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14. Maps of Finite Variation
Definition 108 We call total variation of a map b : R+ → C the map
|b| : R+ → [0,+∞] defined as:

∀t ∈ R+ , |b|(t) 4= |b(0)|+ sup
n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn in [0, t], n ≥ 1.
We say that b is of finite variation, if and only if:

∀t ∈ R+ , |b|(t) < +∞
We say that b is of bounded variation, if and only if:

sup
t∈R+

|b|(t) < +∞

Warning: The notation |b| can be misleading: it can refer to the map t →
|b(t)|(the modulus), or to the map t→ |b|(t) (the total variation).

Exercise 1. Let a : R+ → R+ be non-decreasing with a(0) ≥ 0.

1. Show that |a| = a and a is of finite variation.

2. Show that the limit limt↑+∞ a(t), denoted a(∞), exists in R̄.

3. Show that a is of bounded variation if and only if a(∞) < +∞.

Exercise 2. Let b = b1 + ib2 : R+ → C be a map, b1, b2 real-valued.

1. Show that |b1| ≤ |b| and |b2| ≤ |b|.

2. Show that |b| ≤ |b1|+ |b2|.

3. Show that b is of finite variation if and only if b1, b2 are.

4. Show that b is of bounded variation if and only if b1, b2 are.

5. Show that |b|(0) = |b(0)|.

Exercise 3. Let b : R+ → R be differentiable, such that b′ is bounded on each
compact interval of R+. Show that b is of finite variation.

Exercise 4. Show that if b : R+ → C is of class C1, i.e. continuous and
differentiable with continuous derivative, then b is of finite variation.

Exercise 5. Let f : (R+,B(R+)) → (C,B(C)) be a measurable map, with∫ t
0 |f(s)|ds < +∞ for all t ∈ R+. Let b : R+ → C defined by:

∀t ∈ R+ , b(t)
4
=
∫

R+
f1[0,t]ds
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1. Show that b is of finite variation and:

∀t ∈ R+ , |b|(t) ≤
∫ t

0

|f(s)|ds

2. Show that f ∈ L1
C(R+,B(R+), ds) ⇒ b is of bounded variation.

Exercise 6. Show that if b, b′ : R+ → C are maps of finite variation, and
α ∈ C, then b+αb′ is also a map of finite variation. Prove the same result when
the word ’finite’ is replaced by ’bounded’.

Exercise 7. Let b : R+ → C be a map. For all t ∈ R+, let S(t) be the set of
all finite subsets A of [0, t], with cardA ≥ 2. For all A ∈ S(t), we define:

S(A)
4
=

n∑
i=1

|b(ti)− b(ti−1)|

where it is understood that t0, . . . , tn are such that:

t0 < t1 < . . . < tn and A = {t0, . . . , tn} ⊆ [0, t]

1. Show that for all t ∈ R+, if s0 ≤ . . . ≤ sp (p ≥ 1) is a finite sequence in
[0, t], then if:

S
4
=

p∑
j=1

|b(sj)− b(sj−1)|

either S = 0 or S = S(A) for some A ∈ S(t).

2. Conclude that:

∀t ∈ R+ , |b|(t) = |b(0)|+ sup{S(A) : A ∈ S(t)}

3. Let A ∈ S(t) and s ∈ [0, t]. Show that S(A) ≤ S(A ∪ {s}).

4. Let A,B ∈ S(t). Show that:

A ⊆ B ⇒ S(A) ≤ S(B)

5. Show that if t0 ≤ . . . ≤ tn, n ≥ 1, and s0 ≤ . . . ≤ sp, p ≥ 1, are finite
sequences in [0, t] such that:

{t0, . . . , tn} ⊆ {s0, . . . , sp}
then:

n∑
i=1

|b(ti)− b(ti−1)| ≤
p∑
j=1

|b(sj)− b(sj−1)|

Exercise 8. Let b : R+ → C be of finite variation. Let s, t ∈ R+, with s ≤ t.
We define:

δ
4
= sup

n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].
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1. Let s0 ≤ . . . ≤ sp and t0 ≤ . . . ≤ tn be finite sequences in [0, s] and [s, t]
respectively, where n, p ≥ 1. Show that:

p∑
j=1

|b(sj)− b(sj−1)|+
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(t)− |b(0)|

2. Show that δ ≤ |b|(t)− |b|(s).

3. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], where n ≥ 1, and suppose
that s = tj for some 0 < j < n. Show that:

n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(s)− |b(0)|+ δ (1)

4. Show that inequality (1) holds, for all t0 ≤ . . . ≤ tn in [0, t].

5. Prove the following:

Theorem 80 Let b : R+ → C be a map of finite variation. Then, for all
s, t ∈ R+, s ≤ t, we have:

|b|(t)− |b|(s) = sup
n∑
i=1

|b(ti)− b(ti−1)|

where the ’sup’ is taken over all finite t0 ≤ . . . ≤ tn, n ≥ 1, in [s, t].

Exercise 9. Let b : R+ → C be a map of finite variation. Show that |b| is
non-decreasing with |b|(0) ≥ 0, and ||b|| = |b|.

Definition 109 Let b : R+ → R be a map of finite variation. Let:

|b|+ 4
=

1
2

(|b|+ b)

|b|− 4
=

1
2

(|b| − b)

|b|+, |b|− are respectively the positive, negative variation of b.

Exercise 10. Let b : R+ → R be a map of finite variation.

1. Show that |b| = |b|+ + |b|− and b = |b|+ − |b|−.

2. Show that |b|+(0) = b+(0) ≥ 0 and |b|−(0) = b−(0) ≥ 0.

3. Show that for all s, t ∈ R+, s ≤ t, we have:

|b(t)− b(s)| ≤ |b|(t)− |b|(s)

4. Show that |b|+ and |b|− are non-decreasing.
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Exercise 11. Let b : R+ → C be of finite variation. Show the existence
of b1, b2, b3, b4 : R+ → R+, non-decreasing with bi(0) ≥ 0, such that b =
b1 − b2 + i(b3 − b4). Show conversely that if b : R+ → C is a map with such
decomposition, then it is of finite variation.

Exercise 12. Let b : R+ → C be a right-continuous map of finite variation,
and x0 ∈ R+.

1. Show that the limit |b|(x0+) = limt↓↓x0 |b|(t) exists in R and is equal to
infx0<t |b|(t).

2. Show that |b|(x0) ≤ |b|(x0+).

3. Given ε > 0, show the existence of y0 ∈ R+, x0 < y0, such that:

u ∈]x0, y0] ⇒ |b(u)− b(x0)| ≤ ε/2
u ∈]x0, y0] ⇒ |b|(y0)− |b|(u) ≤ ε/2

Exercise 13. Further to exercise (12), let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite
sequence in [0, y0], for which there exists j with 0 < j < n − 1, x0 = tj and
x0 < tj+1.

1. Show that
∑j

i=1 |b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)|.

2. Show that |b(tj+1)− b(tj)| ≤ ε/2.

3. Show that
∑n

i=j+2 |b(ti)− b(ti−1)| ≤ |b|(y0)− |b|(tj+1) ≤ ε/2.

4. Show that for all finite sequences t0 ≤ . . . ≤ tn, n ≥ 1, in [0, y0]:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)|+ ε

5. Show that |b|(y0) ≤ |b|(x0) + ε.

6. Show that |b|(x0+) ≤ |b|(x0) and that |b| is right-continuous.

Exercise 14. Let b : R+ → C be a left-continuous map of finite variation, and
let x0 ∈ R+ \ {0}.

1. Show that the limit |b|(x0−) = limt↑↑x0 |b|(t) exists in R, and is equal to
supt<x0

|b|(t).

2. Show that |b|(x0−) ≤ |b|(x0).

3. Given ε > 0, show the existence of y0 ∈ [0, x0[, such that:

u ∈ [y0, x0[ ⇒ |b(x0)− b(u)| ≤ ε/2
u ∈ [y0, x0[ ⇒ |b|(u)− |b|(y0) ≤ ε/2
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Exercise 15. Further to exercise (14), let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite
sequence in [0, x0], such that y0 = tj for some 0 < j < n− 1, and x0 = tn. We
denote k = max{i : j ≤ i , ti < x0}.

1. Show that j ≤ k ≤ n− 1 and tk ∈ [y0, x0[.

2. Show that
∑j

i=1 |b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)|.

3. Show that
∑k

i=j+1 |b(ti)−b(ti−1)| ≤ |b|(tk)−|b|(y0) ≤ ε/2, where if j = k,
the corresponding sum is zero.

4. Show that
∑n

i=k+1 |b(ti)− b(ti−1)| = |b(x0)− b(tk)| ≤ ε/2.

5. Show that for all finite sequences t0 ≤ . . . ≤ tn, n ≥ 1, in [0, x0]:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)|+ ε

6. Show that |b|(x0) ≤ |b|(y0) + ε.

7. Show that |b|(x0) ≤ |b|(x0−) and that |b| is left-continuous.

8. Prove the following:

Theorem 81 Let b : R+ → C be a map of finite variation. Then:

b is right-continuous ⇒ |b| is right-continuous
b is left-continuous ⇒ |b| is left-continuous

b is continuous ⇒ |b| is continuous

Exercise 16. Let b : R+ → R be an R-valued map of finite variation.

1. Show that if b is right-continuous, then so are |b|+ and |b|−.

2. State and prove similar results for left-continuity and continuity.

Exercise 17. Let b : R+ → C be a right-continuous map of finite varia-
tion. Show the existence of b1, b2, b3, b4 : R+ → R+, right-continuous and
non-decreasing maps with bi(0) ≥ 0, such that:

b = b1 − b2 + i(b3 − b4)

Exercise 18. Let b : R+ → C be a right-continuous map. Let t ∈ R+. For all
p ≥ 1, we define:

Sp
4
= |b(0)|+

2p∑
k=1

|b(kt/2p)− b((k − 1)t/2p)|

1. Show that for all p ≥ 1, Sp ≤ Sp+1 and define S = supp≥1 Sp.
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2. Show that S ≤ |b|(t).

Exercise 19. Further to exercise (18), let t0 < . . . < tn be a finite sequence of
distinct elements of [0, t]. Let ε > 0.

1. Show that for all i = 0, . . . , n, there exists pi ≥ 1 and
qi ∈ {0, 1, . . . , 2pi} such that:

0 ≤ t0 ≤
q0t

2p0
< t1 ≤

q1t

2p1
< . . . < tn ≤

qnt

2pn
≤ t

and:
|b(ti)− b(qit/2pi)| ≤ ε , ∀i = 0, . . . , n

2. Show the existence of p ≥ 1, and k0, . . . , kn ∈ {0, . . . , 2p} with:

0 ≤ t0 ≤
k0t

2p
< t1 ≤

k1t

2p
< . . . < tn ≤

knt

2p
≤ t

and:
|b(ti)− b(kit/2p)| ≤ ε , ∀i = 0, . . . , n

3. Show that:
n∑
i=1

|b(kit/2p)− b(ki−1t/2p)| ≤ Sp − |b(0)|

4. Show that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|+ 2nε

5. Show that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|

6. Conclude that |b|(t) ≤ S.

7. Prove the following:

Theorem 82 Let b : R+ → C be right-continuous or left-continuous. Then,
for all t ∈ R+:

|b|(t) = |b(0)|+ lim
n→+∞

2n∑
k=1

|b(kt/2n)− b((k − 1)t/2n)|

Exercise 20. Let b : R+ → R+ be defined by b = 1Q+ . Show that:

+∞ = |b|(1) 6= lim
n→+∞

2n∑
k=1

|b(k/2n)− b((k − 1)/2n)| = 0

Exercise 21. b : R+ → C is right-continuous of bounded variation.
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1. Let b1 = Re(b) and b2 = Im(b). Explain why d|b1|+, d|b1|−, d|b2|+ and
d|b2|− are all well-defined measures on (R+,B(R+)).

2. Is this still true, if b is right-continuous of finite variation?

3. Show that d|b1|+, d|b1|−, d|b2|+ and d|b2|− are finite measures.

4. Let db = d|b1|+−d|b1|−+i(d|b2|+−d|b2|−). Show that db is a well-defined
complex measure on (R+,B(R+)).

5. Show that db({0}) = b(0).

6. Show that for all s, t ∈ R+, s ≤ t, db(]s, t]) = b(t)− b(s).

7. Show that limt→+∞ b(t) exists in C. We denote b(∞) this limit.

8. Show that db(R+) = b(∞).

9. Proving the uniqueness of db, justify the following:

Definition 110 Let b : R+ → C be a right-continuous map of bounded varia-
tion. There exists a unique complex measure db on (R+,B(R+)), such that:

(i) db({0}) = b(0)
(ii) ∀s, t ∈ R+ s ≤ t , db(]s, t]) = b(t)− b(s)

db is called the complex Stieltjes measure associated with b.

Exercise 22. Show that if a : R+ → R+ is right-continuous, non-decreasing
with a(0) ≥ 0 and a(∞) < +∞, then definition (110) of da coincides with the
already known definition (24).

Exercise 23. b : R+ → C is right-continuous of finite variation.

1. Let b1 = Re(b) and b2 = Im(b). Explain why d|b1|+, d|b1|−, d|b2|+ and
d|b2|− are all well-defined measures on (R+,B(R+)).

2. Why is it in general impossible to define:

db
4
= d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−)

Warning: it does not make sense to write something like ’db’, unless b is either
right-continuous, non-decreasing and b(0) ≥ 0, or b is a right-continuous map of
bounded variation.

Exercise 24. Let b : R+ → C be a map. For all T ∈ R+, we define bT : R+ →
C as bT (t) = b(T ∧ t) for all t ∈ R+.

1. Show that for all T ∈ R+, |bT | = |b|T .

2. Show that if b is of finite variation, then for all T ∈ R+, bT is of bounded
variation, and we have |bT |(∞) = |b|(T ) < +∞.
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3. Show that if b is right-continuous and of finite variation, for all T ∈ R+,
dbT is the unique complex measure on R+, with:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t)− b(T ∧ s)

4. Show that if b is R-valued and of finite variation, for all T ∈ R+, we have
|bT |+ = (|b|+)T and |bT |− = (|b|−)T .

5. Show that if b is right-continuous and of bounded variation, for all T ∈ R+,
we have dbT = db[0,T ] = db([0, T ] ∩ · )

6. Show that if b is right-continuous, non-decreasing with b(0) ≥ 0, for all
T ∈ R+, we have dbT = db[0,T ] = db([0, T ] ∩ · )

Exercise 25. Let µ, ν be two finite measures on R+, such that:

(i) µ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , µ(]s, t]) ≤ ν(]s, t])

We define a, c : R+ → R+ by a(t) = µ([0, t]) and c(t) = ν([0, t]).

1. Show that a and c are right-continuous, non-decreasing with a(0) ≥ 0 and
c(0) ≥ 0.

2. Show that da = µ and dc = ν.

3. Show that a ≤ c.

4. Define b : R+ → R+ by b = c − a. Show that b is right-continuous,
non-decreasing with b(0) ≥ 0.

5. Show that da+ db = dc.

6. Conclude with the following:

Theorem 83 Let µ, ν be two finite measures on (R+,B(R+)) with:

(i) µ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , µ(]s, t]) ≤ ν(]s, t])

Then µ ≤ ν, i.e. for all B ∈ B(R+), µ(B) ≤ ν(B).

Exercise 26. b : R+ → C is right-continuous of bounded variation.

1. Show that |db|({0}) = |b(0)| = d|b|({0}).

2. Let s, t ∈ R+, s ≤ t. Let t0 ≤ . . . ≤ tn be a finite sequence in [s, t], n ≥ 1.
Show that:

n∑
i=1

|b(ti)− b(ti−1)| ≤ |db|(]s, t])
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3. Show that |b|(t)− |b|(s) ≤ |db|(]s, t]).

4. Show that d|b| ≤ |db|.

5. Show that L1
C(R+,B(R+), |db|) ⊆ L1

C(R+,B(R+), d|b|).

6. Show that R+ is metrizable and strongly σ-compact.

7. Show that CcC(R+), CbC(R+) are dense in L1
C(R+,B(R+), |db|).

8. Let h ∈ L1
C(R+,B(R+), |db|). Given ε > 0, show the existence of φ ∈

CbC(R+) such that
∫
|φ− h||db| ≤ ε.

9. Show that |
∫
hdb| ≤ |

∫
φdb|+ ε.

10. Show that:∣∣∣∣∫ |φ|d|b| − ∫ |h|d|b|∣∣∣∣ ≤ ∫ |φ− h|d|b| ≤ ∫ |φ− h||db|
11. Show that

∫
|φ|d|b| ≤

∫
|h|d|b|+ ε.

12. For all n ≥ 1, we define:

φn
4
= φ(0)1{0} +

n2n−1∑
k=0

φ(k/2n)1]k/2n,(k+1)/2n]

Show there is M ∈ R+, such that |φn(x)| ≤M for all x and n.

13. Using the continuity of φ, show that φn → φ.

14. Show that lim
∫
φndb =

∫
φdb.

15. Show that lim
∫
|φn|d|b| =

∫
|φ|d|b|.

16. Show that for all n ≥ 1:∫
φndb = φ(0)b(0) +

n2n−1∑
k=0

φ(k/2n)(b((k + 1)/2n)− b(k/2n))

17. Show that |
∫
φndb| ≤

∫
|φn|d|b| for all n ≥ 1.

18. Show that |
∫
φdb| ≤

∫
|φ|d|b|.

19. Show that |
∫
hdb| ≤

∫
|h|d|b|+ 2ε.

20. Show that |
∫
hdb| ≤

∫
|h|d|b| for all h ∈ L1

C(R+,B(R+), |db|).

21. Let B ∈ B(R+) and h ∈ L1
C(R+,B(R+), |db|) be such that |h| = 1 and

db =
∫
h|db|. Show that |db|(B) =

∫
B
h̄db.

22. Conclude that |db| ≤ d|b|.
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Exercise 27. b : R+ → C is right-continuous of finite variation.

1. Show that for all T ∈ R+, |dbT | = d|bT | = d|b|T .

2. Show that d|b|T = d|b|[0,T ] = d|b|([0, T ] ∩ · ), and conclude:

Theorem 84 If b : R+ → C is right-continuous of bounded variation, the total
variation of its associated complex Stieltjes measure, is equal to the Stieltjes
measure associated with its total variation, i.e.

|db| = d|b|
If b : R+ → C is right-continuous of finite variation, then for all T ∈ R+, bT

defined by bT (t) = b(T ∧ t), is right-continuous of bounded variation, and we
have |dbT | = d|b|([0, T ] ∩ · ) = d|b|T .

Definition 111 Let b : R+ → E be a map, where E is a Hausdorff topological
space. We say that b is cadlag with respect to E, if and only if b is right-
continuous, and the limit:

b(t−) = lim
s↑↑t

b(s)

exists in E, for all t ∈ R+ \ {0}. In the case when E = C or E = R, given b
cadlag, we define b(0−) = 0, and for all t ∈ R+:

∆b(t)
4
= b(t)− b(t−)

Exercise 28. Let b : R+ → E be cadlag, where E is a Hausdorff topological
space. Suppose b has values in E′ ⊆ E.

1. Show that for all t > 0, the limit b(t−) is unique.

2. Show that E′ is Hausdorff.

3. Explain why b may not be cadlag with respect to E′.

4. Show that b is cadlag with respect to Ē′.

5. Show that b : R+ → R is cadlag ⇔ it is cadlag w.r. to C.

Exercise 29.

1. Show that if b : R+ → C is cadlag, then b is continuous with b(0) = 0 if
and only if ∆b(t) = 0 for all t ∈ R+.

2. Show that if a : R+ → R+ is right-continuous, non-decreasing with a(0) ≥
0, then a is cadlag (w.r. to R and R+) with ∆a ≥ 0.

3. Show that any linear combination of cadlag maps is itself cadlag.
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4. Show that if b : R+ → C is a right-continuous map of finite variation,
then b is cadlag.

5. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0.
Show that da({t}) = ∆a(t) for all t ∈ R+.

6. Let b : R+ → C be a right-continuous map of bounded variation. Show
that db({t}) = ∆b(t) for all t ∈ R+.

7. Let b : R+ → C be a right-continuous map of finite variation. Let T ∈ R+.
Show that:

∀t ∈ R+ , bT (t−) =
{
b(t−) if t ≤ T
b(T ) if T < t

Show that ∆bT = (∆b)1[0,T ], and dbT ({t}) = ∆b(t)1[0,T ](t).

Exercise 30. Let b : R+ → C be a cadlag map and T ∈ R+.

1. Show that if t → b(t−) is not bounded on [0, T ], there exists a sequence
(tn)n≥1 in [0, T ] such that |b(tn)| → +∞.

2. Suppose from now on that b is not bounded on [0, T ]. Show the existence
of a sequence (tn)n≥1 in [0, T ], such that tn → t for some t ∈ [0, T ], and
|b(tn)| → +∞.

3. Define R = {n ≥ 1 : t ≤ tn} and L = {n ≥ 1 : tn < t}. Show that R and
L cannot be both finite.

4. Suppose that R is infinite. Show the existence of n1 ≥ 1, with:

tn1 ∈ [t, t+ 1[∩[0, T ]

5. If R is infinite, show there is n1 < n2 < . . . such that:

tnk ∈ [t, t+
1
k

[∩[0, T ] , ∀k ≥ 1

6. Show that |b(tnk)| 6→ +∞.

7. Show that if L is infinite, then t > 0 and there is an increasing sequence
n1 < n2 < . . ., such that:

tnk ∈]t− 1
k
, t[∩[0, T ] , ∀k ≥ 1

8. Show that: |b(tnk)| 6→ +∞.

9. Prove the following:

Theorem 85 Let b : R+ → C be a cadlag map. Let T ∈ R+. Then b and the
map t→ b(t−) are bounded on [0, T ], i.e. there exists M ∈ R+ such that:

|b(t)| ∨ |b(t−)| ≤M , ∀t ∈ [0, T ]
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Solutions to Exercises
Exercise 1.

1. Let a : R+ → R+ be non-decreasing with a(0) ≥ 0. Let t ∈ R+. Taking
t0 = 0 and t1 = t, from definition (108), we have:

|a(t1)− a(t0)| ≤ |a|(t)− |a(0)|
Since a is non-decreasing and a(0) ≥ 0, we obtain a(t) ≤ |a|(t). Let n ≥ 1
and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:

n∑
i=1

|a(ti)− a(ti−1)| = a(tn)− a(t0) ≤ a(t)− a(0)

So a(t)− a(0) is an upper-bound of all sums
∑n

i=1 |a(ti)− a(ti−1)| as t0 ≤
. . . ≤ tn runs through all finite sequences in [0, t]. From definition (108),
|a|(t)− |a(0)| is the smallest of such upper-bounds. Hence:

|a|(t)− |a(0)| ≤ a(t)− a(0)

and since a(0) ≥ 0, we obtain |a|(t) ≤ a(t). We have proved that |a|(t) =
a(t) for all t ∈ R+, i.e. |a| = a.

2. Let l = supt∈R+ a(t) ∈ R̄. We claim that a(t) converges to l as t→ +∞.
Suppose l = +∞. l being the smallest upper-bound of all a(t)’s, for all
A ∈ R+ A cannot be such an upper-bound. Hence, there exists tA ∈ R+

such that A < a(tA). Since a is non-decreasing, for all t ∈ R+:

tA ≤ t ⇒ A < a(tA) ≤ a(t)

This shows that limt→+∞ a(t) = +∞ = l. Suppose l < +∞. Then, given
ε > 0 we have l−ε < l. Again, l−ε cannot be an upper-bound of all a(t)’s.
There exists tε ∈ R+ such that l− ε < a(tε). Since a is non-decreasing we
obtain, for all t ∈ R+:

tε ≤ t ⇒ l − ε < a(tε) ≤ a(t) ≤ l
This shows that limt→+∞ a(t) = l. We have proved that a(t) has a limit
in R̄ as t→ +∞. This limit is denoted a(∞).

3. The proof of 2. together with 1. shows that:

a(∞) = sup
t∈R+

a(t) = sup
t∈R+

|a|(t)

It follows from definition (108) that a is of bounded variation if and only
if a(∞) < +∞.

Exercise 1

Exercise 2.
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1. Let b = b1+ib2 : R+ → C be a map where b1 = Re(b) and b2 = Im(b). Let
t ∈ R+. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t]. Since |Re(z)| ≤ |z|
for all z ∈ C and by virtue of definition (108):

n∑
i=1

|b1(ti)− b1(ti−1)| ≤
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(t)− |b(0)|

It follows that |b|(t)− |b(0)| is an upper-bound of all sums
∑n

i=1 |b1(ti)−
b1(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t]. |b1|(t)−
|b1(0)| being the smallest of such upper-bounds, we obtain:

|b1|(t)− |b1(0)| ≤ |b|(t)− |b(0)|
and from |b1(0)| ≤ |b(0)| we conclude that |b1|(t) ≤ |b|(t). This being true
for all t ∈ R+, we have proved that |b1| ≤ |b|. Since |Im(z)| ≤ |z| for all
z ∈ C, we obtain |b2| ≤ |b| with a strictly identical argument.

2. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:
n∑
i=1

|b(ti)−b(ti−1)| ≤
n∑
i=1

|b1(ti)−b1(ti−1)|+
n∑
i=1

|b2(ti)−b2(ti−1)|

≤ |b1|(t)− |b1(0)|+ |b2|(t)− |b2(0)|
It follows that the r.h.s of this last inequality is an upper-bound of all sums∑n

i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences in
[0, t]. |b|(t)− |b(0)| being the smallest of such upper-bounds, we obtain:

|b|(t)− |b(0)| ≤ |b1|(t)− |b1(0)|+ |b2|(t) − |b2(0)|
and from |b(0)| ≤ |b1(0)|+ |b2(0)| we conclude that:

|b|(t) ≤ |b1|(t) + |b2|(t)
This being true for all t ∈ R+, we have proved |b| ≤ |b1|+ |b2|.

3. Suppose b is of finite variation. Then |b|(t) < +∞ for all t ∈ R+. It
follows from 1. that |b1|(t) < +∞ and |b2|(t) < +∞ for all t ∈ R+. So b1
and b2 are also of finite variation. Suppose conversely that b1 and b2 are
of finite variation. Then |b1|(t) < +∞ and |b2|(t) < +∞ for all t ∈ R+.
It follows from 2. that |b|(t) < +∞ for all t ∈ R+. So b is also of finite
variation. We have proved that b is of finite variation if and only if b1 and
b2 are of finite variation.

4. From 1. we have:
sup
t∈R+

|b1|(t) ≤ sup
t∈R+

|b|(t)

together with:
sup
t∈R+

|b2|(t) ≤ sup
t∈R+

|b|(t)

Furthermore, from 2. we obtain:

sup
t∈R+

|b|(t) ≤ sup
t∈R+

|b1|(t) + sup
t∈R+

|b2|(t)
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We conclude from definition (108) that b is of bounded variation if and
only if both b1 and b2 are also of bounded variation.

5. Take t = t0 = t1 = 0. From definition (108), we have:

|b(t1)− b(t0)| ≤ |b|(t)− |b(0)|
i.e. |b(0)| ≤ |b|(0). Furthermore, let t0 ≤ . . . ≤ tn be a finite sequence in
[0, t] = {0}. Then t0 = . . . = tn = 0 and:

n∑
i=1

|b(ti)− b(ti−1)| = 0

So 0 is an upper-bound of all sums
∑n

i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn
runs through all finite sequences in [0, t] = {0}. |b|(0) − |b(0)| being the
smallest of such upper-bounds, we have |b|(0)−|b(0)| ≤ 0. We have proved
that |b|(0) = |b(0)|.

Exercise 2

Exercise 3. Let b : R+ → R be differentiable, such that b′ is bounded on each
compact interval of R+. In particular b′ is bounded on [0, t] for all t ∈ R+ and
consequently:

sup
u∈[0,t]

|b′(u)| < +∞

Let t ∈ R+ be given and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]. Let i ∈ Nn

and suppose ti−1 < ti. b being differentiable on R+ is in particular continuous.
In particular b is continuous on [ti−1, ti] and differentiable on ]ti−1, ti[. From
Taylor’s theorem (39), there exists ci ∈]ti−1, ti[ such that:

b(ti)− b(ti−1) = b′(ci) · (ti − ti−1)

and in particular:
|b(ti)− b(ti−1)| ≤ mt · (ti − ti−1)

where mt = supu∈[0,t] |b′(u)| < +∞. It is clear that this last inequality is still
valid when ti−1 = ti. Hence:

n∑
i=1

|b(ti)− b(ti−1)| ≤ mt · (tn − t0) ≤ mt · t

It follows that mt · t is an upper-bound of all sums
∑n
i=1 |b(ti) − b(ti−1)| as

t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t]. |b|(t) − |b(0)| being
the smallest of such upper-bounds, we obtain |b|(t)− |b(0)| ≤ mt · t and finally
|b|(t) ≤ |b(0)|+mt · t < +∞. We have proved that b is of finite variation.

Exercise 3

Exercise 4. Let b : R+ → C be of class C1. Then both Re(b) and Im(b) are
of class C1. In particular, they are differentiable, and from theorem (37) their
derivatives are bounded on any compact subset of R+. From exercise (3), Re(b)
and Im(b) are both of finite variation. It follows from exercise (2) that b is also
of finite variation.
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Exercise 4

Exercise 5.

1. Let f : (R+,B(R+))→ (C,B(C)) be a measurable map such that
∫ t

0 |f(s)|ds <
+∞ for all t ∈ R+. Let b(t) =

∫ t
0
f(s)ds. Let t ∈ R+ be given and

t0 ≤ . . . ≤ tn be a finite sequence in [0, t]:
n∑
i=1

|b(ti)− b(ti−1)| =
n∑
i=1

∣∣∣∣∫ f(s)1]ti−1,ti](s)ds
∣∣∣∣

≤
n∑
i=1

∫
|f(s)|1]ti−1,ti](s)ds

=
∫
|f(s)|1]t0,tn](s)ds

≤
∫ t

0

|f(s)|ds

So
∫ t

0 |f(s)|ds is an upper-bound of all sums
∑n

i=1 |b(ti)− b(ti−1)| as t0 ≤
. . . ≤ tn runs through all finite sequences in [0, t]. Since |b|(t) − |b(0)| is
the smallest of such upper-bounds, we obtain |b|(t) − |b(0)| ≤

∫ t
0 |f(s)|ds

and since b(0) = 0 we have proved that for all t ∈ R+:

|b|(t) ≤
∫ t

0

|f(s)|ds < +∞

In particular, b is a map of finite variation.

2. Suppose f ∈ L1
C(R+,B(R+), ds). Then

∫
R+ |f |ds < +∞, and from 1. we

have for all t ∈ R+:

|b|(t) ≤
∫ t

0

|f(s)|ds ≤
∫

R+
|f(s)|ds

In particular:

sup
t∈R+

|b|(t) ≤
∫

R+
|f(s)|ds < +∞

We conclude from definition (108) that b is of bounded variation.

Exercise 5

Exercise 6. Let b, b′ : R+ → C be two maps and α ∈ C. Define c = b + αb′.
Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]. Then:

n∑
i=1

|c(ti)− c(ti−1)| ≤
n∑
i=1

|b(ti)− b(ti−1)|+ |α|
n∑
i=1

|b′(ti)− b′(ti−1)|

≤ |b|(t)− |b(0)|+ |α| · (|b′|(t)− |b′(0)|)
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It follows that the r.h.s of this last inequality is an upper-bound of all sums∑n
i=1 |c(ti)− c(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences in [0, t].

|c|(t)− |c(0)| being the smallest of such upper-bounds, we obtain:

|c|(t)− |c(0)| ≤ |b|(t)− |b(0)|+ |α| · (|b′|(t) − |b′(0)|)
Since |c(0)| ≤ |b(0)|+ |α| · |b′(0)|, we conclude that for all t ∈ R+:

|c|(t) ≤ |b|(t) + |α| · |b′|(t)
Hence, if b and b′ are of finite variation, c = b + αb′ is also of finite variation.
Furthermore, we have:

sup
t∈R+

|c|(t) ≤ sup
t∈R+

|b|(t) + |α| · sup
t∈R+

|b′|(t)

So b, b′ of bounded variation ⇒ c of bounded variation.
Exercise 6

Exercise 7.

1. Let t ∈ R+ and s0 ≤ . . . ≤ sp, p ≥ 1, be a finite sequence in [0, t]. We
define:

S
4
=

p∑
j=1

|b(sj)− b(sj−1)| (2)

Let A = {s0, . . . , sp}. If cardA = 1, then s0 = . . . = sp, and it is clear
from (2) that S = 0. We assume that cardA ≥ 2. Then A is a subset
of [0, t] with cardA ≥ 2, and consequently A ∈ S(t). We shall prove that
S = S(A). Let t0 < . . . < tn be distinct in [0, t] such that A = {t0, . . . , tn}.
By definition:

S(A)
4
=

n∑
i=1

|b(ti)− b(ti−1)| (3)

Since A = {t0, . . . , tn} = {s0, . . . , sp}, it is intuitively fairly obvious
from (2) and (3) that S = S(A). After all, the only difference between the
ti’s and the sj ’s (both are ordered, i.e. t0 < . . . < tn and s0 ≤ . . . ≤ sp)
is that the former are assumed to be distinct and not the latter, and any
’repetition’ in the sj ’s will not affect the sum in (2) as the correspond-
ing term |b(sj) − b(sj−1)| is nil. We may choose to go no further and
rely solely on intuition to conclude that S = S(A). To manufacture a
more formal proof of the fact that S = S(A) (which may not be that
pointless for a student in search of more technical strength), one may
proceed with an induction argument based on the difference p− n. Since
cardA = n+1 and A = {s0, . . . , sp}, we have n ≤ p. If n = p, then sk = tk
for all k = 0, . . . , n (the tk’s and sk’s are ordered), and it is clear from (2)
and (3) that S = S(A). So S = S(A) is proved when p− n = 0. Suppose
that S = S(A) is proved when p − n = k for k ≥ 0, and assume that
p− n = k + 1. In particular p > n. Since A = {t0, . . . , tn} = {s0, . . . , sp},
it is impossible that all sj ’s be distinct, and consequently the integer:

j0 = min{j : j ∈ {1, . . . , p} , sj = sj−1}
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as the smallest element of an non-empty subset of N is well-defined. Let
s′0 ≤ . . . ≤ s′p−1 be defined as:

s′k =
{
sk if k ≤ j0 − 1
sk+1 if k ≥ j0

for k = 0, . . . , p − 1. Informally, the finite sequence s′0 ≤ . . . ≤ s′p−1 is
nothing but the sequence s0 ≤ . . . ≤ sp where the ’duplicated point’ sj0
has been ’taken out’. The sum S′ associated with s′0 ≤ . . . ≤ s′p−1 is given
similarly to (2) as:

S′ =
p−1∑
j=1

|b(s′j)− b(s′j−1)| (4)

We shall prove formally that S = S′ (which is also intuitively obvious in
the light of (2) and (4)) by distinguishing three possible cases. Suppose
j0 = p. Then (4) can be re-expressed as:

S′ =
j0−1∑
j=1

|b(sj)− b(sj−1)|

=
j0∑
j=1

|b(sj)− b(sj−1)|

=
p∑
j=1

|b(sj)− b(sj−1)| = S

where the fact that sj0 = sj0−1 was used for the second equality. Suppose
that j0 = p− 1. Then (4) can be re-expressed as:

S′ =
j0−1∑
j=1

|b(sj)− b(sj−1)|+ |b(sj0+1)− b(sj0−1)|

=
j0−1∑
j=1

|b(sj)− b(sj−1)|+ |b(sj0+1)− b(sj0)|

=
j0+1∑
j=1

|b(sj)− b(sj−1)|

=
p∑
j=1

|b(sj)− b(sj−1)| = S

where the fact that sj0 = sj0−1 was used for the third equality. Suppose
lastly that j0 < p− 1. Then (4) can be split in three:

j0−1∑
j=1

|b(sj)− b(sj−1)|+ |b(sj0+1)− b(sj0−1)|+
p−1∑

j=j0+1

|b(sj+1)− b(sj)|
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which can be re-expressed as:
j0−1∑
j=1

|b(sj)− b(sj−1)|+ |b(sj0+1)− b(sj0)|+
p∑

j=j0+2

|b(sj)− b(sj−1)|

and finally from |b(sj0)− b(sj0−1)| = 0, we obtain:

S′ =
p∑
j=1

|b(sj)− b(sj−1)| = S

In all cases, we have proved that S = S′. However, it is clear that
{s′0, . . . , s′p−1} = A = {t0, . . . , tn} and from our induction hypothesis,
since p− 1− n = k, we have S′ = S(A). We conclude that S = S(A) and
our induction hypothesis is proved for p− n = k + 1. This completes the
induction argument and we have showed that S = S(A). For all t ∈ R+

and s0 ≤ . . . ≤ sp finite sequences in [0, t] (with p ≥ 1 as always, in line
with definition (108)), then if S is defined by (2), either S = 0 or S = S(A)
for some A ∈ S(t).

2. Let t ∈ R+ and a(t) = sup{S(A) : A ∈ S(t)}. Let s0 ≤ . . . ≤ sp, p ≥ 1,
be a finite sequence in [0, t]. Define:

S =
p∑
j=1

|b(sj)− b(sj−1)|

From 1. either S = 0 or S = S(A) for some A ∈ S(t). In any case, a(t)
being an upper-bound of all S(A)’s, we have S ≤ a(t). So a(t) is an upper-
bound of all sums

∑p
j=1 |b(sj)− b(sj−1)| as s0 ≤ . . . ≤ sp runs through all

finite sequences (with p ≥ 1) in [0, t]. Since |b|(t) − |b(0)| is the smallest
of such upper-bounds, we have |b|(t) − |b(0)| ≤ a(t). Let A ∈ S(t). Let
t0 < . . . < tn be distinct in [0, t] such that A = {t0, . . . , tn}. Then, by
definition, the sum S(A) is given by:

S(A) =
n∑
i=1

|b(ti)− b(ti−1)|

In particular, |b|(t)−|b(0)| being an upper-bound of all sums
∑n

i=1 |b(ti)−
b(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences (with n ≥ 1)
in [0, t], we have S(A) ≤ |b|(t) − |b(0)|. It follows that |b|(t) − |b(0)| is
an upper-bound of all S(A)’s with A ∈ S(t). Since a(t) is the smallest of
such upper-bounds, we obtain a(t) ≤ |b|(t)− |b(0)|. We have proved that
a(t) = |b|(t)− |b(0)| for all t ∈ R+, or equivalently:

|b|(t) = |b(0)|+ sup{S(A) : A ∈ S(t)}

3. Let A ∈ S(t) and s ∈ [0, t]. Then A ∪ {s} is a subset of [0, t] with
card(A ∪ {s}) ≥ 2. So S(A ∪ {s}) is well-defined. Let t0 < . . . < tn be
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distinct in [0, t] such that A = {t0, . . . , tn}. Then, by definition:

S(A) =
n∑
i=1

|b(ti)− b(ti−1)|

If s ∈ A then A ∪ {s} = A and S(A) = S(A ∪ {s}). We assume that
s 6∈ A. There are three possible cases to consider: firstly s < t0, secondly
tj−1 < s < tj for some j = 1, . . . , n and thirdly tn < s. In the first case
we have:

S(A ∪ {s}) = |b(t0)− b(s)|+ S(A)
and in the third case:

S(A ∪ {s}) = S(A) + |b(s)− b(tn)|

In the second case, S(A ∪ {s}) can be split into four parts:
j−1∑
i=1

|b(ti)− b(ti−1)| + |b(s)− b(tj−1)|+ |b(tj)− b(s)|

+
n∑

i=j+1

|b(ti)− b(ti−1)|

and from |b(tj)−b(tj−1)| ≤ |b(s)−b(tj−1)|+ |b(tj)−b(s)| we conclude that
S(A) ≤ S(A∪ {s}). In any case, we have proved that S(A) ≤ S(A∪ {s}).

4. Let A,B ∈ S(t) such that A ⊆ B. We shall prove that S(A) ≤ S(B) using
an induction argument based on the cardinality ofB\A. If card(B\A) = 0,
then A = B and S(A) = S(B). We assume that S(A) ≤ S(B) is true
when card(B \ A) = k for k ≥ 0, and that card(B \ A) = k + 1. In
particular B \ A 6= ∅ and there exists s ∈ B \ A. From 3. we have
S(A) ≤ S(A ∪ {s}). Furthermore, A ∪ {s} is an element of S(t) with
A∪{s} ⊆ B and card(B \ (A∪{s})) = k. From our induction hypothesis,
it follows that S(A∪{s}) ≤ S(B). We conclude that S(A) ≤ S(B) and the
induction hypothesis is proved for card(B \ A) = k + 1. This completes
the induction argument, and we have proved that S(A) ≤ S(B) for all
A,B ∈ S(t) with A ⊆ B.

5. Let t0 ≤ . . . ≤ tn, n ≥ 1, and s0 ≤ . . . ≤ sp, p ≥ 1, be finite sequences in
[0, t] such that {t0, . . . , tn} ⊆ {s0, . . . , sp}. Define:

S =
n∑
i=1

|b(ti)− b(ti−1)|

and:

S′ =
p∑
j=1

|b(sj)− b(sj−1)|

Let A = {t0, . . . , tn} and B = {s0, . . . , sp}. If cardA = 1 then S = 0 and
in particular S ≤ S′. We assume that cardA ≥ 2. Then cardB ≥ 2 and
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looking back at the proof of 1. we have S = S(A) and S′ = S(B). Since
A ⊆ B, it follows from 4. that S(A) ≤ S(B). We conclude that S ≤ S′.

Exercise 7

Exercise 8.

1. Let s0 ≤ . . . ≤ sp and t0 ≤ . . . ≤ tn be finite sequences in [0, s] and [s, t]
respectively, n, p ≥ 1. s0 ≤ . . . sp ≤ t0 ≤ . . . ≤ tn is a finite sequence in
[0, t], with n+ p+ 2 terms and associated sum:

p∑
j=1

|b(sj)− b(sj−1)|+ |b(t0)− b(sp)|+
n∑
i=1

|b(ti)− b(ti−1)| (5)

From definition (108), |b|(t)−|b(0)| is an upper-bound of all sums
∑m

k=1 |b(uk)−
b(uk−1)| as u0 ≤ . . . ≤ um runs through all finite sequences in [0, t], m ≥ 1.
So |b|(t)− |b(0)| is greater than or equal to (5). In particular, we have:

p∑
j=1

|b(sj)− b(sj−1)|+
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(t)− |b(0)|

2. Let s0 ≤ . . . ≤ sp be a finite sequence in [0, s], p ≥ 1. It follows from 1.
that |b|(t)− |b(0)| −

∑p
j=1 |b(sj)− b(sj−1)| is an upper-bound of all sums∑n

i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences in
[s, t], n ≥ 1. Since δ is the smallest of such upper-bounds, we obtain:

δ ≤ |b|(t)− |b(0)| −
p∑
j=1

|b(sj)− b(sj−1)|

b being of finite variation we have |b|(t) < +∞ and consequently δ < +∞.
The previous inequality can be re-arranged as:

p∑
j=1

|b(sj)− b(sj−1)| ≤ |b|(t)− |b(0)| − δ

It follows that |b|(t)−|b(0)|−δ is an upper-bound of all sums
∑p
j=1 |b(sj)−

b(sj−1)| as s0 ≤ . . . ≤ sp runs through all finite sequences in [0, s], p ≥ 1.
Since |b|(s)− |b(0)| is the smallest of such upper-bounds, we obtain:

|b|(s)− |b(0)| ≤ |b|(t)− |b(0)| − δ
and all terms being finite, we conclude that:

δ ≤ |b|(t)− |b|(s)

3. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. We assume that
s = tj for some j with 0 < j < n. Then t0 ≤ . . . ≤ tj is a finite sequence
in [0, s], j ≥ 1, and consequently:

j∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(s)− |b(0)| (6)
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Furthermore, tj ≤ . . . ≤ tn is a finite sequence in [s, t] (with n− j + 1 ≥ 2
terms) and consequently:

n∑
i=j+1

|b(ti)− b(ti−1)| ≤ δ (7)

From (6) and (7) we conclude that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(s)− |b(0)|+ δ (8)

4. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. We claim that
inequality (8) still holds, despite not having made the assumption that
s = tj for some j with 0 < j < n. Consider the finite sequence 0 ≤
t0 ≤ . . . ≤ tn ≤ t in [0, t] (with n + 3 terms), which we may denote
s′0 ≤ . . . ≤ s′n+2 (how each s′k is defined is obvious). Since s ∈ [0, t] we
claim that there exists p ∈ {1, . . . , n + 2} such that s′p−1 ≤ s ≤ s′p. A
formal proof of this (intuitively obvious) fact can be obtained as follows:
If s = s′0 = 0, then in particular s′0 ≤ s ≤ s′1. We assume that s′0 < s.
Since s ≤ t = s′n+2, the set {j : s ≤ s′j , j = 0, . . . , n + 2} is a non-empty
subset of N, and therefore has a smallest element, say p. Since s′0 < s
we have p ≥ 1, and furthermore s′p−1 < s ≤ s′p. In particular, we have
been able to find p ∈ {1, . . . , n + 2} such that s′p−1 ≤ s ≤ s′p. Consider
the finite sequence s′0 ≤ . . . ≤ s′p−1 ≤ s ≤ s′p ≤ . . . ≤ s′n+2 in [0, t] (with
n+ 4 terms), which we may denote s0 ≤ . . . ≤ sn+3. This finite sequence
in [0, t] is such that there exists j with s = sj and 0 < j < n+ 3. From 3.
we obtain:

n+3∑
i=1

|b(si)− b(si−1)| ≤ |b|(s)− |b(0)|+ δ

However, it is clear that {t0, . . . , tn} ⊆ {s0, . . . , sn+3}, and it follows from
5. of exercise (7) that:

n∑
i=1

|b(ti)− b(ti−1)| ≤
n+3∑
i=1

|b(si)− b(si−1)|

We conclude that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(s)− |b(0)|+ δ

5. It follows from 4. that |b|(s) − |b(0)| + δ is an upper-bound of all sums∑n
i=1 |b(ti)− b(ti−1)| as t0 ≤ . . . ≤ tn runs through all finite sequences in

[0, t], n ≥ 1. Since |b|(t)− |b(0)| is the smallest of such upper-bounds, we
obtain:

|b|(t)− |b(0)| ≤ |b|(s)− |b(0)|+ δ
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Equivalently, since |b|(s) < +∞, |b|(t) − |b|(s) ≤ δ. Having proved the
reverse inequality in 2. we conclude that:

|b|(t)− |b|(s) = δ = sup
n∑
i=1

|b(ti)− b(ti−1)|

where the supremum is taken over all finite sequences t0 ≤ . . . ≤ tn in
[s, t], n ≥ 1. This completes the proof of theorem (80).

Exercise 8

Exercise 9. Let b : R+ → C be a map of finite variation. Let s, t ∈ R+, s ≤ t.
A consequence of theorem (80) is that |b|(s) ≤ |b|(t). So |b| is non-decreasing.
From 5. of exercise (2), we have |b|(0) = |b(0)| and in particular |b|(0) ≥ 0. From
exercise (1), it follows that the total variation ||b|| of |b| is nothing but itself,
i.e. ||b|| = |b|.

Exercise 9

Exercise 10.

1. Let b : R+ → R be a map of finite variation. From definition (109), we
have:

|b|+ + |b|− =
1
2

(|b|+ b) +
1
2

(|b| − b) = |b|
and furthermore:

|b|+ − |b|− =
1
2

(|b|+ b)− 1
2

(|b| − b) = b

2. Since |b|(0) = |b(0)|, we have:

|b|+(0) =
1
2

(|b(0)|+ b(0))
4
= b+(0)

and:
|b|−(0) =

1
2

(|b(0)| − b(0))
4
= b−(0)

In particular, |b|+(0) ≥ 0 and |b|−(0) ≥ 0.

3. Let s, t ∈ R+, s ≤ t. Then s ≤ t is a finite sequence in [s, t] (with 2
terms). It follows from theorem (80) that:

|b(t)− b(s)| ≤ |b|(t)− |b|(s) (9)

4. Let s, t ∈ R+, s ≤ t. It follows from (9) that:

b(s)− b(t) ≤ |b|(t)− |b|(s)

and:
b(t)− b(s) ≤ |b|(t)− |b|(s)

we conclude that |b|+(s) ≤ |b|+(t) and |b|−(s) ≤ |b|−(t). So |b|+ and |b|−
are non-decreasing.
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Exercise 10

Exercise 11. Let b : R+ → C be a map of finite variation. Let u = Re(b) and
v = Im(b). From exercise (2), u, v : R+ → R are both of finite variation. Let
b1 = |u|+, b2 = |u|−, b3 = |v|+ and b4 = |v|−. From exercise (10), b1, b2, b3 and
b4 are all non-decreasing maps with bi(0) ≥ 0, i = 1, . . . , 4. Furthermore, since
u = b1−b2 and v = b3−b4, we have b = b1−b2 + i(b3−b4). Conversely, suppose
b = b1−b2+i(b3−b4) where each bi, i = 1, . . . , 4 is non-decreasing with bi(0) ≥ 0.
From exercise (1), each bi is a map of finite variation. From exercise (6), it
follows that b is also a map of finite variation. We have proved that a map
b : R+ → C is of finite variation, if and only if there exist b1, b2, b3 and b4
non-decreasing with bi(0) ≥ 0, i = 1, . . . , 4, such that b = b1 − b2 + i(b3 − b4).

Exercise 11

Exercise 12.

1. Let b : R+ → C be a right-continuous map of finite variation. Let x0 ∈
R+. From exercise (9), |b| : R+ → R+ is non-decreasing with |b|(0) ≥ 0.
In particular, for all t ∈ R+, x0 < t, we have |b|(x0) ≤ |b|(t). So |b|(x0) is a
lower-bound of all |b|(t)’s as t ∈ R+, x0 < t. If we define l = infx0<t |b|(t),
then l is the greatest of such lower-bounds, and consequently |b|(x0) ≤ l.
In particular −∞ < l. Furthermore, t being an arbitrary element of R+

with x0 < t, we have l ≤ |b|(t) and in particular, since b is of finite
variation, l < +∞. So l is a well-defined element of R. We claim that
|b|(t) → l as t → x0 with x0 < t. Let ε > 0. Since l < l + ε, l + ε cannot
be a lower-bound of all |b|(t)’s as x0 < t. Hence, there exists t1 ∈ R+,
x0 < t1, such that |b|(t1) < l + ε. |b| being non-decreasing, we have:

t ∈]x0, t1[ ⇒ l ≤ |b|(t) ≤ l + ε

This shows that the limit limt↓↓x0 |b|(t) exists and is equal to l. This
limit is denoted |b|(x0+). We have proved that for all x0 ∈ R+, the limit
|b|(x0+) exists in R, and |b|(x0+) = inft<x0 |b|(t).

2. From 1. we have |b|(x0+) = infx0<t |b|(t). However, since |b| is non-
decreasing, for all t ∈ R+, x0 < t, we have |b|(x0) ≤ |b|(t). It follows that
|b|(x0) is a lower-bound of all |b|(t)’s as t ∈ R+, x0 < t. Since |b|(x0+) is
the greatest of such lower-bounds, we conclude that |b|(x0) ≤ |b|(x0+).

3. Let ε > 0. Since |b|(x0+) = limt↓↓x0 |b|(t) exists in R, there exists y1 ∈
R+, x0 < y1, such that:

u ∈]x0, y1] ⇒ | |b|(u)− |b|(x0+) | ≤ ε

4
In particular, from the triangle inequality:

u, v ∈]x0, y1] ⇒ | |b|(v)− |b|(u) | ≤ ε

2
(10)
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Furthermore, since b is right-continuous, in particular it is right-continuous
at x0. There exists y2 ∈ R+, x0 < y2, such that:

u ∈]x0, y2] ⇒ |b(u)− b(x0)| ≤ ε

2
(11)

Taking y0 = min(y1, y2), y0 ∈ R+, x0 < y0, and from (11):

u ∈]x0, y0] ⇒ |b(u)− b(x0)| ≤ ε

2
Furthermore, y0 ∈]x0, y1] and from (10) we have:

u ∈]x0, y0] ⇒ |b|(y0)− |b|(u) ≤ ε

2

Exercise 12

Exercise 13.

1. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, y0], for which there
exists j with 0 < j < n − 1 (so in particular n ≥ 3), x0 = tj and
x0 < tj+1. Then t0 ≤ . . . ≤ tj is a finite sequence in [0, x0] with j ≥ 1.
From definition (108), we have:

j∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)| (12)

2. Since tj = x0 and tj+1 ∈]x0, y0], it follows from exercise (12):

|b(tj+1)− b(tj)| ≤
ε

2
(13)

3. Since tj+1 ≤ . . . ≤ tn is a finite sequence in [tj+1, y0] (with n − j ≥ 2
terms), from theorem (80) we have:

n∑
i=j+2

|b(ti)− b(ti−1)| ≤ |b|(y0)− |b|(tj+1)

and furthermore, since tj+1 ∈]x0, y0], from exercise (12) we have:

|b|(y0)− |b|(tj+1) ≤ ε

2
We conclude that:

n∑
i=j+2

|b(ti)− b(ti−1)| ≤ ε

2
(14)

4. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, y0]. We claim that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(x0)− |b(0)|+ ε (15)

In the case when there exists an index j with 0 < j < n − 1, x0 = tj
and x0 < tj+1, we can apply 1. 2. 3. and adding (12), (13) and (14)
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together, we obtain (15). Our task is to extend (15) to the general case
where there may not exists such an index j. However, since x0 < y0, it
is always possible to ’add points’ to the sequence t0 ≤ . . . ≤ tn so as to
obtain s0 ≤ . . . ≤ sp in [0, y0] with {t0, . . . tn} ⊆ {s0, . . . , sp} and x0 = sj ,
x0 < sj+1 for some 0 < j < p− 1. Applying (15) to the si’s, we obtain:

p∑
i=1

|b(si)− b(si−1)| ≤ |b|(x0)− |b(0)|+ ε

However, from exercise (7), since {t0, . . . tn} ⊆ {s0, . . . , sp}:
n∑
i=1

|b(ti)− b(ti−1)| ≤
p∑
i=1

|b(si)− b(si−1)|

and we conclude that (15) is true.

5. It follows from (15) that |b|(x0)− |b(0)|+ ε is an upper-bound of all sums∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite

sequences in [0, y0], n ≥ 1. Since |b|(y0) − |b(0)| is the smallest of such
upper-bounds, we obtain:

|b|(y0)− |b(0)| ≤ |b|(x0)− |b(0)|+ ε

and finally |b|(y0) ≤ |b|(x0) + ε.

6. Given ε > 0, in the light of 5. and exercise (12), we have found y0 ∈ R+,
x0 < y0, such that |b|(y0) ≤ |b|(x0) + ε. However, still from exercise (12),
we have |b|(x0+) = infx0<t |b|(t). In particular, |b|(x0+) is a lower-bound
of all |b|(t)’s with t ∈ R+, x0 < t. So |b|(x0+) ≤ |b|(y0), and we have
proved that |b|(x0+) ≤ |b|(x0)+ ε. This being true for all ε > 0, we obtain
|b|(x0+) ≤ |b|(x0). Having proved in exercise (12) that |b|(x0) ≤ |b|(x0+),
we conclude that |b|(x0) = |b|(x0+), i.e.

|b|(x0) = lim
t↓↓x0

|b|(t)

It follows that |b| is right-continuous at x0. This being true for all x0 ∈ R+,
the map |b| : R+ → R+ is right-continuous.

Exercise 13

Exercise 14.

1. Let b : R+ → C be a left-continuous map of finite variation. Let x0 ∈
R+\{0}. Let l = supt<x0

|b|(t). Since |b| is non-decreasing, for all t ∈ R+,
t < x0, we have |b|(t) ≤ |b|(x0). It follows that |b|(x0) is an upper-bound of
all |b|(t)’s as t ∈ R+, t < x0. Since l is the smallest of such upper-bounds,
we obtain l ≤ |b|(x0). In particular, since b is of finite variation, l < +∞.
Furthermore, since 0 < x0, there exists some t ∈ R+ with t < x0. For any
such t we have |b|(t) ≤ l and it follows in particular that −∞ < l. So l
is a well-defined element of R. We claim that |b|(t) → l as t → x0 with
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t < x0. Let ε > 0. Since l − ε < l, l − ε cannot be an upper-bound of all
|b|(t)’s as t < x0. There exists t1 ∈ R+, t1 < x0, such that l − ε < |b|(t1).
Since |b| is non-decreasing, we obtain:

t ∈ [t1, x0[ ⇒ l − ε < |b|(t) ≤ l
This shows that the limit limt↑↑x0 |b|(t) exists in R and is equal to l. This
limit is denoted |b|(x0−). We have proved that for all x0 ∈ R+ \ {0}, the
limit |b|(x0−) exists in R and is equal to supt<x0

|b|(t).

2. From 1. we have |b|(x0−) = supt<x0
|b|(t). However, since |b| is non-

decreasing, for all t ∈ R+, t < x0, |b|(t) ≤ |b|(x0). So |b|(x0) is an upper-
bound of all |b|(t)’s as t ∈ R+, t < x0. Since |b|(x0−) is the smallest of
such upper-bounds, we obtain |b|(x0−) ≤ |b|(x0).

3. Let ε > 0. By definition of the left-hand limit |b|(x0−), there exists
y1 ∈ [0, x0[ such that:

u ∈ [y1, x0[ ⇒ | |b|(u)− |b|(x0−) | ≤ ε

4
In particular, from the triangle inequality:

u, v ∈ [y1, x0[ ⇒ | |b|(u)− |b|(v) | ≤ ε

2
(16)

Furthermore, from the left-continuity of b at x0, there exists y2 ∈ [0, x0[,
such that:

u ∈ [y2, x0[ ⇒ |b(x0)− b(u)| ≤ ε

2
(17)

Taking y0 = max(y1, y2), y0 ∈ [0, x0[ and from (17):

u ∈ [y0, x0[ ⇒ |b(x0)− b(u)| ≤ ε

2
Furthermore, since y0 ∈ [y1, x0[, we have from (16):

u ∈ [y0, x0[ ⇒ |b|(u)− |b|(y0) ≤ ε

2

Exercise 14

Exercise 15.

1. By definition, k = max{i : j ≤ i, ti < x0}. Since tj = y0 and y0 ∈ [0, x0[,
we have tj < x0. It follows that j ≤ k. Furthermore, since tn = x0, we
have k ≤ n − 1. So j ≤ k ≤ n − 1. Since j ≤ k, we have tj ≤ tk and
from tj = y0 we obtain y0 ≤ tk. Furthermore, it is clear that tk < x0. So
tk ∈ [y0, x0[.

2. t0 ≤ . . . ≤ tj being a sequence in [0, y0] (with j ≥ 1):

j∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)| (18)
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3. If j = k, the sum
∑k
i=j+1 |b(ti)− b(ti−1)| is by convention set to zero. So

there is nothing to prove. We assume that j < k. Then tj ≤ . . . ≤ tk is a
finite sequence in [y0, tk] (with k − j + 1 ≥ 2 terms). From theorem (80),
we have:

k∑
i=j+1

|b(ti)− b(ti−1)| ≤ |b|(tk)− |b|(y0)

Furthermore from 1. we have tk ∈ [y0, x0[ and consequently from exer-
cise (14):

|b|(tk)− |b|(y0) ≤ ε

2
We conclude that:

k∑
i=j+1

|b(ti)− b(ti−1)| ≤ ε

2
(19)

4. By definition, k is the greatest index with j ≤ k and tk < x0. Hence, for
all i = k + 1, . . . , n, we have ti = x0. It follows that:

n∑
i=k+1

|b(ti)− b(ti−1)| = |b(x0)− b(tk)|

Furthermore, since tk ∈ [y0, x0[, from exercise (14):

|b(x0)− b(tk)| ≤ ε

2
We conclude that:

n∑
i=k+1

|b(ti)− b(ti−1)| ≤ ε

2
(20)

5. Let t0 ≤ . . . ≤ tn, n ≥ 1, be a finite sequence in [0, x0]. In the case when
tn = x0 and there exists an index j with 0 < j < n − 1 and tj = y0, we
obtain from (18), (19) and (20):

n∑
i=1

|b(ti)− b(ti−1)| ≤ |b|(y0)− |b(0)|+ ε (21)

Our task is to extend (21) to the general case when t0 ≤ . . . ≤ tn may
not satisfy this property. However, it is always possible to ’add points’ to
the finite sequence t0 ≤ . . . ≤ tn, so as to obtain s0 ≤ . . . ≤ sp in [0, x0]
with {t0, . . . , tn} ⊆ {s0, . . . , sp}, such that sp = x0 and for which there
exists j with 0 < j < p − 1 and sj = y0. Applying (21) to the sequence
s0 ≤ . . . ≤ sp:

p∑
i=1

|b(si)− b(si−1)| ≤ |b|(y0)− |b(0)|+ ε
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and since {t0, . . . , tn} ⊆ {s0, . . . , sp}, from exercise (7):
n∑
i=1

|b(ti)− b(ti−1)| ≤
p∑
i=1

|b(si)− b(si−1)|

We conclude that (21) is true in the general case.

6. It follows from (21) that |b|(y0)− |b(0)|+ ε is an upper-bound of all sums∑n
i=1 |b(ti) − b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite

sequences in [0, x0], n ≥ 1. Since |b|(x0) − |b(0)| is the smallest of such
upper-bounds, we obtain:

|b|(x0)− |b(0)| ≤ |b|(y0)− |b(0)|+ ε

and finally |b|(x0) ≤ |b|(y0) + ε.

7. Since |b|(x0−) = supt<x0
|b|(t) and y0 ∈ [0, x0[, we have |b|(y0) ≤ |b|(x0−).

It follows from 6. that |b|(x0) ≤ |b|(x0−) + ε. This being true for all
ε > 0, we obtain |b|(x0) ≤ |b|(x0−). Having proved in exercise (14) that
|b|(x0−) ≤ |b|(x0), we conclude that |b|(x0) = |b|(x0−), i.e.

|b|(x0) = lim
t↑↑x0

|b|(t)

This shows that |b| is left-continuous at x0. This being true for all x0 ∈
R+ \ {0}, we have proved that |b| is a left-continuous.

8. Let b : R+ → C be a map of finite variation. If b is right-continuous, then
|b| is right-continuous by virtue of exercise (13). If b is left-continuous,
we have just proved that |b| is also left-continuous. It follows that if b
is continuous then |b| is also continuous. This completes the proof of
theorem (81).

Exercise 15

Exercise 16.

1. Let b : R+ → R be an R-valued map of finite variation. We assume that
b is right-continuous. From definition (109), the positive variation of b is
given by |b|+ = (|b|+ b)/2. From theorem (81), |b| is right-continuous. It
follows that |b|+ is right-continuous. Similarly, |b|− = (|b| − b)/2 is right
continuous.

2. It follows likewise from theorem (81) that if b is left-continuous, then |b|+
and |b|− are left-continuous. If b is continuous, then |b|+ and |b|− are
continuous.

Exercise 16

Exercise 17. Let b : R+ → C be a right continuous map of finite variation. Let
u = Re(b) and v = Im(b). Define b1 = |u|+, b2 = |u|−, b3 = |v|+ and b4 = |v|−.
Then b = b1 − b2 + i(b3 − b4), and each bi is non-decreasing with bi(0) ≥ 0 (see
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proof of exercise (11)). Furthermore, since u and v are right-continuous maps of
finite variation, from exercise (16) we conclude that each bi is right-continuous.

Exercise 17

Exercise 18.

1. Let b : R+ → C be a right-continuous map. Let t ∈ R+. For all p ≥ 1,
we define:

Sp
4
= |b(0)|+

2p∑
k=1

∣∣∣∣b(kt2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣
Then, given p ≥ 1, we have:

{kt/2p : k = 0, . . . , 2p} ⊆ {kt/2p+1 : k = 0, . . . , 2p+1}

and it follows from exercise (7) that:

2p∑
k=1

∣∣∣∣b(kt2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣ ≤ 2p+1∑
k=1

∣∣∣∣b( kt

2p+1

)
− b

(
(k − 1)t

2p+1

)∣∣∣∣
We conclude that Sp ≤ Sp+1.

2. It is clear from definition (108) that:

2p∑
k=1

∣∣∣∣b(kt2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣ ≤ |b|(t)− |b(0)|

or equivalently Sp ≤ |b|(t). It follows that |b|(t) is an upper-bound of all
Sp’s. Since S = supp≥1 Sp is the smallest of such upper-bounds, we obtain
S ≤ |b|(t).

Exercise 18

Exercise 19.

1. Let t0 < . . . < tn be a finite sequence of distinct elements of [0, t]. Let
ε > 0. Let i ∈ {0, . . . , n− 1}. We want to find an integer pi ≥ 1 and some
qi ∈ {0, . . . , 2pi}, such that ti ≤ qit/2pi < ti+1 and:∣∣∣∣b(ti)− b( qit2pi

)∣∣∣∣ ≤ ε
When i = n, we want to find an integer pn ≥ 1 and some qn ∈ {0, . . . , 2pn}
such that tn ≤ qnt/2pn ≤ t and:∣∣∣∣b(tn)− b

(
qnt

2pn

)∣∣∣∣ ≤ ε
If tn = t, then pn = 1 and qn = 2 will satisfy our requirements, and
we only need to consider the case of i ∈ {0, . . . , n − 1}. If tn < t, then
we may set tn+1 = t and we no longer need to treat the case of i = n
separately. Indeed, if we achieve the condition ti ≤ qit/2pi < ti+1 for
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i = n, then in particular tn ≤ qnt/2pn ≤ t will be satisfied. Now, from the
right-continuity of b at ti, there exists si > ti such that:

u ∈ [ti, si[ ⇒ |b(ti)− b(u)| ≤ ε
Let ui = min(si, ti+1). Then ti < ui ≤ t, and:

u ∈ [ti, ui[ ⇒ ti ≤ u < ti+1 and |b(ti)− b(u)| ≤ ε
Hence, all we need to do is find u ∈ [ti, ui[ which can be written as some
qit/2pi . Note that since 0 ≤ t0 < t1 ≤ t, in particular t > 0 and finding
u ∈ [ti, ui[ of the form qit/2pi is equivalent to finding u′ ∈ [ti/t, ui/t[ of
the form qi/2pi. In other words, since 0 ≤ ti/t < ui/t ≤ 1, we are reduced
to showing that any interval [α, β[ where 0 ≤ α < β ≤ 1, contains a
dyadic number of [0, 1], i.e. a number of the form q/2p where p ≥ 1 and
q ∈ {0, . . . , 2p}. It is well-known that dyadic numbers are dense in [0, 1]
and some of us will be happy to conclude our proof here. For those who
do not wish to take the density of dyadic numbers for granted, we may
proceed as follows: We assume that 0 ≤ α < β ≤ 1. Choose an integer
p ≥ 1 such that 2−p ≤ β − α, and consider the set:

J = {r : r ∈ {0, . . . , 2p} , β ≤ r/2p}
Since r = 2p ∈ J , J is a non-empty subset of N, and therefore has a
smallest element, say q. Since β > 0, we have q ≥ 1 and furthermore:

q − 1
2p

< β ≤ q

2p

However, since β − α ≥ 1/2p, we have:

α ≤ β − 1
2p
≤ q

2p
− 1

2p
=
q − 1

2p

It follows that α ≤ (q−1)/2p < β and we have proved that any non empty
sub-interval [α, β[ of [0, 1] contains a dyadic number. This completes our
proof. Coming back to our original problem, we have proved that there
exists integers pi ≥ 1 and qi ∈ {0, . . . , 2pi}, i = 0, . . . , n, such that:

0 ≤ t0 ≤
q0t

2p0
< t1 ≤

q1t

2p1
< . . . < tn ≤

qnt

2pn
≤ t

and: ∣∣∣∣b(ti)− b( qit2pi

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

2. Define p = maxi=0,...,n pi and ki = qi2(p−pi). Then p ≥ 1 and from
0 ≤ qi ≤ 2pi we obtain 0 ≤ ki ≤ 2p. Furthermore, for all i = 0, . . . , n, we
have:

kit

2p
= qi2(p−pi) t

2p
=
qit

2pi
We conclude from 1. that:

0 ≤ t0 ≤
k0t

2p
< t1 ≤

k1t

2p
< . . . < tn ≤

knt

2p
≤ t
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and: ∣∣∣∣b(ti)− b(kit2p

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

3. It follows from the inclusion:{
kit

2p
: i = 0, . . . , n

}
⊆
{
kt

2p
: k = 0, . . . , 2p

}
together with exercise (7), that:

n∑
i=1

∣∣∣∣b(kit2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤ 2p∑
k=1

∣∣∣∣b(kt2p

)
− b

(
(k − 1)t

2p

)∣∣∣∣
or equivalently:

n∑
i=1

∣∣∣∣b(kit2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤ Sp − |b(0)| (22)

4. Let i ∈ {1, . . . , n}. Then:

|b(ti)− b(ti−1)| ≤
∣∣∣∣b(ti)− b(kit2p

)∣∣∣∣+
∣∣∣∣b(kit2p

)
− b

(
ki−1t

2p

)∣∣∣∣
+
∣∣∣∣b(ti−1)− b

(
ki−1t

2p

)∣∣∣∣
≤ 2ε+

∣∣∣∣b(kit2p

)
− b

(
ki−1t

2p

)∣∣∣∣
and consequently from (22):

n∑
i=1

|b(ti)− b(ti−1)| ≤ Sp − |b(0)|+ 2nε (23)

Since S = supp≥1 Sp, in particular Sp ≤ S, and we obtain:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|+ 2nε (24)

5. Having proved (24) for arbitrary ε > 0, we conclude that:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)| (25)

6. Let t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. If card{t0, . . . , tn} =
1, then all ti’s are equal and (25) is true. We assume that card{t0, . . . , tn} ≥
2. Let s0 < . . . < sp be distinct in [0, t] such that {s0, . . . , sp} = {t0, . . . , tn}.
Then, inequality (25) holds for the sj ’s, i.e.:

p∑
j=1

|b(sj)− b(sj−1)| ≤ S − |b(0)| (26)
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However, from exercise (7), since {t0, . . . , tn} ⊆ {s0, . . . , sp}:
n∑
i=1

|b(ti)− b(ti−1)| ≤
p∑
j=1

|b(sj)− b(sj−1)|

and it follows that (25) is true for the ti’s. Hence, we have proved that (25)
holds for all finite sequences t0 ≤ . . . ≤ tn in [0, t], n ≥ 1. In other
words, S − |b(0)| is an upper-bound of all sums

∑n
i=1 |b(ti) − b(ti−1)|

as t0 ≤ . . . ≤ tn runs through the set of all finite sequences in [0, t],
n ≥ 1. Since |b|(t)−|b(0)| is the smallest of such upper-bounds, we obtain
|b|(t)− |b(0)| ≤ S − |b(0)|, and finally |b|(t) ≤ S.

7. Let b : R+ → C be right-continuous. Let t ∈ R+. From 6. we have
|b|(t) ≤ S and we have proved in exercise (18) that S ≤ |b|(t). It follows
that |b|(t) = S. Furthermore, still from exercise (18), the sequence (Sp)p≥1

is non-decreasing. Hence:

S = sup
p≥1

Sp = lim
p→+∞

Sp ∈ [0,+∞]

we conclude that |b|(t) = limp→+∞ Sp, or equivalently:

|b|(t) = |b(0)|+ lim
n→+∞

2n∑
k=1

∣∣∣∣b( kt2n

)
− b

(
(k − 1)t

2n

)∣∣∣∣ (27)

This completes the proof of theorem (82) in the case when b is right-
continuous. We now assume that b is left-continuous instead of right-
continuous. In order to prove (27), we need to show that given t ∈ R+,
we have |b|(t) = S. It is clear that S ≤ |b|(t) still holds, so we need to
prove the reverse inequality |b|(t) ≤ S, which we shall do with a very
similar argument to that contained in 1. to 6.. Let ε > 0 be given, and
suppose t0 < . . . < tn is a finite sequence of distinct elements of [0, t]. From
the left-continuity of b, there exists integers pi ≥ 1 and qi ∈ {0, . . . , 2pi}
such that:

0 ≤ q0t

2p0
≤ t0 <

q1t

2p1
≤ t1 < . . . <

qnt

2pn
≤ tn ≤ t

and: ∣∣∣∣b(ti)− b( qit2pi

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

Note that some extra care is required for t0. Indeed, if t0 = 0, then there is
no such thing as the left-continuity of b at t0. However, p0 = 1 and q0 = 0
will satisfy our requirements. Having found the pi’s and the qi’s, we then
define p = maxi=0,...,n pi and ki = qi2(p−pi). Then p ≥ 1, 0 ≤ ki ≤ 2p and
furthermore:

0 ≤ k0t

2p
≤ t0 <

k1t

2p
≤ t1 < . . . <

knt

2p
≤ tn ≤ t
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and: ∣∣∣∣b(ti)− b(kit2p

)∣∣∣∣ ≤ ε , ∀i = 0, . . . , n

Using exercise (7), we then argue that:
n∑
i=1

∣∣∣∣b(kit2p

)
− b

(
ki−1t

2p

)∣∣∣∣ ≤ Sp − |b(0)|

from which we obtain, just like in 4. and 5.:
n∑
i=1

|b(ti)− b(ti−1)| ≤ S − |b(0)|

This being true when the ti’s are distinct, is in fact true in general, and
we conclude that |b|(t) ≤ S. This completes the proof of theorem (82).

Exercise 19

Exercise 20. Let b : R+ → R+ be defined by b = 1Q+ . Since for all n ≥ 1 and
k = 0, . . . , n, the number k/2n is rational, we have:

2n∑
k=1

∣∣∣∣b( k

2n

)
− b

(
k − 1

2n

)∣∣∣∣ = 0

However, we claim that |b|(1) = +∞. Let n ≥ 1. Define:

t0 = 0, t2 =
1
n
, t4 =

2
n
, . . . , t2n =

n

n
= 1

and for all k ∈ {1, . . . , n}, let t2k−1 be an arbitrary irrational number in
]t2k−2, t2k[. The fact that such irrational number exists, stems from the density
of irrational numbers in [0, 1], which we shall admit in this tutorial. Hence, we
have a finite sequence t0 ≤ t1 ≤ . . . ≤ t2n in [0, 1], such that:

2n∑
i=1

|b(ti)− b(ti−1)| = 2n

It follows that 2n ≤ |b|(1), and this being true for all n ≥ 1, we conclude that
|b|(1) = +∞. We have proved that:

+∞ = |b|(1) 6= lim
n→+∞

2n∑
k=1

|b(k/2n)− b((k − 1)/2n)| = 0

The purpose of this exercise is to illustrate the fact that the conclusion of the-
orem (82) may not hold. This obviously does not contradict theorem (82), as
the map 1Q+ is neither left, nor right-continuous.

Exercise 20

Exercise 21.
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1. Let b : R+ → C be right-continuous of bounded variation. Let b1 =
Re(b) and b2 = Im(b). Then, b1 and b2 are both right-continuous of
bounded variations, and in particular right-continuous of finite variations.
Their positive and negative variations |b1|+, |b1|−, |b2|+ and |b2|− are
right-continuous, non-decreasing with non-negative initial values (see ex-
ercises (10) and (16)). It follows from definition (24) that the Stieltjes
measures d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all well-defined measures on
(R+,B(R+)).

2. Yes. It is still true if b is right-continuous of finite variation. The assump-
tion that b is in fact of bounded variation has not been used in 1.

3. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0, and
let da be its associated Stieltjes measure (see definition (24)). Then for
all n ≥ 1, we have:

da([0, n]) = da({0}) + da(]0, n]) = a(0) + a(n)− a(0) = a(n)

Furthermore, since [0, n] ↑ R+, using theorem (7):

da(R+) = lim
n→+∞

da([0, n])

It follows that da(R+) = limn→+∞ a(n) = a(∞). So da is a finite measure,
if and only if a(∞) < +∞. Now, b being of bounded variation, we have:

|b|(∞) = lim
t→+∞

|b|(t) = sup
t∈R+

|b|(t) < +∞

From exercise (2) we have |b1| ≤ |b| and |b2| ≤ |b|. Furthermore from
exercise (10), |b1| = |b1|+ + |b1|− and |b2| = |b2|+ + |b2|−. In particular, it
follows that |b1|+ ≤ |b| and consequently:

|b1|+(∞) ≤ |b|(∞) < +∞
We conclude that d|b1|+ is a finite measure on (R+,B(R+)). Similarly,
d|b1|−, d|b2|+ and d|b2|− are all finite measures.

4. We define:
db = d|b1|+ − d|b1|− + i(d|b2|+ − d|b2|−) (28)

Since d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all finite measures, in particular
they are complex measures on (R+,B(R+)), i.e. elements of the C-vector
space M1(R+,B(R+)). db being defined by (28) as a linear combina-
tions of elements of M1(R+,B(R+)), is a well-defined complex measure
on (R+,B(R+)).

5. From (28) and definition (24), we have:

db({0}) = d|b1|+({0})− d|b1|−({0})
+ i(d|b2|+({0})− d|b2|−({0}))
= |b1|+(0)− |b1|−(0) + i(|b2|+(0)− |b2|−(0))
= b1(0) + ib2(0) = b(0)
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6. Let s, t ∈ R+, s ≤ t. From (28) and definition (24):

db(]s, t]) = d|b1|+(]s, t])− d|b1|−(]s, t])
+ i(d|b2|+(]s, t])− d|b2|−(]s, t]))
= |b1|+(t)− |b1|+(s)− |b1|−(t) + |b1|−(s)
+ i(|b2|+(t)− |b2|+(s)− |b2|−(t) + |b2|−(s))
= b1(t)− b1(s) + i(b2(t)− b2(s))
= b(t)− b(s)

7. Since b = |b1|+ − |b1|− + i(|b2|+ − |b2|−) and |b1|+, |b1|−, |b2|+ and |b2|−
all have finite limits as t → +∞ (see 3.), we conclude that limt→+∞ b(t)
exists in C. This limit is denoted b(∞).

8. Since [0, n] ↑ R+, in particular 1[0,n] → 1R+ = 1 and using exercise (13)
of Tutorial 12, db([0, n])→ db(R+). Hence:

db(R+) = lim
n→+∞

db([0, n])

= lim
n→+∞

(db({0}) + db(]0, n]))

= lim
n→+∞

(b(0) + b(n)− b(0))

= lim
n→+∞

b(n) = b(∞)

9. Given b : R+ → C right-continuous of bounded variation, we have seen
that db is a complex measure on (R+,B(R+)) with:

(i) db({0}) = b(0)
(ii) ∀s, t ∈ R+ s ≤ t , db(]s, t]) = b(t)− b(s)

This proves the existence property stated in definition (110). To prove the
uniqueness, we shall use a standard argument based on Dynkin systems.
Suppose µ and ν are two complex measures on (R+,B(R+)) such that
µ({0}) = ν({0}) and µ(]s, t]) = ν(]s, t]) for all s, t ∈ R+, s ≤ t. Define:

D = {B ∈ B(R+) : µ(B) = ν(B)}
and let:

C = {{0}} ∪ {]s, t] : s, t ∈ R+, s ≤ t}
By assumption C ⊆ D, and since C is closed under finite intersection while
D is a Dynkin system on R+, from the Dynkin system theorem (1) we
obtain σ(C) ⊆ D. Finally, since σ(C) = B(R+), we have B(R+) ⊆ D
which shows that µ = ν. This proves the uniqueness property stated
in definition (110). It may be that some of us think this proof of the
uniqueness property was a little bit short, as some of the key points have
not been justified. The fact that A,B ∈ C ⇒ A ∩ B ∈ C was already
proved in detail in Tutorial 3, and it is pretty straightforward anyway. The
fact that σ(C) = B(R+) is the object of exercise (20) in Tutorial 3. As an
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alternative quick proof, it is by now known that C′ = {]s, t] : s, t ∈ R s ≤ t}
generates the σ-algebra on R, i.e. σ(C′) = B(R). However, any element
of C′|R+ , the trace of C′ on R+, is of the form ]s, t] or {0}∪]0, t] with
s, t ∈ R+. Hence, it is a simple exercise to show that σ(C) = σ(C′|R+).
Using the trace theorem (10) we obtain:

σ(C) = σ(C′|R+) = σ(C′)|R+ = B(R)|R+ = B(R+)

The fact that D is a Dynkin system on R+ can be seen as follows:

µ(R+) = lim
n→+∞

µ([0, n]) = lim
n→+∞

ν([0, n]) = ν(R+)

So R+ ∈ D. Furthermore, if A,B ∈ D, A ⊆ B, then:

µ(B \A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B \A)

So B \A ∈ D. Finally if An ∈ D and An ↑ A, then in particular 1An → 1A
and from exercise (13) of Tutorial 12, we have:

µ(A) = lim
n→+∞

µ(An) = lim
n→+∞

ν(An) = ν(A)

which shows that A ∈ D. This really completes our proof of the uniqueness
property stated in definition (110).

Exercise 21

Exercise 22. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. From definition (24), the Stieltjes measure da associated with a
is well-defined. However, if we assume that a(∞) < +∞, from exercise (1)
|a| = a, and a is therefore right-continuous of bounded variation. According
to definition (110), the notation ’da’ refers to the so-called complex Stieltjes
measure associated with a. Hence, we are in a situation where because a can
be viewed both as right-continuous, non-decreasing with a(0) ≥ 0 and right-
continuous of bounded variation, the notation ’da’ is potentially ambiguous as
its meaning is derived from two possibly conflicting definitions (24) and (110).
The purpose of this exercise is to show that in fact, no conflict arises. Let µ be
the Stieltjes measure on (R+,B(R+)) associated with a, as per definition (24),
and ν be the complex Stieltjes measure associated with a, as per definition (110).
Then, we have:

(i) µ({0}) = ν({0}) = a(0)
(ii) ∀s, t ∈ R+ s ≤ t , µ(]s, t]) = ν(]s, t]) = a(t)− a(s)

However, µ(R+) = a(∞) < +∞ and µ is therefore a finite measure. In particu-
lar, it is a complex measure on (R+,B(R+)). From the uniqueness property of
definition (110), it follows that µ = ν. So the Stieltjes measure associated with
a, coincides with its complex Stieltjes measure, and there is no conflict regarding
the notation ’da’.

Exercise 22

Exercise 23.
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1. Let b : R+ → C be right-continuous of finite variation. Let b1 = Re(b) and
b2 = Im(b). Then b1 and b2 are right-continuous maps of finite variation,
and their negative and positive variations |b1|+, |b1|−, |b2|+ and |b2|− are
all right-continuous, non-decreasing with non-negative initial values. By
virtue of definition (24), d|b1|+, d|b1|−, d|b2|+ and d|b2|− are all well-
defined measures on (R+,B(R+)).

2. It is impossible to define db = d|b1|+− d|b1|−+ i(d|b2|+− d|b2|−), because
d|b1|+, d|b1|−, d|b2|+ and d|b2|− are not necessarily finite measures, and
any algebraic expression involving +∞−(+∞) makes no sense. To ensure
that d|b1|+, d|b1|−, d|b2|+ and d|b2|− be finite measures, we have to assume
that b is not just of finite variation, but also of bounded variation.

Exercise 23

Exercise 24.

1. Let b : R+ → C be a map and T ∈ R+. Let bT : R+ → C be the map
defined by bT (t) = b(T ∧ t) for all t ∈ R+. Let t ∈ R+ and t0 ≤ . . . ≤ tn
be a finite sequence in [0, t], n ≥ 1. Then T ∧ t0 ≤ . . . ≤ T ∧ tn is a finite
sequence in [0, T ∧ t], n ≥ 1. Hence, from definition (108):

n∑
i=1

|b(T ∧ ti)− b(T ∧ ti−1)| ≤ |b|(T ∧ t)− |b(0)|

or equivalently:
n∑
i=1

|bT (ti)− bT (ti−1)| ≤ |b|T (t)− |b(0)|

It follows that |b|T (t)−|b(0)| is an upper-bound of all sums
∑n
i=1 |bT (ti)−

bT (ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite sequences in
[0, t], n ≥ 1. Since |bT |(t) − |bT (0)| is the smallest of such upper-bounds,
we obtain:

|bT |(t)− |bT (0)| ≤ |b|T (t)− |b(0)|
Since bT (0) = b(0) we finally have |bT |(t) ≤ |b|T (t). To show the reverse
inequality, let t0 ≤ . . . ≤ tn be a finite sequence in [0, T ∧ t], n ≥ 1. Then:

n∑
i=1

|b(ti)− b(ti−1)| =
n∑
i=1

|bT (ti)− bT (ti−1)|

≤ |bT |(T ∧ t)− |bT (0)|
≤ |bT |(t)− |b(0)|

It follows that |bT |(t)− |b(0)| is an upper-bound of all sums
∑n

i=1 |b(ti)−
b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite sequences in
[0, T ∧ t], n ≥ 1. Since |b|(T ∧ t) − |b(0)| is the smallest of such upper-
bounds, we obtain:

|b|(T ∧ t)− |b(0)| ≤ |bT |(t)− |b(0)|
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i.e. |b|T (t) ≤ |bT |(t). Finally, we have proved that |bT |(t) = |b|T (t). This
being true for all t ∈ R+, we have |bT | = |b|T .

2. Suppose b is of finite variation. Then |b|(t) < +∞ for all t ∈ R+. Let
T ∈ R+. Using 1. we obtain:

|bT |(∞) = lim
t→+∞

|bT |(t)

= lim
t→+∞

|b|T (t)

= lim
t→+∞

|b|(T ∧ t)

= |b|(T ) < +∞
So bT is a map of bounded variation.

3. Suppose b is right-continuous of finite variation. Let T ∈ R+. From
2. bT is right-continuous of bounded variation. From definition (110), its
associated complex Stieltjes measure dbT is well-defined, and is the unique
complex measure on (R+,B(R+)) such that:

(i) dbT ({0}) = bT (0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = bT (t)− bT (s)

In other words, it is the unique complex measure such that:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t)− b(T ∧ s)

4. Suppose b is R-valued of finite variation. Let T ∈ R+. Using 1. together
with definition (109) we obtain for all t ∈ R+:

|bT |+(t) =
1
2

(|bT |(t) + bT (t))

=
1
2

(|b|T (t) + bT (t))

=
1
2

(|b|(T ∧ t) + b(T ∧ t))

= |b|+(T ∧ t) = (|b|+)T (t)

So |bT |+ = (|b|+)T and similarly, the negative variation |bT |− of bT is
given by |bT |− = (|b|−)T .

5. Suppose b is right-continuous of bounded variation. Then its associated
complex Stieltjes measure db is well-defined as per definition (110). Let
db[0,T ] be the complex measure defined by:

∀B ∈ B(R+) , db[0,T ] 4= db([0, T ] ∩B)

Then, we have:

db[0,T ]({0}) = db([0, T ] ∩ {0}) = db({0}) = b(0)
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and for all s, t ∈ R+, s ≤ t:
db[0,T ](]s, t]) = db([0, T ]∩]s, t])

= db(]T ∧ s, T ∧ t])
= b(T ∧ t)− b(T ∧ s)

Hence, from the uniqueness property of 3., dbT = db[0,T ].

6. Suppose b is right-continuous, non-decreasing with b(0) ≥ 0. In particular,
b is right-continuous of finite variation, and from 3. dbT is the unique
complex measure on (R+,B(R+)) such that:

(i) dbT ({0}) = b(0)
(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t)− b(T ∧ s)

However, the Stieltjes measure db is well-defined as per definition (24),
and similarly to 5. we have db[0,T ]({0}) = b(0), with:

db[0,T ](]s, t]) = b(T ∧ t)− b(T ∧ s)
Furthermore:

db[0,T ](R+) = db([0, T ]) = b(T ) < +∞
and consequently db[0,T ] is a finite measure, and in particular a complex
measure on R+. From the uniqueness property of 3. we conclude that
db[0,T ] = dbT .

Exercise 24

Exercise 25.

1. Let µ, ν be two finite measures on R+ such that:

(i) µ({0}) ≤ ν({0})
(ii) ∀s, t ∈ R+, s ≤ t , µ(]s, t]) ≤ ν(]s, t])

Let a, c : R+ → R+ be defined by a(t) = µ([0, t]) and c(t) = ν([0, t]).
Then a(0) = µ({0}) ≥ 0 and similarly c(0) ≥ 0. Let s, t ∈ R+, s ≤ t.
Then, we have:

a(t) = µ([0, t])
= µ([0, s]) + µ(]s, t])
≥ µ([0, s]) = a(s)

So a is non-decreasing, and similarly c is non-decreasing. Let t ∈ R+ and
(tn)n≥1 be an arbitrary sequence in R+ such that tn ↓↓ t (i.e. tn → t and
t < tn+1 ≤ tn for all n ≥ 1). Then, [0, tn] ↓ [0, t], and since µ is a finite
measure, from theorem (8) we have:

µ([0, t]) = lim
n→+∞

µ([0, tn])

It follows that a(t) = limn→+∞ a(tn), which shows that a is right-continuous.
Similarly, c is right-continuous.

www.probability.net

http://www.probability.net


Solutions to Exercises 40

2. Let da be the Stieltjes measure associated with a as per definition (24).
We have µ({0}) = a(0) = da({0}) and since µ is a finite measure, for all
s, t ∈ R+, s ≤ t:

µ(]s, t]) = µ([0, t])− µ([0, s])
= a(t)− a(s) = da(]s, t])

From the uniqueness property of definition (24), we conclude that da = µ.
Similarly dc = ν.

3. For all t ∈ R+, we have:

a(t) = µ([0, t])
= µ({0}) + µ(]0, t])
≤ ν({0}) + ν(]0, t])
= ν([0, t]) = c(t)

which shows that a ≤ c.

4. Let b = c−a. Since a and c are right-continuous, b is also right-continuous.
Since a ≤ c, in particular a(0) ≤ c(0) and consequently b(0) ≥ 0. Let
s, t ∈ R+, s ≤ t. We have:

b(t) = c(t)− a(t)
= ν([0, t])− µ([0, t])
= ν([0, s])− µ([0, s]) + ν(]s, t]) − µ(]s, t])
= c(s)− a(s) + ν(]s, t])− µ(]s, t])
≥ c(s)− a(s) = b(s)

which shows that b is non-decreasing.

5. Let db be the Stieltjes measure associated with b as per definition (24).
Then da+ db is a measure on (R+,B(R+)), and:

(da+ db)({0}) = da({0}) + db({0}) = a(0) + b(0) = c(0)

Furthermore, for all s, t ∈ R+, s ≤ t:
(da+ db)(]s, t]) = da(]s, t]) + db(]s, t])

= a(t)− a(s) + b(t)− b(s)
= c(t)− c(s)

From the uniqueness property of definition (24), we conclude that da+db =
dc.

6. It follows from 5. that for all B ∈ B(R+), we have:

dc(B) = da(B) + db(B)

In particular da(B) ≤ dc(B), and since da = µ and dc = ν, we have proved
that µ(B) ≤ ν(B). This proves theorem (83).
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Exercise 25

Exercise 26.

1. Let b : R+ → C be a right-continuous map of bounded variation. Let db be
its associated complex Stieltjes measure, as per definition (110). Let d|b|
be the Stieltjes measure associated with the total variation map |b|, as per
definition (24). Then, we have d|b|({0}) = |b|(0) = |b(0)|. Furthermore,
since E1 = {0}, En = ∅, n ≥ 1, defines a measurable partition of {0} (see
definition (91)), we have from definition (94):

|b(0)| = |db({0})| =
+∞∑
n=1

|db(En)| ≤ |db|({0})

where |db| denotes the total variation measure |db| of the complex measure
db. Furthermore, if (En)n≥1 is an arbitrary measurable partition of {0},
then {0} = En for some n ≥ 1, and it is easy to see that Em = ∅ for
m 6= n. Hence:

+∞∑
n=1

|db(En)| = |db({0})| = |b(0)|

In particular |b(0)| is an upper-bound of all sums
∑+∞
n=1 |db(En)| as (En)n≥1

runs through the set of all measurable partitions of {0}. From defini-
tion (94), |db|({0}) is the smallest of such upper-bounds, and consequently
|db|({0}) ≤ |b(0)|. Finally, we have proved that |db|({0}) = |b(0)| =
d|b|({0}).

2. Let s, t ∈ R+, s ≤ t. Let t0 ≤ . . . ≤ tn be a finite sequence in [s, t], n ≥ 1.
Then, the sequence ]s, t0], ]t0, t1],. . . ,]tn−1, tn], ]tn, t], ∅,. . . constitutes a
measurable partition of ]s, t]. Hence:

n∑
i=1

|b(ti)− b(ti−1)|=
n∑
i=1

|db(]ti−1, ti])|

≤ |db(]s, t0])|+
n∑
i=1

|db(]ti−1, ti])|+|db(]tn, t])|

≤ |db|(]s, t])

3. It follows from 2. that |db|(]s, t]) is an upper-bound of all sums
∑n
i=1 |b(ti)−

b(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite sequences in
[s, t], n ≥ 1. Since from theorem (80), |b|(t)− |b|(s) is the smallest of such
upper-bounds, we obtain:

|b|(t)− |b|(s) ≤ |db|(]s, t])

4. From 3. we have for all s, t ∈ R+, s ≤ t:

d|b|(]s, t]) = |b|(t)− |b|(s) ≤ |db|(]s, t])
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Furthermore from 1. d|b|({0}) = |db|({0}) and in particular d|b|({0}) ≤
|db|({0}). Moreover, from theorem (57), the total variation |db| is a finite
measure on (R+,B(R+)), and since b is of bounded variation:

d|b|(R+) = lim
n→+∞

d|b|([0, n]) = lim
n→+∞

|b|(n) = |b|(∞) < +∞

So d|b| is also a finite measure on (R+,B(R+)). Applying theorem (83),
we conclude that d|b| ≤ |db|.

5. Let f ∈ L1
C(R+,B(R+), |db|). Then f is measurable, and using d|b| ≤ |db|

together with exercise (18) of Tutorial 12, we obtain:∫
|f |d|b| ≤

∫
|f ||db| < +∞

So f ∈ L1
C(R+,B(R+), d|b|).

6. From theorem (12), since R is metrizable, R+ is also metrizable. Further-
more, if Vn = [0, n[, n ≥ 1, then (Vn)n≥1 is a sequence of open subsets of
R+ with compact closure, such that Vn ↑ R+. From definition (104), it
follows that R+ is strongly σ-compact.

7. Since R+ is metrizable and |db| is a finite measure, from theorem (70) the
set of continuous and bounded functions CbC(R+) is dense in L1

C(R+,B(R+), |db|).
Since R+ is metrizable and strongly σ-compact, since |db| is a finite mea-
sure, in particular |db| is locally finite. From theorem (78) the space of con-
tinuous functions with compact supportCcC(R+) is dense in L1

C(R+,B(R+), |db|).

8. Let h ∈ L1
C(R+,B(R+), |db|). Let ε > 0. From the density of CbC(R+)

obtained in 7. there exists φ ∈ CbC(R+) such that:∫
|φ− h||db| ≤ ε (29)

9. Using (29) and exercise (16) of Tutorial 12:∣∣∣∣∫ hdb

∣∣∣∣− ∣∣∣∣∫ φdb

∣∣∣∣ ≤ ∣∣∣∣ ∣∣∣∣∫ φdb

∣∣∣∣− ∣∣∣∣∫ hdb

∣∣∣∣ ∣∣∣∣
≤

∣∣∣∣∫ φdb −
∫
hdb

∣∣∣∣
=

∣∣∣∣∫ (φ− h)db
∣∣∣∣

≤
∫
|φ− h||db| ≤ ε

and we conclude that: ∣∣∣∣∫ hdb

∣∣∣∣ ≤ ∣∣∣∣∫ φdb

∣∣∣∣+ ε (30)
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10. Since d|b| ≤ |db|, using exercise (18) of Tutorial 12:∣∣∣∣∫ |φ|d|b| − ∫ |h|d|b|∣∣∣∣ =
∣∣∣∣∫ (|φ| − |h|)d|b|

∣∣∣∣
≤

∫
| |φ| − |h| |d|b|

≤
∫
|φ− h|d|b|

≤
∫
|φ− h||db|

11. Using 10 and (29) we obtain:∫
|φ|d|b| −

∫
|h|d|b| ≤

∣∣∣∣∫ |φ|d|b| − ∫ |h|d|b|∣∣∣∣
≤

∫
|φ− h||db| ≤ ε

and consequently: ∫
|φ|d|b| ≤

∫
|h|d|b|+ ε (31)

12. For all n ≥ 1, we define:

φn
4
= φ(0)1{0} +

n2n−1∑
k=0

φ(k/2n)1]k/2n,(k+1)/2n]

Since φ ∈ CbC(R+), there exists M ∈ R+ such that |φ(x)| ≤ M for all
x ∈ R+. Then |φn(x)| ≤M for all x ∈ R+ and n ≥ 1.

13. Let t ∈ R+. If t = 0 then φn(t) = φn(0) = φ(0) = φ(t) for all n ≥ 1, and
it is clear that φn(t)→ φ(t). We assume that t > 0. Since φ is continuous
at t, given δ > 0 there exists η > 0 with:

|t− t′| < η ⇒ |φ(t)− φ(t′)| ≤ δ

Choose N ≥ 1 large enough so that 2−N < η and t ∈ [0, N ]. Then, for all
n ≥ N , there exists k ∈ {0, . . . , n2n − 1} such that t ∈]k/2n, (k + 1)/2n],
and consequently:

|φn(t)− φ(t)| = |φ(k/2n)− φ(t)| ≤ δ

We have found N ≥ 1 such that:

n ≥ N ⇒ |φn(t)− φ(t)| ≤ δ

This shows that φn(t) → φ(t). This being true for all t ∈ R+, we have
proved that φn → φ pointwise.
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14. Since φ and all the φn’s are measurable and bounded, |db| being a finite
measure, the integrals

∫
φdb and

∫
φndb with respect to the complex mea-

sure db, are well-defined, as per definition (97). Let g ∈ L1
C(R+,B(R+), |db|)

be such that |g| = 1 and db =
∫
g|db|. Since φn → φ pointwise, we have

φng → φg. Furthermore from 12. |φn| ≤M and since |db| is a finite mea-
sure, the constant M can be viewed as an element of L1

R(R+,B(R+), |db|).
Applying definition (97) together with the dominated convergence theo-
rem (23), we obtain: ∫

φdb =
∫
φg|db|

= lim
n→+∞

∫
φng|db|

= lim
n→+∞

∫
φndb

15. Since |φn| → |φ| pointwise and |φn| ≤M for all n ≥ 1 while d|b| is a finite
measure, from the dominated convergence theorem (23), we have:∫

|φ|d|b| = lim
n→+∞

∫
|φn|d|b|

16. For all n ≥ 1 we have:∫
φndb = φ(0)

∫
1{0}db +

n2n−1∑
k=0

φ

(
k

2n

)∫
1]k/2n,(k+1)/2n]db

= φ(0)db({0}) +
n2n−1∑
k=0

φ

(
k

2n

)
db(]k/2n, (k + 1)/2n])

= φ(0)b(0) +
n2n−1∑
k=0

φ

(
k

2n

)(
b

(
k + 1

2n

)
− b

(
k

2n

))
17. Given n ≥ 1 and k ∈ {0, . . . , n2n − 1}, from theorem (80):∣∣∣∣b(k + 1

2n

)
− b

(
k

2n

)∣∣∣∣ ≤ |b|(k + 1
2n

)
− |b|

(
k

2n

)
Hence, from 16. we obtain:∣∣∣∣∫ φndb

∣∣∣∣≤ |φ(0)||b(0)|+
n2n−1∑
k=0

∣∣∣∣φ( k

2n

)∣∣∣∣ ∣∣∣∣b(k + 1
2n

)
− b

(
k

2n

)∣∣∣∣
≤ |φ(0)||b(0)|+

n2n−1∑
k=0

∣∣∣∣φ( k2n
)∣∣∣∣(|b|(k + 1

2n

)
−|b|

(
k

2n

))

= |φ(0)|d|b|({0})+
n2n−1∑
k=0

∣∣∣∣φ( k

2n

)∣∣∣∣ d|b|(] k2n , k + 1
2n

])
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= |φ(0)|
∫

1{0}d|b|+
n2n−1∑
k=0

∣∣∣∣φ( k2n
)∣∣∣∣∫ 1]k/2n,(k+1)/2n]d|b|

=
∫
|φn|d|b|

18. From 14. 15. and 17. taking the limit as n→ +∞, we obtain:∣∣∣∣∫ φdb

∣∣∣∣ ≤ ∫ |φ|d|b| (32)

19. From (30), (32) and (31) we obtain:∣∣∣∣∫ hdb

∣∣∣∣ ≤ ∣∣∣∣∫ φdb

∣∣∣∣+ ε

≤
∫
|φ|d|b|+ ε

≤
∫
|h|d|b|+ 2ε

20. Having proved that |
∫
hdb| ≤

∫
|h|d|b|+2ε for arbitrary ε > 0, we conclude

that: ∣∣∣∣∫ hdb

∣∣∣∣ ≤ ∫ |h|d|b| (33)

This has been proved for arbitrary h ∈ L1
C(R+,B(R+), |db|).

21. Let B ∈ B(R+) and h ∈ L1
C(R+,B(R+), |db|) be such that |h| = 1 and

db =
∫
h|db|. Since |db| is a finite measure, in particular it is a complex

measure, and we can therefore apply theorem (65) to obtain:∫
B

h̄db =
∫

1Bh̄db

=
∫

1Bh̄ · h|db|

=
∫

1B|h|2|db|

=
∫

1B|db| = |db|(B)

22. Let B ∈ B(R+). We have:

|db|(B) = | |db|(B) |

=
∣∣∣∣∫ 1Bh̄db

∣∣∣∣
≤

∫
1B|h̄|d|b|

=
∫

1Bd|b| = d|b|(B)
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where the second equality stems from 21. and the inequality from (33)
applied to the map 1Bh̄ ∈ L1

C(R+,B(R+), |db|). Having proved that
|db|(B) ≤ d|b|(B) for all B ∈ R+, we have proved that |db| ≤ d|b|. From
4. we conclude that |db| = d|b|. The purpose of this exercise is to show
that given a right-continuous map of bounded variation b : R+ → C, the
total variation |db| of its associated complex Stieltjes measure, is equal to
the Stieltjes measure d|b| associated with its total variation.

Exercise 26

Exercise 27.

1. Let b : R+ → C be a right-continuous map of finite variation. Let
T ∈ R+. From exercise (24), bT is right-continuous of bounded varia-
tion and its complex Stieltjes measure dbT is therefore well-defined, as per
definition (110). From exercise (26), we have |dbT | = d|bT |. Furthermore,
we showed in exercise (24) that |bT | = |b|T . Hence, we have d|bT | = d|b|T
and we have proved that for all T ∈ R+:

|dbT | = d|bT | = d|b|T (34)

2. Since |b| is right-continuous, non-negative with |b|(0) ≥ 0, from exer-
cise (24) we have:

d|b|T = d|b|[0,T ] 4= d|b|([0, T ] ∩ ·) (35)

Now, if b is right-continuous of bounded variation, the fact that |db| = d|b|
was proved in exercise (26). If b is right-continuous of finite variation and
T ∈ R+, then bT is right-continuous of bounded variation, and from (34)
and (35) we conclude that |dbT | = d|b|([0, T ] ∩ ·) = d|b|T . This proves
theorem (84).

Exercise 27

Exercise 28.

1. Let t > 0. Suppose the limit b(t−) is not unique. There exist l, l′ ∈ E,
l 6= l′ such that b(s) tends both to l and l′ as s ↑↑ t (i.e. s → t, s < t).
However, since E is Hausdorff and l 6= l′, from definition (67) there exist
U and U ′ open in E such that l ∈ U , l′ ∈ U ′ and U ∩ U ′ = ∅. From
b(s)→ l as s ↑↑ t we see that there exists t1 ∈ R+, t1 < t, such that:

s ∈]t1, t[ ⇒ b(s) ∈ U

Similarly, there exists t′1 ∈ R+, t′1 < t, such that:

s ∈]t′1, t[ ⇒ b(s) ∈ U ′

This contradicts the fact that U ∩ U ′ = ∅. We have proved that the limit
b(t−) is unique. More generally, any limit (when it exists) in a Hausdorff
topological space is unique.
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2. Let x, y ∈ E′ with x 6= y. In particular x, y ∈ E with x 6= y. Since E is
Hausdorff, there exist U and V open in E, such that x ∈ U , y ∈ V and
U∩V = ∅. It follows that x ∈ U∩E′, y ∈ V ∩E′ and (U∩E′)∩(V ∩E′) = ∅.
Since U ∩ E′ and V ∩ E′ are open subsets of E′, we conclude that the
induced topological space E′ is Hausdorff.

3. Let b : R+ → E be cadlag with values in E′ ⊆ E. By assumption, b is
right-continuous and for all t > 0, the limit:

b(t−)
4
= lim

s↑↑t
b(s)

exists in E. Since b has values in E′, it can be viewed as a map b : R+ →
E′. Such a map is still right-continuous (see proof of 4.), but the limit
b(t−) for t > 0 may not be an element of E′. So b : R+ → E′ may not be
cadlag. In other words, b may not be cadlag with respect to E′.

4. Consider b : R+ → Ē′, where Ē′ is the closure of E′ in E. We claim that
b is cadlag (with respect to Ē′). Since b : R+ → E is right-continuous,
for all t0 ∈ R+, for all U open subsets of E with b(t0) ∈ U , there exists
t1 ∈ R+, t0 < t1, such that:

t ∈ [t0, t1[ ⇒ b(t) ∈ U (36)

Let U ′ be open in Ē′ with b(t0) ∈ U ′. Then U ′ = U ∩ Ē′ for some U open
in E with b(t0) ∈ U . Let t1 ∈ R+, t0 < t1 be such that (36) holds. Since
b has values in E′ ⊆ Ē′, b(t) ∈ U is equivalent to b(t) ∈ U ∩ Ē′ = U ′.
Hence, we have:

t ∈ [t0, t1[ ⇒ b(t) ∈ U ′

which shows that b : R+ → Ē′ is indeed right-continuous (the fact that Ē′

is the closure of E′ has not be used so far). Let t0 > 0. Since b : R+ → E
is cadlag, the limit b(t0−) exists in E. Let U be open in E such that
b(t0−) ∈ U . There exists t1 ∈ R+, t1 < t0, such that:

t ∈]t1, t0[ ⇒ b(t) ∈ U

In particular, since b(t) ∈ E′ for all t ∈ R+, we have U∩E′ 6= ∅. Hence, for
all U open subsets of E with b(t0−) ∈ U , we have proved that U ∩E′ 6= ∅.
This shows that b(t0−) ∈ Ē′. Hence, for all t0 > 0, we have shown that
b(t0−) exists in Ē′. We conclude that b : R+ → Ē′ is cadlag. In other
words, b is cadlag with respect to Ē′.

5. Let b : R+ → R be a map. The right-continuity of b is independent of
whether b is viewed as a map with values in R or values C. If b : R+ → R
is cadlag, then for all t > 0, b(t−) exists in R. In particular, b(t−) exists
in C. So b : R+ → C is cadlag. Conversely, if b is cadlag with respect to
C with values in R, from 4. it is cadlag with respect to the closure of R
in C. However, R is a closed subset of C, hence equal to its own closure.
So b is cadlag with respect to R. We have proved that b : R+ → R is
cadlag, if and only if b : R+ → C is cadlag.

www.probability.net

http://www.probability.net


Solutions to Exercises 48

Exercise 28

Exercise 29.

1. Let b : R+ → C be cadlag. Suppose b is continuous with b(0) = 0.
From definition (111), b(0−) is defined as b(0−) = 0. Hence, ∆b(0) =
b(0)− b(0−) = 0. Suppose t > 0. Since b is continuous at t, in particular
it is left-continuous at t. Hence:

b(t) = lim
s↑↑t

b(s)
4
= b(t−)

It follows that ∆b(t) = b(t)−b(t−) = 0. Conversely, suppose ∆b(t) = 0 for
all t ∈ R+. In particular ∆b(0) = 0 and consequently b(0) = b(0−) = 0.
Furthermore, for all t > 0, ∆b(t) = 0. So b is left-continuous at t. Being
cadlag, b is also right-continuous at t. Being right-continuous at 0, b is in
fact continuous at every point of R+. We have proved that b is continuous
with b(0) = 0, if and only if ∆b(t) = 0 for all t ∈ R+.

2. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. We
claim that a is cadlag. From exercise (28), since R+ is a closed subset of
R, being cadlag with respect to R or R+ is equivalent. To show that a is
cadlag, we only need to show that for all t > 0, the left-limit a(t−) exists
in R. Given t > 0, define:

l
4
= sup

s∈]0,t[

a(s)

Since a is non-decreasing, we have l ≤ a(t) < +∞. In particular, ε > 0
being given, we have l − ε < l. So l − ε cannot be an upper-bound of all
a(s)’s as s ∈]0, t[. There exists u ∈]0, t[ such that l − ε < a(u). Since a is
non-decreasing, we obtain:

s ∈]u, t[ ⇒ l − ε < a(s) ≤ l
which shows that a(t−) exists and is equal to l. We have proved that a
is cadlag. Since a(0) ≥ 0 and by convention a(0−) = 0, it is clear that
∆a(0) ≥ 0. Let t > 0. We have seen that a(t−) = l ≤ a(t). So ∆a(t) ≥ 0.
Having proved that ∆a(t) ≥ 0 for all t ∈ R+, we conclude that ∆a ≥ 0.

3. Let b1, b2 : R+ → C be two cadlag maps. Let α ∈ C. Then, b1 + αb2 is
right-continuous, and for all t > 0:

lim
s↑↑t

(b1 + αb2)(s) = b1(t−) + αb2(t−)

So the left-limit (b1 + αb2)(t−) exists in C. This shows that b1 + αb2 is
cadlag.

4. Let b : R+ → C be right-continuous of finite variation. From exercise (17),
b can be expressed as b = b1 − b2 + i(b3 − b4) where each bi is right-
continuous, non-decreasing with bi(0) ≥ 0. From 2. each bi is cadlag.
From 3. a linear combination of cadlag maps is cadlag. We conclude
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that b is cadlag. We have proved that any right-continuous map of finite
variation is cadlag.

5. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let
da be its associated Stieltjes measure, as per definition (24). We have:

∆a(0) = a(0)− a(0−) = a(0) = da({0})
Furthermore, for all t > 0, given an arbitrary sequence (tn)n≥1 in ]0, t[
such that tn ↑↑ t, we have ]tn, t] ↓ {t}. Moreover:

da(]t1, t]) = a(t)− a(t1) ≤ a(t) < +∞

Applying theorem (8), we obtain:

da({t}) = lim
n→+∞

da(]tn, t])

= lim
n→+∞

(a(t)− a(tn))

= a(t)− a(t−) = ∆a(t)

We have proved that da({t}) = ∆a(t) for all t ∈ R+.

6. Let b : R+ → C be right-continuous of bounded variation. Let db be its
associated complex Stieltjes measure, as per definition (110). We have:

∆b(0) = b(0)− b(0−) = b(0) = db({0})
Furthermore, for all t > 0, given an arbitrary sequence (tn)n≥1 in ]0, t[
such that tn ↑↑ t, we have ]tn, t] ↓ {t} and in particular 1]tn,t] → 1{t}.
Using exercise (13) of Tutorial 12, we obtain:

db({t}) = lim
n→+∞

db(]tn, t])

= lim
n→+∞

(b(t)− b(tn))

= b(t)− b(t−) = ∆b(t)

We have proved that db({t}) = ∆b(t) for all t ∈ R+.

7. Let b : R+ → C be right-continuous of finite variation. Let T ∈ R+. Let
t ∈ R+. Suppose that t ≤ T . Then bT (s) and b(s) coincide for s < t.
So bT (t−) = b(t−). Suppose that T < t. Then b(s) = b(T ) on ]T, t[ and
consequently bT (t−) = b(T ). We have proved that:

∀t ∈ R+ , bT (t−) =
{
b(t−) if t ≤ T
b(T ) if T < t

Furthermore, we have:

∆bT (0) = bT (0) = b(0) = ∆b(0)1[0,T ](0)

Moreover, if t ∈]0, T ]:

∆bT (t) = bT (t)− bT (t−) = b(t)− b(t−) = ∆b(t)1[0,T ](t)
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and if t ∈]T,+∞[:

∆bT (t) = bT (t)− bT (t−) = b(T )− b(T ) = 0 = ∆b(t)1[0,T ](t)

We have proved that ∆bT (t) = ∆b(t)1[0,T ](t) for all t ∈ R+. Finally, since
bT is right-continuous of bounded variation, from 6. we have dbT ({t}) =
∆bT (t) = ∆b(t)1[0,T ](t).

Exercise 29

Exercise 30.

1. Let b : R+ → C be cadlag and T ∈ R+. Suppose that b(t−) is not
bounded on [0, T ]. For all n ≥ 1, there exists t ∈ [0, T ] such that |b(t−)| >
n. Define Un = {z ∈ C : |z| > n}. Then Un is an open subset of C and
b(t−) ∈ Un. There exists un ∈ [0, t[, such that:

s ∈]un, t[ ⇒ b(s) ∈ Un
Choosing an arbitrary tn ∈]un, t[, we have b(tn) ∈ Un. The sequence
(tn)n≥1 is a sequence of elements of [0, T ] such that |b(tn)| > n and in
particular |b(tn)| → +∞.

2. Suppose b is not bounded on [0, T ]. For all n ≥ 1, there exists some
sn ∈ [0, T ] such that |b(sn)| > n. Since [0, T ] is metrizable and compact,
from the sequence (sn)n≥1 we can extract a converging sub-sequence, say
(sφ(n))n≥1 (see theorem (47)). Let t ∈ [0, T ] be its limit. Defining tn =
sφ(n), we have found a sequence (tn)n≥1 on [0, T ] such that tn → t for
some t ∈ [0, T ], and |b(tn)| → +∞.

3. Let R = {n ≥ 1 : t ≤ tn} and L = {n ≥ 1 : tn < t}. Since N = R ∪ L, R
and L cannot be both finite.

4. Suppose R is infinite. Since tn → t, there exists N1 ≥ 1 such that:

n ≥ N1 ⇒ tn ∈]t− 1, t+ 1[∩[0, T ]

Let A1 = {n ≥ 1 : tn ∈ [t, t + 1[∩[0, T ]}. Since n ∈ R implies n < N1 or
n ∈ A1, the fact that R is infinite implies that A1 is infinite. In particular,
A1 is not empty, and there exists n1 ≥ 1 such that:

tn1 ∈ [t, t+ 1[∩[0, T ]

5. R being assumed infinite, suppose we have n1 < . . . < nk, k ≥ 1, such
that tnj ∈ [t, t + 1/j[∩[0, T ] for all j ∈ {1, . . . , k}. Since tn → t, there
exists Nk+1 ≥ 1 such that:

n ≥ Nk+1 ⇒ tn ∈
]
t− 1

k + 1
, t+

1
k + 1

[
∩ [0, T ]

Let Ak+1 = {n > nk : tn ∈ [t, t+ 1/(k + 1)[∩[0, T ]}. Then n ∈ R implies
n < Nk+1 or n ≤ nk or n ∈ Ak+1. So the fact that R is infinite implies
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that Ak+1 is itself infinite. In particular, Ak+1 is not empty, and there
exists nk+1 > nk such that:

tnk+1 ∈
[
t, t+

1
k + 1

[
∩ [0, T ]

This induction argument shows that we can construct a sequence n1 <
n2 < . . . such that

tnk ∈
[
t, t+

1
k

[
∩ [0, T ] , ∀k ≥ 1

6. By construction we have tnk → t while t ≤ tnk . Since b is cadlag, in
particular b is right-continuous. So b(tnk) → b(t) and |b(tnk)| cannot
converge to +∞. This contradicts the fact that |b(tn)| → +∞.

7. Suppose L is infinite. In particular L is not empty. There exists n ≥ 1
such that tn < t. So t > 0. Since tn → t, there exists N1 ≥ 1 such that:

n ≥ N1 ⇒ tn ∈]t− 1, t+ 1[∩[0, T ]

Let B1 = {n ≥ 1 : t ∈]t − 1, t[∩[0, T ]}. Then n ∈ L implies that n < N1

or n ∈ B1. So the fact that L is infinite implies that B1 is infinite. In
particular, B1 is not empty, and there exists n1 ≥ 1 such that tn1 ∈
]t − 1, t[∩[0, T ]. Following an induction argument identical to that of 5.
we can construct a sequence n1 < n2 < ... such that:

tnk ∈
]
t− 1

k
, t

[
∩ [0, T ] , ∀k ≥ 1

8. Since b is cadlag, the left-limit b(t−) exists in C. By construction, we have
tnk → t, while tnk < t. It follows that b(tnk) → b(t−) and consequently
|b(tnk)| cannot converge to +∞. This contradicts the fact that |b(tn)| →
+∞.

9. Let b : R+ → C be a cadlag map. Let T ∈ R+. Suppose b(t) or b(t−)
is not bounded on [0, T ]. If b(t−) is not bounded on [0, T ], then from 1.
there exists (tn)n≥1 in [0, T ] such that |b(tn)| → +∞. Hence, without loss
of generality, we may assume that b(t) is not bounded on [0, T ]. From 2.
we can construct a sequence (tn)n≥1 in [0, T ] such that tn → t for some
t ∈ [0, T ] and |b(tn)| → +∞. However, assuming R infinite leads to a
contradiction in 6. while assuming L infinite leads to a contradiction in
8.. Since R and L cannot be both finite, we conclude that our initial
assumption is absurd. This shows that b(t) and b(t−) are both bounded
on [0, T ], which completes the proof of theorem (85).

Exercise 30
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