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7. Fubini Theorem
Definition 59 Let (Ω1,F1) and (Ω2,F2) be two measurable spaces. Let E ⊆
Ω1 × Ω2. For all ω1 ∈ Ω1, we call ω1-section of E in Ω2, the set:

Eω1 4= {ω2 ∈ Ω2 : (ω1, ω2) ∈ E}

Exercise 1. Let (Ω1,F1), (Ω2,F2) and (S,Σ) be three measurable spaces, and
f : (Ω1 × Ω2,F1 ⊗F2)→ (S,Σ) be a measurable map. Given ω1 ∈ Ω1, define:

Γω1 4= {E ⊆ Ω1 × Ω2 , E
ω1 ∈ F2}

1. Show that for all ω1 ∈ Ω1, Γω1 is a σ-algebra on Ω1 × Ω2.

2. Show that for all ω1 ∈ Ω1, F1 q F2 ⊆ Γω1 .

3. Show that for all ω1 ∈ Ω1 and E ∈ F1 ⊗F2, we have Eω1 ∈ F2.

4. Given ω1 ∈ Ω1, show that ω → f(ω1, ω) is measurable.

5. Show that θ : (Ω2 × Ω1,F2 ⊗ F1) → (Ω1 × Ω2,F1 ⊗ F2) defined by
θ(ω2, ω1) = (ω1, ω2) is a measurable map.

6. Given ω2 ∈ Ω2, show that ω → f(ω, ω2) is measurable.

Theorem 29 Let (S,Σ), (Ω1,F1) and (Ω2,F2) be three measurable spaces. Let
f : (Ω1×Ω2,F1⊗F2)→ (S,Σ) be a measurable map. For all (ω1, ω2) ∈ Ω1×Ω2,
the map ω → f(ω1, ω) is measurable w.r. to F2 and Σ, and ω → f(ω, ω2) is
measurable w.r. to F1 and Σ.

Exercise 2. Let (Ωi,Fi)i∈I be a family of measurable spaces with cardI ≥ 2.
Let f : (Πi∈IΩi,⊗i∈IFi) → (E,B(E)) be a measurable map, where (E, d) is
a metric space. Let i1 ∈ I. Put E1 = Ωi1 , E1 = Fi1 , E2 = Πi∈I\{i1}Ωi,
E2 = ⊗i∈I\{i1}Fi.

1. Explain why f can be viewed as a map defined on E1 × E2.

2. Show that f : (E1 × E2, E1 ⊗ E2)→ (E,B(E)) is measurable.

3. For all ωi1 ∈ Ωi1 , show that the map ω → f(ωi1 , ω) defined on Πi∈I\{i1}Ωi
is measurable w.r. to ⊗i∈I\{i1}Fi and B(E).

Definition 60 Let (Ω,F , µ) be a measure space. (Ω,F , µ) is said to be a
finite measure space, or we say that µ is a finite measure, if and only if
µ(Ω) < +∞.

Definition 61 Let (Ω,F , µ) be a measure space. (Ω,F , µ) is said to be a σ-
finite measure space, or µ a σ-finite measure, if and only if there exists a
sequence (Ωn)n≥1 in F such that Ωn ↑ Ω and µ(Ωn) < +∞, for all n ≥ 1.
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Exercise 3. Let (Ω,F , µ) be a measure space.

1. Show that (Ω,F , µ) is σ-finite if and only if there exists a sequence (Ωn)n≥1

in F such that Ω = ]+∞
n=1Ωn, and µ(Ωn) < +∞ for all n ≥ 1.

2. Show that if (Ω,F , µ) is finite, then µ has values in R+.

3. Show that if (Ω,F , µ) is finite, then it is σ-finite.

4. Let F : R→ R be a right-continuous, non-decreasing map. Show that the
measure space (R,B(R), dF ) is σ-finite, where dF is the Stieltjes measure
associated with F .

Exercise 4. Let (Ω1,F1) be a measurable space, and (Ω2,F2, µ2) be a σ-finite
measure space. For all E ∈ F1 ⊗F2 and ω1 ∈ Ω1, define:

ΦE(ω1)
4
=
∫

Ω2

1E(ω1, x)dµ2(x)

Let D be the set of subsets of Ω1 × Ω2, defined by:

D 4= {E ∈ F1 ⊗F2 : ΦE : (Ω1,F1)→ (R̄,B(R̄)) is measurable}

1. Explain why for all E ∈ F1 ⊗F2, the map ΦE is well defined.

2. Show that F1 qF2 ⊆ D.

3. Show that if µ2 is finite, A,B ∈ D and A ⊆ B, then B \A ∈ D.

4. Show that if En ∈ F1 ⊗F2, n ≥ 1 and En ↑ E, then ΦEn ↑ ΦE .

5. Show that if µ2 is finite then D is a Dynkin system on Ω1 × Ω2.

6. Show that if µ2 is finite, then the map ΦE : (Ω1,F1) → (R̄,B(R̄)) is
measurable, for all E ∈ F1 ⊗F2.

7. Let (Ωn
2 )n≥1 in F2 be such that Ωn2 ↑ Ω2 and µ2(Ωn

2 ) < +∞. Define
µn2 = µ

Ωn2
2 = µ2(• ∩Ωn2 ). For E ∈ F1 ⊗F2, we put:

ΦnE(ω1)
4
=
∫

Ω2

1E(ω1, x)dµn2 (x)

Show that ΦnE : (Ω1,F1)→ (R̄,B(R̄)) is measurable, and:

ΦnE(ω1) =
∫

Ω2

1Ωn2
(x)1E(ω1, x)dµ2(x)

Deduce that ΦnE ↑ ΦE .

8. Show that the map ΦE : (Ω1,F1) → (R̄,B(R̄)) is measurable, for all
E ∈ F1 ⊗F2.
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9. Let s be a simple function on (Ω1 × Ω2,F1 ⊗ F2). Show that the map
ω →

∫
Ω2
s(ω, x)dµ2(x) is well defined and measurable with respect to F1

and B(R̄).

10. Show the following theorem:

Theorem 30 Let (Ω1,F1) be a measurable space, and (Ω2,F2, µ2) be a σ-finite
measure space. Then for all non-negative and measurable map f : (Ω1×Ω2,F1⊗
F2)→ [0,+∞], the map:

ω →
∫

Ω2

f(ω, x)dµ2(x)

is measurable with respect to F1 and B(R̄).

Exercise 5. Let (Ωi,Fi)i∈I be a family of measurable spaces, with cardI ≥ 2.
Let i0 ∈ I, and suppose that µ0 is a σ-finite measure on (Ωi0 ,Fi0). Show that
if f : (Πi∈IΩi,⊗i∈IFi)→ [0,+∞] is a non-negative and measurable map, then:

ω →
∫

Ωi0

f(ω, x)dµ0(x)

defined on Πi∈I\{i0}Ωi, is measurable w.r. to ⊗i∈I\{i0}Fi and B(R̄).

Exercise 6. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces.
For all E ∈ F1 ⊗F2, we define:

µ1 ⊗ µ2(E)
4
=
∫

Ω1

(∫
Ω2

1E(x, y)dµ2(y)
)
dµ1(x)

1. Explain why µ1 ⊗ µ2 : F1 ⊗F2 → [0,+∞] is well defined.

2. Show that µ1 ⊗ µ2 is a measure on F1 ⊗F2.

3. Show that if A×B ∈ F1 q F2, then:

µ1 ⊗ µ2(A×B) = µ1(A)µ2(B)

Exercise 7. Further to ex. (6), suppose that µ : F1⊗F2 → [0,+∞] is another
measure on F1⊗F2 with µ(A×B) = µ1(A)µ2(B), for all measurable rectangle
A×B. Let (Ωn1 )n≥1 and (Ωn2 )n≥1 be sequences in F1 and F2 respectively, such
that Ωn1 ↑ Ω1, Ωn2 ↑ Ω2, µ1(Ωn

1 ) < +∞ and µ2(Ωn2 ) < +∞. Define, for all
n ≥ 1:

Dn
4
= {E ∈ F1 ⊗F2 : µ(E ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(E ∩ (Ωn1 × Ωn2 ))}

1. Show that for all n ≥ 1, F1 qF2 ⊆ Dn.

2. Show that for all n ≥ 1, Dn is a Dynkin system on Ω1 × Ω2.

3. Show that µ = µ1 ⊗ µ2.
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4. Show that (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2) is a σ-finite measure space.

5. Show that for all E ∈ F1 ⊗F2, we have:

µ1 ⊗ µ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dµ1(x)
)
dµ2(y)

Exercise 8. Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure spaces,
n ≥ 2. Let i0 ∈ {1, . . . , n} and put E1 = Ωi0 , E2 = Πi6=i0Ωi, E1 = Fi0 and
E2 = ⊗i6=i0Fi. Put ν1 = µi0 , and suppose that ν2 is a σ-finite measure on
(E2, E2) such that for all measurable rectangle Πi6=i0Ai ∈ qi6=i0Fi, we have
ν2 (Πi6=i0Ai) = Πi6=i0µi(Ai).

1. Show that ν1 ⊗ ν2 is a σ-finite measure on the measure space (Ω1 × . . .×
Ωn,F1 ⊗ . . .⊗Fn) such that for all measurable rectangles A1 × . . .×An,
we have:

ν1 ⊗ ν2(A1 × . . .×An) = µ1(A1) . . . µn(An)

2. Show by induction the existence of a measure µ on F1 ⊗ . . . ⊗ Fn, such
that for all measurable rectangles A1 × . . .×An, we have:

µ(A1 × . . .×An) = µ1(A1) . . . µn(An)

3. Show the uniqueness of such measure, denoted µ1 ⊗ . . .⊗ µn.

4. Show that µ1 ⊗ . . .⊗ µn is σ-finite.

5. Let i0 ∈ {1, . . . , n}. Show that µi0 ⊗ (⊗i6=i0µi) = µ1 ⊗ . . .⊗ µn.

Definition 62 Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure spaces,
with n ≥ 2. We call product measure of µ1, . . . , µn, the unique measure on
F1 ⊗ . . . ⊗ Fn, denoted µ1 ⊗ . . . ⊗ µn, such that for all measurable rectangles
A1 × . . .×An in F1 q . . .q Fn, we have:

µ1 ⊗ . . .⊗ µn(A1 × . . .×An) = µ1(A1) . . . µn(An)

This measure is itself σ-finite.

Exercise 9. Prove that the following definition is legitimate:

Definition 63 We call Lebesgue measure in Rn, n ≥ 1, the unique measure
on (Rn,B(Rn)), denoted dx, dxn or dx1 . . . dxn, such that for all ai ≤ bi,
i = 1, . . . , n, we have:

dx([a1, b1]× . . .× [an, bn]) =
n∏
i=1

(bi − ai)

Exercise 10.
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1. Show that (Rn,B(Rn), dxn) is a σ-finite measure space.

2. For n, p ≥ 1, show that dxn+p = dxn ⊗ dxp.

Exercise 11. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite.

1. Let s be a simple function on (Ω1 × Ω2,F1 ⊗ F2). Show that:∫
Ω1×Ω2

sdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

sdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

sdµ1

)
dµ2

2. Show the following:

Theorem 31 (Fubini) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite mea-
sure spaces. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] be a non-negative and
measurable map. Then:∫

Ω1×Ω2

fdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

fdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

fdµ1

)
dµ2

Exercise 12. Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure spaces,
n ≥ 2. Let f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) → [0,+∞] be a non-negative,
measurable map. Let σ be a permutation of Nn, i.e. a bijection from Nn to
itself.

1. For all ω ∈ Πi6=σ(1)Ωi, define:

J1(ω)
4
=
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

Explain why J1 : (Πi6=σ(1)Ωi,⊗i6=σ(1)Fi)→ [0,+∞] is a well defined, non-
negative and measurable map.

2. Suppose Jk : (Πi6∈{σ(1),...,σ(k)}Ωi,⊗i6∈{σ(1),...,σ(k)}Fi) → [0,+∞] is a non-
negative, measurable map, for 1 ≤ k < n− 2. Define:

Jk+1(ω)
4
=
∫

Ωσ(k+1)

Jk(ω, x)dµσ(k+1)(x)

and show that:

Jk+1 : (Πi6∈{σ(1),...,σ(k+1)}Ωi,⊗i6∈{σ(1),...,σ(k+1)}Fi)→ [0,+∞]

is also well-defined, non-negative and measurable.

3. Propose a rigorous definition for the following notation:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)
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Exercise 13. Further to ex. (12), Let (fp)p≥1 be a sequence of non-negative
and measurable maps:

fp : (Ω1 × . . .× Ωn,F1 ⊗ . . .⊗Fn)→ [0,+∞]

such that fp ↑ f . Define similarly:

Jp1 (ω)
4
=

∫
Ωσ(1)

fp(ω, x)dµσ(1)(x)

Jpk+1(ω)
4
=

∫
Ωσ(k+1)

Jpk (ω, x)dµσ(k+1)(x) , 1 ≤ k < n− 2

1. Show that Jp1 ↑ J1.

2. Show that if Jpk ↑ Jk, then Jpk+1 ↑ Jk+1, 1 ≤ k < n− 2.

3. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fpdµσ(1) . . . dµσ(n) ↑
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

4. Show that the map µ : F1 ⊗ . . .⊗Fn → [0,+∞], defined by:

µ(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

is a measure on F1 ⊗ . . .⊗Fn.

5. Show that for all E ∈ F1 ⊗ . . .⊗Fn, we have:

µ1 ⊗ . . .⊗ µn(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

6. Show the following:

Theorem 32 Let (Ω1,F1, µ1), . . . , (Ωn,Fn, µn) be n σ-finite measure spaces,
with n ≥ 2. Let f : (Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn)→ [0,+∞] be a non-negative
and measurable map. let σ be a permutation of Nn. Then:∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

Exercise 14. Let (Ω,F , µ) be a measure space. Define:

L1 4= {f : Ω→ R̄ , ∃g ∈ L1
R(Ω,F , µ) , f = g µ-a.s.}

1. Show that if f ∈ L1, then |f | < +∞, µ-a.s.

2. Suppose there exists A ⊆ Ω, such that A 6∈ F and A ⊆ N for some N ∈ F
with µ(N) = 0. Show that 1A ∈ L1 and 1A is not measurable with respect
to F and B(R̄).
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3. Explain why if f ∈ L1, the integrals
∫
|f |dµ and

∫
fdµ may not be well

defined.

4. Suppose that f : (Ω,F)→ (R̄,B(R̄)) is a measurable map with
∫
|f |dµ <

+∞. Show that f ∈ L1.

5. Show that if f ∈ L1 and f = f1 µ-a.s. then f1 ∈ L1.

6. Suppose that f ∈ L1 and g1, g2 ∈ L1
R(Ω,F , µ) are such that f = g1 µ-a.s.

and f = g2 µ-a.s.. Show that
∫
g1dµ =

∫
g2dµ.

7. Propose a definition of the integral
∫
fdµ for f ∈ L1 which extends the

integral defined on L1
R(Ω,F , µ).

Exercise 15. Further to ex. (14), Let (fn)n≥1 be a sequence in L1, and f, h ∈
L1, with fn → f µ-a.s. and for all n ≥ 1, |fn| ≤ h µ-a.s..

1. Show the existence of N1 ∈ F , µ(N1) = 0, such that for all ω ∈ N c
1 ,

fn(ω)→ f(ω), and for all n ≥ 1, |fn(ω)| ≤ h(ω).

2. Show the existence of gn, g, h1 ∈ L1
R(Ω,F , µ) and N2 ∈ F , µ(N2) = 0,

such that for all ω ∈ N c
2 , g(ω) = f(ω), h(ω) = h1(ω), and for all n ≥ 1,

gn(ω) = fn(ω).

3. Show the existence of N ∈ F , µ(N) = 0, such that for all ω ∈ N c,
gn(ω)→ g(ω), and for all n ≥ 1, |gn(ω)| ≤ h1(ω).

4. Show that the Dominated Convergence Theorem can be applied to gn1Nc , g1Nc
and h11Nc .

5. Recall the definition of
∫
|fn − f |dµ when f, fn ∈ L1.

6. Show that
∫
|fn − f |dµ→ 0.

Exercise 16. Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces.
Let f be an element of L1

R(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). Let θ : (Ω2 × Ω1,F2 ⊗
F1) → (Ω1 × Ω2,F1 ⊗ F2) be the map defined by θ(ω2, ω1) = (ω1, ω2) for all
(ω2, ω1) ∈ Ω2 × Ω1.

1. Let A = {ω1 ∈ Ω1 :
∫

Ω2
|f(ω1, x)|dµ2(x) < +∞}. Show that A ∈ F1 and

µ1(Ac) = 0.

2. Show that f(ω1, .) ∈ L1
R(Ω2,F2, µ2) for all ω1 ∈ A.

3. Show that Ī(ω1) =
∫

Ω2
f(ω1, x)dµ2(x) is well defined for all ω1 ∈ A. Let

I be an arbitrary extension of Ī, on Ω1.

4. Define J = I1A. Show that:

J(ω) = 1A(ω)
∫

Ω2

f+(ω, x)dµ2(x) − 1A(ω)
∫

Ω2

f−(ω, x)dµ2(x)

www.probability.net

http://www.probability.net


Tutorial 7: Fubini Theorem 8

5. Show that J is F1-measurable and R-valued.

6. Show that J ∈ L1
R(Ω1,F1, µ1) and that J = I µ1-a.s.

7. Propose a definition for the integral:∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

8. Show that
∫

Ω1
(1A

∫
Ω2
f+dµ2)dµ1 =

∫
Ω1×Ω2

f+dµ1 ⊗ µ2.

9. Show that: ∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2 (1)

10. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2), then the map ω1 →∫

Ω2
f(ω1, y)dµ2(y) is µ1-almost surely equal to an element of L1

C(Ω1,F1, µ1),
and furthermore that (1) is still valid.

11. Show that if f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] is non-negative and mea-
surable, then f ◦ θ is non-negative and measurable, and:∫

Ω2×Ω1

f ◦ θdµ2 ⊗ µ1 =
∫

Ω1×Ω2

fdµ1 ⊗ µ2

12. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2), then f ◦ θ is an element

of L1
C(Ω2 × Ω1,F2 ⊗F1, µ2 ⊗ µ1), and:∫

Ω2×Ω1

f ◦ θdµ2 ⊗ µ1 =
∫

Ω1×Ω2

fdµ1 ⊗ µ2

13. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2), then the map ω2 →∫

Ω1
f(x, ω2)dµ1(x) is µ2-almost surely equal to an element of L1

C(Ω2,F2, µ2),
and furthermore:∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2

Theorem 33 Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces.
Let f ∈ L1

C(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). Then, the map:

ω1 →
∫

Ω2

f(ω1, x)dµ2(x)

is µ1-almost surely equal to an element of L1
C(Ω1,F1, µ1) and:∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2
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Furthermore, the map:

ω2 →
∫

Ω1

f(x, ω2)dµ1(x)

is µ2-almost surely equal to an element of L1
C(Ω2,F2, µ2) and:∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2

Exercise 17. Let (Ω1,F1, µ1),. . . ,(Ωn,Fn, µn) be n σ-finite measure spaces,
n ≥ 2. Let f ∈ L1

C(Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn, µ1 ⊗ . . . ⊗ µn). Let σ be a
permutation of Nn.

1. For all ω ∈ Πi6=σ(1)Ωi, define:

J1(ω)
4
=
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

Explain why J1 is well defined and equal to an element of L1
C(Πi6=σ(1)Ωi,⊗i6=σ(1)Fi,⊗i6=σ(1)µi),

⊗i6=σ(1)µi-almost surely.

2. Suppose 1 ≤ k < n−2 and that J̄k is well defined and equal to an element
of:

L1
C(Πi6∈{σ(1),...,σ(k)}Ωi,⊗i6∈{σ(1),...,σ(k)}Fi,⊗i6∈{σ(1),...,σ(k)}µi)

⊗i6∈{σ(1),...,σ(k)}µi-almost surely. Define:

Jk+1(ω)
4
=
∫

Ωσ(k+1)

J̄k(ω, x)dµσ(k+1)(x)

What can you say about Jk+1.

3. Show that: ∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

is a well defined complex number. (Propose a definition for it).

4. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n) =
∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn
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Solutions to Exercises
Exercise 1.

1. Let ω1 ∈ Ω1. The ω1-section of Ω1 × Ω2 in Ω2, is equal to Ω2 ∈ F2. So
Ω1×Ω2 ∈ Γω1 . Suppose E ∈ Γω1 . Then Eω1 ∈ F2. F2 being closed under
complementation, (Eω1)c ∈ F2. However, given ω2 ∈ Ω2, ω2 ∈ (Eω1)c

is equivalent to (ω1, ω2) 6∈ E, i.e. (ω1, ω2) ∈ Ec. So (Eω1)c = (Ec)ω1 .
Hence, we see that (Ec)ω1 ∈ F2. It follows that Ec ∈ Γω1 , which is
therefore closed under complementation. Let (En)n≥1 be a sequence of
elements of Γω1 . Let E = ∪+∞

n=1En. For all n ≥ 1, (En)ω1 ∈ F2. F2

being closed under countable union, ∪+∞
n=1(En)ω1 ∈ F2. However, given

ω2 ∈ Ω2, ω2 ∈ ∪+∞
n=1(En)ω1 is equivalent to the existence of n ≥ 1, such

that (ω1, ω2) ∈ En. Hence, it is equivalent to (ω1, ω2) ∈ ∪+∞
n=1En = E. So

∪+∞
n=1(En)ω1 = Eω1 , and we see that Eω1 ∈ F2. It follows that E ∈ Γω1 ,

which is therefore closed under countable union. We have proved that Γω1

is a σ-algebra on Ω1 × Ω2.

2. Let ω1 ∈ Ω1, and E = A× B ∈ F1 q F2 be a measurable rectangle of F1

and F2. Suppose ω1 ∈ A. Then (ω1, ω2) ∈ E, if and only if ω2 ∈ B. So
Eω1 = B ∈ F2. Suppose ω1 6∈ A. Then for all ω2 ∈ Ω2, (ω1, ω2) 6∈ E. So
Eω1 = ∅ ∈ F2. In any case, Eω1 ∈ F2. It follows that E ∈ Γω1 . We have
proved that F1 qF2 ⊆ Γω1 .

3. From F1 qF2 ⊆ Γω1 and the fact that Γω1 is a σ-algebra on Ω1 × Ω2, we
conclude that F1 ⊗ F2 = σ(F1 q F2) ⊆ Γω1 . Hence, for all ω1 ∈ Ω1 and
E ∈ F1 ⊗F2, E is an element of Γω1 , or equivalently, Eω1 ∈ F2.

4. Let f : (Ω1 × Ω2,F1 ⊗ F2) → (S,Σ) be a measurable map, where (S,Σ)
is a measurable space. Let ω1 ∈ Ω1, and φ : Ω2 → S be the partial map
ω → f(ω1, ω). Let B ∈ Σ. Then {f ∈ B} is an element of F1⊗F2. Using
3. it follows that the ω1-section {f ∈ B}ω1 of {f ∈ B} is an element of
F2. However, we have:

{f ∈ B}ω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ {f ∈ B}}
= {ω2 ∈ Ω2 : f(ω1, ω2) ∈ B}
= {ω2 ∈ Ω2 : φ(ω2) ∈ B}
= {φ ∈ B}

Hence we see that {φ ∈ B} ∈ F2. This being true for all B ∈ Σ, we
conclude that φ is measurable. This shows that the map ω → f(ω1, ω) is
measurable.

5. Let θ : (Ω2×Ω1,F2⊗F1)→ (Ω1×Ω2,F1⊗F2) be defined by θ(ω2, ω1) =
(ω1, ω2). From theorem (28), in order to show that θ is measurable, it is
sufficient to prove that each coordinate mapping θ1 : (ω2, ω1) → ω1 and
θ2 : (ω2, ω1) → ω2 is measurable. This is indeed the case, since for all
A1 ∈ F1 we have θ−1

1 (A1) = Ω2 × A1 ∈ F2 ⊗ F1, and for all A2 ∈ F2 we
have θ−1

2 (A2) = A2 × Ω1 ∈ F2 ⊗F1. So θ is measurable.
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6. Let ω2 ∈ Ω2. Let g : (Ω2 × Ω1,F2 ⊗ F1) → (S,Σ) be the map defined
by g = f ◦ θ. Having proved in 5. that θ is measurable, since f is itself
measurable, g is a measurable map. Applying 4. to g, it follows that the
map ω → g(ω2, ω) is measurable with respect to F1 and Σ. In other
words, the map ω → f(ω, ω2) is measurable with respect to F1 and Σ.
This completes the proof of theorem (29).

Exercise 1

Exercise 2.

1. There is an obvious bijection Φ between E1 × E2 and Πi∈IΩi, defined by
Φ(ω1, ω2)(i1) = ω1, and Φ(ω1, ω2)(i) = ω2(i) for i 6= i1. The two sets
E1 × E2 and Πi∈IΩi can therefore identified, and f can be viewed as a
map defined on E1 × E2.

2. Having identified E1 × E2 and Πi∈IΩi, using exercise (10) of Tutorial 6
for the partition I = {i1} ] (I \ {i1}), we obtain ⊗i∈IFi = E1 ⊗ E2. So
f : (E1 × E2, E1 ⊗ E2)→ (E,B(E)) is measurable.

3. From 2. and theorem (29), given ω1 ∈ E1, the map ω → f(ω1, ω) defined
on E2, is measurable with respect to E2 and B(E). In other words, given
ωi1 ∈ Ωi1 , the map ω → f(ωi1 , ω) defined on Πi∈I\{i1}Ωi, is measurable
w.r. to ⊗i∈I\{i1}Fi and B(E).

Exercise 2

Exercise 3.

1. Suppose there exists a sequence (Ωn)n≥1 of pairwise disjoint elements of
F , such that Ω = ]+∞

n=1Ωn and µ(Ωn) < +∞ for all n ≥ 1. Define
An = ]nk=1Ωk, for all n ≥ 1. Then:

µ(An) =
n∑
k=1

µ(Ωk) < +∞

and furthermore, An ↑ Ω. So (Ω,F , µ) is σ-finite. Conversely, suppose
(Ω,F , µ) is σ-finite. Let (An)n≥1 be a sequence in F , such that An ↑ Ω
and µ(An) < +∞ for all n ≥ 1. Define Ω1 = A1, and Ωn = An \ An−1

for all n ≥ 2. Then, (Ωn)n≥1 is a sequence of pairwise disjoint elements of
F . Since Ωn ⊆ An for all n ≥ 1, we have µ(Ωn) ≤ µ(An) < +∞. Given
ω ∈ Ω, since Ω = ∪+∞

n=1An, there exists n ≥ 1 such that ω ∈ An. Let p be
the smallest of such n. Then ω ∈ Ap \ Ap−1 if p ≥ 2, or ω ∈ A1. In any
case, ω ∈ Ωp. Hence, we see that Ω = ∪+∞

n=1Ωn and finally Ω = ]+∞
n=1Ωn.

We conclude that (Ω,F , µ) is σ-finite, if and only if there exists a sequence
(Ωn)n≥1 of pairwise disjoint elements of F , such that Ω = ]+∞

n=1Ωn and
µ(Ωn) < +∞ for all n ≥ 1.

2. Suppose (Ω,F , µ) is finite. Then µ(Ω) < +∞. For all A ∈ F , since A ⊆ Ω,
µ(A) ≤ µ(Ω) < +∞. So µ takes values in R+.
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3. Suppose (Ω,F , µ) is finite. Then µ(Ω) < +∞. Define Ωn = Ω for all n ≥ 1.
Then (Ωn)n≥1 is a sequence in F such that Ωn ↑ Ω and µ(Ωn) < +∞ for
all n ≥ 1. So (Ω,F , µ) is σ-finite.

4. Take Ωn =]−n, n] for all n ≥ 1. Then, Ωn ⊆ Ωn+1 and we have R =
∪+∞
n=1Ωn. So Ωn ↑ R. Moreover, by definition of the Stieltjes measure (20),

dF (Ωn) = F (n) − F (−n) ∈ R+. In particular, dF (Ωn) < +∞ for all
n ≥ 1. We conclude that (R,B(R), dF ) is a σ-finite measure space.

Exercise 3

Exercise 4.

1. Let E ∈ F1 ⊗ F2. The characteristic function 1E is non-negative and
measurable with respect to F1 ⊗F2. From theorem (29), for all ω1 ∈ Ω1,
the partial function x → 1E(ω1, x) is measurable with respect to F2. It
is also non-negative. It follows that the integral

∫
Ω2

1E(ω1, x)dµ2(x) is
well-defined, for all ω1 ∈ Ω1. Hence, we see that ΦE is a well-defined map
on Ω1.

2. Let E = A × B ∈ F1 q F2 be a measurable rectangle of F1 and F2. For
all ω1 ∈ Ω1, we have:

ΦE(ω1) =
∫

Ω2

1A(ω1)1B(x)dµ2(x) = µ2(B)1A(ω1)

Since A ∈ F1, the map 1A is F1-measurable, and consequently ΦE =
µ2(B)1A is F1-measurable. Hence, we see that E ∈ D. We have proved
that F1 qF2 ⊆ D.

3. Suppose µ2 is a finite measure. Let A,B ∈ D with A ⊆ B. For all ω1 ∈ Ω1,
from 1B = 1A + 1B\A, we obtain:∫

Ω2

1B(ω1, x)dµ2(x) =
∫

Ω2

1A(ω1, x)dµ2(x) +
∫

Ω2

1B\A(ω1, x)dµ2(x)

i.e. ΦB(ω1) = ΦA(ω1) + ΦB\A(ω1). µ2 being a finite measure, all ΦE ’s
take values in R+. Hence, it is legitimate to write:

ΦB\A = ΦB − ΦA

Since A,B ∈ D, both ΦA and ΦB are F1-measurable. We conclude that
ΦB\A is F1-measurable, and B \A ∈ D. We have proved that if A,B ∈ D
with A ⊆ B, then B \A ∈ D.

4. Let (En)n≥1 be a sequence in F1 ⊗ F2 with En ↑ E. In particular, En ⊆
En+1 for all n ≥ 1, and therefore 1En ≤ 1En+1. Moreover, E = ∪+∞

n=1En.
Let ω ∈ Ω1 ×Ω2. If ω ∈ E, there exists N ≥ 1 such that ω ∈ EN . For all
n ≥ N , we have 1En(ω) = 1 = 1E(ω). If ω 6∈ E, then 1En(ω) = 0 = 1E(ω),
for all n ≥ 1. In any case, 1En(ω) → 1E(ω), and consequently 1En ↑ 1E .
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Given ω1 ∈ Ω1, we also have 1En(ω1, .) ↑ 1E(ω1, .). From the monotone
convergence theorem (19), we obtain:∫

Ω2

1En(ω1, x)dµ2(x) ↑
∫

Ω2

1E(ω1, x)dµ2(x)

i.e. ΦEn(ω1) ↑ ΦE(ω1). We conclude that ΦEn ↑ ΦE .

5. Suppose that µ2 is a finite measure. From 2., F1 q F2 ⊆ D, and in
particular Ω1 × Ω2 ∈ D. From 3., whenever A,B ∈ D are such that
A ⊆ B, we have B \A ∈ D. Let (En)n≥1 be a sequence of elements of D,
such that En ↑ E. For all n ≥ 1, ΦEn is an F1-measurable map. Moreover
from 4., ΦEn ↑ ΦE . In particular, ΦE = supn≥1 ΦEn and we conclude that
ΦE is measurable with respect to F1. So E ∈ D. We have proved that D
is a Dynkin system on Ω1 × Ω2.

6. Suppose µ2 is a finite measure. From 5., D is a Dynkin system on Ω1×Ω2.
From 2., we have F1qF2 ⊆ D. The set of measurable rectangles F1 qF2

being closed under finite intersection, from the Dynkin system theorem (1),
we see that D also contains the σ-algebra generated by F1 qF2, i.e.

F1 ⊗ F2
4= σ(F1 q F2) ⊆ D

We conclude that for all E ∈ F1⊗F2, E is an element of D, or equivalently,
the map ΦE : (Ω1,F1)→ (R̄,B(R̄)) is measurable.

7. For all n ≥ 1, µn2 (Ω2) = µ2(Ωn2 ) < +∞. So µn2 is a finite measure. It
follows from 6. that for all E ∈ F1 ⊗F2, the map ΦnE defined by:

ΦnE(ω1)
4
=
∫

Ω2

1E(ω1, x)dµn2 (x)

is measurable with respect to F1. From definition (45), we have:

ΦnE(ω1) =
∫

Ω2

1Ωn2
(x)1E(ω1, x)dµ2(x)

Since Ωn2 ↑ Ω2, we have 1Ωn2
↑ 1Ω2 = 1 and consequently, 1Ωn2

(.)1E(ω1, .) ↑
1E(ω1, .). From the monotone convergence theorem (19), we obtain:∫

Ω2

1Ωn2
(x)1E(ω1, x)dµ2(x) ↑

∫
Ω2

1E(ω1, x)dµ2(x)

i.e. ΦnE(ω1) ↑ ΦE(ω1), for all ω1 ∈ Ω1. So ΦnE ↑ ΦE .

8. From 7., each ΦnE is F1-measurable and ΦE = supn≥1 ΦnE . So ΦE is F1-
measurable, for all E ∈ F1 ⊗F2.

9. Let s =
∑n

i=1 αi1Ei be a simple function on (Ω1 × Ω2,F1 ⊗ F2). From
theorem (29), the map x → s(ω1, x) is F2-measurable, for all ω1 ∈ Ω1.
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It is also non-negative. It follows that the integral
∫

Ω2
s(ω1, x)dµ2(x) is

well-defined, for all ω1 ∈ Ω1. Moreover:∫
Ω2

s(ω1, x)dµ2(x) =
n∑
i=1

αi

∫
Ω2

1Ei(ω1, x)dµ2(x)

Since Ei ∈ F1⊗F2, from 8., each ω →
∫

Ω2
1Ei(ω, x)dµ2(x) is F1-measurable.

We conclude that ω →
∫

Ω2
s(ω, x)dµ2(x) is also F1-measurable.

10. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] be a non-negative and measur-
able map. From theorem (18), there exists a sequence (sn)n≥1 of simple
functions on (Ω1 × Ω2,F1 ⊗ F2) such that sn ↑ f . In particular for all
ω ∈ Ω1, sn(ω, .) ↑ f(ω, .). From the monotone convergence theorem (19),
we obtain: ∫

Ω2

sn(ω, x)dµ2(x) ↑
∫

Ω2

f(ω, x)dµ2(x)

However, from 9., each ω →
∫

Ω2
sn(ω, x)dµ2(x) is F1-measurable. We

conclude that ω →
∫

Ω2
f(ω, x)dµ2(x) is also measurable with respect to

F1 and B(R̄). This proves theorem (30).

Exercise 4

Exercise 5. Let f : (Πi∈IΩi,⊗i∈IFi) → [0,+∞] be a non-negative and mea-
surable map. Define E1 = Πi∈I\{i0}Ωi and E2 = Ωi0 . Let E1 = ⊗i∈I\{i0}Fi
and E2 = Fi0 . Using exercise (10) of Tutorial 6, having identified E1 × E2 and
Πi∈IΩi, we have:

⊗i∈IFi =
(
⊗i∈I\{i0}Fi

)
⊗Fi0

i.e. ⊗i∈IFi = E1 ⊗ E2. It follows that the map f , viewed as a map defined on
E1 ×E2, is measurable with respect to E1 ⊗ E2. µ0 being a σ-finite measure on
(E2, E2), from theorem (30), we see that:

ω →
∫

Ωi0

f(ω, x)dµ0(x)

is measurable with respect to E1 and B(R̄). In other words, it is measurable
with respect to ⊗i∈I\{i0}Fi and B(R̄). Exercise 5

Exercise 6.

1. Let E ∈ F1 ⊗ F2. The characteristic function 1E is measurable with
respect to F1 ⊗ F2 and non-negative. µ2 being a σ-finite measure on
(Ω2,F2), applying theorem (30), we see that:

x→
∫

Ω2

1E(x, y)dµ2(y)

is measurable with respect to F1 and B(R̄). It is also non-negative. Hence,
the integral:

µ1 ⊗ µ2(E)
4
=
∫

Ω1

(∫
Ω2

1E(x, y)dµ2(y)
)
dµ1(x)
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is well-defined, for all E ∈ F1 ⊗ F2. So µ1 ⊗ µ2 is a well-defined map on
F1 ⊗F2, with values in [0,+∞].

2. Suppose E = ∅. Then 1E = 0 and µ1 ⊗ µ2(E) = 0. Let (En)n≥1 be
a sequence of pairwise disjoint elements of F1 ⊗ F2. Let E = ]+∞

n=1En.
Then, 1E =

∑+∞
n=1 1En . From the monotone convergence theorem (19),

for all x ∈ Ω1, we have:∫
Ω2

1E(x, y)dµ2(y) =
+∞∑
n=1

∫
Ω2

1En(x, y)dµ2(y)

Applying the monotone convergence theorem once more:

µ1 ⊗ µ2(E) =
+∞∑
n=1

∫
Ω1

(∫
Ω2

1En(x, y)dµ2(y)
)
dµ1(x)

i.e.

µ1 ⊗ µ2(E) =
+∞∑
n=1

µ1 ⊗ µ2(En)

We have proved that µ1 ⊗ µ2 is a measure on F1 ⊗F2.

3. Let E = A × B ∈ F1 q F2 be a measurable rectangle of F1 and F2. For
all x ∈ Ω1, we have:∫

Ω2

1E(x, y)dµ2(y) =
∫

Ω2

1A(x)1B(y)dµ2(y) = µ2(B)1A(x)

It follows that:

µ1 ⊗ µ2(E) =
∫

Ω1

µ2(B)1A(x)dµ1(x) = µ1(A)µ2(B)

Exercise 6

Exercise 7.

1. By assumption, if E = A × B ∈ F1 q F2 is a measurable rectangle of F1

and F2, then µ1⊗µ2(E) = µ1(A)µ2(B) = µ(E), i.e. µ1⊗µ2 and µ coincide
on F1 q F2. Let E ∈ F1 q F2. Then E ∩ (Ωn1 × Ωn2 ) is still a measurable
rectangle, i.e. an element of F1 q F2. Hence µ1 ⊗ µ2(E ∩ (Ωn1 × Ωn2 )) =
µ(E ∩ (Ωn1 × Ωn2 )). It follows that E ∈ Dn. So F1 q F2 ⊆ Dn.

2. Ω1 × Ω2 ∈ F1 q F2 ⊆ Dn. Let E,F ∈ Dn be such that E ⊆ F . Then
F = E ] (F \ E), and consequently:

µ(F ∩ (Ωn1 × Ωn2 )) = µ(E ∩ (Ωn1 × Ωn2 )) + µ((F \ E) ∩ (Ωn
1 × Ωn2 )) (2)

with a similar expression for µ1 ⊗ µ2. Since E and F are elements of Dn,
we also have:

µ(F ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(F ∩ (Ωn
1 × Ωn2 ))
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and:
µ(E ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(E ∩ (Ωn1 × Ωn2 ))

All the terms involved being finite, it is legitimate to re-arrange and sim-
plify equation (2) and its counterpart for µ1 ⊗ µ2, to obtain:

µ((F \ E) ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2((F \ E) ∩ (Ωn1 × Ωn2 ))

Hence, we see that F \E ∈ Dn. Let (Ep)p≥1 be a sequence of elements of
Dn, such that Ep ↑ E. For all p ≥ 1, we have:

µ(Ep ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(Ep ∩ (Ωn1 × Ωn2 ))

From theorem (7), taking the limit as p→ +∞, we obtain:

µ(E ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(E ∩ (Ωn1 × Ωn2 ))

It follows that E ∈ Dn. We have proved that Dn is a Dynkin system on
Ω1 × Ω2.

3. From 1., F1 q F2 ⊆ Dn. From 2., Dn is in fact a Dynkin system on
Ω1 × Ω2. The set of measurable rectangles F1 q F2 being closed under
finite intersection, from the Dynkin system theorem (1), we conclude that
Dn actually contains the σ-algebra generated by F1 q F2, i.e. F1 ⊗F2 =
σ(F1 q F2) ⊆ Dn. Hence, for all E ∈ F1 ⊗ F2, E is an element of Dn, or
equivalently:

µ(E ∩ (Ωn1 × Ωn2 )) = µ1 ⊗ µ2(E ∩ (Ωn1 × Ωn2 ))

Since E ∩ (Ωn1 × Ωn2 ) ↑ E, using theorem (7) once more, taking the limit
as n → +∞, we obtain µ(E) = µ1 ⊗ µ2(E). This being true for all
E ∈ F1 ⊗F2, we have proved that µ = µ1 ⊗ µ2.

4. For all n ≥ 1, let En = Ωn1 × Ωn2 . Then En ↑ Ω1 × Ω2, and furthermore,
µ1 ⊗ µ2(En) = µ1(Ωn1 )µ2(Ωn2 ) < +∞. We conclude that (Ω1 × Ω2,F1 ⊗
F2, µ1 ⊗ µ2) is a σ-finite measure space.

5. For all E ∈ F1 ⊗ F2, define:

ν(E)
4
=
∫

Ω2

(∫
Ω1

1E(x, y)dµ1(x)
)
dµ2(y)

Note that this is the same definition as that of µ1 ⊗ µ2(E), except that
the order of integration has been changed. Similarly to exercise (6), using
the monotone convergence theorem (19) twice on infinite series, we see
that ν is a measure on F1 ⊗ F2. Moreover, for all E = A × B ∈ F1 q F2

measurable rectangle of F1 and F2, we have:

ν(E) =
∫

Ω2

µ1(A)1B(y)dµ2(y) = µ1(A)µ2(B)

So ν is another measure on F1 ⊗ F2, coinciding with µ1 ⊗ µ2 on the set
of measurable rectangles F1 q F2. From 3., we see that ν = µ1 ⊗ µ2. We
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have proved that for all E ∈ F1 ⊗F2:

µ1 ⊗ µ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dµ1(x)
)
dµ2(y)

Hence, as far as defining µ1 ⊗ µ2 is concerned, the order of integration is
irrelevant.

Exercise 7

Exercise 8.

1. (E1, E1, ν1) and (E2, E2, ν2) being two σ-finite measure spaces, ν1 ⊗ ν2

is well-defined as a measure on (E1 × E2, E1 ⊗ E2) (exercise (6)). From
exercise (7), such measure is itself σ-finite. Having identified E1×E2 with
Ω1 × . . .× Ωn, using exercise (10) of Tutorial 6, we have:

F1 ⊗ . . .⊗Fn = Fi0 ⊗ (⊗i6=i0Fi) = E1 ⊗ E2
So ν1 ⊗ ν2 is a σ-finite measure on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn). Let
A = A1 × . . .×An be a measurable rectangle of F1, . . . , Fn. Identifying
A with Ai0 × (Πi6=i0Ai), we have:

ν1 ⊗ ν2(A) = ν1(Ai0 )ν2(Πi6=i0Ai)

Since by assumption, ν2(Πi6=i0Ai) = Πi6=i0µi(Ai), we conclude:

ν1 ⊗ ν2(A) = µ1(A1) . . . µn(An)

2. If n = 2, there exists a measure µ on F1⊗F2, such that for all measurable
rectangle A1 ×A2 ∈ F1 q F2, we have:

µ(A1 ×A2) = µ1(A1)µ2(A2)

In fact, from exercise (7), such measure is unique, σ-finite and equal to
µ1 ⊗ µ2. Suppose the following induction hypothesis is true for n ≥ 2:
Given n σ-finite measure spaces (Ω1,F1, µ1), . . . , (Ωn,Fn, µn), there ex-
ists a measure µ on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn), such that for all
measurable rectangles A1 × . . .×An, we have:

µ(A1 × . . .×An) = µ1(A1) . . . µn(An)

Moreover, such measure µ is σ-finite.
Let us prove this induction hypothesis for n+ 1. Hence, suppose we have
n+ 1 σ-finite measure spaces. Take E1 = Ω1 and E2 = Ω2 × . . .× Ωn+1.
Let E1 = F1 and E2 = F2 ⊗ . . .⊗Fn+1. Put ν1 = µ1. From our induction
hypothesis, there exists a σ-finite measure ν2 on (E2, E2), such that for all
measurable rectangles A2 × . . .×An+1, we have:

ν2(A2 × . . .×An+1) = µ2(A2) . . . µn+1(An+1)

All the conditions of question 1. are met: we conclude that ν1 ⊗ ν2 is a
σ-finite measure on (Ω1 × . . . × Ωn+1,F1 ⊗ . . . ⊗ Fn+1) such that for all
measurable rectangles A = A1 × . . .×An+1:

ν1 ⊗ ν2(A) = µ1(A1) . . . µn+1(An+1)
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This proves our induction hypothesis for n+ 1.
We have proved that for all n ≥ 2, and σ-finite measure spaces (Ω1,F1, µ1),
. . . , (Ωn,Fn, µn), there exists a σ-finite measure µ on (Ω1× . . .×Ωn,F1⊗
. . . ⊗ Fn), such that for all measurable rectangles A = A1 × . . . × An,
µ(A) = µ1(A1) . . . µn(An). Note that this is a little bit stronger (µ is
σ-finite !), than what was required by the actual wording of the question.
However the σ-finite property was required to carry out the induction
argument, based on exercises (6) and (7).

3. Let µ and ν be two measures on (Ω1× . . .×Ωn,F1⊗ . . .⊗Fn), such that
for all measurable rectangles A = A1 × . . .×An:

µ(A) = ν(A) = µ1(A1) . . . µn(An)

For all i = 1, . . . , n, let (Ωp
i )p≥1 be a sequence of elements of Fi, such that

Ωpi ↑ Ωi, and µi(Ω
p
i ) < +∞ for all p ≥ 1. Define Ep = Ωp1× . . .×Ωpn. Then

Ep ↑ Ω1 × . . .× Ωn, and for all p ≥ 1, µ(Ep) = ν(Ep) < +∞ . Define:

Dp
4
= {A ∈ F1 ⊗ . . .⊗Fn : µ(A ∩ Ep) = ν(A ∩ Ep)}

Then Dp is a Dynkin system on Ω1 × . . .×Ωn. Moreover, by assumption,
F1q . . .qFn ⊆ Dp. The set of measurable rectangles F1q . . .qFn being
closed under finite intersection, from the Dynkin system theorem (1), we
see that Dp actually contains the σ-algebra generated by F1 q . . . q Fn,
i.e.

F1 ⊗ . . .⊗Fn
4
= σ(F1 q . . .q Fn) ⊆ Dp

It follows that for all A ∈ F1 ⊗ . . .⊗Fn, we have:

µ(A ∩ Ep) = ν(A ∩ Ep)
Using theorem (7), taking the limit as p→ +∞, we obtain µ(A) = ν(A).
This being true for all A ∈ F1 ⊗ . . . ⊗ Fn, we conclude that µ = ν. This
proves the uniqueness of the measure µ on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗
Fn), denoted µ1 ⊗ . . . ⊗ µn, such that µ(A) = µ1(A1) . . . µn(An), for all
measurable rectangles A = A1 × . . .×An.

4. The fact that µ = µ1 ⊗ . . .⊗ µn is σ-finite was actually proved as part of
the induction argument of 2. However, it is very easy to justify that point
directly: if (Ωpi )p≥1 is a sequence of elements of Fi such that Ωpi ↑ Ωi
and µ(Ωpi ) < +∞ for all p ≥ 1, defining Ep = Ωp1 × . . . × Ωpn, we have
Ep ↑ Ω1 × . . .× Ωn, and furthermore:

µ(Ep) = µ1(Ωp
1) . . . µn(Ωpn) < +∞

So µ1 ⊗ . . .⊗ µn is indeed a σ-finite measure.

5. µi0 ⊗ (⊗i6=i0µi) is a measure on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) which
coincides with µ1 ⊗ . . . ⊗ µn on the measurable rectangles. From the
uniqueness property proved in 3., the two measures are therefore equal,
i.e. µi0 ⊗ (⊗i6=i0µi) = µ1 ⊗ . . .⊗ µn.
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Exercise 8

Exercise 9. Showing that definition (63) is legitimate amounts to proving
the existence and uniqueness of a measure µ on (Rn,B(Rn)), such that for all
ai ≤ bi, i ∈ Nn, we have:

µ([a1, b1]× . . .× [an, bn]) =
n∏
i=1

(bi − ai) (3)

For i ∈ Nn, let (Ωi,Fi, µi) be the measure space (R,B(R), dx), where dx is the
Lebesgue measure on (R,B(R)). Each (Ωi,Fi, µi) being σ-finite, from defini-
tion (62), there exists a measure µ = µ1⊗ . . .⊗µn on (Rn,B(R)⊗ . . .⊗B(R)),
such that for all measurable rectangles A = A1 × . . .×An, we have:

µ(A) = dx(A1) . . . dx(An) (4)

From exercise (18) of Tutorial 6, we have B(Rn) = B(R)⊗ . . .⊗B(R). So µ is in
fact a measure on (Rn,B(Rn)). Moreover, taking Ai of the form Ai = [ai, bi] for
ai ≤ bi, we see from (4) that equation (3) is satisfied. Hence, we have proved the
existence of µ. Suppose that ν is another measure on (Rn,B(Rn)) satisfying the
property of definition (63). Let C = {[a1, b1]× . . .× [an, bn] : ai ≤ bi, ∀i ∈ Nn}.
Then C is closed under finite intersection. Given p ≥ 1, let Ep = [−p, p]n, and
define:

Dp
4
= {A ∈ B(Rn) : µ(A ∩ Ep) = ν(A ∩Ep)}

Then Dp is a Dynkin system on Rn, and we have C ⊆ Dp. From the Dynkin
system theorem (1), we see that Dp actually contains the σ-algebra generated
by C, i.e. σ(C) ⊆ Dp. However, we claim that σ(C) = B(Rn). Indeed, from:

C ⊆ B(R)q . . .q B(R) ⊆ B(R)⊗ . . .⊗ B(R) = B(Rn)

we obtain σ(C) ⊆ B(Rn). Furthermore, if we define:

E 4= {[a, b] : a ≤ b, a, b ∈ R}
then every open set in R can be expressed as a countable union of elements of E
(see the proof of theorem (6)), and it is easy to check that B(R) = σ(E). From
theorem (26), we have:

B(Rn) = B(R)⊗ . . .⊗ B(R) = σ(E q . . .q E)

Since any element of E q . . . q E is of the form A1 × . . . × An where each
Ai is either equal to R = ∪+∞

p=1[−p, p], or is an element of E , any element of
E q . . . q E can in fact be expressed as a countable union of elements of C.
Hence, E q . . . q E ⊆ σ(C) and consequently, B(Rn) = σ(E q . . . q E) ⊆ σ(C).
We conclude that B(Rn) = σ(C)1, and finally B(Rn) ⊆ Dp. It follows that for
all A ∈ B(Rn), we have µ(A ∩Ep) = ν(A ∩Ep). Using theorem (7), taking the
limit as p → +∞, we obtain µ(A) = ν(A). This being true for all A ∈ B(Rn),
we see that µ = ν. We have proved the uniqueness of µ. Exercise 9

Exercise 10.
1 We proved something very similar in exercise (7) of Tutorial 6.
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1. For all p ≥ 1, define Ep = [−p, p]n. Then, Ep ↑ Rn, and furthermore
dxn(Ep) = (2p)n < +∞, for all p ≥ 1. So dxn is a σ-finite measure on
(Rn,B(Rn)).

2. Let ai ≤ bi for i ∈ Nn+p, and A = [a1, b1] × . . . × [an+p, bn+p]. Then,
dxn⊗dxp(A) = dxn+p(A) = Πn+p

i=1 (bi−ai). From the uniqueness property
of definition (63), we conclude that:

dxn+p = dxn ⊗ dxp

Exercise 10

Exercise 11.

1. From exercise (6) and exercise (7), for all E ∈ F1 ⊗F2, we have:

µ1 ⊗ µ2(E) =
∫

Ω1

(∫
Ω2

1E(x, y)dµ2(y)
)
dµ1(x)

together with:

µ1 ⊗ µ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dµ1(x)
)
dµ2(y)

Hence:∫
Ω1×Ω2

1Edµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

1Edµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

1Edµ1

)
dµ2

By linearity, it follows that if s =
∑n

i=1 αi1Ei is a simple function on
(Ω1 × Ω2,F1 ⊗F2), we have:∫

Ω1×Ω2

sdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

sdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

sdµ1

)
dµ2

2. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0,+∞] be a non-negative and measurable
map. From theorem (18), there exists a sequence (sn)n≥1 of simple func-
tions on (Ω1×Ω2,F1⊗F2), such that sn ↑ f . In particular, for all x ∈ Ω1,
sn(x, .) ↑ f(x, .). From the monotone convergence theorem (19), for all
x ∈ Ω1, we have: ∫

Ω2

sn(x, y)dµ2(y) ↑
∫

Ω2

f(x, y)dµ2(y)

and applying theorem (19) once more, we obtain:∫
Ω1

(∫
Ω2

sn(x, y)dµ2(y)
)
dµ1(x) ↑

∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

and similarly:∫
Ω2

(∫
Ω1

sn(x, y)dµ1(x)
)
dµ2(y) ↑

∫
Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y)
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However, from sn ↑ f and the monotone convergence theorem:∫
Ω1×Ω2

sndµ1 ⊗ µ2 ↑
∫

Ω1×Ω2

fdµ1 ⊗ µ2

Using 1., for all n ≥ 1, we have:∫
Ω1×Ω2

sndµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

sndµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

sndµ1

)
dµ2

Hence, taking the limit as n→ +∞, we obtain:∫
Ω1×Ω2

fdµ1 ⊗ µ2 =
∫

Ω1

(∫
Ω2

fdµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

fdµ1

)
dµ2

This proves theorem (31).

Exercise 11

Exercise 12.

1. Let f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) → [0,+∞] be a non-negative and
measurable map. Since µσ(1) is a σ-finite measure, from exercise (5), the
map:

J1 : ω →
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

is well-defined on Πi6=σ(1)Ωi, and measurable w.r. to ⊗i6=σ(1)Fi.

2. If Jk : (Πi6∈{σ(1),...,σ(k)}Ωi,⊗i6∈{σ(1),...,σ(k)}Fi) → [0,+∞] is non-negative
and measurable, for 1 ≤ k ≤ n− 2, from exercise (5):

Jk+1 : ω →
∫

Ωσ(k+1)

Jk(ω, x)dµσ(k+1)(x)

is also well-defined on Πi6∈{σ(1),...,σ(k+1)}Ωi, and measurable with respect
to ⊗i6∈{σ(1),...,σ(k+1)}Fi.

3. The integral:

I =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

can be rigorously defined as:

I
4
=
∫

Ωσ(n)

Jn−1dµσ(n)

where Jn−1 is given by 1. and 2.

Exercise 12

Exercise 13.
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1. Since fp ↑ f , for all ω ∈ Πi6=σ(1)Ωi, we have fp(ω, .) ↑ f(ω, .). From the
monotone convergence theorem (19), we obtain:∫

Ωσ(1)

fp(ω, x)dµσ(1)(x) ↑
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

i.e. Jp1 ↑ J1.

2. Suppose Jpk ↑ Jk, 1 ≤ k ≤ n − 2. For all ω ∈ Πi6∈{σ(1),...,σ(k+1)}Ωi, we
have Jpk (ω, .) ↑ Jk(ω, .). From the monotone convergence theorem (19),
we have: ∫

Ωσ(k+1)

Jpk (ω, x)dµσ(k+1)(x) ↑
∫

Ωσ(k+1)

Jk(ω, x)dµσ(k+1)(x)

i.e. Jpk+1 ↑ Jk+1.

3. From 2., Jpn−1 ↑ Jn−1. Again from theorem (19):∫
Ωσ(n)

Jpn−1dµσ(n) ↑
∫

Ωσ(n)

Jn−1dµσ(n)

In other words:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fpdµσ(1) . . . dµσ(n) ↑
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

4. For all E ∈ F1 ⊗ . . .⊗Fn, we have:

µ(E)
4
=
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

So µ(∅) = 0. If (Ep)p≥1 is a sequence of pairwise disjoint elements of
F1 ⊗ . . . ⊗ Fn, and E = ]+∞

i=1Ei, defining for p ≥ 1, fp =
∑p

i=1 1Ei , we
have fp ↑ 1E . It follows from 3.:∫

Ωσ(n)

. . .

∫
Ωσ(1)

fpdµσ(1) . . . dµσ(n) ↑ µ(E)

By linearity, we obtain
∑p

i=1 µ(Ei) ↑ µ(E), or equivalently:

µ(E) =
+∞∑
i=1

µ(Ei)

We have proved that µ is indeed a measure on F1 ⊗ . . .⊗Fn.

5. Let E = A1 × . . .×An be a measurable rectangle of (Fi)i∈Nn . Then:

µ(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n) = µ1(A1) . . . µn(An)
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From the uniqueness property of definition (62), it follows that µ coincide
with the product measure µ1⊗ . . .⊗µn. Hence, for all E ∈ F1⊗ . . .⊗Fn,
we have:

µ1 ⊗ . . .⊗ µn(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

6. From 5., for all E ∈ F1 ⊗ . . .⊗Fn, we have:∫
Ω1×...×Ωn

1Edµ1 ⊗ . . .⊗ µn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edµσ(1) . . . dµσ(n)

If s is a simple function on (Ω1× . . .×Ωn,F1⊗ . . .⊗Fn), by linearity, we
obtain: ∫

Ω1×...×Ωn

sdµ1 ⊗ . . .⊗ µn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

sdµσ(1) . . . dµσ(n)

Since any f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) → [0,+∞] non-negative
and measurable, can be approximated from below by simple functions
(theorem (18)), we conclude from the monotone convergence theorem (19)
and question 3., that:∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)

This proves theorem (32).

Exercise 13

Exercise 14.

1. Suppose f ∈ L1. There exists g ∈ L1
R(Ω,F , µ) such that f = g, µ-a.s.

Hence, there exists N ∈ F with µ(N) = 0, such that f(ω) = g(ω) for all
ω ∈ N c. However, g has values in R. So |f(ω)| < +∞ for all ω ∈ N c. It
follows that |f | < +∞ µ-a.s.

2. We assume the existence of A ⊆ Ω, such that A 6∈ F and A ⊆ N , for some
N ∈ F with µ(N) = 0. Since A 6∈ F , 1A is not measurable. However, for
all ω ∈ N c, we have 1A(ω) = 0. So 1A = 0, µ-a.s. Since 0 ∈ L1

R(Ω,F , µ),
we see that 1A ∈ L1.

3. Suppose f ∈ L1. As indicated in 2., we have no guarantee that f be
a measurable map. Hence, the integrals

∫
|f |dµ and

∫
fdµ may not be

meaningful.

4. Let f : (Ω,F) → (R̄,B(R̄)) be a measurable map, such that
∫
|f |dµ <

+∞. In particular, we have µ({|f | = +∞}) = 0 (see exercise (7) of
Tutorial 5). Define g = f1{|f |<+∞}. Then, f(ω) = g(ω) for all ω ∈ {|f | <
+∞}. So f = g µ-a.s. However, g is measurable, with values in R, and
such that: ∫

|g|dµ =
∫
|f |dµ < +∞
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So g ∈ L1
R(Ω,F , µ), and finally f ∈ L1.

5. Suppose f ∈ L1 and f = f1 µ-a.s. for some map f1 : Ω → R̄. There
exists g ∈ L1

R(Ω,F , µ), such that f = g µ-a.s. There exists N ∈ F with
µ(N) = 0, such that f(ω) = g(ω) for all ω ∈ N c. Also, there exists N1 ∈ F
with µ(N1) = 0, such that f(ω) = f1(ω) for all ω ∈ N c

1 . It follows that
f1(ω) = g(ω) for all ω ∈ (N ∪N1)c. Since µ(N ∪N1) ≤ µ(N)+µ(N1) = 0,
we see that f1 = g µ-a.s. We conclude that f1 ∈ L1.

6. Let f ∈ L1. Let g1, g2 ∈ L1
R(Ω,F , µ) with f = g1 µ-a.s. and f = g2 µ-a.s.

There exist N1, N2 ∈ F with µ(N1) = µ(N2) = 0, such that f(ω) = g1(ω)
for all ω ∈ N c

1 , and f(ω) = g2(ω) for all ω ∈ N c
2 . So g1(ω) = g2(ω) for

all ω ∈ (N1 ∪ N2)c, and µ(N1 ∪ N2) = 0. So g1 = g2 µ-a.s. and finally∫
g1dµ =

∫
g2dµ.

7. For all f ∈ L1, we define: ∫
fdµ

4
=
∫
gdµ (5)

where g is any element of L1
R(Ω,F , µ) such that f = g µ-a.s. From 6., if

g1, g2 ∈ L1
R(Ω,F , µ) are such that f = g1 µ-a.s. and f = g2 µ-a.s., then∫

g1dµ =
∫
g2dµ. So

∫
fdµ is well-defined. If f ∈ L1 ∩ L1

R(Ω,F , µ), then∫
fdµ as defined in (5) coincide with

∫
fdµ, in its usual sense.

Exercise 14

Exercise 15.

1. By assumption, fn → f µ-a.s. There exists N ∈ F , µ(N) = 0, such that
fn(ω) → f(ω) for all ω ∈ N c. Also, for all n ≥ 1, |fn| ≤ h µ-a.s. There
exists Mn ∈ F with µ(Mn) = 0 such that |fn(ω)| ≤ h(ω) for all ω ∈ M c

n.
Let N1 = N ∪ (∪n≥1Mn). Then N1 ∈ F , and:

µ(N1) ≤ µ(N) +
+∞∑
n=1

µ(Mn) = 0

So µ(N1) = 0. Moreover, for all ω ∈ N c
1 , we have fn(ω) → f(ω) and for

all n ≥ 1, |fn(ω)| ≤ h(ω).

2. Since f ∈ L1, there exists g ∈ L1
R(Ω,F , µ) such that f = g µ-a.s. There

exists N ∈ F with µ(N) = 0, such that f(ω) = g(ω) for all ω ∈ N c.
Similarly, there exists h1 ∈ L1

R(Ω,F , µ), and a set M ′1 ∈ F with µ(M ′1) =
0, such that h(ω) = h1(ω) for all ω ∈ (M ′1)c. For all n ≥ 1, there exist
gn ∈ L1

R(Ω,F , µ) and Mn ∈ F with µ(Mn) = 0 such that gn(ω) = fn(ω)
for all ω ∈M c

n. Let N2 = N ∪M ′1 ∪ (∪n≥1Mn). Then N2 ∈ F , µ(N2) = 0,
and for all ω ∈ N c

2 , we have g(ω) = f(ω), h1(ω) = h(ω) and gn(ω) = fn(ω)
for all n ≥ 1.
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3. Let N = N1 ∪ N2 where N1 and N2 are given by 1. and 2. respectively.
Then N ∈ F , µ(N) = 0, and for all ω ∈ N c, we have gn(ω) → g(ω) and
|gn(ω)| ≤ h1(ω) for all n ≥ 1.

4. (gn1Nc)n≥1 is a sequence of C-valued (in fact R-valued) measurable maps,
such that gn1Nc(ω) → g1Nc(ω) for all ω ∈ Ω. Moreover, h11Nc is an
element of L1

R(Ω,F , µ) such that for all n ≥ 1, |gn1Nc | ≤ h11Nc . Hence,
we can apply the dominated convergence theorem (23).

5. When f, fn ∈ L1, we have |fn − f | ∈ L1, and
∫
|fn − f |dµ is defined

as
∫
kdµ where k is any element of L1

R(Ω,F , µ) such that |fn − f | = k
µ-a.s. In fact, |gn − g| ∈ L1

R(Ω,F , µ) and |fn − f | = |gn − g| µ-a.s. So∫
|fn − f |dµ =

∫
|gn − g|dµ.

6. From 4., and the dominated convergence theorem (23), we have lim
∫

1Nc |gn−
gn|dµ = 0 and consequently,

∫
|gn − g|dµ → 0. It follows from 5. that∫

|fn − f |dµ→ 0.

Exercise 15

Exercise 16.

1. We define A = {ω1 ∈ Ω1 :
∫

Ω2
|f(ω1, x)|dµ2(x) < +∞}. From the-

orem (30), the map φ : ω1 →
∫

Ω2
|f(ω1, x)|dµ2(x) is measurable with

respect to F1 and B(R̄). It follows that:

A = φ−1([−∞,+∞[) ∈ F1

From theorem (31), we have:∫
Ω1

(∫
Ω2

|f(ω1, x)|dµ2(x)
)
dµ1(ω1) =

∫
Ω1×Ω2

|f |dµ1 ⊗ µ2 < +∞

Using exercise (7) (11.) of Tutorial 5, we have µ1(Ac) = 0.

2. For all ω1 ∈ A, we have
∫

Ω2
|f(ω1, x)|dµ2(x) < +∞. From theorem (29),

the map f(ω1, .) is measurable with respect to F2, for all ω1 ∈ F1. f being
R-valued, we conclude that for all ω1 ∈ A, f(ω1, .) ∈ L1

R(Ω2,F2, µ2).

3. For all ω1 ∈ A, the map f(ω1, .) lies in L1
R(Ω2,F2, µ2). Hence, Ī(ω1) =∫

Ω2
f(ω1, x)dµ2(x) is well-defined for all ω1 ∈ A.

4. If ω ∈ A, then J(ω) = I(ω) = Ī(ω) =
∫

Ω2
f(ω, x)dµ2(x). Hence:

J(ω) = 1A(ω)
∫

Ω2

f+(ω, x)dµ2(x) − 1A(ω)
∫

Ω2

f−(ω, x)dµ2(x)

This equation still holds if ω 6∈ A.

5.
∫

Ω2
f+(ω, x)dµ2(x) < +∞ and

∫
Ω2
f−(ω, x)dµ2(x) < +∞, for all ω ∈ A.

If ω 6∈ A, then J(ω) = 0. It follows that J(ω) ∈ R, for all ω ∈ Ω1.
From theorem (30), ω →

∫
Ω2
f+(ω, x)dµ2(x) and ω →

∫
Ω2
f−(ω, x)dµ2(x)
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are F1-measurable maps. Furthermore, A ∈ F1. So 1A is also an F1-
measurable map. From 4. we conclude that J is itself F1-measurable.

6. For all ω ∈ Ω1, using 4., we have:

|J(ω)| ≤
∫

Ω2

f+dµ2 +
∫

Ω2

f−dµ2=
∫

Ω2

|f(ω, x)|dµ2(x)

and therefore:∫
Ω1

|J(ω)|dµ1(ω) ≤
∫

Ω1

(∫
Ω2

|f(ω, x)|dµ2(x)
)
dµ1(ω) < +∞

Since J is R-valued and F1-measurable, J ∈ L1
R(Ω1,F1, µ). Furthermore,

for all ω ∈ A, we have J(ω) = I(ω). Since µ1(Ac) = 0, we conclude that
J = I µ1-a.s.

7. The map x→
∫

Ω2
f(x, y)dµ2(y) is defined for all x ∈ A, but may not be de-

fined for all x ∈ Ω1. Hence, strictly speaking, the integral
∫

Ω1
(
∫

Ω2
fdµ2)dµ1

may not be meaningful. However, whichever way we choose to extend
x →

∫
Ω2
f(x, y)dµ2(y) (the map I), we have J = I, µ1 − a.s. where

J ∈ L1
R(Ω1,F1, µ1). Following the previous exercise, we see that I ∈ L1,

and the integral
∫

Ω1
I(x)dµ1(x) can in fact be defined as:∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

4
=
∫

Ω1

J(x)dµ1(x)

8. Since µ1(Ac) = 0, we have:∫
Ω1

(
1A
∫

Ω2

f+dµ2

)
dµ1 =

∫
Ω1

(∫
Ω2

f+dµ2

)
dµ1

Using theorem (31), we conclude that:∫
Ω1

(
1A
∫

Ω2

f+dµ2

)
dµ1 =

∫
Ω1×Ω2

f+dµ1 ⊗ µ2

9. Using 4., 8. and its counterpart for f−, we obtain:∫
Ω1

J(x)dµ1(x) =
∫

Ω1×Ω2

f+dµ1 ⊗ µ2 −
∫

Ω1×Ω2

f−dµ1 ⊗ µ2

In other words:∫
Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

fdµ1 ⊗ µ2

10. Suppose that f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2), i.e. we no longer

assume that f is R-valued. Then f = u + iv where both u and v
are elements of L1

R(Ω1 × Ω2,F1 ⊗ F2, µ1 ⊗ µ2). Applying 6. the map
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ω1 →
∫

Ω2
u(ω1, x)dµ2(x) and the map ω1 →

∫
Ω2
v(ω1, x)dµ2(x) are µ1-

almost surely equal to elements of L1
R(Ω1,F1, µ1) (say Ju and Jv respec-

tively). Furthermore, from (1) we have:∫
Ω1

(∫
Ω2

u(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

udµ1 ⊗ µ2

and: ∫
Ω1

(∫
Ω2

v(x, y)dµ2(y)
)
dµ1(x) =

∫
Ω1×Ω2

vdµ1 ⊗ µ2

It follows that ω1 →
∫

Ω2
f(ω1, x)dµ2(x) is µ1-almost surely equal to Ju +

iJv ∈ L1
C(Ω1,F1, µ1), and:∫

Ω1

(∫
Ω2

f(x, y)dµ2(y)
)
dµ1(x)

4
=
∫

Ω1

(Ju + iJv)dµ1

=
∫

Ω1

Judµ1 + i

∫
Ω1

Jvdµ1

=
∫

Ω1

(∫
Ω2

u(x, y)dµ2(y)
)
dµ1(x)

+ i

∫
Ω1

(∫
Ω2

v(x, y)dµ2(y)
)
dµ1(x)

=
∫

Ω1×Ω2

udµ1 ⊗ µ2

+ i

∫
Ω1×Ω2

vdµ1 ⊗ µ2

=
∫

Ω1×Ω2

fdµ1 ⊗ µ2

This proves equation (1).

11. From 5. of exercise (1), the map θ is measurable. It follows that f ◦ θ :
(Ω2 × Ω1,F2 ⊗ F1) → [0,+∞] is indeed non-negative and measurable.
Furthermore, from theorem (31), we have:∫

Ω2×Ω1

f ◦ θdµ2 ⊗ µ1 =
∫

Ω2

(∫
Ω1

f ◦ θ(ω2, ω1)dµ1(ω1)
)
dµ2(ω2)

=
∫

Ω2

(∫
Ω1

f(ω1, ω2)dµ1(ω1)
)
dµ2(ω2)

Theorem (31) → =
∫

Ω1×Ω2

fdµ1 ⊗ µ2

12. From 5. of exercise (1), the map θ is measurable. So f ◦ θ is itself measur-
able. Applying 11. to |f | we obtain:∫

Ω2×Ω1

|f ◦ θ|dµ2 ⊗ µ1 =
∫

Ω2×Ω1

|f | ◦ θdµ2 ⊗ µ1
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=
∫

Ω1×Ω2

|f |dµ1 ⊗ µ2 < +∞

So f ◦ θ ∈ L1
C(Ω2 × Ω1,F2 ⊗ F1, µ2 ⊗ µ1). If u = Re(f) and v = Im(f),

using 11. once more, we obtain:∫
Ω2×Ω1

f ◦ θdµ2 ⊗ µ1 =
∫

Ω2×Ω1

u+ ◦ θdµ2 ⊗ µ1

−
∫

Ω2×Ω1

u− ◦ θdµ2 ⊗ µ1

+ i

∫
Ω2×Ω1

v+ ◦ θdµ2 ⊗ µ1

− i

∫
Ω2×Ω1

v− ◦ θdµ2 ⊗ µ1

=
∫

Ω1×Ω2

u+dµ1 ⊗ µ2 −
∫

Ω1×Ω2

u−dµ1 ⊗ µ2

+ i

∫
Ω1×Ω2

v+dµ1 ⊗ µ2 − i
∫

Ω1×Ω2

v−dµ1 ⊗ µ2

=
∫

Ω1×Ω2

fdµ1 ⊗ µ2

13. Let f ∈ L1
C(Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2). From 12. g = f ◦ θ is an element

of L1
C(Ω2 × Ω1,F2 ⊗ F1, µ2 ⊗ µ1). Applying 10. to g, it follows that the

map ω2 →
∫

Ω1
g(ω2, x)dµ1(x) is µ2-almost surely equal to an element of

L1
C(Ω2,F2, µ2). In other words, the map ω2 →

∫
Ω1
f(x, ω2)dµ1(x) is µ2-

almost surely equal to an element of L1
C(Ω2,F2, µ2). Furthermore, we

have:∫
Ω2

(∫
Ω1

f(x, y)dµ1(x)
)
dµ2(y) =

∫
Ω2

(∫
Ω1

g(y, x)dµ1(x)
)
dµ2(y)

From 10. → =
∫

Ω2×Ω1

gdµ2 ⊗ µ1

From 12. → =
∫

Ω1×Ω2

fdµ1 ⊗ µ2

This completes the proof of theorem (33).

Exercise 16

Exercise 17.

1. Let f ∈ L1
C(Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn, µ1 ⊗ . . . ⊗ µn). Define E1 =

Πi6=σ(1)Ωi, E2 = Ωσ(1), E1 = ⊗i6=σ(1)Fi and E2 = Fσ(1). Let ν1 =
⊗i6=σ(1)µi and ν2 = µσ(1). Then:

f ∈ L1
C(E1 × E2, E1 ⊗ E2, ν1 ⊗ ν2)
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From theorem (33), the map ω →
∫
E2
f(ω, x)dν2(x) (defined ν1-almost

surely and arbitrarily extended on E1), is ν1-almost surely equal to an
element of L1

C(E1, E1, ν1). In other words:

J1(ω)
4
=
∫

Ωσ(1)

f(ω, x)dµσ(1)(x)

is almost surely2 equal to an element of L1
C(Πi6=σ(1)Ωi)3.

2. Jk+1 is a.s. equal to an element of L1
C(Πi6∈{σ(1),...,σ(k+1)}Ωi).

3. From 1., J1(ω) =
∫

Ωσ(1)
f(ω, x)dµσ(1)(x) is almost surely equal to an ele-

ment of L1
C(Πi6=σ(1)Ωi), say J̄1. Similarly, from 2., J2(ω) =

∫
Ωσ(2)

J̄1(ω, x)dµσ(2)(x)

is almost surely equal to an element of L1
C(Πi6∈{σ(1),σ(2)}Ωi), say J̄2. By

induction, we obtain a map Jn−1 defined on Ωσ(n), and µσ(n)-almost surely
equal to an element of L1

C(Ωσ(n)), say J̄n−1. We define:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n)
4
=
∫

Ωσ(n)

J̄n−1dµσ(n)

This multiple integral is a well-defined complex number. It is easy to check
by induction that which ever choice is made of J̄1, . . . , J̄n−2, the map J̄n−1

is unique up to µσ(n)-almost sure equality. Hence, this multiple integral
is uniquely defined.

4. From theorem (33), we have:∫
Πi6=σ(1)Ωi

J̄1(ω)d⊗i6=σ(1) µi =
∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn

Following an induction argument, we obtain:∫
Ωσ(n)

J̄n−1dµσ(n) =
∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn

i.e. ∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdµσ(1) . . . dµσ(n) =
∫

Ω1×...×Ωn

fdµ1 ⊗ . . .⊗ µn

This solution is not as detailed as it could have been. . .

Exercise 17

2A case of sloppy terminology: we are trying to make the whole thing readable.
3A case of sloppy notations.
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