Tutorial 7: Fubini Theorem 1

7. Fubini Theorem

Definition 59 Let (1, F1) and (Q2, F2) be two measurable spaces. Let E C
Q1 X Qo. For all wy € 1, we call wi-section of E in (s, the set:

Eer 2 {wa € Q2 : (w1,w2) € E}

EXERCISE 1. Let (1, F1), (22, F2) and (S, %) be three measurable spaces, and
fi (1 x Q2, F1 @ F2) — (S, %) be a measurable map. Given w; € Q, define:

1 2{EC O xQy, B € F)

1. Show that for all wy € Q, I'“? is a o-algebra on 1 x Q5.

N

Show that for all w, € Ql, Fi I Fy CT'vn.
Show that for all w; € Q1 and E € F; ® Fa, we have E“1 € Fs.

Given wy € @, show that w — f(w1,w) is measurable.

Groe W

Show that 6 : (22 x Q1,F2 @ F1) — (1 X Qo,F1 @ Fa) defined by
O(w2,w1) = (w1,w2) is a measurable map.

6. Given wy € Qo, show that w — f(w,w2) is measurable.

Theorem 29 Let (S,%), (21, F1) and (2, F2) be three measurable spaces. Let
[ (QxQo, F1F2) — (S,%) be a measurable map. For all (w1, w2) € Q1 X,
the map w — f(w1,w) is measurable w.r. to Fy and %, and w — f(w,ws) is
measurable w.r. to Fy and X.

EXERCISE 2. Let (€, F;)icr be a family of measurable spaces with cardl > 2.
Let f: (erQi, ®ic1Fi) — (E,B(E)) be a measurable map, where (E,d) is
a metric space. Let iy € I. Put By = Q;,, & = Fiy, Ea = e (4,38,
&2 = ®ien (i} Fi-

1. Explain why f can be viewed as a map defined on E; X Es.

2. Show that f: (Ey X E3,& ® &) — (E,B(E)) is measurable.

3. For all w;, € €, show that the map w — f(wi,,w) defined on ;e 4,362
is measurable w.r. to ®;ep\ (i,3Fi and B(E).

Definition 60 Let (Q,F,u) be a measure space. (Q,F,pu) is said to be a
finite measure space, or we say that p is a finite measure, if and only if
1(82) < 4o0.

Definition 61 Let (0, F, u) be a measure space. (2, F, ) is said to be a o-
finite measure space, or u a o-finite measure, if and only if there exists a
sequence (0 )p>1 1 F such that Q, T Q and p(Qy,) < +oo, for alln > 1.
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EXERCISE 3. Let (2, F, 1) be a measure space.

1.

Show that (2, F, p) is o-finite if and only if there exists a sequence (2, )n>1
in F such that Q = &> Q,, and u(Qy,) < +oco for all n > 1.

Show that if (€, F, u) is finite, then p has values in R*.
Show that if (Q, F, u) is finite, then it is o-finite.

Let F: R — R be a right-continuous, non-decreasing map. Show that the
measure space (R, B(R), dF) is o-finite, where dF is the Stieltjes measure
associated with F.

EXERCISE 4. Let (21, F1) be a measurable space, and (g, Fa, u2) be a o-finite
measure space. For all £ € F; ® Fo and wy € 4, define:

@E(wl)é/ﬂ 1p(wr, 2)dus ()

Let D be the set of subsets of €1 x 5, defined by:

I A

D2 {E€c FioFy : ®p:(Q,F1) — (R,B(R)) is measurable}

. Explain why for all £ € F; ® Fa, the map @5 is well defined.

Show that F; II F, C D.

Show that if ug is finite, A, B € D and A C B, then B\ A € D.
Show that if £, € 71 ® Fo,n > 1 and E,, T E, then g, | ®p.

Show that if ps is finite then D is a Dynkin system on Q; x €.

Show that if pso is finite, then the map ®x : (Q1,F1) — (R,B(R)) is
measurable, for all £ € F; ® Fo.

Let (25)n,>1 in Fa be such that Q5 17 Qg and pa2(Q5) < +oo. Define
uy = Mgi = pa(eNQY). For E € Fy ® Fa, we put:

P (w) 2 / 1g(wi, z)dus ()
Qo
Show that ®% : (21, F1) — (R, B(R)) is measurable, and:
Bpon) = [ lag()1p(or, D) (o)
Q2

Deduce that ®% 1 ®5.

Show that the map ®p : (21,F1) — (R,B(R)) is measurable, for all
EeF®F.
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9. Let s be a simple function on (97 x Qo, F1 ® F2). Show that the map
w — fQ2 s(w, z)dpus(z) is well defined and measurable with respect to F;

and B(R).

10. Show the following theorem:

Theorem 30 Let (Qq,F1) be a measurable space, and (Qa, Fa, p2) be a o-finite
measure space. Then for all non-negative and measurable map f : (1 xQa, F1®
F2) — [0, +00], the map:

w = f(w, z)dps (z)
Qo

is measurable with respect to Fy and B(R).

EXERCISE 5. Let (Q;, F;)ier be a family of measurable spaces, with cardl > 2.
Let ig € I, and suppose that g is a o-finite measure on (€;,, F;,). Show that
if f:(er, ®ierFi) — [0,4+00] is a non-negative and measurable map, then:

w— / f (@, 2)dpo ()
Qg

defined on IT;c 14,3 §2i, is measurable w.r. to ®;cy\ 4,1 Fi and B(R).

EXERCISE 6. Let (21, F1, 1) and (Q2, Fa2, pu2) be two o-finite measure spaces.
For all E € F; ® Fo, we define:

momE) 2 [ ( A 1E<x,y>du2<y>) dpn (2)

1. Explain why g1 ® pe : F1 ® Fo — [0, 400] is well defined.
2. Show that 1 ® po is a measure on F; ® Fo.
3. Show that if A x B € F; II 3, then:
pi1 ® p2(A x B) = pa(A)p2(B)
EXERCISE 7. Further to ex. (6), suppose that u : F; ® Fo — [0, +00] is another
measure on F1 ® Fa with u(A x B) = p1(A)pue(B), for all measurable rectangle
A x B. Let (27)p>1 and (Q5),>1 be sequences in F; and F» respectively, such

that QF T Q1, QF T Qa, p1(Q7) < 400 and p2(Q3) < +o00. Define, for all
n>1:

D, S{E€ F1@Fo: p(BN(Q) x 05)) = i @ pa( BN (2] x 25))}
1. Show that for all n > 1, 71 I F> C D,,.
2. Show that for all n > 1, D,, is a Dynkin system on 7 x €s.

3. Show that p = u1 ® po.
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4. Show that (21 x Qa, F1 ® Fa, 11 @ pe) is a o-finite measure space.
5. Show that for all £ € F; ® F», we have:

1 ® po(E) =/ </91 1E(x7y)du1(a?)> dp2(y)

Q2

EXERCISE 8. Let (1, F1, 1), (Qn, Fn, pin) be n o-finite measure spaces,
n > 2. Let igp € {1,...,n} and put By = Q;,, Fo = ILi,Q, & = F;, and
Er = ®iziFi- Put vi = 4, and suppose that v, is a o-finite measure on
(E2, &) such that for all measurable rectangle II; £, A; € Il Fi, we have
vo (Wizig Ai) = Wiz pri(Ai).

1. Show that v1 ® v5 is a o-finite measure on the measure space (21 X ... x
Qn, F1 ®...® F,) such that for all measurable rectangles Ay x ... x A,,
we have:

1 @ua(Ay X oo x Ay) = (A1) .. un(4y)

2. Show by induction the existence of a measure g on F; ® ... ® F,,, such
that for all measurable rectangles A; x ... x A,, we have:

/.L(Al X ... X An) = /J/l(Al) . /J/n(An)
3. Show the uniqueness of such measure, denoted 1 ® ... ® fiy.
4. Show that p; ® ... ® pu, is o-finite.

5. Let 79 € {1, o ,n}. Show that iy @ (®i#0,ui) =1 Q... Q lp.

Definition 62 Let (Q1, F1, 1), .-y (Qn, Fn, fin) be n o-finite measure spaces,
with n > 2. We call product measure of (i1, ..., fin, the unique measure on
F1®...Q0 F,, denoted j17 ® ... R i, such that for all measurable rectangles
Ay x ... x Ay in Fr 0. 10 F,, we have:

This measure is itself o-finite.

EXERCISE 9. Prove that the following definition is legitimate:

Definition 63 We call Lebesgue measure in R", n > 1, the unique measure
on (R™ B(R")), denoted dx, dx™ or dxi...dx,, such that for all a; < b;,
i=1,...,n, we have:

n

dx([a1,b1] x ... x [an, ba)) = [ [ (b — @)

i=1

EXERCISE 10.
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1. Show that (R™, B(R"),dz™) is a o-finite measure space.

2. For n,p > 1, show that dz"? = da" ® daP.

EXERCISE 11. Let (Q1, 71, 1) and (Qq, Fa, p2) be o-finite.

1. Let s be a simple function on (21 x Q9, F1 ® F3). Show that:

/ sdpy ® o z/ (/ sd,u2> duy = / (/ sd,ul) ds
Q1 xQ9 Q1 Qo Q2 1951

2. Show the following;:

Theorem 31 (Fubini) Let (Q1,F1,u1) and (Qa, Fa, u2) be two o-finite mea-
sure spaces. Let f : (1 x Qo,F1 ® Fa) — [0,+00] be a non-negative and
measurable map. Then:

/lefdm@uz:/ﬂl (/92fdu2> dulz/m (/Q fdm) ity

EXERCISE 12. Let (21, F1, 1), .., (Qn, Fn, pin) be n o-finite measure spaces,
n>2 Let f: (2 x...xQ,F1®...0F,) — [0,+0c0] be a non-negative,
measurable map. Let o be a permutation of N,,, i.e. a bijection from N, to
itself.

1. For all w € I;£q(1)82;, define:
A
B2 [ e @)
(1)

Explain why Ji @ (IL;£(1) 24, ®iz0(1)Fi) — [0, +00] is a well defined, non-
negative and measurable map.

2. Suppose Ji, : (Iigo(1),....006)1 2> Diga(1),....0(k)3Fi) — [0,400] is a non-
negative, measurable map, for 1 < k < n — 2. Define:

JAN
i1 (w) = /Q Je(w, 2)dpto(k+1) (@)

o(k+1)

and show that:

Tttt (Wiggoqy,....o(k+1)} 2> Rigfo(D).....o(k+1)3 Fi) — [0, +00]

is also well-defined, non-negative and measurable.

3. Propose a rigorous definition for the following notation:

/ cee / fdﬂa(l) ce dug(n)
Qon) Y1)
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EXERCISE 13. Further to ex. (12), Let (fp)p>1 be a sequence of non-negative
and measurable maps:

fp : (Ql X ... XQn,f’1®®]:n)—> [O,—FOO]
such that f, T f. Define similarly:

JAN

Jw) 2 / Folwr 2)dpoy ()
o (1)

>

Jlf+1(w) = /Q J;f(wax)dua(kﬂ)(a?) ,1<k<n—-2

o(k+1)

1. Show that JJ 1 Ji.
2. Show that if JJ T Jy, then Jg T Jry1, 1 <k <n—2.
3. Show that:

/ / Tpdpio(1y - - - dpio(n) T/ / Jdpo(y - - - dpton)
Q ) Q(,(l) Q ) Q

o(n o(n (1)

4. Show that the map u: F1 ® ... ® F, — [0,+00], defined by:

n(E) = / Ledpg(ry - - - dito(n)
Qo (n) Q1)

is a measure on F1 ® ... ® F.

5. Show that for all £ € F; ® ...® F,,, we have:

u1®...®un(E):/ / 1Edﬂa(1)---dﬂcf(n)
2o (n) Qo)

o(n

6. Show the following:

Theorem 32 Let (1, F1,141), - (Qny Fn, tn) be n o-finite measure spaces,
withn >2. Let f: (1 x ... X Qy, F1 ®...®@F,) — [0,+00] be a non-negative
and measurable map. let o be a permutation of N,,. Then:

fdu1®...®un:/ / fdpgy ... dig
/S’)lX..AXQ-,L Q(,(n) Q(,(l) ( ) (n)

EXERCISE 14. Let (2, F, ) be a measure space. Define:

L'E{f:Q—R,3geLlh(QF.p), [=gpas)

1. Show that if f € L', then |f| < +00, p-a.s.

2. Suppose there exists A C Q, such that A ¢ F and A C N for some N € F
with p(N) =_0. Show that 14 € L' and 14 is not measurable with respect
to F and B(R).
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3. Explain why if f € L', the integrals [ |f|dp and [ fdu may not be well
defined.

4. Suppose that f : (2, F) — (R, B(R)) is a measurable map with [ |f|du <
+o00. Show that f € L.

5. Show that if f € L' and f = f; p-a.s. then f; € L'

6. Suppose that f € L' and g1, g2 € L (Q, F, n) are such that f = g1 p-a.s.
and f = go pra.s.. Show that [ gi1dp = [ gadp.

7. Propose a definition of the integral [ fdu for f € L' which extends the
integral defined on Ly (2, F, u).

EXERCISE 15. Further to ex. (14), Let (f,)n>1 be a sequence in L', and f,h €
L', with f, — f p-a.s. and for all n > 1, |f,| < h p-a.s..

1. Show the existence of Ny € F,u(Ny) = 0, such that for all w € Nf,
ful@) — f(), and for all 0 > 1, |fa(@)] < h(w).

2. Show the existence of g,,,9,h1 € Li(Q, F, 1) and Ny € F, u(Ng) =
such that for all w € N§, g(w) = f(w), h(w) = hi(w), and for all n >

gn(w) = fn(w)-

3. Show the existence of N € F, pu(N) = 0, such that for all w € N¢,
gn(w) — g(w), and for all n > 1, |gn(w)| < hy(w).

0,
1

4. Show that the Dominated Convergence Theorem can be applied to g,1ne, glne
and hl 1NC .

5. Recall the definition of [ |f, — f|du when f, f, € L.

6. Show that [ |f, — fldu — 0.
EXERCISE 16. Let (21, F1, 1) and (Qg, Fa, o) be two o-finite measure spaces.
Let f be an element of L (21 x Q2, F1 ® Fo, 1 ® pi2). Let 0 : (2 x 1, Fo @

F1) — (21 x Qa,F1 ® F2) be the map defined by 0(we,w1) = (w1,w2) for all
(wg,wl) € Qo x Q.

L Let A={w1 € Y : [, [f(wi,2)|duz(z) < +00}. Show that A € Fy and
p1(A°) = 0.

2. Show that f(w1,.) € Lg(Q2, F2, po) for all wy € A.

3. Show that I(w;) fQ (w1, x)dpa(x) is well defined for all wy; € A. Let
I be an arbitrary extension of I, on ;.

4. Define J = I1 4. Show that:

Jw)=1aw) [ [T (w,2)dpuz(2) - 1a(w) ; f™(w, x)dps ()

Q2
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10.

11.

12.

13.

Show that J is Fi-measurable and R-valued.
Show that J € Lk (1, F1, 1) and that J =T pq-a.s.

Propose a definition for the integral:

/Ql ( 0 f (Wduz(y)) dys ()

Show that [o, (14 [q, frdu2)dpn = [o o, fTdu @ pa.

Show that:

/91 ( o f(w,y)duz(y)> dpa (z) = /leﬂfdm ® pie (1)

Show that if f € L& x Q2, F1 @ Fo, 11 @ p2), then the map wq —
fQ (w1,y)dpa2(y) is p1-almost surely equal to an element of L&(Q4, Fi, p1),
and furthermore that (1) is still valid.

Show that if f : (1 x Qg, F1 ® Fa) — [0, +00] is non-negative and mea-
surable, then f o # is non-negative and measurable, and:

/ foedu2®ulz/ fdpa @ pa
Q Q

2 X2 1 X Q2

Show that if f € L& x Q2, F1 @ Fa, 1 @ p12), then fof is an element
of L (R x Q, Fo @ Fi, pig @ pur), and:

/ fo9duz®u1:/ fdpa @ pz
Q Q

2 X 1 X Q2

Show that if f € L& x Q2, F1 @ Fo, 11 @ p2), then the map wy —
fQ (z,w2)dp () is po-almost surely equal to an element of L& (s, Fa, p12),
and furthermore

/Qz < o, f(xvy)dul(x)> dpa(y) = /lefdm ® iz

Theorem 33 Let (21, F1, u1) and (Qa, Fa, pi2) be two o-finite measure spaces.
Let f € LE(Q1 x Qa, F1 @ Fa, i1 ® p2). Then, the map:

wir = [ flwr,z)dps(z)
Qo

is p1-almost surely equal to an element of L&(Qq, Fi, ) and:

/Ql < Qs f(x’y)d“Q(y)) dpa (z) = /leﬂfdm ® p2
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Furthermore, the map:

wr = | [z, wa)dpa (x)

18 pa-almost surely equal to an element of LE(QQ7]:27///2) and:

/Qz < o, f(xvy)dul(x)> dpa(y) = /lefdm ® iz

EXERCISE 17. Let (1, F1, 1) -« o(Qny Fy tin) be n o-finite measure spaces,
n>2 Let fE€LE(Q X ... Xy, F1®...0 Fpypt1 ® ... 3 py). Let o be a
permutation of IN,,.

1. For all w € Il;£q(1)82;, define:

AN

Jiw) 2 / Ty @

Explain why J; is well defined and equal to an element of Lé (i (1) Q% Disto(1)Fir Qictor(1) i),
®izo(1) wi-almost surely.

2. Suppose 1 < k < n—2 and that .J; is well defined and equal to an element
of:

LEMig(o(1y,...o00} > @ig{o(1),....o(k)} Fis Rig{o(1),....00k) 1 i)
Rig{o(1),...,0(k)} Hi-almost surely. Define:

A
Jr1(w) = / Je(w, 2)dpo (k41 ()
Qo (kt1)

What can you say about Jj1.

3. Show that:
/ e fdua(l) e dua(n)
Qo (n) Q1)
is a well defined complex number. (Propose a definition for it).
4. Show that:
/ fdua(1)---dua(n)=/ fdp ® ... ® pn
Q5 (n) Qg (1) Q1 x...xQy,
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Solutions to Exercises
Exercise 1.

1. Let wy € ©4. The wi-section of Q1 x Qs in O, is equal to Qy € F5. So
Q1 x Qg € 1. Suppose E € I'“'. Then E“' € F5. F> being closed under
complementation, (E“')¢ € F,. However, given ws € {3, wa € (E“1)°
is equivalent to (wi,ws) & E, ie. (wi,ws) € E° So (E“)° = (E°)“1.
Hence, we see that (E€)“* € Fy. It follows that E¢ € I'“t, which is
therefore closed under complementation. Let (E,),>1 be a sequence of
elements of T'“t. Let F = U:iolEn For all n > 1, (E,)* € Fo. Fo
being closed under countable union, U (E,)“ € F. However, given
wo € Qo, wy € U:S(En)‘”l is equivalent to the existence of n > 1, such
that (w1,w2) € E,. Hence, it is equivalent to (w1,ws) € U:{i’iEn =FE. So
Uiﬁ‘i (En)“t = E“1, and we see that E“* € Fy. It follows that E € T%1,
which is therefore closed under countable union. We have proved that ['“?
is a o-algebra on 7 x Q.

2. Let wy € Q1, and F = A x B € F; I 5 be a measurable rectangle of F;
and Fy. Suppose wy; € A. Then (wi,w2) € E, if and only if wy € B. So
E“' = B € F. Suppose w; ¢ A. Then for all wy € Qs, (w1,w2) € E. So
E“t = () € F,. In any case, E“* € F,. It follows that £ € I'“*. We have
proved that Fy II Fp C I'“t,

3. From F, II 75, C T'“* and the fact that I'“* is a o-algebra on €1 x Qs, we
conclude that 7y ® Fo = o(F1 II F2) C I'“*. Hence, for all wq € ©; and
E € F1 ® Fo, E is an element of I'“* | or equivalently, E“! € F,.

4. Let f: (1 X Qo, F1 ® Fa) — (S, %) be a measurable map, where (5, X)
is a measurable space. Let wi € Q1, and ¢ : Q2 — S be the partial map
w — f(w1,w). Let B € . Then {f € B} is an element of F; ® F». Using
3. it follows that the wi-section {f € B}*' of {f € B} is an element of
Fo. However, we have:

{fe B} = {w2€Qy:(w1,w2) €{f € B}}
= {ws € Qs f(wy,w2) € B}
= {w2 €D :¢(w2) € B}
= {¢eB}
Hence we see that {¢ € B} € Fy. This being true for all B € 3, we

conclude that ¢ is measurable. This shows that the map w — f(w1,w) is
measurable.

5. Let 0: (Qa x Qy, Foa @ F1) — (1 X Q2, F1 ® F2) be defined by 0(wa,w1) =
(w1,ws2). From theorem (28), in order to show that € is measurable, it is
sufficient to prove that each coordinate mapping 61 : (we2,w1) — w1 and
02 : (wa2,w1) — ws is measurable. This is indeed the case, since for all
Ay € Fi we have 9;1(A1) = Qs X A1 € Fo ® Fy, and for all Ay € Fy we
have 951(A2) = Ay x Q1 € Fo ® F1. So 0 is measurable.
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6. Let wo € Q9. Let g : (N2 x U, Fo @ F1) — (5,%) be the map defined
by g = f o 6. Having proved in 5. that € is measurable, since f is itself
measurable, g is a measurable map. Applying 4. to g, it follows that the
map w — g(ws,w) is measurable with respect to F; and X. In other
words, the map w — f(w,ws) is measurable with respect to F; and .
This completes the proof of theorem (29).

Exercise 1

Exercise 2.

1. There is an obvious bijection ® between F; x Fs and Il;c;€;, defined by
D(wy,w2)(i1) = w1, and P(wr,ws2)(i) = wa(i) for ¢ # i;. The two sets
Ey x Ey and I1;c;€); can therefore identified, and f can be viewed as a
map defined on E; X Fs.

2. Having identified E; x Fs and IL;¢;;, using exercise (10) of Tutorial 6
for the partition I = {i1} & (I \ {i1}), we obtain ®;crF; = & ® E2. So
fi(By x Eq, & ® &) — (E,B(F)) is measurable.

3. From 2. and theorem (29), given wy € E7, the map w — f(w1,w) defined
on Fjs, is measurable with respect to & and B(FE). In other words, given
wi, € Q4,, the map w — f(w;,,w) defined on Il;ep\ (5,38, is measurable
w.r. to ®i€[\{i1}]:’i and B(E)

Exercise 2

Exercise 3.

1. Suppose there exists a sequence (€2,,),>1 of pairwise disjoint elements of
F, such that Q@ = w>9Q, and u(Q,) < +oo for all n > 1. Define
Ap =, for all n > 1. Then:

w(Ay) = Z,LL(Qk) < +oo

k=1

and furthermore, A,, T Q. So (2, F,u) is o-finite. Conversely, suppose
(Q,F, ) is o-finite. Let (A,)n>1 be a sequence in F, such that A, T Q
and pu(A,) < +oo for all n > 1. Define ; = A, and Q,, = A, \ 4,1
for all n > 2. Then, (Q,),>1 is a sequence of pairwise disjoint elements of
F. Since Q,, C A, for all n > 1, we have u(2,) < pu(4,) < +oco. Given
w € Q, since Q = Ungn, there exists n > 1 such that w € A,,. Let p be
the smallest of such n. Then w € A, \ 4,1 if p > 2, or w € Ay. In any
case, w € €2,. Hence, we see that Q = U720, and finally Q = &> Q,,.
We conclude that (2, F, i) is o-finite, if and only if there exists a sequence
(Qp)n>1 of pairwise disjoint elements of F, such that Q = Lﬂiﬁ’iQn and
w(Qy,) < +oo for all n > 1.

2. Suppose (2, F, p) is finite. Then u(Q) < +00. Forall A € F, since A C Q,
w(A) < () < +o00. So p takes values in RY.

www.probability.net


http://www.probability.net

Solutions to Exercises 12

3. Suppose (2, F, p) is finite. Then p(Q2) < +o0. Define Q,, = Qforalln > 1.
Then (Qy),>1 is a sequence in F such that Q,, T Q and p(£2,) < +oo for
all n > 1. So (2, F, u) is o-finite.

4. Take Q,, =]—n,n] for all n > 1. Then, Q, C Q,1; and we have R =
U9y So Q, T R. Moreover, by definition of the Stieltjes measure (20),
dF(Q,) = F(n) — F(—n) € R*. In particular, dF(Q,) < +oo for all
n > 1. We conclude that (R, B(R),dF') is a o-finite measure space.

Exercise 3

Exercise 4.

1. Let B € F; ® F5. The characteristic function 1g is non-negative and
measurable with respect to F; ® Fa. From theorem (29), for all wy € Qy,
the partial function * — 1g(w1,x) is measurable with respect to Fa. It
is also non-negative. It follows that the integral sz 1g(w1, z)dus(z) is
well-defined, for all wy € €. Hence, we see that & is a well-defined map
on 7.

2. Let E = A x B € F; I 75 be a measurable rectangle of 7, and F5. For
all wy € 4, we have:

Bp(wr) = /Q La(w)1p(2)dpa (2) = pia(B)1a(w1)

2
Since A € Fi, the map 14 is Fij-measurable, and consequently ®p =
u2(B)1 4 is Fi-measurable. Hence, we see that £ € D. We have proved
that F1 II F5 C D.

3. Suppose jio is a finite measure. Let A, B € D with A C B. For all w; € (),
from 1p = 14 + 1p\ 4, We obtain:

[ tnor,)data) = [ 1alor,e)dnate) + [ Lot a)dale)

Qo Qo Q3

ie. ®p(wi) = Pa(wi) + Ppr\a(wi). w2 being a finite measure, all g’s
take values in RT. Hence, it is legitimate to write:

Pp\a=Pp —Pa

Since A, B € D, both &4 and &5 are Fi-measurable. We conclude that
®p\ 4 is Fi-measurable, and B\ A € D. We have proved that if A, B € D
with A C B, then B\ A € D.

4. Let (En)n>1 be a sequence in F; @ Fp with E,, T E. In particular, E, C
E,41 for all n > 1, and therefore 1g, < 1p,,,. Moreover, E = U/ E,.
Let w € Q1 x Qs. If w € E, there exists N > 1 such that w € En. For all
n > N,wehavelp (w)=1=1pg(w). fw ¢ FE, then1g, (w) =0=1g(w),
for all n > 1. In any case, 1g, (w) — 1g(w), and consequently 1p, T 1g.
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Given w; € Qy, we also have 1g, (w1,.) T 1g(wi,.). From the monotone
convergence theorem (19), we obtain:

/ L (w1, 2)dpa(@) 1 [ Lp(wr, @)dus ()
Qo Qs

ie. @p, (w1) T Pr(w1). We conclude that &g, T Op.

5. Suppose that pe is a finite measure. From 2., F; II F» C D, and in
particular 7 x Qo € D. From 3., whenever A, B € D are such that
A C B, we have B\ A € D. Let (E,)n>1 be a sequence of elements of D,
such that £, T E. Foralln > 1, &g _is an Fj-measurable map. Moreover
from 4., ®p, T ®g. In particular, ®r = sup,,~; g, and we conclude that
® 1 is measurable with respect to F;. So E € D. We have proved that D
is a Dynkin system on € x €.

6. Suppose us is a finite measure. From 5., D is a Dynkin system on 7 x €25.
From 2., we have F; I1 7o C D. The set of measurable rectangles F; 11 F,
being closed under finite intersection, from the Dynkin system theorem (1),
we see that D also contains the o-algebra generated by Fi 11 F», i.e.

.7:1®.7:2é0(.7:1 H}—Q)QD

We conclude that for all E € 71 ®F3, E is an element of D, or equivalently,
the map @ : (1, F1) — (R, B(R)) is measurable.

7. For all n > 1, uh(Q2) = p2(Q3) < +o00. So pf is a finite measure. It
follows from 6. that for all £ € 1 ® F», the map @', defined by:

A
Bpen) & [ Lotor,a)du(a)
Qo
is measurable with respect to F;. From definition (45), we have:
Pp(w1) = / Lop (2)1E(wr, z)dps (2)
Qo

Since Q5 T Q2, we have 1gp T 1o, = 1 and consequently, 1oy (.)1z(w1,.) T
1g(wi,.). From the monotone convergence theorem (19), we obtain:

/ Loy ()1 p(wr, 2)dua(@) 1 [ 1p(wr, 2)dpa(z)
Qo Qo

ie. ®h(wyr) 1 Pr(wy), for all wy € Q. So @} T Pp.

8. From 7., each ®% is Fi-measurable and &g = sup,,>1 ®%. So ®p is Fi-
measurable, for all £ € F; @ Fo.

9. Let s = Y. | a;1p, be a simple function on (1 x Qa, Fy ® F»). From
theorem (29), the map x — s(wy,x) is Fe-measurable, for all wy € ;.
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It is also non-negative. It follows that the integral sz s(w1, z)dpe(x) is
well-defined, for all w; € Q. Moreover:

/ (wl, dMQ Zaz/ ]-E wla dlu‘Q( )
Qo

Since F; € F1®F3, from 8., each w — fQ2 1g, (w, z)dpe (x) is Fi-measurable.
We conclude that w — sz s(w, x)dus(x) is also Fi-measurable.

10. Let f : (21 x Qo, F1 @ F2) — [0,+00] be a non-negative and measur-
able map. From theorem (18), there exists a sequence (sy),>1 of simple
functions on (21 X Q9, F1 ® F2) such that s, T f. In particular for all
w e Q, $p(w,.) T f(w,.). From the monotone convergence theorem (19),
we obtain:

/Q sl ) 1 /Q S a)da(a)

However, from 9., each w — fQ2 Sp(w, z)dpe(x) is Fr-measurable. We
conclude that w — [, f(w,z)dpz(x) is also measurable with respect to
F1 and B(R). This proves theorem (30).
Exercise 4
Exercise 5. Let f : (ILicr€, ®ic1F;) — [0, +00] be a non-negative and mea-
surable map. Define Fy = Iljcp\ (i€ and Ey = Q;,. Let & = ®ieqn iy Fi
and & = F;,. Using exercise (10) of Tutorial 6, having identified E; x Eo and
IT;c 1€, we have:
@ierFi = (Rienio} Fi) © Fi
ie. ®ierF; = &1 ® &y Tt follows that the map f, viewed as a map defined on

FE7 X Fs, is measurable with respect to & ® &. g being a o-finite measure on
(B3, &), from theorem (30), we see that:

w— / f (@, 2)dpo ()
Qy

is measurable with respect to &1 and B(R). In other words, it is measurable
with respect to ®;cp\ (4,3 Fi and B(R). Exercise 5

Exercise 6.

1. Let £ € Fi1 ® Fo. The characteristic function 1z is measurable with
respect to F; ® F» and non-negative. us being a o-finite measure on
(Q2, F2), applying theorem (30), we see that:

Ll A Lg(z,y)dus2(y)

is measurable with respect to F; and B(R). It is also non-negative. Hence,
the integral:

momE) 2 [ ( A 1E<x,y>du2<y>) e
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is well-defined, for all £ € F; ® Fa. So j1 ® ps is a well-defined map on
F1 ® Fa, with values in [0, +0o0].

2. Suppose E = (). Then 1p = 0 and 1 @ p2(E) = 0. Let (E,)n>1 be
a sequence of pairwise disjoint elements of F; ® Fo. Let E = &J:iolEn

Then, 1x = 3> 15,. From the monotone convergence theorem (19),

for all z € Q4, we have:

/921E(33ydﬂ2 i"/ o (5 y)dpa(y)

Applying the monotone convergence theorem once more:

p1 @ po(E Z/Q (/2 (z,y)dua2(y )) dpa ()

i.e.
@ pp(E) =Y @ pa(En)
We have proved that g1 ® pe is a measure on F; @ Fo.

3. Let E = A x B € F; I 75 be a measurable rectangle of F; and F,. For
all x € Q1, we have:

/ 1 (e, y)dpia(y) = / La(@)1p(y)dps(y) = pa(B)La(x)
QQ QQ
It follows that:

1@ pa(E) = [ a(B)Lala)dn (@) = p(Apea(B)

Exercise 6

Exercise 7.
1. By assumption, if ¥ = A x B € F; I F; is a measurable rectangle of F;
and Fo, then g @puo(F) = p1(A)pe(B) = p(E), ie. p1®pug and g coincide
on F1 I F. Let E € Fy 1T F,. Then EN(QF x QF) is still a measurable

rectangle, i.e. an element of F; II Fo. Hence py ® po(E N (QF x QF)) =
w(EN(QF x QF)). It follows that E € D,,. So Fy; 11 Fy C D,,.

2. (1 xQ e L UF C D,. Let E,F € D,, be such that £ C F. Then
F=FEW(F\E), and consequently:

p(FO(Q x Q7)) = p(EN (27 x Q3)) + p((F\ E) N (QF x Q3))  (2)

with a similar expression for 1 ® po. Since F and F are elements of D,,,
we also have:

H(F OV % Q) = @ pa(F 01 (2 x 23))
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and:
H(E 0 () x O8)) = i @ pa(E 0 (2 x 0F)
All the terms involved being finite, it is legitimate to re-arrange and sim-
plify equation (2) and its counterpart for p ® ps, to obtain:
p((F\E) N (QF x Q3)) = p1 @ po((F\ E) N (QF x Q3))

Hence, we sce that F'\ E € D,,. Let (E,),>1 be a sequence of elements of
Dy, such that E, T E. For all p > 1, we have:

n(Ep 0 (QF x Q3)) = p1 ® p2(Ep N (QF x Q3))
From theorem (7), taking the limit as p — 400, we obtain:

W(E O (90 % 05)) = i @ (B0 (2 x 03))
It follows that E € D,,. We have proved that D,, is a Dynkin system on
Ql X QQ.

3. From 1., /3 I 75 C D,. From 2., D, is in fact a Dynkin system on
Q1 x Qy. The set of measurable rectangles F; I F> being closed under
finite intersection, from the Dynkin system theorem (1), we conclude that
D,, actually contains the o-algebra generated by F; II Fo, i.e. F1 ® Fo =
o(F1 U Fs) C D,. Hence, for all E € F; ® Fo, E is an element of D,,, or
equivalently:

W(E 0 () % 05)) = i @ pia(E 0 (2 x 03)

Since E N (Q7 x Q5) T E, using theorem (7) once more, taking the limit
as n — +oo, we obtain pu(E) = p1 ® pe(E). This being true for all
E € F; ® Fs, we have proved that p = p1 ® ps.

4. For all n > 1, let E,, = Qf x Q3. Then E,, T Q1 X Q9, and furthermore,
1 @ p2(En) = p(Q7)p2(Q5) < +o00. We conclude that (1 x Qo, F1 ®
Fo, pi1 @ p2) is a o-finite measure space.

5. For all E € F; ® Fo, define:

vt [ (f | Lo )din o)) dias)

Note that this is the same definition as that of u1 ® pa(E), except that
the order of integration has been changed. Similarly to exercise (6), using
the monotone convergence theorem (19) twice on infinite series, we see
that v is a measure on F; ® Fo. Moreover, for all E = Ax Be Fi 11 F,
measurable rectangle of 77 and Fs, we have:

v(E) = /Q 1 (A) 15 () dpa(y) = s (A (B)

So v is another measure on F; ® Fa, coinciding with g1 ® pe on the set
of measurable rectangles F; I F5. From 3., we see that v = u; ® pus. We
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have proved that for all £ € F; ® Fa:

meom(e) = [ (f | L (o) (0) ) dya ()

Hence, as far as defining p1 ® po is concerned, the order of integration is
irrelevant.

Exercise 7
Exercise 8.

1. (E1,&1,v1) and (Es, &, 1v2) being two o-finite measure spaces, v1 ® vy
is well-defined as a measure on (E; x F2,& ® &) (exercise (6)). From
exercise (7), such measure is itself o-finite. Having identified Ey x Ey with
Oy x ... % Q,, using exercise (10) of Tutorial 6, we have:

Fi1@...0 Fn=Fi, @ (QiziyFi) =E1 Q&

So v1 ® v is a o-finite measure on (1 X ... X Q,, F1 ® ... ® F,). Let
A= A; x...x A, be a measurable rectangle of Fi, ..., F,. Identifying
A with Ay x (IL;z,, Ai), we have:

1 @ vo(A) = v1(Aiy )va(Tligiy As)
Since by assumption, vo(Iliziy A;) = iz, 1ti (A;), we conclude:
v ® VQ(A) = p1(Ar) .. pn(An)

2. If n = 2, there exists a measure p on F; ® Fa, such that for all measurable
rectangle A; x Ay € Fy 11 Fo, we have:

p(Ar x Az) = p1(Ar)pa(Az)

In fact, from exercise (7), such measure is unique, o-finite and equal to
11 @ po. Suppose the following induction hypothesis is true for n > 2:
Given n o-finite measure spaces (1, F1,p11), -+, (Qn, Fn, lin), there ex-
ists a measure p on (1 X ... X Qp, F1 @ ... @ F,), such that for all
measurable rectangles A1 X ... X A,, we have:

/.L(Al X ... X An) = /J/l(Al) . /J/n(An)

Moreover, such measure p is o-finite.

Let us prove this induction hypothesis for n 4+ 1. Hence, suppose we have
n + 1 o-finite measure spaces. Take F1 = Q1 and Fy = Qg X ... X Q4.
Let &1 =Frand & = Fo®...® Fpy1. Put v1 = pg. From our induction
hypothesis, there exists a o-finite measure vz on (F2, &3), such that for all
measurable rectangles As X ... X A, 1, we have:

V2(A2 X ... X An+1) = ‘LLQ(AQ) R /J,n+1(An+1)

All the conditions of question 1. are met: we conclude that 11 ® vo is a
o-finite measure on (21 X ... X Qy41,F1 ® ... ® Fpy1) such that for all
measurable rectangles A = Ay X ... X A;41:

v1 @va(A) = p1(A1) . pny1(Any)
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This proves our induction hypothesis for n + 1.

We have proved that for all n > 2, and o-finite measure spaces (Q1, F1, u1),
ooy (Qn, Fo, 1in), there exists a o-finite measure pon (1 X...xXQ,, F1 ®
... ® F,), such that for all measurable rectangles A = Ay x ... X A,,
w(A) = p1(A1) ... pn(Ay). Note that this is a little bit stronger (u is
o-finite !), than what was required by the actual wording of the question.
However the o-finite property was required to carry out the induction
argument, based on exercises (6) and (7).

3. Let u and v be two measures on (1 X ... x Q,, F1 ®...® F,), such that
for all measurable rectangles A = A; x ... X Ay:

1(A) = v(A) = (A1) ... pn(An)
Foralli=1,...,n,let (2),>1 be a sequence of elements of F;, such that
QP 1y, and 1;(QF) < 400 for all p > 1. Define E, = QF x...x Q. Then
E, T x...xQ,,and for all p> 1, u(E,) = v(E,) < 400 . Define:

D, 2{AcFi®..®Fp: p(ANE,) = v(ANE,)}

Then D, is a Dynkin system on {2y X ... x €,,. Moreover, by assumption,
Fill...IIF, C D,. The set of measurable rectangles F; I1...I1F,, being
closed under finite intersection, from the Dynkin system theorem (1), we
see that D, actually contains the o-algebra generated by Fi II...1II F,,,
i.e.

Fi®.. . @F, 20(F ... 11F,)CD,
It follows that for all A € 71 ® ... ® Fy, we have:

wANEy) =v(ANE,)

Using theorem (7), taking the limit as p — +o00, we obtain p(A) = v(A).
This being true for all A € F; ® ... ® F,,, we conclude that 4 = v. This
proves the uniqueness of the measure g on (Q X ... x Q,, Fi ®...®
Frn), denoted p11 ® ... ® iy, such that pu(A) = pui1(A1) ... un(Ay), for all
measurable rectangles A = Ay X ... x A,.

4. The fact that p = 1 ® ... ® py, is o-finite was actually proved as part of
the induction argument of 2. However, it is very easy to justify that point
directly: if (Q7),>1 is a sequence of elements of F; such that QF 1 €,
and p(QF) < +oo for all p > 1, defining E, = QF x ... x QP we have
E, TQ x...x8,, and furthermore:

p(Ep) = () . pn(Q) < +o00
So 1 @ ... ® py is indeed a o-finite measure.

5. Hiy ® (®izioiti) is a measure on (1 X ... x Q,, F1 ® ... ® F,) which
coincides with p; ® ... ® u, on the measurable rectangles. From the
uniqueness property proved in 3., the two measures are therefore equal,

e fig @ (@igights) = 1 @ .. @ fn.
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Exercise 8

Exercise 9. Showing that definition (63) is legitimate amounts to proving
the existence and uniqueness of a measure p on (R”, B(R™)), such that for all
a; < b;, i € N, we have:

p([ar,b1] X ... X [an, by]) = H(bi — a;) (3)

For i € N,,, let (2, Fi, i) be the measure space (R, B(R), dz), where dz is the
Lebesgue measure on (R, B(R)). Each (£;, F;, p;) being o-finite, from defini-
tion (62), there exists a measure = 11 ®... @ u, on (R, B(R)®...®@B(R)),
such that for all measurable rectangles A = A; x ... x A,, we have:

H(A) = da(Ay) ... da(Ay) (4)

From exercise (18) of Tutorial 6, we have B(R") = B(R)®...®@B(R). So uis in
fact a measure on (R™, B(R™)). Moreover, taking A4; of the form A; = [a;, b;] for
a; < b;, we see from (4) that equation (3) is satisfied. Hence, we have proved the
existence of p. Suppose that v is another measure on (R"™, B(R™)) satisfying the
property of definition (63). Let C = {[a1,b1] X ... X [an, by] : a; < b;,Vi € N, }.
Then C is closed under finite intersection. Given p > 1, let E, = [-p, p]™, and
define:
D, 2 {A€BR") : W(ANE,) = v(ANE,)}

Then D, is a Dynkin system on R", and we have C C D,. From the Dynkin
system theorem (1), we see that D, actually contains the o-algebra generated
by C, i.e. 0(C) C D,. However, we claim that o(C) = B(R"). Indeed, from:

CCBR)O..OIBR)CBR)®...Q B(R)=BR")
we obtain o(C) C B(R™). Furthermore, if we define:

Eé{[a,b]:agb,a,bER}

then every open set in R can be expressed as a countable union of elements of £
(see the proof of theorem (6)), and it is easy to check that B(R) = o(&). From
theorem (26), we have:

BR") =BR)®...0 BR)=oc(11...11&)

Since any element of £ 1T ... 11 £ is of the form A; x ... x A, where each
A; is either equal to R = U;ﬁ? Fp,p], or is an element of £, any element of
EI...II & can in fact be expressed as a countable union of elements of C.
Hence, EI1... 11 E C ¢(C) and consequently, B(R") = c(EI...IIE) C o(C).
We conclude that B(R") = ¢(C)!, and finally B(R") C D,. It follows that for
all A € B(R"), we have y(ANE,) =v(AN E,). Using theorem (7), taking the
limit as p — 400, we obtain p(A) = v(A). This being true for all A € B(R"),
we see that p = v. We have proved the uniqueness of pu. Exercise 9

Exercise 10.

1 We proved something very similar in exercise (7) of Tutorial 6.
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1. For all p > 1, define E, = [p,p|”. Then, E, T R", and furthermore
da™(Ep,) = (2p)" < +oo, for all p > 1. So dz™ is a o-finite measure on
(R", B(R")).

2. Let a; < b; for i € Ny4p, and A = [a1,b1] X ... X [Gntp,Dntp). Then,
dz" @ daP(A) = da"tP(A) = TP (b; — a;). From the uniqueness property
of definition (63), we conclude that:

dz"P = dz" @ da?
Exercise 10
Exercise 11.

1. From exercise (6) and exercise (7), for all E' € F; ® F», we have:

1 @ pa(E (/ Lg (7, y)dua( )) dpa ()
Q2

together with:

1 ® pio(E (/ 1e(z,y)dp ( )> dp2(y)
(951

Hence:

/ 1pdu @ po =/ (/ 1Edu2> dp =/ (/ 1Edu1> dpi2
Q1 %X Q1 Qo Qo 1951

By linearity, it follows that if s = Z?zl o;lp, is a simple function on
(Q1 X Qo, F1 ® F2), we have:

/ sdpy ® o z/ (/ sd,ug) duy = / (/ sdul) ds
Ql XQQ Ql Qz QZ Q1

2. Let f: (1 X Qo, F1 ® F2) — [0, +00] be a non-negative and measurable
map. From theorem (18), there exists a sequence (sy),>1 of simple func-
tions on (1 X Qo, F1 ® Fa), such that s, T f. In particular, for all z € Q4
sn(z,.) 1 f(z,.). From the monotone convergence theorem (19), for all
x € Q1, we have:

/Q sn(@ Wdpa() T | F(y)dua(y)

Q2

and applying theorem (19) once more, we obtain:

Ll(A2Sn(x,y)duz(y)> dp (z) T/Q( QQf(x,y)dMQ(y)> dy ()

and similarly:

/{lz([)lsn(x,y)dm(m)) dua(y) T 92( Qlf(x,y)dul(x)) dpa ()
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However, from s,, T f and the monotone convergence theorem:

/ Spdpy @ p2 1 fdpr @ iz
Ql XQQ Ql XQQ

Using 1., for all n > 1, we have:

[ e[ ([ ) (e
Q1 %0 Q1 Qo Qo (951

Hence, taking the limit as n — 400, we obtain:

[ gamem=[ ([ saYan=[ ([ st

This proves theorem (31).

Exercise 11

Exercise 12.

1. Let f: (21 X ... xQp, F1®...0 F,) — [0,400] be a non-negative and
measurable map. Since p,(1) is a o-finite measure, from exercise (5), the
map:

Jrw— / J(w, z)dps ()
Qq(1)

is well-defined on II;4,(1)€2;, and measurable w.r. to ®;q(1)F;-

2. If Jy, - (Hig{a(l)“”g(;@)}gi,®i¢{g(1)““,g(k)}]:i) — [0, +00] is non-negative
and measurable, for 1 <k <n — 2, from exercise (5):

Jk+1 W / Jk(w, x)dua(k+1)(x)
Qo (kt1)

is also well-defined on Il;g(s(1),....0(k+1)}€2i, and measurable with respect
t0 ®ig(o(1),...,0(k+1)}Fi-

-

can be rigorously defined as:

3. The integral:
“e / fdua(l) “e dua(n)
IEACETEH

o(n

A
]:/ Jn—1dfio (n)
Q

o(n)

where J,,_1 is given by 1. and 2.

Exercise 12

Exercise 13.
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1. Since f, T f, for all w € II;+(1)$, we have f,(w,.) T f(w,.). From the
monotone convergence theorem (19), we obtain:

/ Tp(w, 2)dpg (1) (z T/ f(w, 2)dpsy ()

Qo1 Qo1
ie. Jf T J1.

2. Suppose Jy T Jg, 1 <k < n—2. For all w e Wigro),..00k+1)} Qi We
have J(w,.) 1T Ji(w,.). From the monotone convergence theorem (19),
we have:

/Q TP (@, 2o o) () 1 / Ji(w,2)dto sy ()
o(k+1)

o(k+1)
: P
i.e. Jk+1 T Jit1-

3. From 2., J? | 7 J,—1. Again from theorem (19):

/ n 1d/-j/o' (n) T/ 1d/-j/o' (n)
Q
In other words:

Qg (n)
/ / fpdua(l dua(n T/ / fd;u’a e dua(n)
Qo) Qo1

Qg (n)
4. Forall E € F1 ®...® F,, we have:

/ / 1edpgy - diig(n)
Qo (n) Qs(1)

So u(@) = 0. If (Ep)p>1 is a sequence of pairwise disjoint elements of
Fi1®...0 F,, and E = WS ¥ E;, defining for p > 1, f, = Y7 1, we
have f, T 1g. It follows from 3.:

[ ottt 15
Qon) Q1)

By linearity, we obtain Y ©_, u(E;) 1 p(E), or equivalently:

+oo
E) = ZH(Ez)

We have proved that p is indeed a measure on F; ® ... R F,.

o(n)

Q5 (n)

5. Let E = Ay x ... X A, be a measurable rectangle of (F;);en,, . Then:

/ / 1pdpo) - - - dpto(n) = p1 (A1) - - - fin(An)

Qg (n) Qg (1)
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From the uniqueness property of definition (62), it follows that p coincide
with the product measure p1 ®...® p,. Hence, for all E € F1 ® ... Fy,
we have:

ILL1®®Mn(E):/ / 1Edua(1)...dua(n)
Qoimy /02

o(n o (1)

6. From 5., for all £ € 1 ® ... ® F,,, we have:

/ 1Edul®...®un:/ / 1Ed/'[/0'(1)"'d/’[/0'(n)
QlX..AXQn Q ) Q

(1)
If s is a simple function on (21 X ... x Q,, F1 ®...® F,), by linearity, we

obtain:
/ sdu1®...®un:/
Q1 X...XQy Q

Since any f : (21 X ... x Q,,F1 ®...® F,) — [0,400] non-negative
and measurable, can be approximated from below by simple functions
(theorem (18)), we conclude from the monotone convergence theorem (19)
and question 3., that:

/ fdﬂl®~~'®,un:/ / fdpoq) - - dpon)
Q1 X...xXQ, Qs (n) Qg (1)

This proves theorem (32).

o(n

“e /Q Sdﬂa(l) e d‘LLa(n)
)

o(n (1)

Exercise 13

Exercise 14.

1. Suppose f € L'. There exists g € Lk(52, F,u) such that f = g, p-a.s.
Hence, there exists N € F with u(N) = 0, such that f(w) = g(w) for all
w € N¢. However, g has values in R. So |f(w)| < +oo for all w € N¢. Tt
follows that |f| < 400 p-a.s.

2. We assume the existence of A C ), such that A € F and A C N, for some
N € F with u(N) =0. Since A ¢ F, 14 is not measurable. However, for
all w € N¢, we have 14(w) = 0. So 14 = 0, p-a.s. Since 0 € L (2, F, u),
we see that 14 € L.

3. Suppose f € L'. As indicated in 2., we have no guarantee that f be
a measurable map. Hence, the integrals [|f|du and [ fdu may not be
meaningful.

4. Let f: (2, F) — (R,B(R)) be a measurable map, such that [ |f|du <
+oo. In particular, we have p({|f| = +oo0}) = 0 (see exercise (7) of
Tutorial 5). Define g = f1{|f<4o0}- Then, f(w) = g(w) for all w € {|f| <
+o0}. So f = g p-a.s. However, g is measurable, with values in R, and

such that:
[lalan= [ 1f1d < +oc
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So g € L{(Q,F, u), and finally f € L.

5. Suppose f € L' and f = f; p-a.s. for some map f; : Q — R. There
exists g € L{ (9, F, ), such that f = g p-a.s. There exists N € F with
u(N) = 0, such that f(w) = g(w) for allw € N°. Also, there exists Ny € F
with p(N7) = 0, such that f(w) = fi(w) for all w € Nf. Tt follows that
fi(w) = g(w) for all w € (NUN7)°. Since u(NUN7) < p(N)+p(Ny) =0,
we see that f; = g pu-a.s. We conclude that f; € L'.

6. Let f € L'. Let g1,92 € LR (Q, F,p) with f = g1 p-a.s. and f = go p-a.s.
There exist N1, N € F with u(Ny) = pu(N2) = 0, such that f(w) = ¢1(w)
for all w € NY, and f(w) = g2(w) for all w € N§. So g1(w) = g2(w) for
all w € (Ny U N3)¢, and p(Ny U N2) = 0. So g1 = g2 p-a.s. and finally

Jgrdp = [ g2dp.
7. For all f € L', we define:

/fdué/gdu (5)

where g is any element of L (Q, F,u) such that f = g p-a.s. From 6., if
91,92 € LE(Q, F, ) are such that f = g1 p-a.s. and f = go p-a.s., then
Jg1du = [ godp. So [ fdu is well-defined. If f € L' N LL (2, F, u), then
[ fdp as defined in (5) coincide with [ fdpu, in its usual sense.

Exercise 14

Exercise 15.

1. By assumption, f,, — f p-a.s. There exists N € F, u(N) = 0, such that
fan(w) = f(w) for all w € N¢. Also, for all n > 1, |fn| < h p-a.s. There
exists M,, € F with u(M,) = 0 such that |f,(w)| < h(w) for all w € M.
Let Ny = NU (Up>1M,). Then Ny € F, and:

+oo
p(N1) < p(N)+ > p(M,) =0

So u(Ny) = 0. Moreover, for all w € NY, we have f,(w) — f(w) and for
all n > 1, |fn(w)] < h(w).

2. Since f € L', there exists g € L (Q,F, u) such that f = g p-a.s. There
exists N € F with u(N) = 0, such that f(w) = g(w) for all w € N€.
Similarly, there exists hy € Li(Q, F, ), and a set M| € F with u(M]) =
0, such that h(w) = hi(w) for all w € (M])°. For all n > 1, there exist
gn € LR (2, F, ) and M,, € F with pu(M,,) = 0 such that g,(w) = f,(w)
for all w € M¢. Let Ny = NUM{U(Up>1M,,). Then Ny € F, u(N2) =0,
and for allw € N, we have g(w) = f(w), h1(w) = h(w) and gn(w) = fr(w)
for all n > 1.
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3. Let N = N; U Ny where N; and N, are given by 1. and 2. respectively.

Then N € F, u(N) = 0, and for all w € N¢, we have g,(w) — g(w) and
|gn(w)] < hy(w) for all n > 1.

. (gnlne)n>1 is a sequence of C-valued (in fact R-valued) measurable maps,

such that g,1ne(w) — glye(w) for all w € Q. Moreover, hilye is an
element of L (Q, F,u) such that for all n > 1, |gn1ne| < hilye. Hence,
we can apply the dominated convergence theorem (23).

When f, f, € L', we have |f, — f| € L', and [|f, — f|du is defined
as [ kdp where k is any element of L§ (Q,F, 1) such that [f, — f| = k
pas. In fact, g, — g| € LR(9, F, ) and |fa — f| = g — g] p-a.5. So
f |fr — fldu = f |9n — gldp.

From 4., and the dominated convergence theorem (23), we have lim f Ine|gn—
gnldp = 0 and consequently, [|g, — gldu — 0. It follows from 5. that
S 1fn = fldp — 0.

Exercise 15

Exercise 16.

1.

We define A = {w1 € Q4 : [, [f(wi,2)|du2(x) < +o0}. From the-
orem (30), the map ¢ : w1 — [o [f(w1,2)|dpz(x) is measurable with
respect to F; and B(R). It follows that:

A= ¢[00, +o0]) € Fy

From theorem (31), we have:

/Ql< QQ|f(w1,x)|dM2(x)) dpy (wy) :/Q \fldp1 © pz < 400

1 X Q2

Using exercise (7) (11.) of Tutorial 5, we have pq(A%) =0

. For all wy € A, we have [, |f(wi,2)|duz(x) < +oc. From theorem (29),

the map f (w1, .) is measurable with respect to Fo, for all wy € Fy. f being
R-valued, we conclude that for all wy € A, f(w1,.) € Lh(Qg,fg,ug).

For all wy € A, the map f(w1,.) lies in L (Qa, Fa, u2). Hence, I(w) =
fQ (w1, dug( ) is well-defined for all w; € A.

Ifwe A, then J(w) = I(w) = Jqo, f(w,x)dps(z). Hence:

Jw)=1aw) | fH(w,2)dp2(z) —1a(w) Qf*(w,x)duz(x)

Qo
This equation still holds if w ¢ A.

Jo, FH(w,x)dpa(x) < +o0 and [, f~(w,x)dpa(x) < +00, for all w € A.
If w ¢ A, then J(w) = 0. It follows that J(w) € R, for all w € Q.
From theorem (30), w — [q, fH(w,2)dp2(z) and w — [, [~ (w, x)dpa(x)

www.probability.net


http://www.probability.net

Solutions to Exercises 26

10.

are Fp-measurable maps. Furthermore, A € F;. So 14 is also an Fi-
measurable map. From 4. we conclude that J is itself F;-measurable.

For all w € Qg, using 4., we have:
T [ Frdu+ [ 1l [ 1.0l

and therefore:

| e < [ ([ 1ol ) duw <+

Since J is R-valued and Fj-measurable, J € Lk (Q1, F1, ). Furthermore,
for all w € A, we have J(w) = I(w). Since p1(A°) = 0, we conclude that
J =1 pr-a.s.

The map z — sz f(x,y)dusa(y) is defined for all x € A, but may not be de-
fined for all 2 € Q. Hence, strictly speaking, the integral [, ([, fdu2)du
may not be meaningful. However, whichever way we choose to extend
T — sz f(x,y)dus(y) (the map I), we have J = I, pu3 — a.s. where
J € LL(Q4,F1, 1) Following the previous exercise, we see that I € L,
and the integral le I(x)du (x) can in fact be defined as:

/Q< sz (%y)dﬂz(y)) dp (2) 2 /Q lJ(x)dul(x)

Since p1(A€) = 0, we have:

o froe)on L (L)

Using theorem (31), we conclude that:

/ (1A/ f*du2> dm:/ ST © pa
Q1 Qo Q1 X0

Using 4., 8. and its counterpart for f~, we obtain:

d = Td — -d
/QlJ(a?) m(ﬂ?)/ Jrdpr @ peo /Q [ dur @ po

leﬂg 1><QQ

In other words:

/. ( 0’ (@) ) dine) = [ e

Suppose that f € L&(1 x Qo, F1 @ Fo,p1 @ o), ie. we no longer
assume that f is R-valued. Then f = wu 4+ iv where both u and v
are elements of Li (2 x Qo, F1 ® Fa, 1 @ p2). Applying 6. the map
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wp — sz u(w1, z)dps () and the map wq — sz v(wy, x)dus(x) are pi-
almost surely equal to elements of Ly (Q1, 1, p1) (say J, and J, respec-
tively). Furthermore, from (1) we have:

/m(/gzu(x’y)dﬂz(y)) dp (z) = /Q lmz:dm ® fia
/m(/gf(x’y)dw(y)) dp (z) = /Q mfd‘“ ® o

It follows that w; — fm f(w1,x)dpz(x) is pi-almost surely equal to J,, +
iJy, € Lé(Ql,}—l,Hl), and:

/Ql< @ y)duz(y)) dpun ()

and:

1>

/ (Ju+iJ)dpn
(951

= /Q1 Judpn -f—i/Ql Judp

-/ < / 2u<x,y)du2<y>) dpn ()
i ( / 2v<x,y)du2<y>) dpn (2)
[ mor

z/ vdpy ® e
Ql XQQ

:/ Jdpr @ po
Q

1 X822

_|_

_|_

This proves equation (1).

11. From 5. of exercise (1), the map 6 is measurable. It follows that f o6 :
(Q2 x Qy,F3 @ F1) — [0,400] is indeed non-negative and measurable.
Furthermore, from theorem (31), we have:

fotdem = [ ( [ foe<w2,wl>dm<w1>) dpin (o)

QQXQl

= /Q2 < o f(w1,w2)dl£1(w1)> dpz(w2)

Theorem (31) — = / fdp & pe
Ql XQz

12. From 5. of exercise (1), the map 6 is measurable. So f o6 is itself measur-
able. Applying 11. to |f| we obtain:

| Jretldmom = [ |flotduem
Q Q

2 X 2 X
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= / | fldp @ po < 400
Q

1 X822

So fof € LE(Qa x N, Fo® Fi,pue @ pa). If u= Re(f) and v = Im(f),

using 11. once more, we obtain:

/ foedM2®M1:/ u*oedu2®u1
Q Q

2 X0 2 X Q1

—/ u~ o 0dps @ i1
Q

2 X Q1

+i/ vt o Odus ®
Q

2 X

—i/ v o fdus @
Q

2 X

=/ utdp, ®M2—/ u-dpy @ po
leﬂg leﬂg

+i/ v+du1®u2—i/ v dpy ® po
Q Q

1 X Q02 1 X Q2

= [ fdm o
Q1 xXQo

13. Let f € Lé(Ql X Qo, F1 @ Fa, 11 ® p2). From 12. g = f 0 6 is an element

of L&(Q2 x Q1, F2 @ Fi, pu2 @ p1). Applying 10. to g, it follows that the

map ws — le g(wa, x)dpq (z) is po-almost surely equal to an element of

L&(Q2, Fo, p2). In other words, the map wy — Jo, fla,w2)dpn (2) is po-

almost surely equal to an element of LE(QQ,fQ, f2). Furthermore, we

have:
/92</ng v, x)d“l(@) dp2(y)

/m( o) (x’y)d/“(x)) dpa(y)

From 10. — = / gdiz @ g
Q

2 X

From 12. — = / fdp & pe
Q

1 X Q02

This completes the proof of theorem (33).
Exercise 16

Exercise 17.

L Let f e L& x ... xQp, F1®@...Q Fp, i1 @ ... ® y). Define By =
Hi?ﬁf’(l)ﬂi’ Ey = Qa(l)a & = ®i7§g(1)]:i and & = ]:0(1). Let v, =
Qi) and Vo = fis(1). Then:

f € LE(Er X By, & & Ea,11 @ 1)
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From theorem (33), the map w — fEQ f(w,z)dva(z) (defined vy-almost
surely and arbitrarily extended on E7), is vi-almost surely equal to an
element of Lé (E1,&1,11). In other words:

Jiw) 2 /Q £ (@, @)t (2)
(1)

is almost surely? equal to an element of L¢ (I;20(1)%)*.

2. Jit1 is as. equal to an element of L& (g (o1, o(ht1)})-

3. From 1., Ji(w) = [, o J(w,x)dpy 1y (x) is almost surely equal to an ele-
ment of L (1T, ,(1)%), say Ji. Similarly, from 2., Jo(w) = [, o J1(w, @)dpig(o) (2)
is almost surely equal to an element of Llc(Hig{a(l)7a(2)}Qi), say Jo. By

induction, we obtain a map J,,—1 defined on Q2 (,,), and fig(n)-almost surely
equal to an element of Lg (Qo(n)); say Jn—1. We define:

A —
/ / fdpoqy - dpio(n) :/ In—1 s (n)
Q ) Qa(l) Q

o (n)
This multiple integral is a well-defined complex number. It is easy to check
by induction that which ever choice is made of .Jy, ..., .J,_2, the map .J,,_1
is unique up to piy(n)-almost sure equality. Hence, this multiple integral
is uniquely defined.

o(n

4. From theorem (33), we have:
/ Ji(w)d Qito(1) i = / fdpr @ ... @ pn
izo(1)$2 Q1 X... X,
Following an induction argument, we obtain:

/ jnfld,ua(n) :/ fdpur ® ... ® py
Q Q1 X... Xy

o(n)

i

€.
/ fdMa(l)md/la(n):/ fdpn ® ... ® py
Qs (n) Qs (1) Q1 X... Xy,

This solution is not as detailed as it could have been. ..

Exercise 17

2A case of sloppy terminology: we are trying to make the whole thing readable.
3A case of sloppy notations.
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