j^{\prime}$. Hence, we see that the $\left(A_{i} \cap B_{j}\right)_{i, j}$'s are pairwise disjoint, and finally $A \cap B=\uplus_{i, j} A_{i} \cap B_{j}$. From (ii) of definition (6), all the $A_{i} \cap B_{j}$'s lie in the semi-ring \mathcal{S}, and we see that $A \cap B$ is also an element of \mathcal{R}. We have proved that \mathcal{R} is closed under finite intersection.
2. Since the A_{i} 's are pairwise disjoint, for all $j \in\{1, \ldots, p\}$ being given, the $A_{i} \backslash B_{j} i=1, \ldots, n$, are also pairwise disjoint. Hence, the union $\cup_{i=1}^{n} A_{i} \backslash B_{j}$ can legitimately be written as $\uplus_{i=1}^{n} A_{i} \backslash B_{j}$. let $x \in A \backslash B$. Then $x \notin B$. Thus, for all $j=1, \ldots, p, x \notin B_{j}$. But $x \in A$. So there exists $i \in\{1, \ldots, n\}$ such that $x \in A_{i}$. It follows that for all $j \in\{1, \ldots, p\}$, $x \in A_{i} \backslash B_{j}$ for some $i \in\{1, \ldots, n\}$. So $x \in \cap_{j=1}^{p} \uplus_{i=1}^{n}\left(A_{i} \backslash B_{j}\right)$. Conversely, suppose that $x \in \cap_{j=1}^{p} \uplus_{i=1}^{n}\left(A_{i} \backslash B_{j}\right)$. Then for all $j \in\{1, \ldots, p\}$, there exists $i_{j} \in\{1, \ldots, n\}$ such that $x \in A_{i_{j}} \backslash B_{j}$. Since we have assumed $p \geq 1$, in particular $x \in A_{i_{1}} \subseteq A$, and for all $j \in\{1, \ldots, p\}, x \notin B_{j}$, so $x \notin B$. It follows that $x \in A \backslash B$. We have proved that:

$$
A \backslash B=\cap_{j=1}^{p} \uplus_{i=1}^{n}\left(A_{i} \backslash B_{j}\right)
$$

3. If $p=0$, then $B=\emptyset$ and $A \backslash B=A \in \mathcal{R}$. We assume that $p \geq 1$. From the previous point, we know that $A \backslash B=\cap_{j=1}^{p} C_{j}$ where C_{j} is defined as $C_{j}=\uplus_{i=1}^{n} A_{i} \backslash B_{j}$. But each A_{i} and B_{j} is an element of the semi-ring \mathcal{S}. From (iii) of definition (6), each $A_{i} \backslash B_{j}$ can be written as a finite union of pairwise disjoint elements of \mathcal{S}. It follows that C_{j} itself can be written as a finite union of pairwise disjoint elements of \mathcal{S}. Hence, we see that for all $j \in\{1, \ldots, p\}, C_{j}$ is an element of \mathcal{R}. From 1 . we know that \mathcal{R} is closed under finite intersection. We conclude that $A \backslash B=\cap_{j=1}^{p} C_{j} \in \mathcal{R}$. We have proved that \mathcal{R} is closed under pairwise difference.
4. Let $x \in A \cup B$. then $x \in A$ or $x \in B$. If $x \in B$ then $x \in A \backslash B \uplus B$. If $x \notin B$ then $x \in A \backslash B$. In any case, $x \in A \backslash B \uplus B$, and $A \cup B \subseteq A \backslash B \uplus B$. Conversely, $A \backslash B \subseteq A$, so $A \backslash B \uplus B \subseteq A \cup B$. Now, if $A, B \in \mathcal{R}$, from the previous point, $A \backslash B \in \mathcal{R}$. It follows that $A \backslash B$ can be written as a finite union of pairwise disjoint elements of \mathcal{S}. But B itself (being an element of \mathcal{R}), can be written as a finite union of pairwise disjoint elements of \mathcal{S}. It follows that $A \backslash B \uplus B$ is also a finite union of pairwise disjoint elements of \mathcal{S}, hence an element of \mathcal{R}. From $A \cup B=A \backslash B \uplus B$, we conclude that $A \cup B$ is an element of \mathcal{R}. We have proved that \mathcal{R} is closed under finite union. Finally, $(i),(i i),(i i i)$ of definition (7) being satisfied for \mathcal{R}, \mathcal{R} is indeed a ring on Ω.
5. Let $A \in \mathcal{S}$. A can obviously be written as a finite union of pairwise disjoint elements of \mathcal{S}. (Take $n=1, A_{1}=A \in \mathcal{S}$ and $A=\uplus_{i=1}^{n} A_{i}$). Hence, $A \in \mathcal{R}$ and $\mathcal{S} \subseteq \mathcal{R}$. Consequently, from exercise (5) and the fact that \mathcal{R} is a ring on $\Omega, \mathcal{R}(\mathcal{S}) \subseteq \mathcal{R}$. Conversely, let $A \in \mathcal{R}$. Then $A=\uplus_{i=1}^{n} A_{i}$ for some $n \geq 0$ and $A_{i} \in \mathcal{S}$. Since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S})$ (see exercise (5)), each A_{i} lies in $\mathcal{R}(\mathcal{S})$. But from (ii) of definition (7), $\mathcal{R}(\mathcal{S})$ being a ring is closed under finite union. Hence, $A \in \mathcal{R}(\mathcal{S})$ and we have $\mathcal{R} \subseteq \mathcal{R}(\mathcal{S})$. We have proved that $\mathcal{R}(\mathcal{S})=\mathcal{R}$. The purpose of this exercise is to show that the $\operatorname{ring} \mathcal{R}(\mathcal{S})$ generated by a semi-ring \mathcal{S} on Ω, is equal to the set of all finite unions of pairwise disjoint elements of \mathcal{S}.

Exercise 6
Exercise 7. Any finite union of pairwise disjoint elements of \mathcal{S}, is in particular a finite union of elements of $\mathcal{S} \ldots$ So $\mathcal{R} \subseteq \mathcal{R}^{\prime}$. Let $A \in \mathcal{R}^{\prime}$. There exists $n \geq 0$ and $A_{i} \in \mathcal{S}$ for $i=1, \ldots, n$ such that $A=\cup_{i=1}^{n} A_{i}$. If $n=0$, then $A=\emptyset \in \mathcal{R}$. If $n \geq 1$, since $\mathcal{S} \subseteq \mathcal{R}=\mathcal{R}(\mathcal{S})$, all A_{i} 's are elements of \mathcal{R}. \mathcal{R} being closed under finite union (it is a ring on Ω), A is itself an element of \mathcal{R}. Hence $\mathcal{R}^{\prime} \subseteq \mathcal{R}$. We have proved that $\mathcal{R}=\mathcal{R}^{\prime}=\mathcal{R}(\mathcal{S})$. The purpose of this exercise is to show that the generated ring $\mathcal{R}(\mathcal{S})$ of a semi-ring \mathcal{S} on Ω, is also equal to the set of all finite unions of (not necessarily pairwise disjoint) elements of \mathcal{S}.

Exercise 7
Exercise 8. If \mathcal{A} is a σ-algebra on Ω, then $A_{n} \in \mathcal{A}$ and $A=\uplus_{n=1}^{+\infty} A_{n}$ automatically implies that $A \in \mathcal{A}$. Hence, the l.h.s of $(i i)$ and $(i i)^{\prime}$ are equivalent, whenever \mathcal{A} is a σ-algebra on Ω.

Exercise 8

Exercise 9.

1. Define the sequence $\left(B_{n}\right)_{n \geq 1}$ of elements of \mathcal{A}, by $B_{i}=A_{i}$ for all $i=$ $1, \ldots, n$ and $B_{k}=\emptyset$ for all $k>n$. Then $A=\uplus_{k=1}^{\infty} B_{k}$, and since $A \in \mathcal{A}$, from (ii) of definition (9), we have:

$$
\mu(A)=\sum_{k=1}^{+\infty} \mu\left(B_{k}\right)
$$

But from (i) of definition (9), $\mu\left(B_{k}\right)=0$ for all $k>n$. Hence:

$$
\mu(A)=\mu\left(A_{1}\right)+\ldots+\mu\left(A_{n}\right)
$$

In view of this property, it is customary to say that a measure is finitely additive.
2. Suppose $A, B \in \mathcal{A}$ with $A \subseteq B$ and $B \backslash A \in \mathcal{A}$. Then, we have $B=$ $A \cup B=A \uplus(B \backslash A)$. From the previous point we conclude:

$$
\mu(A) \leq \mu(A)+\mu(B \backslash A)=\mu(B)
$$

Exercise 9

Exercise 10.

1. If $A=\emptyset$, then either $n=0$ or $A_{i}=\emptyset$ for all $i=1, \ldots, n$. In any case, $\bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$ is true. If $A \neq \emptyset$, then $n \geq 1$. Since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S})$, all sets involved in $A=\uplus_{i=1}^{n} A_{i}$ are elements of $\mathcal{R}(\mathcal{S})$. Since $\bar{\mu}$ is a measure on $\mathcal{R}(\mathcal{S})$, from exercise (9) we have $\bar{\mu}(A)=\sum_{i=1}^{n} \bar{\mu}\left(A_{i}\right)$. By assumption, $\bar{\mu}_{\mid \mathcal{S}}=\mu$ and $A_{i} \in \mathcal{S}$ for all $i=1, \ldots, n$. Hence, $\bar{\mu}\left(A_{i}\right)=\mu\left(A_{i}\right)$ for all $i=1, \ldots, n$. It follows that $\bar{\mu}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$.
2. Let $A \in \mathcal{R}(\mathcal{S})$. Then A has a representation $A=\uplus_{i=1}^{n} A_{i}$ as a finite union of pairwise disjoint elements of \mathcal{S}. From the previous point, $\bar{\mu}(A)=$ $\sum_{i=1}^{n} \mu\left(A_{i}\right)$. If $\bar{\mu}^{\prime}$ is another measure on $\mathcal{R}(\mathcal{S})$ with $\bar{\mu}_{\mid \mathcal{S}}^{\prime}=\mu$, then similarly we have $\bar{\mu}^{\prime}(A)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$. So $\bar{\mu}(A)=\bar{\mu}^{\prime}(A)$. This being true for all $A \in \mathcal{R}(\mathcal{S}), \bar{\mu}=\bar{\mu}^{\prime}$. The purpose of this exercise is to show that if a measure μ on a semi-ring \mathcal{S} can be extended to its generated ring $\mathcal{R}(\mathcal{S})$, then such extension is unique.

Exercise 10

Exercise 11.

1. If $p=0$, then $A=\emptyset$. Then either $n=0$ and there is nothing to prove, or $n \geq 1$ with all A_{i} 's equal to the empty set. In any case, $\mu\left(A_{i}\right)=$ $\sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)$ is true. Hence we can assume that $p \geq 1$. Since $A_{i} \subseteq A$:

$$
\begin{equation*}
A_{i}=A_{i} \cap A=\biguplus_{j=1}^{p} A_{i} \cap B_{j} \tag{1}
\end{equation*}
$$

Since \mathcal{S} is a semi-ring, it is closed under finite intersection (definition (6)), hence all sets involved in (1) are elements of \mathcal{S}. From exercise (9), and the fact that μ is a measure on \mathcal{S}, we conclude that $\mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)$.
2. Similarly to the previous point, for all $j=1, \ldots, p$ we have $\mu\left(B_{j}\right)=$ $\sum_{i=1}^{n} \mu\left(A_{i} \cap B_{j}\right)$. It follows that:

$$
\sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{p} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{p} \sum_{i=1}^{n} \mu\left(A_{i} \cap B_{j}\right)=\sum_{j=1}^{p} \mu\left(B_{j}\right)
$$

3. Suppose we want to define a map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ with:

$$
\begin{equation*}
\bar{\mu}(A) \triangleq \sum_{i=1}^{n} \mu\left(A_{i}\right) \tag{2}
\end{equation*}
$$

where $A=\uplus_{i=1}^{n} A_{i}$ is a representation of A as a finite union of pairwise disjoint elements of \mathcal{S}. The problem is that such representation may not be unique. However, if $A=\uplus_{j=1}^{p} B_{j}$ is another representation of A in terms of finite union of pairwise disjoint elements of \mathcal{S}, then from 2 ., $\sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{j=1}^{p} \mu\left(B_{j}\right)$. It follows that whichever representation is considered, the sum involved in (2) will still be the same. In other words, definition (2) is unambiguous, and therefore legitimate.
4. \emptyset has a representation with $n=0$, or $n=1$ with $A_{1}=\emptyset$, or $n=2$ with $A_{1}=A_{2}=\emptyset \ldots$ Whichever representation we choose for \emptyset, definition (2) leads to $\bar{\mu}(\emptyset)=0$.

Exercise 11

Exercise 12.

1. For all $j=1, \ldots, p$, since $B_{j} \subseteq A$, we have:

$$
B_{j}=A \cap B_{j}=\bigcup_{n=1}^{+\infty}\left(A_{n} \cap B_{j}\right)=\bigcup_{n=1}^{+\infty} \bigcup_{k=1}^{p_{n}}\left(A_{n}^{k} \cap B_{j}\right)
$$

Consider the set $I=\left\{(n, k): n \geq 1,1 \leq k \leq p_{n}\right\}$. Being a countable union of finite sets, I is a countable set. Hence, there exists a one-to-one $\operatorname{map} \phi:\{m: m \geq 1\} \rightarrow I$. Given $m \geq 1$, define $C_{m}=A_{n}^{k} \cap B_{j}$ where $(n, k)=\phi(m)$. Then we have $B_{j}=\cup_{m=1}^{+\infty} C_{m}$. Since all A_{n}^{k}, s and B_{j} itself are elements of the semi-ring \mathcal{S}, all C_{m} 's are elements of \mathcal{S}. Suppose $C_{m} \cap C_{m^{\prime}} \neq \emptyset$ for some $m, m^{\prime} \geq 1$. Then in particular, $A_{n}^{k} \cap A_{n^{\prime}}^{k^{\prime}} \neq \emptyset$, where we have put $(n, k)=\phi(m)$ and $\left(n^{\prime}, k^{\prime}\right)=\phi\left(m^{\prime}\right)$. Since $A_{n}^{k} \subseteq A_{n}$ and $A_{n^{\prime}}^{k^{\prime}} \subseteq A_{n^{\prime}}$, it follows that $A_{n} \cap A_{n^{\prime}} \neq \emptyset$, and the A_{n} 's being pairwise disjoint, we see that $n=n^{\prime}$. Thus, $A_{n}^{k} \cap A_{n}^{k^{\prime}} \neq \emptyset$. But the A_{n}^{k} 's for $k=1, \ldots, p_{n}$ are also pairwise disjoint. We conclude that $k=k^{\prime}$ and $\phi(m)=(n, k)=\left(n^{\prime}, k^{\prime}\right)=\phi\left(m^{\prime}\right)$. Since ϕ is one-to-one, $m=m^{\prime}$, and we have proved that $\left(C_{m}\right)_{m \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{S}.
2. In the previous point, we saw that $B_{j}=\uplus_{m=1}^{+\infty} C_{m}$. Since all sets involved are elements of \mathcal{S} and μ is a measure on \mathcal{S}, from (ii) of definition (9), we have:

$$
\begin{equation*}
\mu\left(B_{j}\right)=\sum_{m=1}^{+\infty} \mu\left(C_{m}\right)=\sum_{(n, k) \in I} \mu\left(A_{n}^{k} \cap B_{j}\right)=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k} \cap B_{j}\right) \tag{3}
\end{equation*}
$$

3. For $n \geq 1$ and $k \in\left\{1, \ldots, p_{n}\right\}$, we have $A_{n}^{k} \subseteq A_{n} \subseteq A$. Hence:

$$
A_{n}^{k}=A_{n}^{k} \cap A=\biguplus_{j=1}^{p}\left(A_{n}^{k} \cap B_{j}\right)
$$

4. From the previous point, using exercise (9), we obtain:

$$
\begin{equation*}
\mu\left(A_{n}^{k}\right)=\sum_{j=1}^{p} \mu\left(A_{n}^{k} \cap B_{j}\right) \tag{4}
\end{equation*}
$$

5. In exercise (11), we saw that the map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ is such that $\bar{\mu}(\emptyset)=0$. Hence (i) of definition (9) is satisfied for $\bar{\mu}$. Moreover, by
definition, $\bar{\mu}(A)=\sum_{j=1}^{p} \mu\left(B_{j}\right)$. Using equation (3), we have:

$$
\bar{\mu}(A)=\sum_{j=1}^{p} \sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k} \cap B_{j}\right)=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \sum_{j=1}^{p} \mu\left(A_{n}^{k} \cap B_{j}\right)
$$

Using equation (4), it follows that:

$$
\bar{\mu}(A)=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k}\right)
$$

But, for all $n \geq 1, \bar{\mu}\left(A_{n}\right)=\sum_{k=1}^{p_{n}} \mu\left(A_{n}^{k}\right)$, by definition of $\bar{\mu}$. Hence:

$$
\bar{\mu}(A)=\sum_{n=1}^{+\infty} \bar{\mu}\left(A_{n}\right)
$$

It follows that ($(i)^{\prime}$ of definition (9) is satisfied for $\bar{\mu}$. Finally, $\bar{\mu}$ is a measure on the ring $\mathcal{R}(\mathcal{S})$.

Exercise 13.

- Uniqueness is a consequence of exercise (10)
- Take $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ as defined in exercise (11). We proved in exercise (12) that $\bar{\mu}$ is indeed a measure on the ring $\mathcal{R}(\mathcal{S})$. Moreover, given $A \in \mathcal{S}$, if we take $n=1$ and $A_{1}=A$, then $A=\uplus_{i=1}^{n} A_{i}$ is a representation of A as a finite union of pairwise disjoint elements of \mathcal{S}. By definition of $\bar{\mu}$ (see exercise (11)), it follows that $\bar{\mu}(A)=\mu(A)$. This being true for all $A \in \mathcal{S}$, we have $\bar{\mu}_{\mid \mathcal{S}}=\mu$. This shows the existence of $\bar{\mu}$, and theorem (2) is proved.

Exercise 13
Exercise 14. Let $\left(A_{n}\right)_{n \geq 1}$ be the sequence of subsets of Ω defined by $A_{1}=A$, $A_{2}=B$ and $A_{n}=\emptyset$ for all $n \geq 3$. Using (i) and (iii) of definition (10), we obtain:

$$
\mu^{*}(A \cup B) \leq \mu^{*}(A)+\mu^{*}(B)
$$

Exercise 14

Exercise 15.

1. μ^{*} being an outer measure on Ω, by (i) of definition (10), we have $\mu^{*}(\emptyset)=$ 0 . It follows that given an arbitrary $T \subseteq \Omega, \mu^{*}(T)=\mu^{*}(T \cap \Omega)+\mu^{*}\left(T \cap \Omega^{c}\right)$ is obviously true. Hence, from definition (11), $\Omega \in \Sigma\left(\mu^{*}\right)=\Sigma$. The fact that $A^{c} \in \Sigma$ is an immediate consequence of definition (11).
2. Since $B \in \Sigma$, using definition (11) with $T \cap A$ in place of T, we obtain:

$$
\mu^{*}(T \cap A)=\mu^{*}(T \cap A \cap B)+\mu^{*}\left(T \cap A \cap B^{c}\right)
$$

3. Since $A \cap B \subseteq A$, we have $A^{c} \subseteq(A \cap B)^{c}$, and consequently:

$$
T \cap A^{c} \subseteq T \cap(A \cap B)^{c}
$$

It follows that:

$$
T \cap A^{c}=\left(T \cap(A \cap B)^{c}\right) \cap T \cap A^{c}=T \cap(A \cap B)^{c} \cap A^{c}
$$

4. From $(A \cap B)^{c} \cap A=\left(A^{c} \cup B^{c}\right) \cap A=A \cap B^{c}$, we obtain:

$$
T \cap(A \cap B)^{c} \cap A=T \cap A \cap B^{c}
$$

5. Using 3. and 4., we see that the sum $\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}\left(T \cap A \cap B^{c}\right)$ can be expressed as:

$$
\mu^{*}\left(T \cap(A \cap B)^{c} \cap A^{c}\right)+\mu^{*}\left(T \cap(A \cap B)^{c} \cap A\right)
$$

Since $A \in \Sigma$, using definition (11) with $T \cap(A \cap B)^{c}$ in place of T, we obtain:

$$
\begin{equation*}
\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}\left(T \cap A \cap B^{c}\right)=\mu^{*}\left(T \cap(A \cap B)^{c}\right) \tag{5}
\end{equation*}
$$

6. Adding $\mu^{*}(T \cap(A \cap B))$ on both sides of equation (5), it appears that the sum:

$$
\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}\left(T \cap A \cap B^{c}\right)+\mu^{*}(T \cap A \cap B)
$$

is equal to:

$$
\mu^{*}\left(T \cap(A \cap B)^{c}\right)+\mu^{*}(T \cap(A \cap B))
$$

Since $B \in \Sigma$, using definition (11) with $T \cap A$ in place of T, we obtain:

$$
\mu^{*}\left(T \cap A^{c}\right)+\mu^{*}(T \cap A)=\mu^{*}\left(T \cap(A \cap B)^{c}\right)+\mu^{*}(T \cap(A \cap B))
$$

and finally, since $A \in \Sigma$:

$$
\mu^{*}(T)=\mu^{*}\left(T \cap(A \cap B)^{c}\right)+\mu^{*}(T \cap(A \cap B))
$$

This being true for all $T \subseteq \Omega$, it follows that $A \cap B \in \Sigma$. We have proved that $\Sigma=\Sigma\left(\mu^{*}\right)$ is closed under finite intersection.
7. From $A \cup B=\left(A^{c} \cap B^{c}\right)^{c}$ and the fact that Σ is closed under complementation and finite intersection, we have $A \cup B \in \Sigma$. Similarly, $A \backslash B=A \cap B^{c} \in \Sigma$. The purpose of this exercise is to show that the so-called σ-algebra $\Sigma\left(\mu^{*}\right)$ associated with an outer measure μ^{*}, is closed under finite intersection and union, and closed under complementation and difference.

Exercise 15

Exercise 16.

- Suppose $n \geq 1, p \geq 1$ and $B_{n} \cap B_{p} \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose $n<p$ and $x \in B_{n} \cap B_{p}$. Since $x \in B_{n}$, we have $x \in A_{n}$. However, since $x \in B_{p}, x \notin A_{1} \cup \ldots \cup A_{p-1}$. In particular, $x \notin A_{n}$. This is a contradiction. It follows that if $B_{n} \cap B_{p} \neq \emptyset$ then $n=p$, and $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint subsets of Ω.
- From exercise (15), all B_{n} 's are in fact elements of Σ.
- Since for all $n \geq 1, B_{n} \subseteq A_{n}$, we have: $\uplus_{n=1}^{+\infty} B_{n} \subseteq \cup_{n=1}^{+\infty} A_{n}$. Conversely, suppose $x \in \cup_{n=1}^{+\infty} A_{n}$. Then, there exists $n \geq 1$ such that $x \in A_{n}$. Consider the set:

$$
I(x) \triangleq\left\{n \geq 1, x \in A_{n}\right\}
$$

This set is a non-empty subset of \mathbf{N}^{*} (the set of all positive integers). It follows that $I(x)$ has a smallest element p. If $p=1$, then $x \in A_{1}=B_{1}$. If $p>1$, then $x \in A_{p} \backslash\left(A_{1} \cup \ldots \cup A_{p-1}\right)=B_{p}$. In any case, $x \in B_{p} \subseteq \uplus_{n=1}^{+\infty} B_{n}$. Consequently, it follows that $\cup_{n=1}^{+\infty} A_{n} \subseteq \uplus_{n=1}^{+\infty} B_{n}$.

- We have proved that $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of Σ, such that:

$$
\bigcup_{n=1}^{+\infty} A_{n}=\biguplus_{n=1}^{+\infty} B_{n}
$$

Exercise 16
Exercise 17. Let $B, C \in \Sigma$ be such that $B \cap C=\emptyset$. Since $B \in \Sigma$, using definition (11) with $T \cap(B \uplus C)$ in place of T, we have:

$$
\mu^{*}(T \cap(B \uplus C))=\mu^{*}(T \cap(B \uplus C) \cap B)+\mu^{*}\left(T \cap(B \uplus C) \cap B^{c}\right)
$$

From $B \cap C=\emptyset$ and in particular $C \subseteq B^{c}$, we obtain:

$$
\mu^{*}(T \cap(B \uplus C))=\mu^{*}(T \cap B)+\mu^{*}(T \cap C)
$$

Note that it was not necessary to use the fact that both B and C were elements of Σ.

Exercise 17

Exercise 18.

1. $\uplus_{n=1}^{N} B_{n} \in \Sigma$ is an immediate consequence of exercise (15).
2. Using exercise (17) with a simple induction argument, we obtain:

$$
\mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)\right)=\sum_{n=1}^{N} \mu^{*}\left(T \cap B_{n}\right)
$$

3. Since $\uplus_{n=1}^{N} B_{n} \subseteq B$, we have $T \cap B^{c} \subseteq T \cap\left(\uplus_{n=1}^{N} B_{n}\right)^{c}$. Using (ii) of definition (10), we obtain:

$$
\mu^{*}\left(T \cap B^{c}\right) \leq \mu^{*}\left(T \cap\left(\uplus_{n=1}^{N} B_{n}\right)^{c}\right)
$$

4. Using 2. and 3., if we put $C_{N}=\uplus_{n=1}^{N} B_{n}$, we have:

$$
\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{N} \mu^{*}\left(T \cap B_{n}\right) \leq \mu^{*}\left(T \cap\left(C_{N}\right)^{c}\right)+\mu^{*}\left(T \cap C_{N}\right)
$$

However from 1., $C_{N} \in \Sigma$. Using definition (11), we obtain:

$$
\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{N} \mu^{*}\left(T \cap B_{n}\right) \leq \mu^{*}(T)
$$

Taking the limit as $N \rightarrow+\infty$, we conclude:

$$
\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right) \leq \mu^{*}(T)
$$

5. Since $T=\left(T \cap B^{c}\right) \cup(T \cap B)$, using exercise (14):

$$
\mu^{*}(T) \leq \mu^{*}\left(T \cap B^{c}\right)+\mu^{*}(T \cap B)
$$

However, $T \cap B=\cup_{n=1}^{+\infty} T \cap B_{n}$. Using (iii) of definition (10), we have:

$$
\mu^{*}(T \cap B) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right)
$$

It follows that:

$$
\mu^{*}(T) \leq \mu^{*}\left(T \cap B^{c}\right)+\mu^{*}(T \cap B) \leq \mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right)
$$

6. From 4. and 5., we see that $\mu^{*}(T)=\mu^{*}\left(T \cap B^{c}\right)+\mu^{*}(T \cap B)$. This being true for all $T \subseteq \Omega$, it follows that $B=\uplus_{n=1}^{+\infty} B_{n} \in \Sigma$. Also, from 4. and 5., we have:

$$
\mu^{*}(T)=\mu^{*}\left(T \cap B^{c}\right)+\sum_{n=1}^{+\infty} \mu^{*}\left(T \cap B_{n}\right)
$$

In particular, taking $T=B$, using the fact that $\mu^{*}(\emptyset)=0$, we obtain:

$$
\mu^{*}(B)=\sum_{n=1}^{+\infty} \mu^{*}\left(B_{n}\right)
$$

7. We saw in exercise (15) that Σ contains Ω, and is closed under complementation. If $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of Σ, then from exercise (16), there exists a sequence $\left(B_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of Σ, with $B=\uplus_{n=1}^{+\infty} B_{n}=\cup_{n=1}^{+\infty} A_{n}$. In 6., we saw that such B is an element of Σ. It follows that $\cup_{n=1}^{+\infty} A_{n} \in \Sigma$, and Σ is closed under countable union. Hence, we have proved that Σ is a σ-algebra on $\Omega . \mu^{*}$ being an outer measure on $\Omega, \mu^{*}(\emptyset)=0$. So (i) of definition (9) is satisfied for $\mu_{\mid \Sigma}^{*}$. If $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of Σ, and $B=\uplus_{n=1}^{+\infty} B_{n}$, we saw in 6. that:

$$
\mu^{*}(B)=\sum_{n=1}^{+\infty} \mu^{*}\left(B_{n}\right)
$$

It follows that (ii) of definition (9) is satisfied for $\mu_{\mid \Sigma}^{*}$. Finally, $\mu_{\mid \Sigma}^{*}$ is indeed a measure on Σ. The purpose of the exercise is to prove theorem (3).

Exercise 19.

1. \mathcal{R} being a ring on $\Omega, \emptyset \in \mathcal{R}$. If we define a sequence $\left(A_{n}\right)_{n \geq 1}$, with $A_{n}=\emptyset$ for all $n \geq 1$, then $\left(A_{n}\right)_{n \geq 1}$ is an \mathcal{R}-cover of the empty set. It follows that:

$$
\mu^{*}(\emptyset) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)=0
$$

Moreover, $\mu^{*}(\emptyset)$ being the infimum over a set of non-negative numbers, we have $\mu^{*}(\emptyset) \geq 0$. Finally $\mu^{*}(\emptyset)=0$.
2. Let $A \subseteq B \subseteq \Omega$. Let $\left(B_{n}\right)_{n \geq 1}$ be an \mathcal{R}-cover of B. Then in particular, $\left(B_{n}\right)_{n \geq 1}$ is an \mathcal{R}-cover of A. It follows that:

$$
\begin{equation*}
\mu^{*}(A) \leq \sum_{n=1}^{+\infty} \mu\left(B_{n}\right) \tag{6}
\end{equation*}
$$

Hence, $\mu^{*}(A)$ is a lower bound of all sums involved in (6), as $\left(B_{n}\right)_{n \geq 1}$ ranges over all \mathcal{R}-covers of $B . \mu^{*}(B)$ being the infimum of those sums, it is the greatest of such lower bounds, from which we conclude that $\mu^{*}(A) \leq$ $\mu^{*}(B)$.
3. Since $\mu^{*}\left(A_{n}\right)<+\infty$, we have $\mu^{*}\left(A_{n}\right)<\mu^{*}\left(A_{n}\right)+\epsilon / 2^{n}$. It follows that $\mu^{*}\left(A_{n}\right)+\epsilon / 2^{n}$ cannot be a lower bound of all sums $\sum_{p=1}^{+\infty} \mu\left(B_{p}\right)$, as $\left(B_{p}\right)_{p \geq 1}$ ranges over all \mathcal{R}-covers of A_{n}. Hence, there exists an \mathcal{R}-cover $\left(A_{n}^{p}\right)^{p \geq 1}$ of A_{n} such that:

$$
\sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)<\mu^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}
$$

It is important to assume $\mu^{*}\left(A_{n}\right)<+\infty$, since otherwise the inequality $\mu^{*}\left(A_{n}\right) \leq \mu^{*}\left(A_{n}\right)+\epsilon / 2^{n}$ may not be a strict inequality, and the above reasoning would fail.
4. \mathbf{N}^{*} being the set of positive integers, $\mathbf{N}^{*} \times \mathbf{N}^{*}$ is a countable set. There exists a one-to-one $\operatorname{map} \phi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*} \times \mathbf{N}^{*}$. Given $k \geq 1$, define $R_{k}=A_{n}^{p}$, where $(n, p)=\phi(k)$. Then $\left(R_{k}\right)_{k \geq 1}$ is a sequence of elements of \mathcal{R} such that:

$$
\bigcup_{n=1}^{+\infty} A_{n} \subseteq \bigcup_{n=1}^{+\infty} \bigcup_{p=1}^{+\infty} A_{n}^{p}=\bigcup_{k=1}^{+\infty} R_{k}
$$

In other words, $\left(R_{k}\right)_{k \geq 1}$ is an \mathcal{R}-cover of $\cup_{n=1}^{+\infty} A_{n}$. Moreover:

$$
\sum_{k=1}^{+\infty} \mu\left(R_{k}\right)=\sum_{(n, p) \in \mathbf{N}^{*} \times \mathbf{N}^{*}} \mu\left(A_{n}^{p}\right)=\sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)
$$

5. It follows from 4. that:

$$
\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{k=1}^{+\infty} \mu\left(R_{k}\right)=\sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu\left(A_{n}^{p}\right)
$$

Hence, using 3.:

$$
\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty}\left(\mu^{*}\left(A_{n}\right)+\frac{\epsilon}{2^{n}}\right)
$$

and finally:

$$
\begin{equation*}
\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \epsilon+\sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right) \tag{7}
\end{equation*}
$$

6. From 1. and 2., we see that (i) and (ii) of definition (10) are satisfied for μ^{*}. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of subsets of Ω. If $\mu^{*}\left(A_{n}\right)=+\infty$ for some $n \geq 1$, then:

$$
\begin{equation*}
\mu^{*}\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty} \mu^{*}\left(A_{n}\right) \tag{8}
\end{equation*}
$$

is obviously true. If $\mu^{*}\left(A_{n}\right)<+\infty$ for all $n \geq 1$, then given $\epsilon>0$ from 5., inequality (7) holds. Since ϵ is arbitrary, it follows that inequality (8) still holds. Hence, (iii) of definition (10) is satisfied for μ^{*}. Finally, μ^{*} is an outer-measure on Ω.

Exercise 19

Exercise 20.

1. Since $A \in \mathcal{R}$, the sequence $\left(R_{n}\right)_{n \geq 1}$ defined by $R_{1}=A$ and $R_{n}=\emptyset$ for all $n \geq 2$, is an \mathcal{R}-cover of A. Hence:

$$
\mu^{*}(A) \leq \sum_{n=1}^{+\infty} \mu\left(R_{n}\right)=\mu(A)
$$

2. Suppose $n \geq 1, p \geq 1$ and $B_{n} \cap B_{p} \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose $n<p$ and $x \in B_{n} \cap B_{p}$. Since $x \in B_{n}$, we have $x \in A_{n} \cap A$. However, since $x \in B_{p}, x \notin\left(A_{1} \cap A\right) \cup \ldots \cup\left(A_{p-1} \cap A\right)$. In particular, $x \notin A_{n} \cap A$. This is a contradiction. It follows that if $B_{n} \cap B_{p} \neq \emptyset$ then $n=p$, and $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint subsets of Ω. From exercise (1), we know that a ring is closed under finite intersection. From (ii) and (iii) of definition (7), it is also closed under finite union and difference. It follows that all B_{n} 's are in fact elements of \mathcal{R}. Since for all $n \geq 1, B_{n} \subseteq A_{n} \cap A$, we have:

$$
\biguplus_{n=1}^{+\infty} B_{n} \subseteq \bigcup_{n=1}^{+\infty} A_{n} \cap A=A \cap \bigcup_{n=1}^{+\infty} A_{n}=A
$$

Conversely, suppose $x \in A \subseteq \cup_{n=1}^{+\infty} A_{n}$. Then, there exists $n \geq 1$ such that $x \in A_{n} \cap A$. Consider the set:

$$
I(x) \triangleq\left\{n \geq 1, x \in A_{n} \cap A\right\}
$$

This set is a non-empty subset of \mathbf{N}^{*} (the set of all positive integers). It follows that $I(x)$ has a smallest element p. If $p=1$, then $x \in A_{1} \cap A=B_{1}$. If $p>1$, then by definition of p, we have $x \in\left(A_{p} \cap A\right) \backslash\left(\left(A_{1} \cap A\right) \cup \ldots \cup\right.$ $\left.\left(A_{p-1} \cap A\right)\right)=B_{p}$. In any case, $x \in B_{p} \subseteq \uplus_{n=1}^{+\infty} B_{n}$. Consequently, it follows that $A \subseteq \uplus_{n=1}^{+\infty} B_{n}$. We have proved that $\left(B_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R}, such that: $A=\biguplus_{n=1}^{+\infty} B_{n}$
3. μ being a measure on \mathcal{R}, from 2 . we obtain:

$$
\mu(A)=\sum_{n=1}^{+\infty} \mu\left(B_{n}\right)
$$

Since for all $n \geq 1$, we have $B_{n} \subseteq A_{n}$, it follows from exercise (9) that $\mu\left(B_{n}\right) \leq \mu\left(A_{n}\right)$. Hence:

$$
\begin{equation*}
\mu(A) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right) \tag{9}
\end{equation*}
$$

The \mathcal{R}-cover $\left(A_{n}\right)_{n \geq 1}$ of A being arbitrary, we see that $\mu(A)$ is a lower bound of all sums involved in (9), as $\left(A_{n}\right)_{n \geq 1}$ ranges across all \mathcal{R}-covers of $A . \mu^{*}(A)$ being the greatest of such lower bounds, it follows that $\mu(A) \leq \mu^{*}(A)$. Using 1., we conclude that $\mu(A)=\mu^{*}(A)$. This being true for all $A \in \mathcal{R}$, we have proved that $\mu_{\mid \mathcal{R}}^{*}=\mu$.

Exercise 20

Exercise 21.

1. We saw in exercise (19) that μ^{*} is an outer measure on Ω. From exercise (14), and the fact that $T=(T \cap A) \cup\left(T \cap A^{c}\right)$, we obtain:

$$
\mu^{*}(T) \leq \mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right)
$$

2. If $\left(T_{n}\right)_{n \geq 1}$ is an \mathcal{R}-cover of T, then in particular $T_{n} \in \mathcal{R}$ for all $n \geq 1$. Since $A \in \mathcal{R}$, it follows from exercise (1) that $T_{n} \cap A \in \mathcal{R}$, and from (iii) of definition (7) that $T_{n} \cap A^{c}=T_{n} \backslash A \in \mathcal{R}$, for all $n \geq 1$. Moreover, from $T \subseteq \cup_{n=1}^{+\infty} T_{n}$, we have:

$$
\begin{aligned}
& T \cap A \subseteq \bigcup_{n=1}^{+\infty} T_{n} \cap A \\
& T \cap A^{c} \subseteq \bigcup_{n=1}^{+\infty} T_{n} \cap A^{c}
\end{aligned}
$$

We conclude that $\left(T_{n} \cap A\right)_{n \geq 1}$ and $\left(T_{n} \cap A^{c}\right)_{n \geq 1}$ are \mathcal{R}-covers of $T \cap A$ and $T \cap A^{c}$ respectively.
3. It follows from 2. that:

$$
\begin{aligned}
\mu^{*}(T \cap A) & \leq \sum_{n=1}^{+\infty} \mu\left(T_{n} \cap A\right) \\
\mu^{*}\left(T \cap A^{c}\right) & \leq \sum_{n=1}^{+\infty} \mu\left(T_{n} \cap A^{c}\right)
\end{aligned}
$$

However, μ being a measure on \mathcal{R}, from exercise (9), we have:

$$
\mu\left(T_{n}\right)=\mu\left(T_{n} \cap A\right)+\mu\left(T_{n} \cap A^{c}\right)
$$

for all $n \geq 1$. It follows that:

$$
\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right) \leq \sum_{n=1}^{+\infty} \mu\left(T_{n}\right)
$$

This being true for all \mathcal{R}-covers $\left(T_{n}\right)_{n \geq 1}$ of T, we finally have:

$$
\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right) \leq \mu^{*}(T)
$$

4. Given $A \in \mathcal{R}$, we see from 1 . and 3. that for all $T \subseteq \Omega$:

$$
\mu^{*}(T)=\mu^{*}(T \cap A)+\mu^{*}\left(T \cap A^{c}\right)
$$

Hence, from definition (11), it follows that A is an element of $\Sigma\left(\mu^{*}\right)$, (the σ-algebra associated with the outer measure $\left.\mu^{*}\right)$. This being true for all $A \in \mathcal{R}$, we have proved that $\mathcal{R} \subseteq \Sigma\left(\mu^{*}\right)$.
5. The σ-algebra $\sigma(\mathcal{R})$ generated by \mathcal{R}, is the smallest σ-algebra on Ω containing \mathcal{R}. Thus, it follows immediately from 4 . that $\sigma(\mathcal{R}) \subseteq \Sigma\left(\mu^{*}\right)$.

Exercise 21

Exercise 22.

- Let $\mu^{\prime}: \sigma(\mathcal{R}) \rightarrow[0,+\infty]$ be defined by $\mu^{\prime}=\mu_{\mid \sigma(\mathcal{R})}^{*}$, where μ^{*} is the outer measure on Ω defined in exercise (19). We saw in exercise (20) that $\mu_{\mid \mathcal{R}}^{*}=\mu$. Hence, since $\mathcal{R} \subseteq \sigma(\mathcal{R})$, we have $\mu_{\mid \mathcal{R}}^{\prime}=\mu_{\mid \mathcal{R}}^{*}=\mu$.
- From theorem (3), we know that $\mu_{\mid \Sigma\left(\mu^{*}\right)}^{*}$ is a measure on $\Sigma\left(\mu^{*}\right)$. However, $\sigma(\mathcal{R}) \subseteq \Sigma\left(\mu^{*}\right)$ (exercise (21)). It is an immediate consequence of definition (9), that if we restrict the measure $\mu_{\mid \Sigma\left(\mu^{*}\right)}^{*}$ to the smaller σ-algebra $\sigma(\mathcal{R})$, the resulting map is a measure defined on $\sigma(\mathcal{R})$. But the restriction of $\mu_{\mid \Sigma\left(\mu^{*}\right)}^{*}$ to $\sigma(\mathcal{R})$ is nothing but μ^{\prime}. It follows that μ^{\prime} is indeed a measure on $\sigma(\mathcal{R})$. This proves theorem (4).

Exercise 22
Exercise 23. Let \mathcal{S} be a semi-ring on Ω. Since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S}) \subseteq \sigma(\mathcal{R}(\mathcal{S}))$, we have $\sigma(\mathcal{S}) \subseteq \sigma(\mathcal{R}(\mathcal{S}))$. However, $\mathcal{S} \subseteq \sigma(\mathcal{S})$. Moreover, from exercise (7), $\mathcal{R}(\mathcal{S})$ is the set of all finite unions of elements of \mathcal{S}. Since the σ-algebra $\sigma(\mathcal{S})$
is in particular closed under finite union, it follows that $\mathcal{R}(\mathcal{S}) \subseteq \sigma(\mathcal{S})$ and consequently $\sigma(\mathcal{R}(\mathcal{S})) \subseteq \sigma(\mathcal{S})$. Finally, we have proved that $\sigma(\mathcal{R}(\mathcal{S}))=\sigma(\mathcal{S})$.

Exercise 24. From theorem (2), the measure $\mu: \mathcal{S} \rightarrow[0,+\infty]$ can be extended to the ring $\mathcal{R}(\mathcal{S})$ generated by \mathcal{S}. In other words, there exists a measure $\bar{\mu}$: $\mathcal{R}(\mathcal{S}) \rightarrow[0,+\infty]$ such that $\bar{\mu}_{\mid \mathcal{S}}=\mu$. From theorem (4), the measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow$ $[0,+\infty]$ can be extended the σ-algebra $\sigma(\mathcal{R}(\mathcal{S})$) generated by $\mathcal{R}(\mathcal{S})$. In other words, there exists a measure $\mu^{\prime}: \sigma(\mathcal{R}(\mathcal{S})) \rightarrow[0,+\infty]$, such that $\mu_{\mid \mathcal{R}(\mathcal{S})}^{\prime}=\bar{\mu}$. However, from exercise (23), $\sigma(\mathcal{R}(\mathcal{S}))=\sigma(\mathcal{S})$. Moreover, since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S})$, we have $\mu_{\mid \mathcal{S}}^{\prime}=\bar{\mu}_{\mid \mathcal{S}}=\mu$. It follows that μ^{\prime} is a measure on $\sigma(\mathcal{S})$ such that $\mu_{\mid \mathcal{S}}^{\prime}=\mu$. This proves theorem (5).

