
Tutorial 2: Caratheodory’s Extension 1

2. Caratheodory’s Extension
In the following, Ω is a set. Whenever a union of sets is denoted ] as opposed
to ∪, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Ω is a subset S of the power set P(Ω) with the
following properties:

(i) ∅ ∈ S
(ii) A,B ∈ S ⇒ A ∩B ∈ S

(iii) A,B ∈ S ⇒ ∃n ≥ 0, ∃Ai ∈ S : A \B =
n⊎
i=1

Ai

The last property (iii) says that whenever A,B ∈ S, there is n ≥ 0 and
A1, . . . , An in S which are pairwise disjoint, such that A \ B = A1 ] . . . ] An.
If n = 0, it is understood that the corresponding union is equal to ∅, (in which
case A ⊆ B).

Definition 7 A ring on Ω is a subset R of the power set P(Ω) with the
following properties:

(i) ∅ ∈ R
(ii) A,B ∈ R ⇒ A ∪B ∈ R

(iii) A,B ∈ R ⇒ A \B ∈ R

Exercise 1. Show that A∩B = A \ (A \B) and therefore that a ring is closed
under pairwise intersection.

Exercise 2.Show that a ring on Ω is also a semi-ring on Ω.

Exercise 3.Suppose that a set Ω can be decomposed as Ω = A1 ] A2 ] A3

where A1, A2 and A3 are distinct from ∅ and Ω. Define S1
4
= {∅, A1, A2, A3,Ω}

and S2
4
= {∅, A1, A2 ] A3,Ω}. Show that S1 and S2 are semi-rings on Ω, but

that S1 ∩ S2 fails to be a semi-ring on Ω.

Exercise 4. Let (Ri)i∈I be an arbitrary family of rings on Ω, with I 6= ∅. Show

that R 4= ∩i∈IRi is also a ring on Ω.

Exercise 5. Let A be a subset of the power set P(Ω). Define:

R(A)
4
= {R ring on Ω : A ⊆ R}

Show that P(Ω) is a ring on Ω, and that R(A) is not empty. Define:

R(A)
4
=

⋂
R∈R(A)

R

Show that R(A) is a ring on Ω such that A ⊆ R(A), and that it is the smallest
ring on Ω with such property, (i.e. if R is a ring on Ω and A ⊆ R then
R(A) ⊆ R).
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Definition 8 Let A ⊆ P(Ω). We call ring generated by A, the ring on Ω,
denoted R(A), equal to the intersection of all rings on Ω, which contain A.

Exercise 6.Let S be a semi-ring on Ω. Define the set R of all finite unions of
pairwise disjoint elements of S, i.e.

R 4= {A : A = ]ni=1Ai for some n ≥ 0, Ai ∈ S}
(where if n = 0, the corresponding union is empty, i.e. ∅ ∈ R). Let A = ]ni=1Ai
and B = ]pj=1Bj ∈ R:

1. Show that A ∩ B = ]i,j(Ai ∩ Bj) and that R is closed under pairwise
intersection.

2. Show that if p ≥ 1 then A \B = ∩pj=1(]ni=1(Ai \Bj)).

3. Show that R is closed under pairwise difference.

4. Show that A ∪B = (A \B) ]B and conclude that R is a ring on Ω.

5. Show that R(S) = R.

Exercise 7. Everything being as before, define:

R′ 4= {A : A = ∪ni=1Ai for some n ≥ 0, Ai ∈ S}

(We do not require the sets involved in the union to be pairwise disjoint). Using
the fact that R is closed under finite union, show that R′ ⊆ R, and conclude
that R′ = R = R(S).

Definition 9 Let A ⊆ P(Ω) with ∅ ∈ A. We call measure on A, any map
µ : A → [0,+∞] with the following properties:

(i) µ(∅) = 0

(ii) A ∈ A, An ∈ A and A =
+∞⊎
n=1

An ⇒ µ(A) =
+∞∑
n=1

µ(An)

The ] indicates that we assume the An’s to be pairwise disjoint in the l.h.s. of
(ii). It is customary to say in view of condition (ii) that a measure is countably
additive.

Exercise 8.If A is a σ-algebra on Ω explain why property (ii) can be replaced
by:

(ii)′ An ∈ A and A =
+∞⊎
n=1

An ⇒ µ(A) =
+∞∑
n=1

µ(An)

Exercise 9. Let A ⊆ P(Ω) with ∅ ∈ A and µ : A → [0,+∞] be a measure on
A.

www.probability.net

http://www.probability.net


Tutorial 2: Caratheodory’s Extension 3

1. Show that if A1, . . . , An ∈ A are pairwise disjoint and the union A =
]ni=1Ai lies in A, then µ(A) = µ(A1) + . . .+ µ(An).

2. Show that if A,B ∈ A, A ⊆ B and B \A ∈ A then µ(A) ≤ µ(B).

Exercise 10. Let S be a semi-ring on Ω, and µ : S → [0,+∞] be a measure
on S. Suppose that there exists an extension of µ on R(S), i.e. a measure
µ̄ : R(S)→ [0,+∞] such that µ̄|S = µ.

1. Let A be an element of R(S) with representation A = ]ni=1Ai as a finite
union of pairwise disjoint elements of S. Show that µ̄(A) =

∑n
i=1 µ(Ai)

2. Show that if µ̄′ : R(S) → [0,+∞] is another measure with µ̄′|S = µ, i.e.
another extension of µ on R(S), then µ̄′ = µ̄.

Exercise 11. Let S be a semi-ring on Ω and µ : S → [0,+∞] be a measure.
Let A be an element of R(S) with two representations:

A =
n⊎
i=1

Ai =
p⊎
j=1

Bj

as a finite union of pairwise disjoint elements of S.

1. For i = 1, . . . , n, show that µ(Ai) =
∑p

j=1 µ(Ai ∩Bj)

2. Show that
∑n

i=1 µ(Ai) =
∑p
j=1 µ(Bj)

3. Explain why we can define a map µ̄ : R(S)→ [0,+∞] as:

µ̄(A)
4
=

n∑
i=1

µ(Ai)

4. Show that µ̄(∅) = 0.

Exercise 12. Everything being as before, suppose that (An)n≥1 is a sequence
of pairwise disjoint elements of R(S), each An having the representation:

An =
pn⊎
k=1

Akn , n ≥ 1

as a finite union of disjoint elements of S. Suppose moreover that A = ]+∞
n=1An

is an element of R(S) with representation A = ]pj=1Bj , as a finite union of
pairwise disjoint elements of S.

1. Show that for j = 1, . . . , p, Bj = ∪+∞
n=1 ∪

pn
k=1 (Akn ∩ Bj) and explain why

Bj is of the form Bj = ]+∞
m=1Cm for some sequence (Cm)m≥1 of pairwise

disjoint elements of S.

2. Show that µ(Bj) =
∑+∞
n=1

∑pn
k=1 µ(Akn ∩Bj)
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3. Show that for n ≥ 1 and k = 1, . . . , pn, Akn = ]pj=1(Akn ∩Bj)

4. Show that µ(Akn) =
∑p

j=1 µ(Akn ∩Bj)

5. Recall the definition of µ̄ of exercise (11) and show that it is a measure on
R(S).

Exercise 13.Prove the following theorem:

Theorem 2 Let S be a semi-ring on Ω. Let µ : S → [0,+∞] be a measure on
S. There exists a unique measure µ̄ : R(S)→ [0,+∞] such that µ̄|S = µ.

Definition 10 We define an outer-measure on Ω as being any map µ∗ :
P(Ω)→ [0,+∞] with the following properties:

(i) µ∗(∅) = 0
(ii) A ⊆ B ⇒ µ∗(A) ≤ µ∗(B)

(iii) µ∗

(
+∞⋃
n=1

An

)
≤

+∞∑
n=1

µ∗(An)

Exercise 14. Show that µ∗(A ∪ B) ≤ µ∗(A) + µ∗(B), where µ∗ is an outer-
measure on Ω and A,B ⊆ Ω.

Definition 11 Let µ∗ be an outer-measure on Ω. We define:

Σ(µ∗)
4
= {A ⊆ Ω : µ∗(T ) = µ∗(T ∩A) + µ∗(T ∩Ac) , ∀T ⊆ Ω}

We call Σ(µ∗) the σ-algebra associated with the outer-measure µ∗.

Note that the fact that Σ(µ∗) is indeed a σ-algebra on Ω, remains to be proved.
This will be your task in the following exercises.

Exercise 15. Let µ∗ be an outer-measure on Ω. Let Σ = Σ(µ∗) be the σ-algebra
associated with µ∗. Let A,B ∈ Σ and T ⊆ Ω

1. Show that Ω ∈ Σ and Ac ∈ Σ.

2. Show that µ∗(T ∩A) = µ∗(T ∩A ∩B) + µ∗(T ∩A ∩Bc)

3. Show that T ∩Ac = T ∩ (A ∩B)c ∩Ac

4. Show that T ∩A ∩Bc = T ∩ (A ∩B)c ∩A

5. Show that µ∗(T ∩Ac) + µ∗(T ∩A ∩Bc) = µ∗(T ∩ (A ∩B)c)

6. Adding µ∗(T ∩ (A ∩B)) on both sides 5., conclude that A ∩B ∈ Σ.

7. Show that A ∪B and A \B belong to Σ.
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Exercise 16. Everything being as before, let An ∈ Σ, n ≥ 1. Define B1 = A1

and Bn+1 = An+1 \ (A1 ∪ . . . ∪ An). Show that the Bn’s are pairwise disjoint
elements of Σ and that ∪+∞

n=1An = ]+∞
n=1Bn.

Exercise 17. Everything being as before, show that if B,C ∈ Σ and B∩C = ∅,
then µ∗(T ∩ (B ] C)) = µ∗(T ∩B) + µ∗(T ∩ C) for any T ⊆ Ω.

Exercise 18.Everything being as before, let (Bn)n≥1 be a sequence of pairwise

disjoint elements of Σ, and let B
4
= ]+∞

n=1Bn. Let N ≥ 1.

1. Explain why ]Nn=1Bn ∈ Σ

2. Show that µ∗(T ∩ (]Nn=1Bn)) =
∑N

n=1 µ
∗(T ∩Bn)

3. Show that µ∗(T ∩Bc) ≤ µ∗(T ∩ (]Nn=1Bn)c)

4. Show that µ∗(T ∩Bc) +
∑+∞
n=1 µ

∗(T ∩Bn) ≤ µ∗(T ), and:

5. µ∗(T ) ≤ µ∗(T ∩Bc) + µ∗(T ∩B) ≤ µ∗(T ∩Bc) +
∑+∞
n=1 µ

∗(T ∩Bn)

6. Show that B ∈ Σ and µ∗(B) =
∑+∞
n=1 µ

∗(Bn).

7. Show that Σ is a σ-algebra on Ω, and µ∗|Σ is a measure on Σ.

Theorem 3 Let µ∗ : P(Ω)→ [0,+∞] be an outer-measure on Ω. Then Σ(µ∗),
the so-called σ-algebra associated with µ∗, is indeed a σ-algebra on Ω and
µ∗|Σ(µ∗), is a measure on Σ(µ∗).

Exercise 19. Let R be a ring on Ω and µ : R → [0,+∞] be a measure on R.
For all T ⊆ Ω, define:

µ∗(T )
4
= inf

{
+∞∑
n=1

µ(An) , (An) is an R-cover of T

}
where an R-cover of T is defined as any sequence (An)n≥1 of elements of R such

that T ⊆ ∪+∞
n=1An. By convention inf ∅ 4= +∞.

1. Show that µ∗(∅) = 0.

2. Show that if A ⊆ B then µ∗(A) ≤ µ∗(B).

3. Let (An)n≥1 be a sequence of subsets of Ω, with µ∗(An) < +∞ for all
n ≥ 1. Given ε > 0, show that for all n ≥ 1, there exists an R-cover
(Apn)p≥1 of An such that:

+∞∑
p=1

µ(Apn) < µ∗(An) + ε/2n

Why is it important to assume µ∗(An) < +∞.
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4. Show that there exists an R-cover (Rk) of ∪+∞
n=1An such that:

+∞∑
k=1

µ(Rk) =
+∞∑
n=1

+∞∑
p=1

µ(Apn)

5. Show that µ∗(∪+∞
n=1An) ≤ ε+

∑+∞
n=1 µ

∗(An)

6. Show that µ∗ is an outer-measure on Ω.

Exercise 20. Everything being as before, Let A ∈ R. Let (An)n≥1 be an
R-cover of A and put B1 = A1 ∩A, and:

Bn+1
4
= (An+1 ∩A) \ ((A1 ∩A) ∪ . . . ∪ (An ∩A))

1. Show that µ∗(A) ≤ µ(A).

2. Show that (Bn)n≥1 is a sequence of pairwise disjoint elements of R such
that A = ]+∞

n=1Bn.

3. Show that µ(A) ≤ µ∗(A) and conclude that µ∗|R = µ.

Exercise 21. Everything being as before, Let A ∈ R and T ⊆ Ω.

1. Show that µ∗(T ) ≤ µ∗(T ∩A) + µ∗(T ∩Ac).

2. Let (Tn) be an R-cover of T . Show that (Tn ∩ A) and (Tn ∩ Ac) are
R-covers of T ∩A and T ∩Ac respectively.

3. Show that µ∗(T ∩A) + µ∗(T ∩Ac) ≤ µ∗(T ).

4. Show that R ⊆ Σ(µ∗).

5. Conclude that σ(R) ⊆ Σ(µ∗).

Exercise 22.Prove the following theorem:

Theorem 4 (Caratheodory’s extension) Let R be a ring on Ω and µ :
R → [0,+∞] be a measure on R. There exists a measure µ′ : σ(R) → [0,+∞]
such that µ′|R = µ.

Exercise 23. Let S be a semi-ring on Ω. Show that σ(R(S)) = σ(S).

Exercise 24.Prove the following theorem:

Theorem 5 Let S be a semi-ring on Ω and µ : S → [0,+∞] be a measure on
S. There exists a measure µ′ : σ(S)→ [0,+∞] such that µ′|S = µ.
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Solutions to Exercises
Exercise 1.

• Let x ∈ A∩B. Then x ∈ B. So x 6∈ A\B. It follows that x ∈ A\ (A\B),
and A∩B ⊆ A \ (A \B). Let x ∈ A \ (A \B). Then x ∈ A and x 6∈ A \B.
But x 6∈ A \B implies that either x 6∈ A or x ∈ B. Hence, x ∈ B. finally,
x ∈ A∩B and A\(A\B) ⊆ A∩B. We have proved that A∩B = A\(A\B)

• Let R be a ring and A,B ∈ R. From (iii) of definition (7), A \ B ∈ R.
Hence, A\(A\B) ∈ R. It follows from the previous point that A∩B ∈ R.
We have proved that a ring is closed under pairwise intersection.

Exercise 1

Exercise 2. Let R be ring on Ω. Then (i) of definition (6) is immediately
satisfied for R. From exercise (1), we know that R is closed under finite inter-
section. So (ii) of definition (6) is satisfied for R. Let A,B ∈ R. From (iii) of
definition (7), A \ B ∈ R. Therefore, if we take n = 1 and A1 = A \ B ∈ R,
we see that A \ B = ]ni=1Ai and (iii) of definition (6) is satisfied for R. Fi-
nally, having checked (i), (ii) and (iii) of definition (6), we conclude that R is
a semi-ring on Ω. Any ring on Ω is therefore also a semi-ring on Ω.

Exercise 2

Exercise 3.

• ∅ ∈ S1 so (i) of definition (6) is satisfied for S1. If A,B ∈ S1, then A ∩B
is equal to the empty set (remember that A1, A2 and A3 are disjoint),
unless A (resp. B) is Ω itself, or A = B 6= ∅, in which case A∩B is equal
to B (resp. A). In any case, A∩B ∈ S1 and condition (ii) of definition (6)
is satisfied for S1. If A,B ∈ S1, since S1 has 5 elements, A \ B is one of
25 cases to consider. It is equal to ∅, (∅ \ ∅, ∅ \Ai, ∅ \ Ω, Ai \ Ω, Ai \Ai,
Ω \ Ω) in 12 of those cases. It is equal to A itself (Ai \ ∅, Ai \ Aj , j 6= i,
Ω \ ∅) in 10 of those cases. The last three cases are Ω \ A1 = A2 ] A3,
Ω \ A2 = A1 ] A3 and Ω \ A3 = A1 ] A2. Hence, we see that condition
(iii) of definition (6) is satisfied for S1. We have proved that S1 is indeed
a semi-ring on Ω.

• If we put B1 = A1 and B2 = A2 ]A3, then Ω = B1 ]B2 where B1, B2 are
distinct from ∅ and Ω. Moreover, S2 = {∅, B1, B2,Ω}, and proving that
S2 is a semi-ring on Ω is identical to the previous point, but is just a little
bit easier...

• S1 ∩ S2 = {∅, A1,Ω} (remember that all Ai’s are not empty and pairwise
disjoint, so A3 6= A2 ] A3 and A2 6= A2 ] A3). Suppose that S1 ∩ S2is a
semi-ring on Ω. Then from (iii) of definition (6), there exists n ≥ 0 and
B1, B2, . . . , Bn in S1 ∩ S2 such that:

Ω \A1 = B1 ] . . . ]Bn
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Since A1 is assumed to be distinct from Ω, Ω \ A1 6= ∅. It follows that
n ≥ 1 and at least one of the Bi’s is not empty. If Bi = Ω then Ω\A1 = Ω
and this would be a contradiction since A1 is assumed to be not empty.
If Bi = A1 then Ω \ A1 ⊇ A1 would also be a contradiction. Hence, the
initial assumption of S1 ∩ S2 being a semi-ring on Ω is absurd. S1 ∩ S2

fails to be a semi-ring on Ω. The purpose of this exercise is to show
that contrary to Dynkin systems, σ-algebras and rings (as we shall see in
the next exercise), taking intersections of semi-rings does not necessarily
create another semi-ring. Hence, no attempt will be made to define the
notion of generated semi-ring...

Exercise 3

Exercise 4. Each Ri being a ring on Ω, ∅ ∈ Ri. This being true for all i ∈ I,
∅ ∈ ∩i∈IRi = R, and condition (i) of definition (7) is satisfied for R. Let
A,B ∈ R. Then for all i ∈ I, A,B belong to Ri. It follows that A \ B and
A ∪B belong to Ri. This being true for all i ∈ I, both A \ B and A ∪B lie in
∩i∈IRi, and conditions (ii) and (iii) of definition (7) are satisfied for R. Having
checked (i), (ii) and (iii) of definition (7), we conclude that R is indeed a ring
on Ω. The purpose of this exercise is to show that an arbitrary (non-empty)
intersection of rings on Ω, is still a ring on Ω.

Exercise 4

Exercise 5.

• ∅ being a subset of Ω, ∅ ∈ P(Ω) and condition (i) of definition (7) is
satisfied for P(Ω). Given two subsets A,B of Ω, A \B and A∪B are still
subsets of Ω, i.e. A \B ∈ P(Ω) and A∪B ∈ P(Ω). Hence, conditions (ii)
and (iii) of definition (7) are satisfied for P(Ω). It follows that P(Ω) is a
ring on Ω.

• By assumption, A ⊆ P(Ω). Moreover, P(Ω) is a ring on Ω. Therefore,
P(Ω) ∈ R(A). In particular, R(A) is not empty.

• R(A) is a non-empty intersection of rings on Ω. From exercise (4), it is
therefore a ring on Ω.

• For all R ∈ R(A), A ⊆ R. Hence:

A ⊆
⋂

R∈R(A)

R 4= R(A)

• Suppose R is another ring on Ω, with A ⊆ R. Then, by definition of the
set R(A), R ∈ R(A). It follows that:

R(A)
4
=

⋂
R′∈R(A)

R′ ⊆ R

So R(A) is indeed the smallest ring on Ω which contains A.
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Exercise 5

Exercise 6.

1. If x ∈ Ai ∩ Bj for some i = 1, . . . , n and j = 1, . . . , p, then x ∈ A ∩ B.
Conversely if x ∈ A ∩B, then n ≥ 1, p ≥ 1, and there exist i ∈ {1, . . . , n}
and j ∈ {1, . . . , p} such that x ∈ Ai ∩ Bj . So A ∩ B = ∪i,jAi ∩ Bj .
Suppose (i, j) and (i′, j′) are such that (Ai ∩ Bj) ∩ (Ai′ ∩ Bj′ ) 6= ∅. In
particular, Ai∩Ai′ 6= ∅. Since the Ai’s are pairwise disjoint, we have i = i′

and similarly j = j′. Hence, we see that the (Ai ∩ Bj)i,j ’s are pairwise
disjoint, and finally A∩B = ]i,jAi∩Bj . From (ii) of definition (6), all the
Ai ∩Bj ’s lie in the semi-ring S, and we see that A ∩B is also an element
of R. We have proved that R is closed under finite intersection.

2. Since the Ai’s are pairwise disjoint, for all j ∈ {1, . . . , p} being given,
the Ai \ Bj i = 1, . . . , n, are also pairwise disjoint. Hence, the union
∪ni=1Ai \ Bj can legitimately be written as ]ni=1Ai \ Bj . let x ∈ A \ B.
Then x 6∈ B. Thus, for all j = 1, . . . , p, x 6∈ Bj . But x ∈ A. So there
exists i ∈ {1, . . . , n} such that x ∈ Ai. It follows that for all j ∈ {1, . . . , p},
x ∈ Ai\Bj for some i ∈ {1, . . . , n}. So x ∈ ∩pj=1]ni=1 (Ai\Bj). Conversely,
suppose that x ∈ ∩pj=1 ]ni=1 (Ai \ Bj). Then for all j ∈ {1, . . . , p}, there
exists ij ∈ {1, . . . , n} such that x ∈ Aij \ Bj . Since we have assumed
p ≥ 1, in particular x ∈ Ai1 ⊆ A, and for all j ∈ {1, . . . , p}, x 6∈ Bj , so
x 6∈ B. It follows that x ∈ A \B. We have proved that:

A \B = ∩pj=1 ]ni=1 (Ai \Bj)

3. If p = 0, then B = ∅ and A \ B = A ∈ R. We assume that p ≥ 1. From
the previous point, we know that A \B = ∩pj=1Cj where Cj is defined as
Cj = ]ni=1Ai \Bj . But each Ai and Bj is an element of the semi-ring S.
From (iii) of definition (6), each Ai \ Bj can be written as a finite union
of pairwise disjoint elements of S. It follows that Cj itself can be written
as a finite union of pairwise disjoint elements of S. Hence, we see that
for all j ∈ {1, . . . , p}, Cj is an element of R. From 1. we know that R is
closed under finite intersection. We conclude that A \ B = ∩pj=1Cj ∈ R.
We have proved that R is closed under pairwise difference.

4. Let x ∈ A ∪ B. then x ∈ A or x ∈ B. If x ∈ B then x ∈ A \ B ] B. If
x 6∈ B then x ∈ A\B. In any case, x ∈ A\B]B, and A∪B ⊆ A\B]B.
Conversely, A \B ⊆ A, so A \B ]B ⊆ A∪B. Now, if A,B ∈ R, from the
previous point, A \B ∈ R. It follows that A \B can be written as a finite
union of pairwise disjoint elements of S. But B itself (being an element of
R), can be written as a finite union of pairwise disjoint elements of S. It
follows that A \ B ] B is also a finite union of pairwise disjoint elements
of S, hence an element of R. From A ∪B = A \B ]B, we conclude that
A ∪ B is an element of R. We have proved that R is closed under finite
union. Finally, (i), (ii), (iii) of definition (7) being satisfied for R, R is
indeed a ring on Ω.
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5. Let A ∈ S. A can obviously be written as a finite union of pairwise disjoint
elements of S. (Take n = 1, A1 = A ∈ S and A = ]ni=1Ai). Hence, A ∈ R
and S ⊆ R. Consequently, from exercise (5) and the fact that R is a ring
on Ω, R(S) ⊆ R. Conversely, let A ∈ R. Then A = ]ni=1Ai for some
n ≥ 0 and Ai ∈ S. Since S ⊆ R(S) (see exercise (5)), each Ai lies in
R(S). But from (ii) of definition (7), R(S) being a ring is closed under
finite union. Hence, A ∈ R(S) and we have R ⊆ R(S). We have proved
that R(S) = R. The purpose of this exercise is to show that the ringR(S)
generated by a semi-ring S on Ω, is equal to the set of all finite unions of
pairwise disjoint elements of S.

Exercise 6

Exercise 7. Any finite union of pairwise disjoint elements of S, is in particular
a finite union of elements of S . . . So R ⊆ R′. Let A ∈ R′. There exists n ≥ 0
and Ai ∈ S for i = 1, . . . , n such that A = ∪ni=1Ai. If n = 0, then A = ∅ ∈ R.
If n ≥ 1, since S ⊆ R = R(S), all Ai’s are elements of R. R being closed under
finite union (it is a ring on Ω), A is itself an element of R. Hence R′ ⊆ R. We
have proved that R = R′ = R(S). The purpose of this exercise is to show that
the generated ring R(S) of a semi-ring S on Ω, is also equal to the set of all
finite unions of (not necessarily pairwise disjoint) elements of S.

Exercise 7

Exercise 8. If A is a σ-algebra on Ω, then An ∈ A and A = ]+∞
n=1An auto-

matically implies that A ∈ A. Hence, the l.h.s of (ii) and (ii)′ are equivalent,
whenever A is a σ-algebra on Ω.

Exercise 8

Exercise 9.

1. Define the sequence (Bn)n≥1 of elements of A, by Bi = Ai for all i =
1, . . . , n and Bk = ∅ for all k > n. Then A = ]∞k=1Bk, and since A ∈ A,
from (ii) of definition (9), we have:

µ(A) =
+∞∑
k=1

µ(Bk)

But from (i) of definition (9), µ(Bk) = 0 for all k > n. Hence:

µ(A) = µ(A1) + . . .+ µ(An)

In view of this property, it is customary to say that a measure is finitely
additive.

2. Suppose A,B ∈ A with A ⊆ B and B \ A ∈ A. Then, we have B =
A ∪B = A ] (B \A). From the previous point we conclude:

µ(A) ≤ µ(A) + µ(B \A) = µ(B)

Exercise 9

Exercise 10.
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1. If A = ∅, then either n = 0 or Ai = ∅ for all i = 1, . . . , n. In any case,
µ̄(A) =

∑n
i=1 µ(Ai) is true. If A 6= ∅, then n ≥ 1. Since S ⊆ R(S), all

sets involved in A = ]ni=1Ai are elements of R(S). Since µ̄ is a measure
on R(S), from exercise (9) we have µ̄(A) =

∑n
i=1 µ̄(Ai). By assumption,

µ̄|S = µ and Ai ∈ S for all i = 1, . . . , n. Hence, µ̄(Ai) = µ(Ai) for all
i = 1, . . . , n. It follows that µ̄(A) =

∑n
i=1 µ(Ai).

2. Let A ∈ R(S). Then A has a representation A = ]ni=1Ai as a finite
union of pairwise disjoint elements of S. From the previous point, µ̄(A) =∑n

i=1 µ(Ai). If µ̄′ is another measure onR(S) with µ̄′|S = µ, then similarly
we have µ̄′(A) =

∑n
i=1 µ(Ai). So µ̄(A) = µ̄′(A). This being true for all

A ∈ R(S), µ̄ = µ̄′. The purpose of this exercise is to show that if a
measure µ on a semi-ring S can be extended to its generated ring R(S),
then such extension is unique.

Exercise 10

Exercise 11.

1. If p = 0, then A = ∅. Then either n = 0 and there is nothing to prove,
or n ≥ 1 with all Ai’s equal to the empty set. In any case, µ(Ai) =∑p

j=1 µ(Ai ∩Bj) is true. Hence we can assume that p ≥ 1. Since Ai ⊆ A:

Ai = Ai ∩A =
p⊎
j=1

Ai ∩Bj (1)

Since S is a semi-ring, it is closed under finite intersection (definition (6)),
hence all sets involved in (1) are elements of S. From exercise (9), and the
fact that µ is a measure on S, we conclude that µ(Ai) =

∑p
j=1 µ(Ai∩Bj).

2. Similarly to the previous point, for all j = 1, . . . , p we have µ(Bj) =∑n
i=1 µ(Ai ∩Bj). It follows that:

n∑
i=1

µ(Ai) =
n∑
i=1

p∑
j=1

µ(Ai ∩Bj) =
p∑
j=1

n∑
i=1

µ(Ai ∩Bj) =
p∑
j=1

µ(Bj)

3. Suppose we want to define a map µ̄ : R(S)→ [0,+∞] with:

µ̄(A)
4
=

n∑
i=1

µ(Ai) (2)

where A = ]ni=1Ai is a representation of A as a finite union of pairwise
disjoint elements of S. The problem is that such representation may not
be unique. However, if A = ]pj=1Bj is another representation of A in
terms of finite union of pairwise disjoint elements of S, then from 2.,∑n

i=1 µ(Ai) =
∑p
j=1 µ(Bj). It follows that whichever representation is

considered, the sum involved in (2) will still be the same. In other words,
definition (2) is unambiguous, and therefore legitimate.
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4. ∅ has a representation with n = 0, or n = 1 with A1 = ∅, or n = 2 with
A1 = A2 = ∅ . . . Whichever representation we choose for ∅, definition (2)
leads to µ̄(∅) = 0.

Exercise 11

Exercise 12.

1. For all j = 1, . . . , p, since Bj ⊆ A, we have:

Bj = A ∩Bj =
+∞⋃
n=1

(An ∩Bj) =
+∞⋃
n=1

pn⋃
k=1

(Akn ∩Bj)

Consider the set I = {(n, k) : n ≥ 1, 1 ≤ k ≤ pn}. Being a countable
union of finite sets, I is a countable set. Hence, there exists a one-to-one
map φ : {m : m ≥ 1} → I. Given m ≥ 1, define Cm = Akn ∩ Bj where
(n, k) = φ(m). Then we have Bj = ∪+∞

m=1Cm. Since all Akn’s and Bj
itself are elements of the semi-ring S, all Cm’s are elements of S. Suppose
Cm ∩ Cm′ 6= ∅ for some m,m′ ≥ 1. Then in particular, Akn ∩ Ak

′

n′ 6= ∅,
where we have put (n, k) = φ(m) and (n′, k′) = φ(m′). Since Akn ⊆ An
and Ak

′

n′ ⊆ An′ , it follows that An ∩An′ 6= ∅, and the An’s being pairwise
disjoint, we see that n = n′. Thus, Akn ∩ Ak

′

n 6= ∅. But the Akn’s for
k = 1, . . . , pn are also pairwise disjoint. We conclude that k = k′ and
φ(m) = (n, k) = (n′, k′) = φ(m′). Since φ is one-to-one, m = m′, and we
have proved that (Cm)m≥1 is a sequence of pairwise disjoint elements of
S.

2. In the previous point, we saw that Bj = ]+∞
m=1Cm. Since all sets involved

are elements of S and µ is a measure on S, from (ii) of definition (9), we
have:

µ(Bj) =
+∞∑
m=1

µ(Cm) =
∑

(n,k)∈I
µ(Akn ∩Bj) =

+∞∑
n=1

pn∑
k=1

µ(Akn ∩Bj) (3)

3. For n ≥ 1 and k ∈ {1, . . . , pn}, we have Akn ⊆ An ⊆ A. Hence:

Akn = Akn ∩A =
p⊎
j=1

(Akn ∩Bj)

4. From the previous point, using exercise (9), we obtain:

µ(Akn) =
p∑
j=1

µ(Akn ∩Bj) (4)

5. In exercise (11), we saw that the map µ̄ : R(S) → [0,+∞] is such that
µ̄(∅) = 0. Hence (i) of definition (9) is satisfied for µ̄. Moreover, by
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definition, µ̄(A) =
∑p

j=1 µ(Bj). Using equation (3), we have:

µ̄(A) =
p∑
j=1

+∞∑
n=1

pn∑
k=1

µ(Akn ∩Bj) =
+∞∑
n=1

pn∑
k=1

p∑
j=1

µ(Akn ∩Bj)

Using equation (4), it follows that:

µ̄(A) =
+∞∑
n=1

pn∑
k=1

µ(Akn)

But, for all n ≥ 1, µ̄(An) =
∑pn

k=1 µ(Akn), by definition of µ̄. Hence:

µ̄(A) =
+∞∑
n=1

µ̄(An)

It follows that (ii) of definition (9) is satisfied for µ̄. Finally, µ̄ is a measure
on the ring R(S).

Exercise 12

Exercise 13.

• Uniqueness is a consequence of exercise (10)

• Take µ̄ : R(S) → [0,+∞] as defined in exercise (11). We proved in
exercise (12) that µ̄ is indeed a measure on the ring R(S). Moreover,
given A ∈ S, if we take n = 1 and A1 = A, then A = ]ni=1Ai is a
representation of A as a finite union of pairwise disjoint elements of S. By
definition of µ̄ (see exercise (11)), it follows that µ̄(A) = µ(A). This being
true for all A ∈ S, we have µ̄|S = µ. This shows the existence of µ̄, and
theorem (2) is proved.

Exercise 13

Exercise 14. Let (An)n≥1 be the sequence of subsets of Ω defined by A1 = A,
A2 = B and An = ∅ for all n ≥ 3. Using (i) and (iii) of definition (10), we
obtain:

µ∗(A ∪B) ≤ µ∗(A) + µ∗(B)
Exercise 14

Exercise 15.

1. µ∗ being an outer measure on Ω, by (i) of definition (10), we have µ∗(∅) =
0. It follows that given an arbitrary T ⊆ Ω, µ∗(T ) = µ∗(T∩Ω)+µ∗(T∩Ωc)
is obviously true. Hence, from definition (11), Ω ∈ Σ(µ∗) = Σ. The fact
that Ac ∈ Σ is an immediate consequence of definition (11).

2. Since B ∈ Σ, using definition (11) with T ∩A in place of T , we obtain:

µ∗(T ∩A) = µ∗(T ∩A ∩B) + µ∗(T ∩A ∩Bc)
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3. Since A ∩B ⊆ A, we have Ac ⊆ (A ∩B)c, and consequently:

T ∩Ac ⊆ T ∩ (A ∩B)c

It follows that:

T ∩Ac = (T ∩ (A ∩B)c) ∩ T ∩Ac = T ∩ (A ∩B)c ∩Ac

4. From (A ∩B)c ∩A = (Ac ∪Bc) ∩A = A ∩Bc, we obtain:

T ∩ (A ∩B)c ∩A = T ∩A ∩Bc

5. Using 3. and 4., we see that the sum µ∗(T ∩Ac) + µ∗(T ∩A∩Bc) can be
expressed as:

µ∗(T ∩ (A ∩B)c ∩Ac) + µ∗(T ∩ (A ∩B)c ∩A)

Since A ∈ Σ, using definition (11) with T ∩ (A ∩ B)c in place of T , we
obtain:

µ∗(T ∩Ac) + µ∗(T ∩A ∩Bc) = µ∗(T ∩ (A ∩B)c) (5)

6. Adding µ∗(T ∩ (A∩B)) on both sides of equation (5), it appears that the
sum:

µ∗(T ∩Ac) + µ∗(T ∩A ∩Bc) + µ∗(T ∩A ∩B)
is equal to:

µ∗(T ∩ (A ∩B)c) + µ∗(T ∩ (A ∩B))
Since B ∈ Σ, using definition (11) with T ∩A in place of T , we obtain:

µ∗(T ∩Ac) + µ∗(T ∩A) = µ∗(T ∩ (A ∩B)c) + µ∗(T ∩ (A ∩B))

and finally, since A ∈ Σ:

µ∗(T ) = µ∗(T ∩ (A ∩B)c) + µ∗(T ∩ (A ∩B))

This being true for all T ⊆ Ω, it follows that A ∩B ∈ Σ. We have proved
that Σ = Σ(µ∗) is closed under finite intersection.

7. From A ∪ B = (Ac ∩ Bc)c and the fact that Σ is closed under com-
plementation and finite intersection, we have A ∪ B ∈ Σ. Similarly,
A \ B = A ∩ Bc ∈ Σ. The purpose of this exercise is to show that the
so-called σ-algebra Σ(µ∗) associated with an outer measure µ∗, is closed
under finite intersection and union, and closed under complementation
and difference.

Exercise 15

Exercise 16.

• Suppose n ≥ 1, p ≥ 1 and Bn∩Bp 6= ∅. Without loss of generality, we can
assume that n ≤ p. Suppose n < p and x ∈ Bn ∩ Bp. Since x ∈ Bn, we
have x ∈ An. However, since x ∈ Bp, x 6∈ A1 ∪ . . . ∪Ap−1. In particular,
x 6∈ An. This is a contradiction. It follows that if Bn∩Bp 6= ∅ then n = p,
and (Bn)n≥1 is a sequence of pairwise disjoint subsets of Ω.
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• From exercise (15), all Bn’s are in fact elements of Σ.

• Since for all n ≥ 1, Bn ⊆ An, we have: ]+∞
n=1Bn ⊆ ∪+∞

n=1An. Conversely,
suppose x ∈ ∪+∞

n=1An. Then, there exists n ≥ 1 such that x ∈ An. Con-
sider the set:

I(x)
4
= {n ≥ 1, x ∈ An}

This set is a non-empty subset of N∗ (the set of all positive integers). It
follows that I(x) has a smallest element p. If p = 1, then x ∈ A1 = B1. If
p > 1, then x ∈ Ap\(A1∪. . .∪Ap−1) = Bp. In any case, x ∈ Bp ⊆ ]+∞

n=1Bn.
Consequently, it follows that ∪+∞

n=1An ⊆ ]+∞
n=1Bn.

• We have proved that (Bn)n≥1 is a sequence of pairwise disjoint elements
of Σ, such that:

+∞⋃
n=1

An =
+∞⊎
n=1

Bn

Exercise 16

Exercise 17. Let B,C ∈ Σ be such that B ∩ C = ∅. Since B ∈ Σ, using
definition (11) with T ∩ (B ] C) in place of T , we have:

µ∗(T ∩ (B ]C)) = µ∗(T ∩ (B ]C) ∩B) + µ∗(T ∩ (B ] C) ∩Bc)

From B ∩ C = ∅ and in particular C ⊆ Bc, we obtain:

µ∗(T ∩ (B ] C)) = µ∗(T ∩B) + µ∗(T ∩ C)

Note that it was not necessary to use the fact that both B and C were elements
of Σ.

Exercise 17

Exercise 18.

1. ]Nn=1Bn ∈ Σ is an immediate consequence of exercise (15).

2. Using exercise (17) with a simple induction argument, we obtain:

µ∗(T ∩ (]Nn=1Bn)) =
N∑
n=1

µ∗(T ∩Bn)

3. Since ]Nn=1Bn ⊆ B, we have T ∩ Bc ⊆ T ∩ (]Nn=1Bn)c. Using (ii) of
definition (10), we obtain:

µ∗(T ∩Bc) ≤ µ∗(T ∩ (]Nn=1Bn)c)

4. Using 2. and 3., if we put CN = ]Nn=1Bn, we have:

µ∗(T ∩Bc) +
N∑
n=1

µ∗(T ∩Bn) ≤ µ∗(T ∩ (CN )c) + µ∗(T ∩ CN )
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However from 1., CN ∈ Σ. Using definition (11), we obtain:

µ∗(T ∩Bc) +
N∑
n=1

µ∗(T ∩Bn) ≤ µ∗(T )

Taking the limit as N → +∞, we conclude:

µ∗(T ∩Bc) +
+∞∑
n=1

µ∗(T ∩Bn) ≤ µ∗(T )

5. Since T = (T ∩Bc) ∪ (T ∩B), using exercise (14):

µ∗(T ) ≤ µ∗(T ∩Bc) + µ∗(T ∩B)

However, T ∩B = ∪+∞
n=1T ∩Bn. Using (iii) of definition (10), we have:

µ∗(T ∩B) ≤
+∞∑
n=1

µ∗(T ∩Bn)

It follows that:

µ∗(T ) ≤ µ∗(T ∩Bc) + µ∗(T ∩B) ≤ µ∗(T ∩Bc) +
+∞∑
n=1

µ∗(T ∩Bn)

6. From 4. and 5., we see that µ∗(T ) = µ∗(T ∩Bc) + µ∗(T ∩B). This being
true for all T ⊆ Ω, it follows that B = ]+∞

n=1Bn ∈ Σ. Also, from 4. and 5.,
we have:

µ∗(T ) = µ∗(T ∩Bc) +
+∞∑
n=1

µ∗(T ∩Bn)

In particular, taking T = B, using the fact that µ∗(∅) = 0, we obtain:

µ∗(B) =
+∞∑
n=1

µ∗(Bn)

7. We saw in exercise (15) that Σ contains Ω, and is closed under complemen-
tation. If (An)n≥1 is a sequence of elements of Σ, then from exercise (16),
there exists a sequence (Bn)n≥1 of pairwise disjoint elements of Σ, with
B = ]+∞

n=1Bn = ∪+∞
n=1An. In 6., we saw that such B is an element of Σ. It

follows that ∪+∞
n=1An ∈ Σ, and Σ is closed under countable union. Hence,

we have proved that Σ is a σ-algebra on Ω. µ∗ being an outer measure on
Ω, µ∗(∅) = 0. So (i) of definition (9) is satisfied for µ∗|Σ. If (Bn)n≥1 is a
sequence of pairwise disjoint elements of Σ, and B = ]+∞

n=1Bn, we saw in
6. that:

µ∗(B) =
+∞∑
n=1

µ∗(Bn)

It follows that (ii) of definition (9) is satisfied for µ∗|Σ. Finally, µ∗|Σ is indeed
a measure on Σ. The purpose of the exercise is to prove theorem (3).
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Exercise 18

Exercise 19.

1. R being a ring on Ω, ∅ ∈ R. If we define a sequence (An)n≥1, with An = ∅
for all n ≥ 1, then (An)n≥1 is an R-cover of the empty set. It follows that:

µ∗(∅) ≤
+∞∑
n=1

µ(An) = 0

Moreover, µ∗(∅) being the infimum over a set of non-negative numbers,
we have µ∗(∅) ≥ 0. Finally µ∗(∅) = 0.

2. Let A ⊆ B ⊆ Ω. Let (Bn)n≥1 be an R-cover of B. Then in particular,
(Bn)n≥1 is an R-cover of A. It follows that:

µ∗(A) ≤
+∞∑
n=1

µ(Bn) (6)

Hence, µ∗(A) is a lower bound of all sums involved in (6), as (Bn)n≥1

ranges over all R-covers of B. µ∗(B) being the infimum of those sums, it
is the greatest of such lower bounds, from which we conclude that µ∗(A) ≤
µ∗(B).

3. Since µ∗(An) < +∞, we have µ∗(An) < µ∗(An) + ε/2n. It follows that
µ∗(An)+ε/2n cannot be a lower bound of all sums

∑+∞
p=1 µ(Bp), as (Bp)p≥1

ranges over all R-covers of An. Hence, there exists an R-cover (Apn)p≥1 of
An such that:

+∞∑
p=1

µ(Apn) < µ∗(An) +
ε

2n

It is important to assume µ∗(An) < +∞, since otherwise the inequality
µ∗(An) ≤ µ∗(An) + ε/2n may not be a strict inequality, and the above
reasoning would fail.

4. N∗ being the set of positive integers, N∗ ×N∗ is a countable set. There
exists a one-to-one map φ : N∗ → N∗×N∗. Given k ≥ 1, define Rk = Apn,
where (n, p) = φ(k). Then (Rk)k≥1 is a sequence of elements of R such
that:

+∞⋃
n=1

An ⊆
+∞⋃
n=1

+∞⋃
p=1

Apn =
+∞⋃
k=1

Rk

In other words, (Rk)k≥1 is an R-cover of ∪+∞
n=1An. Moreover:

+∞∑
k=1

µ(Rk) =
∑

(n,p)∈N∗×N∗

µ(Apn) =
+∞∑
n=1

+∞∑
p=1

µ(Apn)
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5. It follows from 4. that:

µ∗(∪+∞
n=1An) ≤

+∞∑
k=1

µ(Rk) =
+∞∑
n=1

+∞∑
p=1

µ(Apn)

Hence, using 3.:

µ∗(∪+∞
n=1An) ≤

+∞∑
n=1

(µ∗(An) +
ε

2n
)

and finally:

µ∗(∪+∞
n=1An) ≤ ε+

+∞∑
n=1

µ∗(An) (7)

6. From 1. and 2., we see that (i) and (ii) of definition (10) are satisfied for
µ∗. Let (An)n≥1 be a sequence of subsets of Ω. If µ∗(An) = +∞ for some
n ≥ 1, then:

µ∗(∪+∞
n=1An) ≤

+∞∑
n=1

µ∗(An) (8)

is obviously true. If µ∗(An) < +∞ for all n ≥ 1, then given ε > 0 from
5., inequality (7) holds. Since ε is arbitrary, it follows that inequality (8)
still holds. Hence, (iii) of definition (10) is satisfied for µ∗. Finally, µ∗ is
an outer-measure on Ω.

Exercise 19

Exercise 20.

1. Since A ∈ R, the sequence (Rn)n≥1 defined by R1 = A and Rn = ∅ for all
n ≥ 2, is an R-cover of A. Hence:

µ∗(A) ≤
+∞∑
n=1

µ(Rn) = µ(A)

2. Suppose n ≥ 1, p ≥ 1 and Bn∩Bp 6= ∅. Without loss of generality, we can
assume that n ≤ p. Suppose n < p and x ∈ Bn ∩ Bp. Since x ∈ Bn, we
have x ∈ An ∩A. However, since x ∈ Bp, x 6∈ (A1 ∩A)∪ . . .∪ (Ap−1 ∩A).
In particular, x 6∈ An ∩ A. This is a contradiction. It follows that if
Bn ∩ Bp 6= ∅ then n = p, and (Bn)n≥1 is a sequence of pairwise disjoint
subsets of Ω. From exercise (1), we know that a ring is closed under finite
intersection. From (ii) and (iii) of definition (7), it is also closed under
finite union and difference. It follows that all Bn’s are in fact elements of
R. Since for all n ≥ 1, Bn ⊆ An ∩A, we have:

+∞⊎
n=1

Bn ⊆
+∞⋃
n=1

An ∩A = A ∩
+∞⋃
n=1

An = A
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Conversely, suppose x ∈ A ⊆ ∪+∞
n=1An. Then, there exists n ≥ 1 such that

x ∈ An ∩A. Consider the set:

I(x)
4
= {n ≥ 1, x ∈ An ∩A}

This set is a non-empty subset of N∗ (the set of all positive integers). It
follows that I(x) has a smallest element p. If p = 1, then x ∈ A1∩A = B1.
If p > 1, then by definition of p, we have x ∈ (Ap ∩A) \ ((A1 ∩A) ∪ . . . ∪
(Ap−1 ∩ A)) = Bp. In any case, x ∈ Bp ⊆ ]+∞

n=1Bn. Consequently, it
follows that A ⊆ ]+∞

n=1Bn. We have proved that (Bn)n≥1 is a sequence of
pairwise disjoint elements of R, such that: A =

⊎+∞
n=1Bn

3. µ being a measure on R, from 2. we obtain:

µ(A) =
+∞∑
n=1

µ(Bn)

Since for all n ≥ 1, we have Bn ⊆ An, it follows from exercise (9) that
µ(Bn) ≤ µ(An). Hence:

µ(A) ≤
+∞∑
n=1

µ(An) (9)

The R-cover (An)n≥1 of A being arbitrary, we see that µ(A) is a lower
bound of all sums involved in (9), as (An)n≥1 ranges across all R-covers
of A. µ∗(A) being the greatest of such lower bounds, it follows that
µ(A) ≤ µ∗(A). Using 1., we conclude that µ(A) = µ∗(A). This being
true for all A ∈ R, we have proved that µ∗|R = µ.

Exercise 20

Exercise 21.

1. We saw in exercise (19) that µ∗ is an outer measure on Ω. From exer-
cise (14), and the fact that T = (T ∩A) ∪ (T ∩Ac), we obtain:

µ∗(T ) ≤ µ∗(T ∩A) + µ∗(T ∩Ac)

2. If (Tn)n≥1 is an R-cover of T , then in particular Tn ∈ R for all n ≥ 1.
Since A ∈ R, it follows from exercise (1) that Tn ∩A ∈ R, and from (iii)
of definition (7) that Tn ∩Ac = Tn \A ∈ R, for all n ≥ 1. Moreover, from
T ⊆ ∪+∞

n=1Tn, we have:

T ∩A ⊆
+∞⋃
n=1

Tn ∩A

T ∩Ac ⊆
+∞⋃
n=1

Tn ∩Ac

We conclude that (Tn ∩ A)n≥1 and (Tn ∩ Ac)n≥1 are R-covers of T ∩ A
and T ∩Ac respectively.
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3. It follows from 2. that:

µ∗(T ∩A) ≤
+∞∑
n=1

µ(Tn ∩A)

µ∗(T ∩Ac) ≤
+∞∑
n=1

µ(Tn ∩Ac)

However, µ being a measure on R, from exercise (9), we have:

µ(Tn) = µ(Tn ∩A) + µ(Tn ∩Ac)
for all n ≥ 1. It follows that:

µ∗(T ∩A) + µ∗(T ∩Ac) ≤
+∞∑
n=1

µ(Tn)

This being true for all R-covers (Tn)n≥1 of T , we finally have:

µ∗(T ∩A) + µ∗(T ∩Ac) ≤ µ∗(T )

4. Given A ∈ R, we see from 1. and 3. that for all T ⊆ Ω:

µ∗(T ) = µ∗(T ∩A) + µ∗(T ∩Ac)
Hence, from definition (11), it follows that A is an element of Σ(µ∗), (the
σ-algebra associated with the outer measure µ∗). This being true for all
A ∈ R, we have proved that R ⊆ Σ(µ∗).

5. The σ-algebra σ(R) generated by R, is the smallest σ-algebra on Ω con-
taining R. Thus, it follows immediately from 4. that σ(R) ⊆ Σ(µ∗).

Exercise 21

Exercise 22.

• Let µ′ : σ(R) → [0,+∞] be defined by µ′ = µ∗|σ(R), where µ∗ is the
outer measure on Ω defined in exercise (19). We saw in exercise (20) that
µ∗|R = µ. Hence, since R ⊆ σ(R), we have µ′|R = µ∗|R = µ.

• From theorem (3), we know that µ∗|Σ(µ∗) is a measure on Σ(µ∗). However,
σ(R) ⊆ Σ(µ∗) (exercise (21)). It is an immediate consequence of defini-
tion (9), that if we restrict the measure µ∗|Σ(µ∗) to the smaller σ-algebra
σ(R), the resulting map is a measure defined on σ(R). But the restriction
of µ∗|Σ(µ∗) to σ(R) is nothing but µ′. It follows that µ′ is indeed a measure
on σ(R). This proves theorem (4).

Exercise 22

Exercise 23. Let S be a semi-ring on Ω. Since S ⊆ R(S) ⊆ σ(R(S)), we
have σ(S) ⊆ σ(R(S)). However, S ⊆ σ(S). Moreover, from exercise (7),
R(S) is the set of all finite unions of elements of S. Since the σ-algebra σ(S)
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is in particular closed under finite union, it follows that R(S) ⊆ σ(S) and
consequently σ(R(S)) ⊆ σ(S). Finally, we have proved that σ(R(S)) = σ(S).

Exercise 23

Exercise 24. From theorem (2), the measure µ : S → [0,+∞] can be extended
to the ring R(S) generated by S. In other words, there exists a measure µ̄ :
R(S)→ [0,+∞] such that µ̄|S = µ. From theorem (4), the measure µ̄ : R(S)→
[0,+∞] can be extended the σ-algebra σ(R(S)) generated by R(S). In other
words, there exists a measure µ′ : σ(R(S)) → [0,+∞], such that µ′|R(S) = µ̄.
However, from exercise (23), σ(R(S)) = σ(S). Moreover, since S ⊆ R(S), we
have µ′|S = µ̄|S = µ. It follows that µ′ is a measure on σ(S) such that µ′|S = µ.
This proves theorem (5).

Exercise 24
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