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16. Differentiation
Definition 115 Let (Ω, T ) be a topological space. A map f : Ω → R̄ is said
to be lower-semi-continuous (l.s.c), if and only if:

∀λ ∈ R , {λ < f} is open

We say that f is upper-semi-continuous (u.s.c), if and only if:

∀λ ∈ R , {f < λ} is open

Exercise 1. Let f : Ω→ R̄ be a map, where Ω is a topological space.

1. Show that f is l.s.c if and only if {λ < f} is open for all λ ∈ R̄.

2. Show that f is u.s.c if and only if {f < λ} is open for all λ ∈ R̄.

3. Show that every open set U in R̄ can be written:

U = V + ∪ V − ∪
⋃
i∈I

]αi, βi[

for some index set I, αi, βi ∈ R, V + = ∅ or V + =]α,+∞], (α ∈ R) and
V − = ∅ or V − = [−∞, β[, (β ∈ R).

4. Show that f is continuous if and only if it is both l.s.c and u.s.c.

5. Let u : Ω→ R and v : Ω→ R̄. Let λ ∈ R. Show that:

{λ < u+ v} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{λ1 < u} ∩ {λ2 < v}

6. Show that if both u and v are l.s.c, then u+ v is also l.s.c.

7. Show that if both u and v are u.s.c, then u+ v is also u.s.c.

8. Show that if f is l.s.c, then αf is l.s.c, for all α ∈ R+.

9. Show that if f is u.s.c, then αf is u.s.c, for all α ∈ R+.

10. Show that if f is l.s.c, then −f is u.s.c.

11. Show that if f is u.s.c, then −f is l.s.c.

12. Show that if V is open in Ω, then f = 1V is l.s.c.

13. Show that if F is closed in Ω, then f = 1F is u.s.c.

Exercise 2. Let (fi)i∈I be an a arbitrary family of maps fi : Ω → R̄, defined
on a topological space Ω.

1. Show that if all fi’s are l.s.c, then f = supi∈I fi is l.s.c.
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2. Show that if all fi’s are u.s.c, then f = infi∈I fi is u.s.c.

Exercise 3. Let (Ω, T ) be a metrizable and σ-compact topological space. Let µ
be a locally finite measure on (Ω,B(Ω)). Let f be an element of L1

R(Ω,B(Ω), µ),
such that f ≥ 0.

1. Let (sn)n≥1 be a sequence of simple functions on (Ω,B(Ω)) such that
sn ↑ f . Define t1 = s1 and tn = sn − sn−1 for all n ≥ 2. Show that tn is
a simple function on (Ω,B(Ω)), for all n ≥ 1.

2. Show that f can be written as:

f =
+∞∑
n=1

αn1An

where αn ∈ R+ \ {0} and An ∈ B(Ω), for all n ≥ 1.

3. Show that µ(An) < +∞, for all n ≥ 1.

4. Show that there exist Kn compact and Vn open in Ω such that:

Kn ⊆ An ⊆ Vn , µ(Vn \Kn) ≤ ε

αn2n+1

for all ε > 0 and n ≥ 1.

5. Show the existence of N ≥ 1 such that:
+∞∑

n=N+1

αnµ(An) ≤ ε

2

6. Define u =
∑N
n=1 αn1Kn . Show that u is u.s.c.

7. Define v =
∑+∞

n=1 αn1Vn . Show that v is l.s.c.

8. Show that we have 0 ≤ u ≤ f ≤ v.

9. Show that we have:

v = u+
+∞∑

n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

10. Show that
∫
vdµ ≤

∫
udµ+ ε < +∞.

11. Show that u ∈ L1
R(Ω,B(Ω), µ).

12. Explain why v may fail to be in L1
R(Ω,B(Ω), µ).

13. Show that v is µ-a.s. equal to an element of L1
R(Ω,B(Ω), µ).

14. Show that
∫

(v − u)dµ ≤ ε.
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15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Ω, T ) be a metrizable and σ-compact
topological space. Let µ be a locally finite measure on (Ω,B(Ω)) and f be an el-
ement of L1

R(Ω,B(Ω), µ). Then, for all ε > 0, there exist measurable maps
u, v : Ω → R̄, which are µ-a.s. equal to elements of L1

R(Ω,B(Ω), µ), such that
u ≤ f ≤ v, u is u.s.c, v is l.s.c, and furthermore:∫

(v − u)dµ ≤ ε

Definition 116 Let (Ω, T ) be a topological space. We say that (Ω, T ) is con-
nected, if and only if the only subsets of Ω which are both open and closed are
Ω and ∅.

Exercise 4. Let (Ω, T ) be a topological space.

1. Show that (Ω, T ) is connected if and only if whenever Ω = A ] B where
A,B are disjoint open sets, we have A = ∅ or B = ∅.

2. Show that (Ω, T ) is connected if and only if whenever Ω = A ] B where
A,B are disjoint closed sets, we have A = ∅ or B = ∅.

Definition 117 Let (Ω, T ) be a topological space, and A ⊆ Ω. We say that
A is a connected subset of Ω, if and only if the induced topological space
(A, T|A) is connected.

Exercise 5. Let A be open and closed in R, with A 6= ∅ and Ac 6= ∅.

1. Let x ∈ Ac. Show that A ∩ [x,+∞[ or A∩]−∞, x] is non-empty.

2. Suppose B = A ∩ [x,+∞[6= ∅. Show that B is closed and that we have
B = A∩]x,+∞[. Conclude that B is also open.

3. Let b = inf B. Show that b ∈ B (and in particular b ∈ R).

4. Show the existence of ε > 0 such that ]b− ε, b+ ε[⊆ B.

5. Conclude with the following:

Theorem 95 The topological space (R, TR) is connected.

Exercise 6. Let (Ω, T ) be a topological space and A ⊆ Ω be a connected subset
of Ω. Let B be a subset of Ω such that A ⊆ B ⊆ Ā. We assume that B = V1]V2

where V1, V2 are disjoint open sets in B.

1. Show there is U1, U2 open in Ω, with V1 = B ∩ U1, V2 = B ∩ U2.
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2. Show that A ∩ U1 = ∅ or A ∩ U2 = ∅.

3. Suppose that A ∩ U1 = ∅. Show that Ā ⊆ U c1 .

4. Show then that V1 = B ∩ U1 = ∅.

5. Conclude that B and Ā are both connected subsets of Ω.

Exercise 7. Prove the following:

Theorem 96 Let (Ω, T ), (Ω′, T ′) be two topological spaces, and f be a contin-
uous map, f : Ω→ Ω′ . If (Ω, T ) is connected, then f(Ω) is a connected subset
of Ω′.

Definition 118 Let A ⊆ R̄. We say that A is an interval, if and only if for
all x, y ∈ A with x ≤ y, we have [x, y] ⊆ A, where:

[x, y]
4
= {z ∈ R̄ : x ≤ z ≤ y}

Exercise 8. Let A ⊆ R̄.

1. If A is an interval, and α = inf A, β = supA, show that:

]α, β[⊆ A ⊆ [α, β]

2. Show that A is an interval if and only if, it is of the form [α, β], [α, β[,
]α, β] or ]α, β[, for some α, β ∈ R̄.

3. Show that an interval of the form ]−∞, α[, where α ∈ R, is homeomorphic
to ]− 1, α′[, for some α′ ∈ R.

4. Show that an interval of the form ]α,+∞[, where α ∈ R, is homeomorphic
to ]α′, 1[, for some α′ ∈ R.

5. Show that an interval of the form ]α, β[, where α, β ∈ R and α < β, is
homeomorphic to ]− 1, 1[.

6. Show that ]− 1, 1[ is homeomorphic to R.

7. Show an non-empty open interval in R, is homeomorphic to R.

8. Show that an open interval in R, is a connected subset of R.

9. Show that an interval in R, is a connected subset of R.

Exercise 9. Let A ⊆ R be a non-empty connected subset of R, and α = inf A,
β = supA. We assume there exists x0 ∈ Ac∩]α, β[.

1. Show that A∩]x0,+∞[ or A∩]−∞, x0[ is empty.

2. Show that A∩]x0,+∞[= ∅ leads to a contradiction.
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3. Show that ]α, β[⊆ A ⊆ [α, β].

4. Show the following:

Theorem 97 For all A ⊆ R, A is a connected subset of R , if and only if A
is an interval.

Exercise 10. Prove the following:

Theorem 98 Let f : Ω → R be a continuous map, where (Ω, T ) is a con-
nected topological space. Let a, b ∈ Ω such that f(a) ≤ f(b). Then, for all
z ∈ [f(a), f(b)], there exists x ∈ Ω such that z = f(x).

Exercise 11. Let a, b ∈ R, a < b, and f : [a, b]→ R be a map such that f ′(x)
exists for all x ∈ [a, b].

1. Show that f ′ : ([a, b],B([a, b]))→ (R,B(R)) is measurable.

2. Show that f ′ ∈ L1
R([a, b],B([a, b]), dx) is equivalent to:∫ b

a

|f ′(t)|dt < +∞

3. We assume from now on that f ′ ∈ L1
R([a, b],B([a, b]), dx). Given ε > 0,

show the existence of g : [a, b]→ R̄, almost surely equal to an element of
L1

R([a, b],B([a, b]), dx), such that f ′ ≤ g and g is l.s.c, with:∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt + ε

4. By considering g+α for some α > 0, show that without loss of generality,
we can assume that f ′ < g with the above inequality still holding.

5. We define the complex measure ν =
∫
gdx ∈ M1([a, b],B([a, b])). Show

that:

∀ε′ > 0 , ∃δ > 0 , ∀E ∈ B([a, b]) , dx(E) ≤ δ ⇒ |ν(E)| < ε′

6. For all η > 0 and x ∈ [a, b], we define:

Fη(x)
4
=
∫ x

a

g(t)dt− f(x) + f(a) + η(x− a)

Show that Fη : [a, b]→ R is a continuous map.

7. η being fixed, let x = supF−1
η ({0}). Show that x ∈ [a, b] and Fη(x) = 0.

8. We assume that x ∈ [a, b[. Show the existence of δ > 0 such that for all
t ∈]x, x + δ[∩[a, b], we have:

f ′(x) < g(t) and
f(t)− f(x)

t− x < f ′(x) + η
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9. Show that for all t ∈]x, x+ δ[∩[a, b], we have Fη(t) > Fη(x) = 0.

10. Show that there exists t0 such that x < t0 < b and Fη(t0) > 0.

11. Show that Fη(b) < 0 leads to a contradiction.

12. Conclude that Fη(b) ≥ 0, even if x = b.

13. Show that f(b)− f(a) ≤
∫ b
a
f ′(t)dt, and conclude:

Theorem 99 (Fundamental Calculus) Let a, b ∈ R, a < b, and f : [a, b]→
R be a map which is differentiable at every point of [a, b], and such that:∫ b

a

|f ′(t)|dt < +∞

Then, we have:

f(b)− f(a) =
∫ b

a

f ′(t)dt

Exercise 12. Let α > 0, and kα : Rn → Rn defined by kα(x) = αx.

1. Show that kα : (Rn,B(Rn))→ (Rn,B(Rn)) is measurable.

2. Show that for all B ∈ B(Rn), we have:

dx({kα ∈ B}) =
1
αn

dx(B)

3. Show that for all ε > 0 and x ∈ Rn:

dx(B(x, ε)) = εndx(B(0, 1))

Definition 119 Let µ be a complex measure on (Rn,B(Rn)), n ≥ 1, with total
variation |µ|. We call maximal function of µ, the map Mµ : Rn → [0,+∞],
defined by:

∀x ∈ Rn , (Mµ)(x)
4
= sup

ε>0

|µ|(B(x, ε))
dx(B(x, ε))

where B(x, ε) is the open ball in Rn, of center x and radius ε, with respect to
the usual metric of Rn.

Exercise 13. Let µ be a complex measure on (Rn,B(Rn)).

1. Let λ ∈ R. Show that if λ < 0, then {λ < Mµ} = Rn.

2. Show that if λ = 0, then {λ < Mµ} = Rn if µ 6= 0, and {λ < Mµ} is the
empty set if µ = 0.

3. Suppose λ > 0. Let x ∈ {λ < Mµ}. Show the existence of ε > 0 such that
|µ|(B(x, ε)) = tdx(B(x, ε)), for some t > λ.
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4. Show the existence of δ > 0 such that (ε + δ)n < εnt/λ.

5. Show that if y ∈ B(x, δ), then B(x, ε) ⊆ B(y, ε+ δ).

6. Show that if y ∈ B(x, δ), then:

|µ|(B(y, ε + δ)) ≥ εnt

(ε + δ)n
dx(B(y, ε + δ)) > λdx(B(y, ε + δ))

7. Conclude that B(x, δ) ⊆ {λ < Mµ}, and that the maximal function
Mµ : Rn → [0,+∞] is l.s.c, and therefore measurable.

Exercise 14. Let Bi = B(xi, εi), i = 1, . . . , N , N ≥ 1, be a finite collection of
open balls in Rn. Assume without loss of generality that εN ≤ . . . ≤ ε1. We
define a sequence (Jk) of sets by J0 = {1, . . . , N} and for all k ≥ 1:

Jk
4
=
{
Jk−1 ∩ {j : j > ik , Bj ∩Bik = ∅} if Jk−1 6= ∅
∅ if Jk−1 = ∅

where we have put ik = minJk−1, whenever Jk−1 6= ∅.

1. Show that if Jk−1 6= ∅ then Jk ⊂ Jk−1 (strict inclusion), k ≥ 1.

2. Let p = min{k ≥ 1 : Jk = ∅}. Show that p is well-defined.

3. Let S = {i1, . . . , ip}. Explain why S is well defined.

4. Suppose that 1 ≤ k < k′ ≤ p. Show that ik′ ∈ Jk.

5. Show that (Bi)i∈S is a family of pairwise disjoint open balls.

6. Let i ∈ {1, . . . , N} \ S, and define k0 to be the minimum of the set {k ∈
Np : i 6∈ Jk}. Explain why k0 is well-defined.

7. Show that i ∈ Jk0−1 and ik0 ≤ i.

8. Show that Bi ∩Bik0
6= ∅.

9. Show that Bi ⊆ B(xik0
, 3εik0

).

10. Conclude that there exists a subset S of {1, . . . , N} such that (Bi)i∈S is
a family of pairwise disjoint balls, and:

N⋃
i=1

B(xi, εi) ⊆
⋃
i∈S

B(xi, 3εi)

11. Show that:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ 3n

∑
i∈S

dx(B(xi, εi))

Exercise 15. Let µ be a complex measure on Rn. Let λ > 0 and K be a
non-empty compact subset of {λ < Mµ}.
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1. Show that K can be covered by a finite collection Bi = B(xi, εi), i =
1, . . . , N of open balls, such that:

∀i = 1, . . . , N , λdx(Bi) < |µ|(Bi)

2. Show the existence of S ⊆ {1, . . . , N} such that:

dx(K) ≤ 3nλ−1|µ|
(⋃
i∈S

B(xi, εi)

)

3. Show that dx(K) ≤ 3nλ−1‖µ‖

4. Conclude with the following:

Theorem 100 Let µ be a complex measure on (Rn,B(Rn)), n ≥ 1, with
maximal function Mµ. Then, for all λ ∈ R+ \ {0}, we have:

dx({λ < Mµ}) ≤ 3nλ−1‖µ‖

Definition 120 Let f ∈ L1
C(Rn,B(Rn), dx), and µ be the complex measure

µ =
∫
fdx on Rn, n ≥ 1. We call maximal function of f , denoted Mf , the

maximal function Mµ of µ.

Exercise 16. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that for all x ∈ Rn:

(Mf)(x) = sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|f |dx

2. Show that for all λ > 0, dx({λ < Mf}) ≤ 3nλ−1‖f‖1.

Definition 121 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. We say that x ∈ Rn is a

Lebesgue point of f , if and only if we have:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0

Exercise 17. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that if f is continuous at x ∈ Rn, then x is a Lebesgue point of f .

2. Show that if x ∈ Rn is a Lebesgue point of f , then:

f(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

f(y)dy
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Exercise 18. Let n ≥ 1 and f ∈ L1
C(Rn,B(Rn), dx). For all ε > 0 and x ∈ Rn,

we define:
(Tεf)(x)

4
=

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy

and we put, for all x ∈ Rn:

(Tf)(x)
4
= lim sup

ε↓↓0
(Tεf)(x)

4
= inf

ε>0
sup
u∈]0,ε[

(Tuf)(x)

1. Given η > 0, show the existence of g ∈ CcC(Rn) such that:

‖f − g‖1 ≤ η

2. Let h = f − g. Show that for all ε > 0 and x ∈ Rn:

(Tεh)(x) ≤ 1
dx(B(x, ε))

∫
B(x,ε)

|h|dx+ |h(x)|

3. Show that Th ≤Mh+ |h|.

4. Show that for all ε > 0, we have Tεf ≤ Tεg + Tεh.

5. Show that Tf ≤ Tg + Th.

6. Using the continuity of g, show that Tg = 0.

7. Show that Tf ≤Mh+ |h|.

8. Show that for all α > 0, {2α < Tf} ⊆ {α < Mh} ∪ {α < |h|}.

9. Show that dx({α < |h|}) ≤ α−1‖h‖1.

10. Conclude that for all α > 0 and η > 0, there is Nα,η ∈ B(Rn) such that
{2α < Tf} ⊆ Nα,η and dx(Nα,η) ≤ η.

11. Show that for all α > 0, there exists Nα ∈ B(Rn) such that {2α < Tf} ⊆
Nα and dx(Nα) = 0.

12. Show there is N ∈ B(Rn), dx(N) = 0, such that {Tf > 0} ⊆ N .

13. Conclude that Tf = 0 , dx−a.s.

14. Conclude with the following:

Theorem 101 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. Then, dx-almost surely,

any x ∈ Rn is a Lebesgue points of f , i.e.

dx-a.s. , lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0
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Exercise 19. Let (Ω,F , µ) be a measure space and Ω′ ∈ F . We define F ′ =
F|Ω′ and µ′ = µ|F ′ . For all maps f : Ω′ → [0,+∞] (or C), we define f̃ : Ω →
[0,+∞] (or C), by:

f̃(ω)
4
=
{
f(ω) if ω ∈ Ω′

0 if ω 6∈ Ω′

1. Show that F ′ ⊆ F and conclude that µ′ is therefore a well-defined measure
on (Ω′,F ′).

2. Let A ∈ F ′ and 1′A be the characteristic function of A defined on Ω′. Let
1A be the characteristic function of A defined on Ω. Show that 1̃′A = 1A.

3. Let f : (Ω′,F ′)→ [0,+∞] be a non-negative and measurable map. Show
that f̃ : (Ω,F) → [0,+∞] is also non-negative and measurable, and that
we have: ∫

Ω′
fdµ′ =

∫
Ω

f̃dµ

4. Let f ∈ L1
C(Ω′,F ′, µ′). Show that f̃ ∈ L1

C(Ω,F , µ), and:∫
Ω′
fdµ′ =

∫
Ω

f̃dµ

Definition 122 b : R+ → C is absolutely continuous, if and only if b is
right-continuous of finite variation, and b is absolutely continuous with respect
to a(t) = t.

Exercise 20. Let b : R+ → C be a map.

1. Show that b is absolutely continuous, if and only if there is f ∈ L1,loc
C (t)

such that b(t) =
∫ t

0 f(s)ds, for all t ∈ R+.

2. Show that b absolutely continuous ⇒ b continuous with b(0) = 0.

Exercise 21. Let b : R+ → C be an absolutely continuous map. Let f ∈
L1,loc

C (t) be such that b = f.t. For all n ≥ 1, we define fn : R→ C by:

fn(t)
4
=
{
f(t)1[0,n](t) if t ∈ R+

0 if t < 0

1. Let n ≥ 1. Show fn ∈ L1
C(R,B(R), dx) and for all t ∈ [0, n]:

b(t) =
∫ t

0

fndx

2. Show the existence of Nn ∈ B(R) such that dx(Nn) = 0, and for all
t ∈ N c

n, t is a Lebesgue point of fn.
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3. Show that for all t ∈ R, and ε > 0:

1
ε

∫ t+ε

t

|fn(s)− fn(t)|ds ≤ 2
dx(B(t, ε))

∫
B(t,ε)

|fn(s)− fn(t)|ds

4. Show that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

5. Show similarly that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)

6. Show that for all t ∈ N c
n ∩ [0, n[, b′(t) exists and b′(t) = f(t).1

7. Show the existence of N ∈ B(R+), such that dx(N) = 0, and:

∀t ∈ N c , b′(t) exists with b′(t) = f(t)

8. Conclude with the following:

Theorem 102 A map b : R+ → C is absolutely continuous, if and only if
there exists f ∈ L1,loc

C (t) such that:

∀t ∈ R+ , b(t) =
∫ t

0

f(s)ds

in which case, b is almost surely differentiable with b′ = f dx-a.s.

1b′(0) being a r.h.s derivative only.
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Solutions to Exercises
Exercise 1.

1. Let f : Ω → R̄ be a map, where Ω is a topological space. Suppose that
{λ < f} is open for all λ ∈ R̄. Then in particular, {λ < f} is open for all
λ ∈ R. So f is l.s.c. Conversely, suppose f is l.s.c. Then {λ < f} is open
for all λ ∈ R, and since:

{−∞ < f} =
⋃
λ∈R

{λ < f}

it follows that {−∞ < f} is also open. Furthermore, {+∞ < f} is
the empty set, and in particular, {+∞ < f} is open. We conclude that
{λ < f} is open for all λ ∈ R̄. We have proved that f is l.s.c if and only
if {λ < f} is open for all λ ∈ R̄.

2. Similarly to 1. we have:

{f < +∞} =
⋃
λ∈R

{f < λ}

and {f < −∞} = ∅ which is open. We conclude that f is u.s.c if and only
if {f < λ} is open for all λ ∈ R̄.

3. Let U be open in R̄. If +∞ ∈ U , let V + =]α,+∞] where α ∈ R is such
that ]α,+∞] ⊆ U . Otherwise, let V + = ∅. If −∞ ∈ U , let V − = [−∞, β[,
where β ∈ R is such that [−∞, β[⊆ U . Otherwise, let V − = ∅. Then, we
have:

U = V + ∪ V − ∪ (U ∩R)
and U ∩R is an open subset of R (possibly empty). For all x ∈ U ∩R,
let αx, βx ∈ R be such that x ∈]αx, βx[⊆ U ∩R. Then, we have:

U ∩R =
⋃

x∈U∩R

]αx, βx[

where it is understood that if U ∩R = ∅, the corresponding union is the
empty set. Taking I = U ∩R, we conclude that:

U = V + ∪ V − ∪
⋃
i∈I

]αi, βi[

4. Suppose that f is continuous. For all λ ∈ R, the interval ]λ,+∞] is an
open subset of R̄. It follows that {λ < f} = f−1(]λ,+∞]) is open. This
being true for all λ ∈ R, f is l.s.c. Similarly, the interval [−∞, λ[ is an
open subset of R̄. It follows that {f < λ} = f−1([−∞, λ[) is open. This
being true for all λ ∈ R, f is u.s.c. Hence, if f is continuous, it is both
l.s.c and u.s.c. Conversely, suppose f is both l.s.c. and u.s.c. Let U be an
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open subset of R̄. Using the decomposition obtained in 3. we have:

f−1(U) = f−1

(
V + ∪ V − ∪

⋃
i∈I

]αi, βi[

)
= f−1(V +) ∪ f−1(V −) ∪

⋃
i∈I

f−1(]αi, βi[)

= f−1(V +) ∪ f−1(V −) ∪
⋃
i∈I
{αi < f} ∩ {f < βi}

Since f−1(V +) is either {α < f} or ∅, and f−1(V −) is either {f < β} or ∅,
it follows that f−1(U) is a union of open sets in Ω, and is therefore open.
Having proved that f−1(U) is open for all U open in R̄, we conclude that
f is continuous. So f is continuous, if and only if it is both l.s.c and u.s.c.

5. Let u : Ω → R and v : Ω → R̄. Let λ ∈ R. Note that having restricted
the range of u to be a subset of R, the map u+ v is well defined, as there
can be no occurrence of (+∞) + (−∞). We claim that:

{λ < u+ v} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{λ1 < u} ∩ {λ2 < v}

It is clear that if ω ∈ Ω is such that λ1 < u(ω) and λ2 < v(ω) for some
λ1, λ2 ∈ R with λ1 + λ2 = λ, then λ < u(ω) + v(ω). This shows the
inclusion ⊇. To show the reverse inclusion, suppose that ω ∈ Ω is such
that λ < u(ω) + v(ω). Then, we have λ − u(ω) < v(ω), and there exists
λ2 ∈ R such that:

λ− u(ω) < λ2 < v(ω)
Define λ1 = λ − λ2. Then λ2 < v(ω) and λ1 < u(ω) where λ1, λ2 are
elements of R such that λ1 + λ2 = λ. This shows the inclusion ⊆.

6. Suppose that both u and v are l.s.c. Then for all λ1, λ2 ∈ R, {λ1 < u}
and {λ2 < v} are open subsets of Ω. It follows from 5. that {λ < u + v}
is also an open subset of Ω, for all λ ∈ R. So u+ v is l.s.c.

7. Suppose that both u and v are u.s.c. Similarly to 5. we have:

{u+ v < λ} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{u < λ1} ∩ {v < λ2}

and consequently {u + v < λ} is an open subset of Ω, for all λ ∈ R. So
u+ v is u.s.c. Anticipating on questions 10. and 11., an alternative proof
goes as follows: if u and v are u.s.c, then −u and −v are l.s.c. so −u− v
is l.s.c. and finally u+ v is u.s.c.

8. Suppose f is l.s.c and let α ∈ R+. If α = 0, then αf = 0 and consequently
αf is continuous and in particular l.s.c. We assume that α > 0. Then for

www.probability.net

http://www.probability.net


Solutions to Exercises 14

all ω ∈ Ω, λ < αf(ω) is equivalent to λ/α < f(ω) (this is certainly true
when f(ω) ∈ R, and one can easily check that it is still true when f(ω) ∈
{−∞,+∞}). It follows that {λ < αf} = {λ/α < f} and consequently
{λ < αf} is an open subset of Ω. This being true for all λ ∈ R, we
conclude that αf is l.s.c.

9. Suppose that f is u.s.c and α ∈ R+. If α = 0 then αf is u.s.c. We assume
that α > 0. Then {αf < λ} = {f < λ/α} and consequently {αf < λ} is
open for all λ ∈ R. So αf is u.s.c.

10. Suppose that f is l.s.c. Then {−f < λ} = {−λ < f} for all λ ∈ R, and
consequently {−f < λ} is an open subset of Ω. So −f is u.s.c.

11. Suppose that f is u.s.c. Then {λ < −f} = {f < −λ} for all λ ∈ R, and
consequently {λ < −f} is an open subset of Ω. So −f is l.s.c.

12. Let V be an open subset of Ω and f = 1V . Let λ ∈ R. If λ < 0 we have
{λ < f} = Ω. If 0 ≤ λ < 1 we have {λ < f} = V . If 1 ≤ λ we have
{λ < f} = ∅. In any case, {λ < f} is an open subset of Ω. So f is l.s.c.
The characteristic function of an open subset of Ω is lower-semi-continuous

13. Let F be a closed subset of Ω. Let λ ∈ R. Then {f < λ} is either ∅, F c
or Ω, depending respectively on whether λ ≤ 0, 0 < λ ≤ 1 and 1 < λ. In
any case, {f < λ} is an open subset of Ω. So f is u.s.c. The characteristic
function of a closed subset of Ω is upper-semi-continuous.

Exercise 1

Exercise 2.

1. Let (fi)i∈I be a family of maps fi : Ω → R̄, where Ω is a topological
space. Let f = supi∈I fi. We assume that all fi’s are l.s.c. For all λ ∈ R,
we claim that:

{λ < f} =
⋃
i∈I
{λ < fi} (1)

Indeed, suppose that ω ∈ Ω is such that λ < f(ω). Since f(ω) is the lowest
upper-bound of all fi(ω)’s, λ cannot be such an upper-bound. Hence, there
exists i ∈ I such that λ < fi(ω). This shows the inclusion ⊆. To show
the reverse inclusion, suppose ω ∈ Ω is such that λ < fi(ω) for some
i ∈ I. Since fi(ω) ≤ f(ω), in particular we have λ < f(ω). This shows
the inclusion ⊇. Having proved equation (1) and since all fi’s are l.s.c,
{λ < f} is an open subset of Ω for all λ ∈ R. It follows that f is l.s.c.
The supremum of l.s.c functions is l.s.c.

2. Suppose that all fi’s are u.s.c and f = infi∈I fi. Given λ ∈ R:

{f < λ} =
⋃
i∈I
{fi < λ}

and consequently {f < λ} is an open subset of Ω. It follows that f is
u.s.c. The infimum of u.s.c functions is u.s.c.
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Exercise 2

Exercise 3.

1. Let (Ω, T ) be a metrizable and σ-compact topological space. Let f ∈
L1

R(Ω,B(Ω), µ), f ≥ 0, where µ is a locally finite measure on (Ω,B(Ω)).
From theorem (18), there exists a sequence (sn)n≥1 of simple functions
on (Ω,B(Ω)) such that sn ↑ f (i.e. sn ≤ sn+1 for all n ≥ 1 and sn → f
pointwise). We define t1 = s1 and tn = sn − sn−1 for all n ≥ 2. In order
to show that tn is a simple function for all n ≥ 1, we need to show that if
s, t are simple functions on (Ω,B(Ω)) with s ≤ t, then t−s is also a simple
function on (Ω,B(Ω)). Since s and t are measurable with values in R+,
and s ≤ t, the map t− s is also measurable with values in R+. From:

t− s =
∑

α∈(t−s)(Ω)

α1{t−s=α}

we conclude that t− s is a simple function on (Ω,B(Ω)).

2. Since each tn is a simple function on (Ω,B(Ω)), for all n ≥ 1 there exists
an integer pn ≥ 1 and some α1

n, . . . , α
pn
n ∈ R+ and A1

n, . . . , A
pn
n ∈ B(Ω)

such that:

tn =
pn∑
k=1

αkn1Akn

Note that it is always possible to assume αkn 6= 0, by setting Akn = ∅ if
necessary. Since sN =

∑N
n=1 tn for all N ≥ 1, from sN → f we obtain:

f =
+∞∑
n=1

tn =
+∞∑
n=1

pn∑
k=1

αkn1Akn

This last sum having a countable number of (non-negative) terms, it can
be re-expressed as:

f =
+∞∑
n=1

αn1An

where αn ∈ R+ \ {0} and An ∈ B(Ω) for all n ≥ 1.

3. Since f ∈ L1
R(Ω,B(Ω), µ) and f ≥ 0, from 2. we have:

+∞∑
n=1

αnµ(An) =
+∞∑
n=1

αn

∫
1Andµ

=
∫ (+∞∑

n=1

αn1An

)
dµ

=
∫
fdµ < +∞

where the second equality is obtained from the linearity of the integral
and an immediate application of the monotone convergence theorem (19).
Since for all n ≥ 1 we have αn > 0, we conclude that µ(An) < +∞.
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4. Let ε > 0 and n ≥ 1. Define ε′ = ε/(αn2n+2). Since (Ω, T ) is metrizable
and σ-compact, while µ is a locally finite measure on (Ω,B(Ω)), from
theorem (73) µ is a regular measure. Hence:

µ(An) = sup{µ(K) : K ⊆ An , K compact}
= inf{µ(V ) : An ⊆ V , V open}

Since µ(An) < +∞, we have µ(An) < µ(An) + ε′, and µ(An) being the
greatest lower-bound of all µ(V )’s as V runs through the set of all open
subsets of Ω with An ⊆ V , µ(An) + ε′ cannot be such a lower-bound.
There exists Vn open subset of Ω such that An ⊆ Vn, and:

µ(Vn) < µ(An) + ε′

Similarly, from the fact that µ(An)− ε′ < µ(An), there exists Kn compact
subset of Ω such that Kn ⊆ An, and:

µ(An)− ε′ < µ(Kn)

From Kn ⊆ An note in particular that µ(Kn) < +∞, and consequently
we have Kn ⊆ An ⊆ Vn with:

µ(Vn \Kn) = µ(Vn)− µ(Kn) < 2ε′ =
ε

αn2n+1

5. Having proved in 3. that
∑

n≥1 αnµ(An) < +∞, given ε > 0 there exists
N ≥ 1 such that: ∣∣∣∣∣

+∞∑
n=1

αnµ(An)−
N∑
n=1

αnµ(An)

∣∣∣∣∣ ≤ ε

2

or equivalently:
+∞∑

n=N+1

αnµ(An) ≤ ε

2

6. Let u =
∑N
n=1 αn1Kn . Since (Ω, T ) is metrizable, in particular it is a

Hausdorff topological space. Since Kn is a compact subset of Ω, from
theorem (35) Kn is a closed subset of Ω. It follows from 13. of exercise (1)
that 1Kn is upper-semi-continuous. Using 7. and 9. of exercise (1), we
conclude that u is also u.s.c.

7. Let v =
∑+∞

n=1 αn1Vn . Since Vn is an open subset of Ω, from 12. of exer-
cise (1) the map 1Vn is lower-semi-continuous. It follows from 6. and 8. of
this same exercise that every partial sum

∑k
n=1 αn1Vn is itself l.s.c. Since

v is the supremum of these partial sums, we conclude from exercise (2)
that v is l.s.c.

8. Since Kn ⊆ An ⊆ Vn and αn ∈ R+ for all n ≥ 1:

0 ≤
N∑
n=1

αn1Kn = u
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≤
N∑
n=1

αn1An

≤
+∞∑
n=1

αn1An = f

≤
+∞∑
n=1

αn1Vn = v

We conclude that 0 ≤ u ≤ f ≤ v.

9. Since Kn ⊆ Vn for all n ≥ 1, we have:

v =
+∞∑
n=1

αn1Vn =
+∞∑
n=1

αn(1Kn + 1Vn\Kn)

=
+∞∑
n=1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

= u+
+∞∑

n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

10. Since Kn ⊆ An for all n ≥ 1, using 5. we have:
+∞∑

n=N+1

αnµ(Kn) ≤
+∞∑

n=N+1

αnµ(An) ≤ ε

2

Hence, using 9. and 4. we obtain:∫
vdµ =

∫ (
u+

+∞∑
n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

)
dµ

=
∫
udµ+

+∞∑
n=N+1

αn

∫
1Kndµ+

+∞∑
n=1

αn

∫
1Vn\Kndµ

=
∫
udµ+

+∞∑
n=N+1

αnµ(Kn) +
+∞∑
n=1

αnµ(Vn \Kn)

≤
∫
udµ+

ε

2
+

+∞∑
n=1

αn ·
ε

αn2n+1

=
∫
udµ+ ε

where the second equality stems from the linearity of the integral and an
application of the monotone convergence theorem (19). Note that since
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µ(Kn) < +∞ for all n ≥ 1, in particular:∫
udµ =

N∑
n=1

αnµ(Kn) < +∞

Hence, we conclude that:∫
vdµ ≤

∫
udµ+ ε < +∞

11. The map u is R-valued, Borel measurable with:∫
|u|dµ =

∫
udµ < +∞

So u ∈ L1
R(Ω,B(Ω), µ).

12. The map v is Borel measurable with:∫
|v|dµ =

∫
vdµ < +∞

However, it has values in [0,+∞], i.e. v(ω) = +∞ is possible for some
ω ∈ Ω. The condition

∫
vdµ < +∞ does imply that v(ω) < +∞ for µ-

almost every ω ∈ Ω. As we shall see in the next question, v is therefore µ-
almost surely equal to an element of L1

R(Ω,B(Ω), µ). But strictly speaking,
it may not be itself an element of this space, because its range v(Ω) may
fail to be a subset of R.

13. Since
∫
vdµ < +∞, we have v < +∞ µ-a.s since:

(+∞) · µ({v = +∞}) =
∫
{v=+∞}

vdµ ≤
∫
vdµ < +∞

Hence, if N = {v = +∞}, we have N ∈ B(Ω) and µ(N) = 0. Let
v∗ = v1Nc . Then v∗ has values in R, is Borel measurable and:∫

|v∗|dµ =
∫
v1Ncdµ =

∫
vdµ < +∞

So v∗ ∈ L1
R(Ω,B(Ω), µ). Since v∗ = v µ-a.s. we conclude that v is µ-

almost surely equal to an element of L1
R(Ω,B(Ω), µ).

14. Note that from 8. we have 0 ≤ u ≤ v and consequently v − u is non-
negative and measurable, and the integral

∫
(v − u)dµ makes sense. In

fact, even if u ≤ v did not hold, since u ∈ L1 and v is almost surely equal
to an element of L1, it would be possible to give meaning to

∫
(v − u)dµ

in the obvious way. Now from 10. we have:∫
udµ+

∫
(v − u)dµ =

∫
vdµ

≤
∫
udµ+ ε

and since
∫
udµ < +∞ we conclude that

∫
(v − u)dµ ≤ ε.
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15. Having considered a metrizable and σ-compact topological space (Ω, T )
and a locally finite measure µ on (Ω,B(Ω)), given ε > 0 and f ∈ L1

R(Ω,B(Ω), µ)
with f ≥ 0, we have found two measurable maps u, v : Ω→ [0,+∞] (where
in fact u has values in R+), which are µ-almost surely equal to elements
of L1

R(Ω,B(Ω), µ) (in fact u is itself an element of L1) and such that
u ≤ f ≤ v, u is u.s.c, v is l.s.c. and:∫

(v − u)dµ ≤ ε

Now let f ∈ L1
R(Ω,B(Ω), µ) which we no longer assume to be non-negative.

Let f+ and f− be respectively the positive and negative parts of f . Then
f = f+ − f− and given ε > 0, it is possible to apply the result of this
exercise to f+ and f− separately, with ε/2 instead of ε. Hence, there exist
four measurable maps u+, v+, u− and v− where u+, u− have values in
R+ and v+, v− have values in [0,+∞], which are µ-almost surely equal
elements of L1, and satisfy the conditions u+ ≤ f+ ≤ v+, u− ≤ f− ≤ v−,
u+, u− are u.s.c, v+, v− are l.s.c, and:∫

(v+ − u+)dµ ≤ ε

2

together with: ∫
(v− − u−)dµ ≤ ε

2
We define u = u+ − v− and v = v+ − u−. Since u+, u− have values in R,
given ω ∈ Ω, the differences u+(ω)− v−(ω) and v+(ω)−u−(ω) are always
well-defined elements of R̄. It follows that u, v : Ω → R̄ are well-defined
measurable maps. Furthermore, it is clear that both u and v are µ-almost
surely equal to an element of L1. From u+ ≤ f+ ≤ v+, u− ≤ f− ≤ v− and
f = f+ − f− we obtain u ≤ f ≤ v. Furthermore, since u+ is R-valued
and u.s.c while v− is l.s.c, from exercise (1) u = u+ − v− is u.s.c, and
similarly v = v+ − u− is l.s.c. Finally, since u ≤ f ≤ v and f is R-valued,
given ω ∈ Ω the difference v(ω) − u(ω) is always a well-defined element
of [0,+∞]. So v − u is a well-defined non-negative and measurable map,
and the integral

∫
(v − u)dµ is meaningful. We have:∫

(v − u)dµ =
∫

(v+ − u− − u+ + v−)dµ

=
∫

(v+ − u+ + v− − u−)dµ

=
∫

(v+ − u+)dµ+
∫

(v− − u−)dµ

≤ ε

2
+
ε

2
= ε

This completes the proof of theorem (94).

Exercise 3
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Exercise 4.

1. Let (Ω, T ) be a topological space. Suppose it is connected and Ω = A]B
where A,B are disjoint open sets. Then Ac = B so A is closed and
consequently A is both open and closed. Hence, Ω being connected, we
have A = ∅ or A = Ω, i.e. A = ∅ or B = ∅. Conversely, suppose Ω = A]B
with A,B disjoint open sets implies that A = ∅ or B = ∅. Then if A is
both open and closed in Ω, with have Ω = A]Ac where A,Ac are disjoint
open sets. So A = ∅ or Ac = ∅, i.e. A = ∅ or A = Ω. This shows that Ω
is connected. We have proved that Ω is connected if and only if whenever
Ω = A ]B with A,B disjoint open sets, we have A = ∅ or B = ∅.

2. If Ω = A ] B with A,B disjoint open sets, then Ω = Ac ] Bc with
Ac, Bc disjoint closed sets, and conversely if Ω = A]B with A,B disjoint
closed sets, then Ω = Ac ]Bc with Ac, Bc disjoint open sets. Hence, the
statements:

(i) Ω = A ]B , A,B disjoint and open ⇒ A = ∅ or B = ∅
(ii) Ω = A ]B , A,B disjoint and closed ⇒ A = ∅ or B = ∅

are equivalent. We conclude from 1. that Ω is connected, if and only if
whenever Ω = A ] B with A,B disjoint closed sets, we have A = ∅ or
B = ∅.

Exercise 4

Exercise 5.

1. Let A be an open and closed subset of R, with A 6= ∅ and Ac 6= ∅. Let
x ∈ Ac. We have:

A = (A∩]−∞, x]) ∪ (A ∩ [x,+∞[)

and since A 6= ∅, we have A∩]−∞, x] 6= ∅ or A ∩ [x,+∞[6= ∅.

2. Let B = A ∩ [x,+∞[ and suppose B 6= ∅. Both A and [x,+∞[ are closed
subsets of R. So B is a closed subset of R. However, since x ∈ Ac, we
have:

B = A ∩ [x,+∞[
= (A ∩ {x}) ∪ (A∩]x,+∞[)
= A∩]x,+∞[

and since both A and ]x,+∞[ are open subsets of R, B is also an open
subset of R. Note that the assumption B 6= ∅ has not been used so far.

3. Let b = inf B. We have proved in exercise (9) (part 5) of Tutorial 8 that if
B is a non-empty closed subset of R̄, then inf B ∈ B. Unfortunately, this
result does not apply to non-empty closed subsets of R (indeed R, is a
non-empty closed subset of R and inf R = −∞ 6∈ R). So we cannot apply
exercise (9) of Tutorial 8, at least not without a little bit of care. However,
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the following can be done: since B 6= ∅, there exists y ∈ B = A∩ [x,+∞[.
Then it is clear that B∗ = A ∩ [x, y] is a non-empty closed subset of R̄,
and consequently since b = inf B∗, applying exercise (9) of Tutorial 8, we
have b ∈ B∗. So b ∈ B ⊆ R. For those who wish to have a more detailed
argument, the following can be said: the fact that B∗ 6= ∅ is a consequence
of y ∈ B∗. If we define b∗ = inf B∗, the fact that b∗ = b can be shown
as follows: since B∗ ⊆ B, any lower-bound of B is also a lower-bound of
B∗, and consequently b is a lower-bound of B∗ which shows that b ≤ b∗.
To show the reverse inequality, consider u ∈ B. Then if u ≤ y we have
u ∈ B∗ and therefore b∗ ≤ u. But if y < u, then b∗ ≤ y < u and we
see that b∗ ≤ u is true in all cases. So b∗ is a lower-bound of B which
shows that b∗ ≤ b. We have proved that b = b∗. To show that B∗ is a
closed subset of R̄, we first argue that it is a closed subset of R since A is
closed and [x, y] is closed. However, the topology of R is induced by the
topology of R̄. It is a simple exercise to show that any closed subset of R
can be written as F ∩R where F is a closed subset of R̄. Hence, there is
a closed subset F of R̄ such that B∗ = F ∩R. But then:

B∗ = A ∩ [x, y]
= A ∩ [x, y] ∩ [x, y]
= B∗ ∩ [x, y]
= (F ∩R) ∩ [x, y]
= F ∩ [x, y]

and since [x, y] is also closed in R̄, we conclude that B∗ is indeed closed
in R̄. This concludes our proof that b ∈ B. All this may seem like a lot of
work, made necessary by our desperate attempt to apply exercise (9) of
Tutorial 8. For those who believe that a direct proof is more convenient,
here is the following: Since B = A ∩ [x,+∞[, it is clear that x is a lower
bound of B and consequently x ≤ b. To show that b ∈ B, we only need
to show that b ∈ A. Since B 6= ∅, there exist y ∈ B ⊆ R and from b ≤ y
we obtain in particular b < +∞. Hence, there exists a sequence (tn)n≥1

in R such that tn ↓↓ b (i.e. tn → b with b < tn+1 ≤ tn for all n ≥ 1).
Since b < tn, it is impossible that tn be a lower-bound of B. Hence, for all
n ≥ 1 there exists some xn ∈ B ⊆ A such that b ≤ xn < tn. From tn → b
we see that xn → b and since xn ∈ A while A is a closed subset of R, we
conclude that b ∈ A. This completes our second proof of b ∈ B.

4. Having proved in 2. that B is an open subset of R, since b ∈ B there exists
ε > 0 such that ]b− ε, b+ ε[⊆ B.

5. To show that (R, TR) is connected, we need to show that if A is an open
and closed subset of R, then A = ∅ or A = R. Suppose this is not the case
and A 6= ∅ together with Ac 6= ∅. We have shown in 2. that A∩[x,+∞[6= ∅
or A∩] −∞, x] 6= ∅. If we assume that B = A ∩ [x,+∞[ and B 6= ∅, then
b = inf B ∈ R and we have proved in 4. that there exists ε > 0 such that
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]b − ε, b + ε[⊆ B. This is a contradiction. Indeed , since b − ε/2 < b,
the fact that b − ε/2 ∈ B contradicts the fact that b is a lower-bound
of B. So the only possible case is that C 6= ∅ where C = A∩] − ∞, x].
However, if c = supC, then a similar proof to that of 3. will show that
c ∈ C (in particular c ∈ R) and C being open in R, there exists ε > 0 with
]c− ε, c+ ε[⊆ C, leading to a contradiction. Hence, we see that all possible
cases lead to a contradiction. We conclude that the initial assumption is
absurd, i.e. that A = ∅ or A = R. So (R, TR) is a connected topological
space, which completes the proof of theorem (95).

Exercise 5

Exercise 6.

1. Let (Ω, T ) be a topological space and A ⊆ Ω be a connected subset of Ω.
Let B be a subset of Ω such that A ⊆ B ⊆ Ā, where Ā is the closure of
A in Ω. Let V1, V2 be disjoint open subsets of B such that B = V1 ] V2.
From definition (23) of the induced topology T|B, there exist U1, U2 open
subsets of Ω such that V1 = B ∩ U1 and V2 = B ∩ U2.

2. Since A ⊆ B, using 1. we have:

A = A ∩B
= A ∩ (V1 ] V2)
= A ∩ [(B ∩ U1) ] (B ∩ U2)]
= (A ∩B ∩ U1) ] (A ∩B ∩ U2)
= (A ∩ U1) ] (A ∩ U2)

Now since U1, U2 are open subsets of Ω, A ∩ U1 and A ∩ U2 are open
subsets of A. Furthermore, since V1 and V2 are disjoint, we have V1∩V2 =
B∩U1∩U2 = ∅. and in particular since A ⊆ B, A∩U1∩U2 = ∅. So A∩U1

and A ∩ U2 are disjoint open subsets of A with A = (A ∩ U1) ] (A ∩ U2).
Having assumed that A is a connected subset of Ω, the topological space
(A, T|A) is connected and consequently using exercise (4), it follows that
A ∩ U1 = ∅ or A ∩ U2 = ∅.

3. Suppose that A ∩ U1 = ∅. Let x ∈ Ā. Then for all U open subsets of Ω
with x ∈ U , we have A ∩ U 6= ∅. Hence, since U1 is an open subset of
Ω and A ∩ U1 = ∅, it is necessary that x 6∈ U1. So x ∈ U c1 and we have
proved that Ā ⊆ U c1 .

4. Having assumed that B ⊆ Ā, it follows from 3. that B ⊆ U c1 , i.e. V1 =
B ∩ U1 = ∅.

5. From 3. and 4. we have seen that if A ∩U1 = ∅, then V1 = ∅. Similarly, if
A ∩ U2 = ∅, then V2 = ∅. However, we have shown in 2. that A ∩ U1 = ∅
or A ∩ U2 = ∅. So V1 = ∅ or V2 = ∅. Having considered B ⊆ Ω such that
A ⊆ B ⊆ Ā, and V1, V2 disjoint open subsets of B such that B = V1 ] V2,
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we have proved that V1 = ∅ or V2 = ∅. From exercise (4), this shows
that the topological space (B, T|B) is connected, or equivalently that B
is a connected subset of Ω. Hence, if A is a connected subset of Ω and
A ⊆ B ⊆ Ā, then B is also a connected subset of Ω. In particular, Ā is a
connected subset of Ω.

Exercise 6

Exercise 7. Let (Ω, T ) and (Ω′, T ′) be two topological spaces, and f be a
continuous map f : Ω → Ω′. We assume that (Ω, T ) is connected. We claim
that f(Ω) is a connected subset of Ω′, or equivalently that the topological space
(f(Ω), T ′|f(Ω)) is connected. In order to prove this, we shall use exercise (4) and
consider A,B two disjoint open subsets of f(Ω) such that f(Ω) = A]B. There
exist U ′, V ′ open subsets of Ω′ such that A = f(Ω) ∩ U ′ and B = f(Ω) ∩ V ′.
Since f is continuous, f−1(U ′) and f−1(V ′) are open subsets of Ω. Furthermore,
it is clear that:

f−1(U ′) = f−1(f(Ω) ∩ U ′) = f−1(A)
and similarly f−1(V ′) = f−1(B). So f−1(A) and f−1(B) are open subsets of
Ω. Since A and B are disjoint, f−1(A) and f−1(B) are also disjoint. Since
f(Ω) = A ] B, for all x ∈ Ω we have f(x) ∈ A or f(x) ∈ B. So x ∈ f−1(A) or
x ∈ f−1(B). It follows that f−1(A) and f−1(B) are two disjoint open subsets
of Ω, such that Ω = f−1(A) ] f−1(B). Since Ω is connected, from exercise (4)
it follows that f−1(A) = ∅ or f−1(B) = ∅. Suppose that f−1(A) = ∅. We
claim that A = ∅. Otherwise there exists y ∈ A ⊆ f(Ω). Let x ∈ Ω be such
that y = f(x). Then f(x) ∈ A and consequently x ∈ f−1(A) which contradicts
f−1(A) = ∅. So f−1(A) = ∅ implies that A = ∅, and similarly f−1(B) = ∅
implies that B = ∅. It follows that A = ∅ or B = ∅. Having assumed that
f(Ω) = A ] B where A,B are disjoint open subsets of f(Ω), we have proved
that A = ∅ or B = ∅. From exercise (4), this shows that the topological space
(f(Ω), T ′|f(Ω)) is connected, or equivalently that f(Ω) is a connected subset of
Ω′. This completes the proof of theorem (96).

Exercise 7

Exercise 8.

1. LetA ⊆ R̄ and suppose thatA is an interval. Let α = inf A and β = supA.
We claim that:

]α, β[⊆ A ⊆ [α, β]
If A = ∅, then α = +∞ and β = −∞, so there is nothing to prove. So
we assume that A 6= ∅. Then there is x ∈ A, and we have α ≤ x as well
as x ≤ β. In particular, α ≤ β. Let z ∈ A. Since α is a lower-bound of
A, α ≤ z. Since β is an upper-bound of A, z ≤ β. So z ∈ [α, β] and we
have proved that A ⊆ [α, β]. Suppose z ∈]α, β[. From α < z we see that
z cannot be a lower-bound of A (α is the greatest of such lower-bounds).
There exists x ∈ A such that α ≤ x < z. From z < β we see that z cannot
be an upper-bound of A. There exists y ∈ A such that z < y ≤ β. From
x < z < y we obtain in particular z ∈ [x, y]. Since x, y ∈ A and A is
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assumed to be an interval, it follows from definition (118) that z ∈ A. We
have proved that ]α, β[⊆ A.

2. Let A ⊆ R̄. Suppose that A is of the form [α, β], [α, β[, ]α, β] or ]α, β[
for some α, β ∈ R̄. Suppose there exist x, y ∈ A with x ≤ y. Then for
all z ∈ [x, y] we have x ≤ z ≤ y. If α ≤ x then α ≤ z. If α < x then
α < z. If y ≤ β then z ≤ β. If y < β then z < β. In any case, we
see that z ∈ A. This shows that [x, y] ⊆ A for all x, y ∈ A, x ≤ y, and
consequently from definition (118), A is an interval. Note that A can be
the empty set without anything being flawed in the argument just given.
Conversely, suppose that A is an interval. From 1. we have:

]α, β[⊆ A ⊆ [α, β]

where α = inf A and β = supA. We shall distinguish four cases: suppose
α ∈ A and β ∈ A. Then:

[α, β] =]α, β[∪{α} ∪ {β} ⊆ A ⊆ [α, β]

and consequently A = [α, β]. Suppose α ∈ A and β 6∈ A. Then:

[α, β[=]α, β[∪{α} ⊆ A ⊆ [α, β] \ {β} = [α, β[

and consequently A = [α, β[. Suppose α 6∈ A and β ∈ A. Then:

]α, β] =]α, β[∪{β} ⊆ A ⊆ [α, β] \ {α} =]α, β]

and consequently A =]α, β]. Finally suppose α 6∈ A and β 6∈ A:

]α, β[⊆ A ⊆ [α, β] \ {α, β} =]α, β[

and consequently A =]α, β[. Hence, we have proved that A is of the form
[α, β], [α, β[, ]α, β] or ]α, β[. Note that if A = ∅, there is nothing flawed in
the argument just given.

3. Let A =] − ∞, α[ where α ∈ R. Consider φ : R →] − 1, 1[ defined by
φ(x) = x/(1 + |x|). Then φ is a bijection with φ−1(y) = y/(1 − |y|).
Let ψ = φ|A be the restriction of φ to A. Then ψ is injective, and it is
therefore a bijection from A to ψ(A). We claim that ψ(A) =]− 1, φ(α)[.
Since |φ(x)| < 1 for all x ∈ R, it is clear that ψ(A) ⊆] − 1, 1[. Since
φ(x) = 1−1/(1+x) for x > 0 and φ(x) = 1+1/(1−x) for x < 0, it is clear
that φ is increasing. So ψ(A) ⊆]− 1, φ(α)[. To show the reverse inclusion,
consider y ∈] − 1, φ(α)[. Since φ−1 is also increasing, from y < φ(α) we
obtain φ−1(y) < α. Hence, φ−1(y) ∈ A and y = ψ(φ−1(y)) ∈ ψ(A). We
have proved that ψ(A) =]−1, φ(α)[ and ψ is consequently a bijection from
A to ]− 1, φ(α)[. Since φ is continuous, ψ = φ|A is also continuous. Since
φ−1 is continuous, ψ−1 = (φ−1)|ψ(A) is also continuous. We conclude that
ψ : A →] − 1, φ(α)[ is a homeomorphism. We have proved that for all
α ∈ R, ]−∞, α[ is homeomorphic to ]− 1, α′[ for some α′ ∈ R.

4. Let A =]α,+∞[ where α ∈ R. Then if φ : R →]−, 1, 1[ is defined as in
3. and ψ = φ|A, then ψ(A) =]φ(α), 1[ and ψ is a homeomorphism from A
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to ]φ(α), 1[. Hence, for all α ∈ R, ]α,+∞[ is homeomorphic to ]α′, 1[ for
some α′ ∈ R.

5. Let A =]α, β[, α, β ∈ R, α < β. Define φ :]− 1, 1[→]α, β[ by:

φ(x) = α+
β − α

2
(x+ 1)

Then it is easy to show that φ is a continuous bijection, and that φ−1 is
continuous. So φ :]− 1, 1[→]α, β[ is a homeomorphism.

6. φ(x) = x/(1 + |x|) is a homeomorphism between R and ]− 1, 1[.

7. Let A be a non-empty open interval in R, i.e. a non-empty interval of R̄
which is an open subset of R. Being an interval, from 2. it is of the form
[α, β], [α, β[, ]α, β] or ]α, β[ for some α, β ∈ R̄. Suppose A is of the form
[α, β]. Being non-empty with have α ≤ β. So α ∈ [α, β] ⊆ R. Being an
open subset of R, there exists ε > 0 such that ]α− ε, α+ ε[⊂ [α, β]. This
is a contradiction since α ∈ R. So A cannot be of the form [α, β] and we
prove similarly that it cannot be of the form [α, β[ and ]α, β] either. So
A is of the form ]α, β[ for some α, β ∈ R̄, α < β. Suppose α = −∞ and
β = +∞. Then A = R which is clearly homeomorphic to R. Suppose
α = −∞ and β ∈ R. Then from 3. A is homeomorphic to ] − 1, α′[ for
some α′ ∈ R, which is itself homeomorphic to ]− 1, 1[, as we have proved
in 5. Having proved in 6. that ]−1, 1[ is homeomorphic to R, we conclude
that A is homeomorphic to R. Suppose α ∈ R and β = +∞. Then from
4. 5. and 6. we see that A is homeomorphic to R. Suppose α ∈ R and
β ∈ R. Then from 5. and 6. we see that A is homeomorphic to R. Hence,
in all possible cases, we see that A is homeomorphic to R. We have proved
that any non-empty open interval in R is homeomorphic to R.

8. Let A be an open interval of R. If A = ∅, then the induced topology on
A is reduced to {∅}, and (∅, {∅}) is a connected topological space. So A
is a connected subset of R. If A 6= ∅, then from 7. A is homeomorphic
to R. In particular, there exists f : R → A which is continuous and
surjective. From theorem (95), R is connected. Since f is continuous,
from theorem (96) f(R) is a connected subset of A. Since f is surjective,
f(R) = A and consequently A is connected. We have proved that any
open interval of R is a connected subset of R.

9. Let A be an interval of R, i.e. an interval of R̄ with A ⊆ R. If A = ∅ then
A is connected. So we assume that A 6= ∅. From 1. there exist α, β ∈ R̄
such that:

]α, β[⊆ A ⊆ [α, β]
and since A 6= ∅ we have α ≤ β. Since ]α, β[ is an open interval in R, from
8. it is a connected subset of R. Suppose α = −∞ and β = +∞. Then
A = R and:

]α, β[⊆ A ⊆]α, β[= ]α, β[
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Suppose α = −∞ and β ∈ R. Since A ⊆ R we have:

]α, β[⊆ A ⊆]α, β] = ]α, β[

Suppose α ∈ R and β = +∞. Then:

]α, β[⊆ A ⊆ [α, β[= ]α, β[

And finally suppose that α, β ∈ R. Then:

]α, β[⊆ A ⊆ [α, β] = ]α, β[

It follows that ]α, β[⊆ A ⊆ ]α, β[ in all possible cases, where ]α, β[ denotes
the closure of ]α, β[ in R. Having proved that ]α, β[ is a connected subset
of R, from exercise (6) we conclude that A is a connected subset of R.
We have proved that any interval in R is a connected subset of R.

Exercise 8

Exercise 9.

1. Let A ⊆ R be a non-empty connected subset of R. Let α = inf A and
β = supA. We assume that there exists x0 ∈ Ac∩]α, β[. In particular, we
have x0 ∈ Ac and consequently, since A ⊆ R:

A = (A∩]−∞, x0[) ] (A∩]x0,+∞[) (2)

However, ]−∞, x0[ and ]x0,+∞[ being open subsets of R, the sets A∩]−
∞, x0[ and A∩]x0,+∞[ are open in A, and they are clearly disjoint. Since
A is connected, it follows from exercise (4) that A∩] − ∞, x0[= ∅ or
A∩]x0,+∞[= ∅.

2. Suppose A∩]x0,+∞[= ∅. From (2) we have A = A∩] − ∞, x0[, and
consequently x0 is an upper-bound of A. Since β is the smallest of such
upper-bounds, we obtain β ≤ x0 contradicting x0 ∈]α, β[.

3. Similarly, if A∩] − ∞, x0[= ∅, then x0 is a lower-bound of A and con-
sequently x0 ≤ α contradicting x0 ∈]α, β[. We have seen in 1. that
A∩] − ∞, x0[= ∅ or A∩]x0,+∞[= ∅. However, both of these cases lead
to a contradiction. We conclude that our initial assumption was absurd,
i.e. that there exists no x0 in Ac∩]α, β[. In other words, Ac∩]α, β[= ∅ or
equivalently ]α, β[⊆ A. The fact that A ⊆ [α, β] follows immediately from
the fact that α and β are respectively a lower-bound and an upper-bound
of A. We have proved that ]α, β[⊆ A ⊆ [α, β].

4. Let A ⊆ R. Suppose that A is a connected subset of R. If A = ∅ then in
particular A is an interval, as can be seen from definition (118). If A 6= ∅,
then A is a non-empty connected subset of R, and we have just proved
that ]α, β[⊆ A ⊆ [α, β] where α = inf A and β = supA. In a similar
fashion to 2. of exercise (8) (depending on whether α, β lie in A or not),
we conclude that A is of the form [α, β], [α, β[, ]α, β] or ]α, β[. From this
same exercise, this is equivalent to A being an interval. So any connected
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subset of R is an interval. Conversely, suppose that A is an interval of R.
Then from exercise (8), A is a connected subset of R. We have proved
that for all A ⊆ R, A is connected, if and only if A is an interval. This
completes the proof of theorem (97).

Exercise 9

Exercise 10. Let f : Ω→ R be a continuous map, where (Ω, T ) is a connected
topological space. Let a, b ∈ Ω with f(a) ≤ f(b). From theorem (96), f(Ω)
is a connected subset of R. From theorem (97), f(Ω) is therefore an interval
of R. Since f(a), f(b) are elements of f(Ω) and f(a) ≤ f(b), it follows from
definition (118) that for all z ∈ [f(a), f(b)] we have z ∈ f(Ω). So there exists
x ∈ Ω such that z = f(x). This completes the proof of theorem (98).

Exercise 10

Exercise 11.

1. Let a, b ∈ R, a < b. Let f : [a, b] → R be a map such that f ′(x) exists
for all x ∈ [a, b]. Note in particular that f is continuous and therefore
measurable. For all n ≥ 1, let φn : [a, b]→ [a, b]:

∀x ∈ [a, b] , φn(x) =

{
x+ (b−x)

n , if x ∈ [a, b[
b− (b−a)

n , if x = b

Then φn is well-defined on [a, b] and has indeed values in [a, b]. The
particular definition of φn is however not very important. What we need
to note is that φn is Borel measurable, satisfies φn(x)→ x while φn(x) 6= x
for all x ∈ [a, b]. Given n ≥ 1, we now define gn : [a, b]→ R as:

∀x ∈ [a, b] , gn(x) =
f ◦ φn(x) − f(x)

φn(x) − x
Then gn : ([a, b],B([a, b])) → (R,B(R)) is well-defined and measurable,
and furthermore gn(x) → f ′(x) for all x ∈ [a, b]. It follows that f ′ is
the pointwise limit of the sequence (gn)n≥1, and we conclude from theo-
rem (17) that f ′ is itself Borel measurable.

2. Since f ′ is measurable and R-valued, the condition:∫ b

a

|f ′(t)|dt < +∞

is equivalent to f ′ ∈ L1
R([a, b],B([a, b]), dx).

3. We assume that f ′ ∈ L1
R([a, b],B([a, b]), dx). Let ε > 0. The topological

space [a, b] is metrizable and compact, and in particular σ-compact. The
Lebesgue measure dx on [a, b] is finite, and in particular locally finite.
Since f ′ ∈ L1

R([a, b],B([a, b]), dx), we can apply Vitali-Caratheodory theo-
rem (94): there exists measurable maps u, v : [a, b]→ R̄ which are almost
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surely equal to elements of L1, such that u ≤ f ′ ≤ v, u is u.s.c, v is l.s.c
and furthermore: ∫ b

a

(v(t) − u(t))dt ≤ ε

In particular, denoting g = v, we have found g : [a, b] → R̄ almost surely
equal to an element of L1, such that f ′ ≤ g and g is l.s.c. Note that the
integral

∫ b
a g(t)dt is meaningful, and:∫ b

a

g(t)dt =
∫ b

a

(f ′(t) + g(t)− f ′(t))dt

=
∫ b

a

f ′(t)dt+
∫ b

a

(g(t)− f ′(t))dt

≤
∫ b

a

f ′(t)dt+
∫ b

a

(v(t)− u(t))dt

≤
∫ b

a

f ′(t)dt+ ε

4. Let α > 0. Since f ′ ≤ g we have f ′ < g + α. Indeed, suppose f ′(x) =
g(x) + α, x ∈ [a, b]. Then f ′(x) = g(x) = g(x) + α and consequently
g(x) ∈ {−∞,+∞} contradicting the fact that f ′ is R-valued. Having
proved that f ′ < g + α, note that g + α is also a lower-semi-continuous
map, which furthermore is almost surely equal to an element of L1, since
the Lebesgue measure on [a, b] is finite. Furthermore, we have:∫ b

a

(g + α)(t)dt =
∫ b

a

g(t)dt+ α(b − a)

≤
∫ b

a

f ′(t)dt+ ε+ α(b − a)

Hence, taking α > 0 small enough, it is possible to achieve:∫ b

a

(g + α)(t)dt ≤
∫ b

a

f ′(t)dt + 2ε

Replacing g by g + α, we have found g : [a, b]→ R̄ almost surely equal to
an element of L1, which is l.s.c. and satisfies f ′ < g together with:∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt+ 2ε

Since ε > 0 was arbitrary, it is possible to find g such that:∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt + ε

In other words, without loss of generality, we have been able to find a map
g as in 3., with the additional condition f ′ < g.
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5. Let ν be the complex measure defined by ν =
∫
gdx. Note that strictly

speaking, g is not an element of L1 (it may have values in {−∞,+∞}). If
h is an element of L1

R([a, b],B([a, b]), dx) such that g = h dx-almost surely,
then for all E ∈ B([a, b]), ν(E) is defined as:

ν(E) =
∫
E

h(x)dx

Note that ν is in fact a signed measure (i.e. a complex measure with
values in R). Since dx(E) = 0 implies ν(E) = 0, the measure ν is abso-
lutely continuous with respect to the Lebesgue measure on [a, b]. From
theorem (58), we have:

∀ε′ > 0 , ∃δ > 0 , ∀E ∈ B([a, b]) , dx(E) ≤ δ ⇒ |ν(E)| ≤ ε′

6. Let η > 0 and x ∈ [a, b]. We define:

Fη(x) =
∫ x

a

g(t)dt− f(x) + f(a) + η(x− a)

Then Fη : [a, b] → R is well-defined, and we claim that it is continuous.
It is sufficient to show that x →

∫ x
a g(t)dt is continuous. Let ε′ > 0

be given, and consider δ > 0 such that the statement of 5. is satisfied.
Let u, u′ ∈ [a, b] such that |u′ − u| ≤ δ. Without loss of generality, we
may assume that u ≤ u′. Then dx(]u, u′]) ≤ δ and consequently from 5.,
|ν(]u, u′])| ≤ ε′. So:∣∣∣∣∣

∫ u′

a

g(t)dt−
∫ u

a

g(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫

[a,u′]

g(t)dt−
∫

[a,u]

g(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫

]u,u′]

g(t)dt

∣∣∣∣∣ = |ν(]u, u′])| ≤ ε′

This shows that x →
∫ x
a g(t)dt is indeed continuous on [a, b] (in fact uni-

formly continuous), and Fη : [a, b]→ R is indeed a continuous map.

7. Given η > 0, let x = supF−1
η ({0}). It is clear that Fη(a) = 0 and conse-

quently a ∈ F−1
η ({0}). So a ≤ x. Since F−1

η ({0}) ⊆ [a, b], in particular b
is an upper-bound of F−1

η ({0}). So x ≤ b. We have proved that x ∈ [a, b].
In particular, x ∈ R and for all n ≥ 1 we have x − 1/n < x. Since x is
the lowest upper-bound of F−1

η ({0}), x − 1/n cannot be such an upper-
bound. There exists xn ∈ F−1

η ({0}) such that x − 1/n < xn ≤ x. We
have thus constructed a sequence (xn)n≥1 in F−1

η ({0}) such that xn → x
as n→ +∞. Since Fη(xn) = 0 for all n ≥ 1, from the continuity of Fη we
obtain Fη(x) = 0.

8. Suppose x ∈ [a, b[. Having proved in 4. that f ′ < g, in particular f ′(x) <
g(x). Since g is l.s.c, the set {f ′(x) < g} is an open subset of [a, b], which
contains x. Hence, there exists δ1 > 0 such that:

]x− δ1, x+ δ1[∩[a, b] ⊆ {f ′(x) < g}
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In particular we have:

t ∈]x, x + δ1[∩[a, b] ⇒ f ′(x) < g(t)

Furthermore, by definition of the derivative f ′(x), since η > 0, there exists
δ2 > 0 such that:

t ∈]x − δ2, x+ δ2[∩[a, b], t 6= x ⇒
∣∣∣∣f(t)− f(x)

t− x − f ′(x)
∣∣∣∣ < η

In particular, we have:

t ∈]x, x + δ2[∩[a, b] ⇒ f(t)− f(x)
t− x < f ′(x) + η

Taking δ = min(δ1, δ2), for all t ∈]x, x + δ[∩[a, b] we have:

f ′(x) < g(t) and
f(t)− f(x)

t− x < f ′(x) + η

Note that this conclusion is not very interesting if x = b, which is why we
have assumed x ∈ [a, b[.

9. Let t ∈]x, x + δ[∩[a, b]. Using 8. we have:

Fη(t) =
∫ t

a

g(u)du− f(t) + f(a) + η(t− a)

= Fη(x) +
∫ t

x

g(u)du+ f(x)− f(t) + η(t− x)

> Fη(x) +
∫ t

x

g(u)du− f ′(x)(t − x)

≥ Fη(x) +
∫ t

x

f ′(x)du − f ′(x)(t − x)

= Fη(x) = 0

10. From 9. we have found δ > 0 such that Fη(t) > 0 for all t in the set
]x, x + δ[∩[a, b]. Having assumed in 8. that x ∈ [a, b[, in particular x < b.
So it is possible to find t0 ∈]x, b[ such that t0 ∈]x, x+δ[∩[a, b]. In particular
Fη(t0) > 0. We have proved the existence of t0 ∈]x, b[ such that Fη(t0) > 0.

11. Suppose Fη(b) < 0. From 10. we have t0 ∈]x, b[ such that Fη(t0) > 0.
From 6. the map Fη : [a, b] → R is continuous. Let h = (Fη)|[t0,b] be
the restriction of Fη to the interval [t0, b]. Then h is also continuous.
From theorem (97), [t0, b] is a connected topological space. Since 0 ∈
[Fη(b), Fη(t0)], from theorem (98) there exists u ∈ [t0, b] such that Fη(u) =
0. Since x = supF−1

η ({0}), in particular u ≤ x. Hence, we obtain the
contradiction x < t0 ≤ u ≤ x.

12. From 11. we see that Fη(b) ≥ 0 must be true when x ∈ [a, b[. Having
proved in 7. that Fη(x) = 0, if x = b, Fη(b) = 0 and in particular Fη(b) ≥ 0
is still true. So Fη(b) ≥ 0 in all cases.
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13. From Fη(b) ≥ 0 we obtain:∫ b

a

g(t)dt− f(b) + f(a) + η(b − a) ≥ 0

This being true for all η > 0, we have:

f(b)− f(a) ≤
∫ b

a

g(t)dt

Hence, using 3. we obtain:

f(b)− f(a) ≤
∫ b

a

f ′(t)dt+ ε

and this being true for all ε > 0, we have proved that:

f(b)− f(a) ≤
∫ b

a

f ′(t)dt (3)

Having considered a, b ∈ R, a < b and f : [a, b] → R a map such that
f ′(x) exists for all x ∈ [a, b] and:∫ b

a

|f ′(t)|dt < +∞

we have been able to prove inequality (3). Applying this result to −f
instead of f , we obtain: ∫ b

a

f ′(t)dt ≤ f(b)− f(a)

and finally we conclude that:

f(b)− f(a) =
∫ b

a

f ′(t)dt

This completes the proof of theorem (99).

Exercise 11

Exercise 12.

1. Let α > 0 and kα : Rn → Rn defined by kα(x) = αx. Then kα is
continuous, and in particular Borel measurable.

2. Let µ : B(Rn)→ [0,+∞] be defined by:

∀B ∈ B(Rn) , µ(B) = αndx({kα ∈ B})
where dx is the Lebesgue measure on Rn. Note that µ is well-defined
since {kα ∈ B} is a Borel set for all B ∈ B(Rn), kα being measurable. It
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is clear that µ(∅) = 0 and furthermore, if (Bp)p≥1 is sequence of pairwise
disjoint elements of B(Rn) and B = ]p≥1Bp, we have:

µ(B) = αndx

k−1
α

⊎
p≥1

Bp


= αndx

⊎
p≥1

k−1
α (Bp)


= αn

(
+∞∑
p=1

dx(k−1
α (Bp))

)

=
+∞∑
p=1

αndx({kα ∈ Bp})

=
+∞∑
p=1

µ(Bp)

So µ is a measure on Rn. Let ai, bi ∈ R, ai ≤ bi for i ∈ Nn. For
all x = (x1, . . . , xn) ∈ Rn the inequality ai ≤ αxi ≤ bi is equivalent to
ai/α ≤ xi ≤ bi/α. Hence:

µ([a1, b1]× . . .× [an, bn]) = αndx

({
αx ∈

n∏
i=1

[ai, bi]

})

= αndx

(
n∏
i=1

[
ai
α
,
bi
α

])

= αn
n∏
i=1

(
bi
α
− ai
α

)

=
n∏
i=1

(bi − ai)

From the uniqueness property of definition (63) we conclude that µ = dx.
Hence, we have proved that for all B ∈ B(Rn):

dx({kα ∈ B}) =
1
αn
µ(B) =

1
αn
dx(B)

3. Let ε > 0 and x ∈ Rn. Let B(x, ε) be the open ball:

B(x, ε) = {y ∈ Rn : ‖x− y‖ < ε}
where ‖ · ‖ denotes the usual Euclidean norm on Rn. Given u ∈ Rn we
consider τu : Rn → Rn the translation mapping of vector u defined by
τu(x) = u + x. Then τu is clearly continuous, hence Borel measurable.
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Furthermore, for all a, b ∈ Rn such that ai ≤ bi for all i ∈ Nn, we have:

dx

({
τu ∈

n∏
i=1

[ai, bi]

})
= dx

(
n∏
i=1

[ai − ui, bi − ui]
)

=
n∏
i=1

(bi − ai)

and in a similar fashion to 2. we conclude from the uniqueness property
of definition (63) that for all B ∈ B(Rn):

dx({τu ∈ B}) = dx(B)

This equality expresses the idea that the Lebesgue measure is invariant
by translation. We shall see more on the subject in Tutorial 17. In the
meantime, using 2. we obtain:

dx(B(x, ε)) = dx({τ−x ∈ B(0, ε)})
= dx(B(0, ε))
= dx({k1/ε ∈ B(0, 1)})
= εndx(B(0, 1))

So we have proved that dx(B(x, ε)) = εndx(B(0, 1)).

Exercise 12

Exercise 13.

1. Let µ be a complex measure on Rn. Let λ ∈ R and suppose that λ < 0.
Let x ∈ Rn and ε > 0. Since B(x, ε) is an open subset of Rn, in particular
it is a Borel subset of Rn. So |µ|(B(x, ε)) and dx(B(x, ε)) are well-defined
quantities of [0,+∞]. In fact, from theorem (57), the total variation |µ|
is a finite measure on Rn, so |µ|(B(x, ε)) is an element of R+ (this is not
relevant to the present question, but the fact that |µ| is a finite measure
should not be forgotten). From the inclusions:

[−1/2
√
n, 1/2

√
n]n ⊆ B(0, 1) ⊆ [−1, 1]n

we obtain the crude estimates:(
1√
n

)n
≤ dx(B(0, 1)) ≤ 2n

and it follows from 3. of exercise (12) that dx(B(x, ε)) is an element of
]0,+∞[. Hence, we see that |µ|(B(x, ε))/dx(B(x, ε)) is a well-defined ele-
ment of R+. Since (Mµ)(x) is an upper-bound of all such ratios for ε > 0,
we have:

λ < 0 ≤ |µ|(B(x, ε))
dx(B(x, ε))

≤ (Mµ)(x)

So x ∈ {λ < Mµ}. This being true for all x ∈ Rn, we conclude that
{λ < Mµ} = Rn.

www.probability.net

http://www.probability.net


Solutions to Exercises 34

2. Suppose λ = 0 and µ 6= 0. There exists E ∈ B(Rn) such that µ(E) 6= 0.
Since |µ(E)| ≤ |µ|(E), in particular |µ|(E) > 0. Let x ∈ Rn. Since
B(x, p) ↑ Rn as p→ +∞, from theorem (7):

0 < |µ|(E) = lim
p→+∞

|µ|(E ∩B(x, p))

In particular, there exists p ≥ 1 such that |µ|(E ∩B(x, p)) > 0 and conse-
quently |µ|(B(x, p)) > 0. Hence, we have:

0 <
|µ|(B(x, p))
dx(B(x, p))

≤ (Mµ)(x)

and we have proved that x ∈ {λ < Mµ} = {0 < Mµ}. This being true
for all x ∈ Rn, we have {λ < Mµ} = Rn. Suppose now that λ = 0 with
µ = 0. Then |µ| = 0 and it is clear that (Mµ)(x) = 0 for all x ∈ Rn. So
{λ < Mµ} = ∅.

3. Suppose λ > 0. Let x ∈ {λ < Mµ}. Then λ < (Mµ)(x). Since (Mµ)(x)
is the smallest upper-bound of all ratios:

|µ|(B(x, ε))/dx(B(x, ε))

as ε > 0, λ cannot be such an upper-bound. There exists ε > 0 such that
λ < |µ|(B(x, ε))/dx(B(x, ε)). Defining:

t = |µ|(B(x, ε))/dx(B(x, ε))

we have t > λ and |µ|(B(x, ε)) = tdx(B(x, ε)).

4. Since 1 < t/λ we have εn < εnt/λ. Furthermore, it is clear that limδ↓0(ε+
δ)n = εn. Hence, we have (ε+ δ)n < εnt/λ, for δ > 0 small enough.

5. Suppose y ∈ B(x, δ) and let z ∈ B(x, ε). Then:

‖z − y‖ ≤ ‖z − x‖+ ‖x− y‖ < ε+ δ

So z ∈ B(y, ε+ δ) and we have proved that B(x, ε) ⊆ B(y, ε+ δ).

6. Let y ∈ B(x, δ). Since B(x, ε) ⊆ B(y, ε + δ), we have:

|µ|(B(y, ε + δ)) ≥ |µ|(B(x, ε))
= tdx(B(x, ε))
= εntdx(B(0, 1))

=
εnt

(ε + δ)n
dx(B(y, ε + δ))

> λdx(B(y, ε + δ))

where the second and third equalities stem from exercise (12).

7. For all y ∈ B(x, δ), from 6. we have:

λ <
|µ|(B(y, ε+ δ))
dx(B(y, ε+ δ))

≤ (Mµ)(y)
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So in particular y ∈ {λ < Mµ} and we have proved that B(x, δ) ⊆ {λ <
Mµ}. Having considered x ∈ {λ < Mµ} we have found δ > 0 such that
B(x, δ) ⊆ {λ < Mµ}. This shows that {λ < Mµ} is an open subset of
Rn, for all λ ∈ R with λ > 0. In fact, it follows from 1. and 2. that
{λ < Mµ} is also open if λ ≤ 0. We conclude that {λ < Mµ} is open for
all λ ∈ R, i.e. that the maximal function Mµ is lower-semi-continuous.
In particular, {λ < Mµ} is a Borel subset of Rn for all λ ∈ R and from
theorem (15), Mµ is measurable.

Exercise 13

Exercise 14.

1. Let Bi = B(xi, εi), i = 1, . . . , N , be a finite collection of open balls in Rn

where we have assumed that εN ≤ . . . ≤ ε1. We define J0 = {1, . . . , N}
and for all k ≥ 1:

Jk
4
=
{
Jk−1 ∩ {j : j > ik , Bj ∩Bik = ∅} if Jk−1 6= ∅
∅ if Jk−1 = ∅

where ik = min Jk−1 if Jk−1 6= ∅. Suppose k ≥ 1 and Jk−1 6= ∅. The fact
that Jk ⊆ Jk−1 is clear. However, the inclusion is strict. Indeed, since
ik = minJk−1, in particular ik ∈ Jk−1. However, it is clear that ik 6∈ Jk.
We have proved that Jk ⊂ Jk−1.

2. Since (Jk)k≥0 is a strictly decreasing sequence (in the inclusion sense) and
J0 is a finite set, there exists k ≥ 1 such that Jk = ∅. It follows that
p = min{k ≥ 1 : Jk = ∅}, as the smallest element of a non-empty subset
of N, is well-defined.

3. Let S = {i1, . . . , ip} where ik = minJk−1 for all k ≥ 1 with Jk−1 6= ∅.
In order to show that S is well-defined, we need to ensure that ik is
meaningful for k ∈ Np, i.e. that Jk−1 6= ∅. But if k ∈ Np and Jk−1 = ∅,
since p is the smallest element of {k ≥ 1 : Jk = ∅} we obtain p ≤ k − 1
and k ≤ p which is a contradiction. So S is well-defined.

4. Suppose 1 ≤ k < k′ ≤ p. We have ik′ ∈ Jk′−1 ⊆ Jk. So ik′ ∈ Jk.

5. The family (Bi)i∈S is a family of open balls. Suppose i, j ∈ S with i < j.
There exist 1 ≤ k < k′ ≤ p such that i = ik and j = ik′ . From 4. we have
j ∈ Jk. This implies in particular that Bj ∩Bik = ∅. So Bj ∩Bi = ∅, and
(Bi)i∈S is a family of pairwise disjoint open balls.

6. Let i ∈ {1, . . . , N} \ S and k0 = min{k ∈ Np : i 6∈ Jk}. In order to show
that k0 is well-defined, we need to check that {k ∈ Np : i 6∈ Jk} is not
empty. This is clear from the fact that Jp = ∅. So k0 is well-defined. Note
that this conclusion holds for any i ∈ {1, . . . , N}.

7. k0 being the smallest element of {k ∈ Np : i 6∈ Jk}, k0 − 1 does not lie in
this set. So either k0 − 1 = 0 or i ∈ Jk0−1. Since J0 = {1, . . . , N}, in any
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case we have i ∈ Jk0−1. In particular Jk0−1 6= ∅. So ik0 is defined as the
smallest element of Jk0−1. From i ∈ Jk0−1 we obtain ik0 ≤ i.

8. Since Jk0−1 6= ∅, we have:

Jk0 = Jk0−1 ∩ {j : j > ik0 , Bj ∩Bik0
= ∅}

k0 being the smallest element of {k ∈ Np : i 6∈ Jk}, in particular it is an
element of this set and consequently we know that i 6∈ Jk0 . However, we
have proved in 7. that i ∈ Jk0−1. Furthermore, we know that ik0 ≤ i and
since by assumption i ∈ {1, . . . , N} \ S, in particular i is not an element
of S. So i 6= ik0 and therefore ik0 < i. Since i 6∈ Jk0 we conclude that
Bi ∩Bik0

6= ∅.

9. From 8. we have Bi ∩ Bik0
= B(xi, εi) ∩ B(xik0

, εik0
) 6= ∅. Let x be an

arbitrary element of Bi ∩ Bik0
. Then for all y ∈ Bi, since ik0 < i and

εN ≤ . . . ≤ ε1, we have:

‖y − xik0
‖ ≤ ‖y − xi‖+ ‖xi − x‖ + ‖x− xik0

‖
< εi + εi + εik0

≤ 3εik0

So y ∈ B(xik0
, 3εik0

) and we have proved Bi ⊆ B(xik0
, 3εik0

).

10. For all i ∈ {1, . . . , N}\S, we found k0 ∈ Np such that Bi ⊆ B(xik0
, 3εik0

).
In other words, if we denote j(i) = ik0 , there exists some j(i) ∈ S such
that we have Bi ⊆ B(xj(i), 3εj(i)). Hence:

N⋃
i=1

B(xi, εi) =
⋃
i∈S

B(xi, εi) ∪

⋃
i6∈S

B(xi, εi)


⊆

⋃
i∈S

B(xi, εi) ∪

⋃
i6∈S

B(xj(i), 3εj(i))


⊆

⋃
i∈S

B(xi, εi) ∪
(⋃
i∈S

B(xi, 3εi)

)
=

⋃
i∈S

B(xi, 3εi)

So S = {i1, . . . , ip} is a subset of {1, . . . , N} such that (Bi)i∈S is a family
of pairwise disjoint open balls, and:

N⋃
i=1

B(xi, εi) ⊆
⋃
i∈S

B(xi, 3εi)
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11. Using 10. and exercise (12), we have:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ dx

(⋃
i∈S

B(xi, 3εi)

)
≤

∑
i∈S

dx(B(xi, 3εi))

=
∑
i∈S

3nεni dx(B(0, 1))

= 3n
∑
i∈S

dx(B(xi, εi))

where the second inequality stems from the fact that a measure is always
sub-additive, as can be seen from exercise (13) of Tutorial 5.

Exercise 14

Exercise 15.

1. Let µ be a complex measure on Rn. Let λ > 0 and K be a non-empty
compact subset of {λ < Mµ}. Let x ∈ K. Then x ∈ {λ < Mµ}, i.e.
λ < (Mµ)(x). Since (Mµ)(x) is the smallest upper-bound of all ratios:

|µ|(B(x, ε))/dx(B(x, ε))

as ε > 0, it is impossible for λ to be such an upper-bound. There exists
εx > 0 such that:

λ <
|µ|(B(x, εx))
dx(B(x, εx))

(4)

Now it is clear that K ⊆ ∪x∈KB(x, εx). Since K is compact, there exist
N ≥ 1 and x1, . . . , xN ∈ K such that:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xN , εxN )

Defining εi = εxi and Bi = B(xi, εi), the collection (Bi)i∈NN is therefore
a covering of K. From (4), for all i = 1, . . . , N we have λdx(Bi) < |µ|(Bi).

2. By re-indexing the Bi’s if necessary, without loss of generality we can
assume that εN ≤ . . . ≤ ε1. From exercise (14), there exists a subset
S of {1, . . . , N} such that the Bi’s for i ∈ S are pairwise disjoint, and
furthermore:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ 3n

∑
i∈S

dx(B(xi, εi))

Hence, since K ⊆ ∪Ni=1Bi, using 1. we obtain:

dx(K) ≤ dx

(
N⋃
i=1

B(xi, εi)

)
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≤ 3n
∑
i∈S

dx(B(xi, εi))

< 3n
∑
i∈S

1
λ
|µ|(B(xi, εi))

=
3n

λ
|µ|
(⋃
i∈S

B(xi, εi)

)
where the last equality stems from the fact that all the Bi’s, i ∈ S, are
pairwise disjoint. We have effectively obtained a strict inequality, when
only a large inequality was required.

3. Let ‖µ|| = |µ|(Rn) < +∞ be the total mass of |µ|. From 2.:

dx(K) ≤ 3nλ−1|µ|
(⋃
i∈S

B(xi, εi)

)
≤ 3nλ−1‖µ||

4. Having considered a complex measure µ on Rn, with maximal function
Mµ, given λ ∈ R+ \ {0}, for all K non-empty compact subset of {λ <
Mµ}, we have proved that:

dx(K) ≤ 3nλ−1‖µ‖
Note that this inequality is still valid if K = ∅. The Lebesgue measure on
Rn being locally finite, from theorem (74) it is inner-regular. In particular,
we have:

dx({λ < Mµ}) = sup{dx(K) : K ⊆ {λ < Mµ},K compact}
In other words, dx({λ < Mµ}) is the smallest upper-bound of all dx(K)’s,
as K runs through the set of all compact subsets of {λ < Mµ}. Having
proved that 3nλ−1‖µ‖ is one of those upper-bounds, we conclude that:

dx({λ < Mµ}) ≤ 3nλ−1‖µ‖
This completes the proof of theorem (100).

Exercise 15

Exercise 16.

1. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. From theorem (63), µ =

∫
fdx is a

well-defined complex measure on Rn, and its total variation |µ| is given
by |µ| =

∫
|f |dx. From definition (120), the maximal function Mf of f is

exactly the maximal function Mµ of µ. Hence, for all x ∈ Rn:

(Mf)(x) = (Mµ)(x)

= sup
ε>0

|µ|(B(x, ε))
dx(B(x, ε))

= sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|f |dx
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2. If µ =
∫
fdx then |µ| =

∫
|f |dx and consequently:

‖µ‖ = |µ|(Rn) =
∫

Rn

|f |dx = ‖f‖1

Applying theorem (100) to µ, for all λ > 0 we obtain:

dx({λ < Mf}) = dx({λ < Mµ})
≤ 3nλ−1‖µ‖
= 3nλ−1‖f‖1

Exercise 16

Exercise 17.

1. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. Let x ∈ Rn. We assume that f is

continuous at x. Let η > 0. There is δ > 0 such that:

∀y ∈ Rn , ‖x− y‖ ≤ δ ⇒ |f(x)− f(y)| ≤ η

Suppose ε > 0 is such that 0 < ε < δ. Then:

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy ≤ 1
dx(B(x, ε))

∫
B(x,ε)

ηdy = η

We conclude that:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0

and x is therefore a Lebesgue point of f .

2. Let x ∈ Rn. We assume that x is a Lebesgue point of f . For all ε > 0,
denoting Bε = B(x, ε) we have:∣∣∣∣ 1

dx(Bε)

∫
Bε

f(y)dy − f(x)
∣∣∣∣ =

∣∣∣∣ 1
dx(Bε)

∫
Bε

(f(y)− f(x))dy
∣∣∣∣

≤ 1
dx(Bε)

∫
Bε

|f(y)− f(x)|dy

Hence, from:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0

we conclude that:

f(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

f(y)dy

Exercise 17

Exercise 18.
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1. Given f ∈ L1
C(Rn,B(Rn), dx), for all ε > 0 and x ∈ Rn, let:

(Tεf)(x) =
1

dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy

and:
(Tf)(x) = inf

ε>0
sup
u∈]0,ε[

(Tuf)(x)

From theorem (79), the space CcC(Rn) of continuous C-valued functions
defined on Rn with compact support, is dense in L1. Given η > 0, there
exists g ∈ CcC(Rn) such that ‖f − g‖1 ≤ η.

2. Let h = f − g. For all ε > 0 and x ∈ Rn we have:

(Tεh)(x) =
1

dx(B(x, ε))

∫
B(x,ε)

|h(y)− h(x)|dy

≤ 1
dx(B(x, ε))

∫
B(x,ε)

(|h(y)|+ |h(x)|)dy

=
1

dx(B(x, ε))

∫
B(x,ε)

|h(y)|dy + |h(x)|

=
1

dx(B(x, ε))

∫
B(x,ε)

|h|dx+ |h(x)|

3. Let x ∈ Rn. From exercise (16) we have:

(Mh)(x) = sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|h|dx

In particular, for all ε > 0, from 2. we obtain:

(Tεh)(x) ≤ (Mh)(x) + |h(x)|

Hence, if ε > 0 is given, (Mh)(x)+|h(x)| is an upper-bound of all (Tuh)(x)
as u ∈]0, ε[. It follows that:

sup
u∈]0,ε[

(Tuh)(x) ≤ (Mh)(x) + |h(x)|

and we have:

(Th)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tuh)(x)

≤ sup
u∈]0,ε[

(Tuh)(x)

≤ (Mh)(x) + |h(x)|

This being true for all x ∈ Rn, Th ≤Mh+ |h|.
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4. Let x ∈ Rn and ε > 0. Let Bε = B(x, ε). Then:

(Tεf)(x) =
1

dx(Bε)

∫
Bε

|f(y)− f(x)|dy

=
1

dx(Bε)

∫
Bε

|g(y)− g(x) + h(y)− h(x)|dy

≤ 1
dx(Bε)

(∫
Bε

|g(y)− g(x)|dy +
∫
Bε

|h(y)− h(x)|dy
)

= (Tεg)(x) + (Tεh)(x)

This being true for all x ∈ Rn, Tεf ≤ Tεg + Tεh.

5. Let x ∈ Rn. Let ε1, ε2 > 0 be given and ε = min(ε1, ε2). For all u ∈]0, ε[,
using 4. we have:

(Tuf)(x) ≤ (Tug)(x) + (Tuh)(x)
≤ sup

u∈]0,ε1[

(Tug)(x) + sup
u∈]0,ε2[

(Tuh)(x)

Hence, the right-hand-side of this inequality is an upper-bound of all
(Tuf)(x)’s as u ∈]0, ε[. It follows that:

(Tf)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tuf)(x)

≤ sup
u∈]0,ε[

(Tuf)(x)

≤ sup
u∈]0,ε1[

(Tug)(x) + sup
u∈]0,ε2[

(Tuh)(x)

Suppose supu∈]0,ε1[(Tug)(x) < +∞. Then this quantity can be safely
subtracted from both sides of the previous inequality, to obtain:

(Tf)(x)− sup
u∈]0,ε1[

(Tug)(x) ≤ sup
u∈]0,ε2[

(Tuh)(x)

Hence, ε1 > 0 being given, we see that the left-hand-side of this inequality
is a lower-bound of all supu∈]0,ε2[(Tuh)(x)’s, as ε2 > 0. Since (Th)(x) is
the greatest of such lower-bounds, we obtain:

(Tf)(x)− sup
u∈]0,ε1[

(Tug)(x) ≤ (Th)(x)

or equivalently:

(Tf)(x) ≤ sup
u∈]0,ε1[

(Tug)(x) + (Th)(x)

which is still valid when supu∈]0,ε1[(Tug)(x) = +∞. Suppose now that
(Th)(x) < +∞. Then (Th)(x) can be safely subtracted from both sides
of the previous inequality, to obtain:

(Tf)(x)− (Th)(x) ≤ sup
u∈]0,ε1[

(Tug)(x)
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This being established for all ε1 > 0, (Tf)(x)− (Th)(x) is a lower-bound
of all supu∈]0,ε1[(Tug)(x)’s, as ε1 > 0. Since (Tg)(x) is the greatest of such
lower-bounds, we obtain:

(Tf)(x)− (Th)(x) ≤ (Tg)(x)

or equivalently:
(Tf)(x) ≤ (Tg)(x) + (Th)(x)

This being true for all x ∈ Rn, Tf ≤ Tg + Th.

6. Let x ∈ Rn. Since g ∈ CcC(Rn), g is a continuous element of L1. From
exercise (17), x is therefore a Lebesgue point of g. Hence, from defini-
tion (121):

lim
ε↓↓0

(Tεg)(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|g(y)− g(x)|dy = 0

Let δ > 0. There exists ε > 0 such that:

u ∈]0, ε[ ⇒ (Tug)(x) ≤ δ
So δ is an upper-bound of all (Tug)(x)’s as u ∈]0, ε[, and consequently
supu∈]0,ε[(Tug)(x) ≤ δ. Hence:

(Tg)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tug)(x)

≤ sup
u∈]0,ε[

(Tug)(x)

≤ δ

This being true for all δ > 0, we conclude that (Tg)(x) = 0. This being
true for all x ∈ Rn, we have proved that Tg = 0.

7. Using 3. and 5. together with Tg = 0, we obtain:

Tf ≤ Tg + Th = Th ≤Mh+ |h|

8. Let α > 0. Let x ∈ Rn and suppose that (Mh)(x) ≤ α together with
|h|(x) ≤ α. Using 7. we obtain:

(Tf)(x) ≤ (Mh)(x) + |h|(x) ≤ 2α

Hence, we have shown the inclusion:

{Mh ≤ α} ∩ {|h| ≤ α} ⊆ {Tf ≤ 2α}
from which we conclude that:

{2α < Tf} ⊆ {α < Mh} ∪ {α < |h|}
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9. We have:

dx({α < |h|}) = α−1

∫
α1{α<|h|}dx

≤ α−1

∫
|h|1{α<|h|}dx

≤ α−1

∫
|h|dx

= α−1‖h‖1

10. Let α > 0 and η > 0. From 1. we have the existence of g ∈ CcC(Rn) such
that ‖h‖1 ≤ η where h = f − g. Define Mα,η = {α < Mh} ∪ {α < |h|}.
From exercise (13) applied to the complex measure µ =

∫
hdx, Mh is

a Borel measurable map. Since |h| is also Borel measurable, we see that
Mα,η ∈ B(Rn). Furthermore from 8. we have {2α < Tf} ⊆Mα,η. Finally,
using 9. and exercise (16), we obtain:

dx(Mα,η) = dx({α < Mh} ∪ {α < |h|})
≤ dx({α < Mh}) + dx({α < |h|})
≤ 3nα−1‖h‖1 + α−1‖h‖1
= (3n + 1)α−1‖h‖1
≤ (3n + 1)α−1η

Hence, given α > 0 and η > 0, we have found Mα,η ∈ B(Rn) such that
{2α < Tf} ⊆ Mα,η and dx(Mα,η) ≤ (3n + 1)α−1η. Take Nα,η = Mα,η∗

where η∗ = (3n + 1)−1αη. Then Nα,η ∈ B(Rn), {2α < Tf} ⊆ Nα,η and
dx(Nα,η) ≤ η, which is exactly what we want.

11. Let α > 0. With an obvious change of notation, given n ≥ 1, from 10.
there exists Nα,n ∈ B(Rn) such that we have {2α < Tf} ⊆ Nα,n and
dx(Nα,n) ≤ 1/n. Let Nα = ∩n≥1Nα,n. Then Nα ∈ B(Rn), {2α < Tf} ⊆
Nα and furthermore for all n ≥ 1:

dx(Nα) = dx(∩n≥1Nα,n) ≤ dx(Nα,n) ≤ 1
n

So dx(Nα) = 0.

12. Let n ≥ 1. With an obvious change of notation, from 11. there exists
Nn ∈ B(Rn) such that {2/n < Tf} ⊆ Nn together with dx(Nn) = 0.
Define N = ∪n≥1Nn. Then N ∈ B(Rn) and dx(N) = 0. Furthermore:

{Tf > 0} =
⋃
n≥1

{2/n < Tf}

⊆
⋃
n≥1

Nn = N
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13. From 12. there exists N ∈ B(Rn) with dx(N) = 0 such that {Tf > 0} ⊆
N . Hence, for all x ∈ Rn, we have x ∈ N c ⇒ (Tf)(x) = 0. We conclude
that Tf = 0 dx-a.s.

14. Let f ∈ L1
C(Rn,B(Rn), dx). Let x ∈ Rn and suppose that (Tf)(x) = 0.

Let δ > 0. Then (Tf)(x) < δ. Since (Tf)(x) is the greatest lower-bound of
all supu∈]0,ε′[(Tuf)(x)’s as ε′ > 0, δ cannot be such a lower-bound. There
exists ε′ > 0 such that supu∈]0,ε′[(Tuf)(x) < δ. Hence for all ε ∈]0, ε′[, we
have:

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = (Tεf)(x)

≤ sup
u∈]0,ε′[

(Tuf)(x) < δ

We have proved that:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y)− f(x)|dy = 0

i.e. that x is a Lebesgue point of f . So every x ∈ Rn such that (Tf)(x) = 0
is a Lebesgue point of f . Since Tf = 0 dx-almost surely, we conclude that
dx-almost all x ∈ Rn are Lebesgue points of f . This completes the proof
of theorem (101).

Exercise 18

Exercise 19.

1. Let (Ω,F , µ) be a measure space and Ω′ ∈ F . Let F ′ = F|Ω′ and µ′ = µ|F ′ .
Let A ∈ F ′. Since F ′ is the trace of F on Ω′, from definition (22) there
exists A ∈ F such that A′ = A ∩ Ω′. Since Ω′ ∈ F , we see that A′ ∈ F .
This shows that F ′ ⊆ F and the restriction µ′ = µ|F ′ is a well-defined
measure on (Ω′,F ′).

2. For all maps f defined on Ω′ with values in C or [0,+∞], we define an
extension of f on Ω, denoted f̃ , by setting f̃(ω) = 0 for all ω ∈ Ω \ Ω′.
Let A ∈ F ′ and 1′A be the indicator function of A on Ω′. A is also a
subset of Ω, and we denote 1A its indicator function on Ω. Let ω ∈ Ω. If
ω ∈ A ⊆ Ω′, then:

1̃′A(ω)
4
= 1′A(ω) = 1 = 1A(ω)

If ω ∈ Ω′ \A, then:

1̃′A(ω)
4
= 1′A(ω) = 0 = 1A(ω)

if ω ∈ Ω \ Ω′, then:

1̃′A(ω)
4
= 0 = 1A(ω)

In any case we have 1̃′A(ω) = 1A(ω). So 1̃′A = 1A.
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3. Let f : (Ω′,F ′) → [0,+∞] be a non-negative and measurable map. For
all B ∈ B([0,+∞]) we have:

{f̃ ∈ B} = ({f̃ ∈ B} ∩Ω′) ] ({f̃ ∈ B} ∩ (Ω \ Ω′))
= {f ∈ B} ] ({0 ∈ B} ∩ (Ω \Ω′))

where {0 ∈ B} denotes Ω if 0 ∈ B and ∅ if 0 6∈ B. Since f is measurable, we
have {f ∈ B} ∈ F ′ ⊆ F . Since Ω′ ∈ F , it is clear that {0 ∈ B}∩(Ω\Ω′) ∈
F . It follows that {f̃ ∈ B} ∈ F , and we have proved that f̃ is a non-
negative and measurable map. Suppose f is of the form 1′A for some
A ∈ F ′. Then:∫

Ω′
1′Adµ

′ = µ′(A) = µ(A) =
∫

Ω

1Adµ =
∫

Ω

1̃′Adµ

Suppose now that f =
∑n

i=1 αi1
′
Ai

is a simple function on (Ω′,F ′). To
make our proof clearer, let us denote φ(g) the extension g̃ of any map g
defined on Ω′. Then:∫

Ω′
fdµ′ =

∫
Ω′

(
n∑
i=1

αi1′Ai

)
dµ′

=
n∑
i=1

αi

∫
Ω′

1′Aidµ
′

=
n∑
i=1

αi

∫
Ω

φ(1′Ai)dµ

=
∫

Ω

(
n∑
i=1

αiφ(1′Ai)

)
dµ

=
∫

Ω

φ

(
n∑
i=1

αi1′Ai

)
dµ

=
∫

Ω

φ(f)dµ

=
∫

Ω

f̃dµ

Finally, if f : (Ω′,F ′) → [0,+∞] is an arbitrary non-negative and mea-
surable map, from theorem (18) there exists a sequence (sn)n≥1 of simple
functions on (Ω′,F ′) such that sn ↑ f , i.e. for all ω ∈ Ω′, sn(ω) ≤ sn+1(ω)
for all n ≥ 1, and sn(ω) → f(ω). It is clear that s̃n ↑ f̃ , and from the
monotone convergence theorem (19) we obtain:∫

Ω′
fdµ′ = lim

n→+∞

∫
Ω′
sndµ

′

= lim
n→+∞

∫
Ω

s̃ndµ
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=
∫

Ω

f̃dµ

4. Let f ∈ L1
C(Ω′,F ′, µ′). Let u = Re(f) and v = Im(f). To make our

proof clearer, we shall denote φ(g) the extension g̃ of any map g defined
on Ω′. From f = u+ − u− + i(v+ − v−) we obtain φ(f) = φ(u+) −
φ(u−) + i(φ(v+)− φ(v−)). From 3. each φ(u±) and φ(v±) is measurable,
and consequently φ(f) is itself measurable. Note that given B ∈ B(C), it
is not difficult to show directly that {f̃ ∈ B} ∈ F just like we did in 3.
with B ∈ B([0,+∞]). It is clear that |φ(f)| = φ(|f |), and applying 3. to
the non-negative and measurable map |f | we obtain:∫

Ω

|φ(f)|dµ =
∫

Ω

φ(|f |)dµ =
∫

Ω′
|f |dµ′ < +∞

Hence, we have proved that f̃ = φ(f) ∈ L1
C(Ω,F , µ). Finally, using 3.

once more together with the linearity of the integral:∫
Ω′
fdµ′ =

∫
Ω′
u+dµ′ −

∫
Ω′
u−dµ′

+ i

(∫
Ω′
v+dµ′ −

∫
Ω′
v−dµ′

)
=

∫
Ω

φ(u+)dµ−
∫

Ω

φ(u−)dµ

+ i

(∫
Ω

φ(v+)dµ−
∫

Ω

φ(v−)dµ
)

=
∫

Ω

[φ(u+)− φ(u−) + i(φ(v+)− φ(v−))]dµ

=
∫

Ω

φ(f)dµ =
∫

Ω

f̃dµ

Exercise 19

Exercise 20.

1. Let b : R+ → C be a map. Suppose b is absolutely continuous. From
definition (122), b is right-continuous of finite variation, and furthermore
it is absolutely continuous with respect to the right-continuous and non-
decreasing map a : R+ → R+ with a(0) ≥ 0, defined by a(t) = t. From

theorem (89), there exists f ∈ L1,loc
C (t) such that b(t) =

∫ t
0 f(s)ds for all

t ∈ R+. Conversely, suppose such an f exists. From theorem (88), b = f.a
is a right-continuous map of finite variation, and from theorem (89), it is
in fact absolutely continuous with respect to a(t) = t. So b is absolutely
continuous. We have proved that b is absolutely continuous, if and only if
there exists f ∈ L1,loc

C (t) such that b(t) =
∫ t

0
f(s)ds for all t ∈ R+.

www.probability.net

http://www.probability.net


Solutions to Exercises 47

2. Suppose b is absolutely continuous and let f ∈ L1,loc
C (t) be such that

b(t) =
∫ t

0 f(s)ds for all t ∈ R+. From theorem (88), we have ∆b = f∆t =
0. Since b is right-continuous of finite variation, in particular it is cadlag.
We conclude from exercise (29) (part 1) of Tutorial 14 that b is in fact
continuous with b(0) = 0.

Exercise 20

Exercise 21.

1. Let b : R+ → C be absolutely continuous. Let f ∈ L1,loc
C (t) be such that

b(t) =
∫ t

0 f(s)ds for all t ∈ R+. For all n ≥ 1, we define fn : R→ C by:

fn(t)
4
=
{
f(t)1[0,n](t) if t ∈ R+

0 if t < 0

Applying exercise (19) to (Ω,Ω′) = (R,R+), bearing in mind that B(R+) =
B(R)|R+ , we have fn = φ(f1[0,n]) where φ(g) denotes the extension g̃ on

R, of any map g defined on R+. Since f ∈ L1,loc
C (t), we have f1[0,n] ∈

L1
C(R+,B(R+), dx) and consequently fn = φ(f1[0,n]) ∈ L1

C(R,B(R), dx).
Note that we are using the same notation dx to denote successively the
Lebesgue measure on R+ and the Lebesgue measure on R, the former
being the restriction of the latter to B(R+) ⊆ B(R). Let n ≥ 1 and
t ∈ [0, n]. Using exercise (19) once more:∫ t

0

fndx =
∫

R

fn1[0,t]dx

=
∫

R

φ(f1[0,n]1[0,t])dx

=
∫

R+
f1[0,n]1[0,t]dx

=
∫

R+
f1[0,t]dx

=
∫ t

0

f(s)ds = b(t)

Note that we use the same notations 1[0,t] and 1[0,n] to denote character-
istic functions defined successively on R and R+.

2. Since fn ∈ L1
C(R,B(R), dx), from theorem (101), dx-almost every t ∈ R

is a Lebesgue point of fn. Hence, there exists Nn ∈ B(R) with dx(Nn) = 0
such that for all t ∈ N c

n, t is a Lebesgue point of fn.

3. Let t ∈ R and ε > 0. Since B(t, ε) =]t− ε, t+ ε[, we have:

1
ε

∫ t+ε

t

|fn(s)− fn(t)|ds =
2

dx(B(t, ε))

∫ t+ε

t

|fn(s)− fn(t)|ds
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≤ 2
dx(B(t, ε))

∫ t+ε

t−ε
|fn(s)− fn(t)|ds

=
2

dx(B(t, ε))

∫
B(t,ε)

|fn(s)− fn(t)|ds

4. Let t ∈ N c
n. Then t is a Lebesgue point of fn. From the inequality

obtained in 3. we have:

lim
ε↓↓0

1
ε

∫ t+ε

t

|fn(s)− fn(t)|ds = 0

Furthermore, since:∣∣∣∣1ε
∫ t+ε

t

fn(s)ds− fn(t)
∣∣∣∣ =

1
ε

∣∣∣∣∫ t+ε

t

(fn(s)− fn(t))ds
∣∣∣∣

≤ 1
ε

∫ t+ε

t

|fn(s)− fn(t)|ds

We conclude that:

lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

5. Similarly to 3. and 4. we have:∣∣∣∣1ε
∫ t

t−ε
fn(s)ds− fn(t)

∣∣∣∣ =
1
ε

∣∣∣∣∫ t

t−ε
(fn(s)− fn(t))ds

∣∣∣∣
≤ 1

ε

∫ t

t−ε
|fn(s)− fn(t)|ds

≤ 2
dx(B(t, ε))

∫
B(t,ε)

|fn(s)− fn(t)|ds

Hence for all t ∈ N c
n, t being a Lebesgue point of fn:

lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)

6. Let t ∈ N c
n ∩ [0, n[. From 1. we have b(t) =

∫ t
0
fn(s)ds. Furthermore, for

ε > 0 small enough we have t + ε ∈ [0, n], and consequently b(t + ε) =∫ t+ε
0

fn(s)ds. Hence:

lim
ε↓↓0

b(t+ ε)− b(t)
ε

= lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

Moreover, assuming t > 0, t − ε ∈ [0, n] for ε > 0 small enough, and
consequently b(t− ε) =

∫ t−ε
0

fn(s)ds. Hence:

lim
ε↓↓0

b(t)− b(t− ε)
ε

= lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)
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We conclude that for all t ∈ N c
n ∩ [0, n[, if t = 0, the right-hand-side

derivative b′(0) exists and is equal to fn(0). If t > 0, the derivative b′(t)
exists and is equal to fn(t). However if t ∈ [0, n[, fn(t) = f(t). So for all
t ∈ N c

n ∩ [0, n[, b′(t) = f(t).

7. Define N = (∪n≥1Nn) ∩ R+. Then N ∈ B(R+) and dx(N) = 0. Let
t ∈ N c. Choosing n ≥ 1 such that t ∈ [0, n[, from t 6∈ N we obtain t 6∈ Nn
and consequently t ∈ N c

n ∩ [0, n[. From 6. it follows that b′(t) exists and
is equal to f(t). We have found N ∈ B(R+) with dx(N) = 0, such that
for all t ∈ N c, b′(t) exists and is equal to f(t).

8. We have shown in exercise (20) that a map b is absolutely continuous,
if and only if there exists f ∈ L1,loc

C (t) such that b = f.t. Furthermore,
it follows from 7. that if b is absolutely continuous, it is almost surely
differentiable with b′ = f dx-almost surely. This completes the proof of
theorem (102).

Exercise 21
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