Tutorial 5: Lebesgue Integration 1

5. Lebesgue Integration

In the following, (2, F, 1) is a measure space.

Definition 39 Let A C Q. We call characteristic function of A, the map
14:Q — R, defined by:

A1 if weA
VwEQ,lA(w)—{O zj"f wd A

EXERCISE 1. Given A C Q, show that 14 : (Q,F) — (R, B(R)) is measurable
if and only if A € F.

Definition 40 Let (2, F) be a measurable space. We say that a map s : Q —
R™" is a simple function on (Q,F), if and only if s is of the form :

n
s = E o;la,
i=1

wheren > 1, a; € RT and A; € F, for alli=1,...,n.

EXERCISE 2. Show that s : (Q,F) — (RT,B(R")) is measurable, whenever s
is a simple function on (€2, F).

EXERCISE 3. Let s be a simple function on (2, F) with representation s =

S @;la,. Consider the map ¢ : @ — {0,1}" defined by ¢(w) = (14, (w),...,1a, (w)).
For each y € s(€), pick one w, € Q such that y = s(w,). Consider the map

¥ 5(Q) — {0,1}" defined by ¥(y) = ¢(wy).

1. Show that ¢ is injective, and that s(2) is a finite subset of R*.
2. Show that s = Za&‘s(ﬂ) alis—ay

3. Show that any simple function s can be represented as:

n
s = E ol g,
i=1

wheren > 1,0, ERT, A, € Fand Q= A, W...WA,.

Definition 41 Let (2, F) be a measurable space, and s be a simple function
on (Q,F). We call partition of the simple function s, any representation of

the form:
n
s = Z ol g,
i=1

wheren>1, 0, ERT, A, € Fand Q=AW ... W A,.
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EXERCISE 4. Let s be a simple function on (£, F) with two partitions:
n m
=D aila, =) Bils,
i=1 j=1

1. Show that s = Z” a;la,nB; is a partition of s.

2. Recall the convention 0 X (+00) = 0 and a x (+o0) = 00 if a > 0. For
all ai,...,a, in [0,+00],p > 1 and = € [0,+40o0], prove the distributive
property: z(ai + ...+ ap) = xas + ...+ zap.

3. Show that 331", a;u(A;) = 300, Bju(By).
4. Explain why the following definition is legitimate.
Definition 42 Let (2, F, u) be a measure space, and s be a simple function

on (0, F). We define the integral of s with respect to u, as the sum, denoted
I#(s), defined by:

n
I*(s) 2 Z%‘M(Ai) € [0, +o0]
i=1
where s = > a;la, is any partition of s.
EXERCISE 5. Let s,¢ be two simple functions on (2, F) with partitions s =
Z:‘L:l aila, and t = Z;nzl ﬁlej. Let o € RT.
1. Show that s + ¢ is a simple function on (€2, F) with partition:
n m
s+t= Z Z(ai + Bi)1a,nB;
i=1 j=1
2. Show that I*(s+t) = I"(s) + I*(t).
Show that as is a simple function on (€2, F).
Show that I*(as) = alt(s).

Why is the notation I**(as) meaningless if & = +o00 or a < 0.

A

Show that if s < ¢ then I*(s) < I*(t).

EXERCISE 6. Let f : (Q,F) — [0, +00] be a non-negative and measurable map.
For all n > 1, we define:

n2"—1
k

A
=) o (g <r<tity Trlingyy (1)
k=0

1. Show that s, is a simple function on (2, F), for all n > 1.
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2.
3.
4.

Show that equation (1) is a partition s, for all n > 1.
Show that s, < s,41 < f, for all n > 1.

Show that s, T f as n — +oo'.

Theorem 18 Let f: (Q,F) — [0, +0] be a non-negative and measurable map,
where (Q, F) is a measurable space. There exists a sequence (Sy)n>1 of simple
functions on (Q,F) such that s, T f.

Definition 43 Let f : (Q,F) — [0,+00] be a non-negative and measurable
map, where (Q, F, u) is a measure space. We define the Lebesgue integral of
[ with respect to p, denoted [ fdu, as:

/fdu = sup{I*(s) : s simple function on (Q,F), s < [}

where, given any simple function s on (Q,F), I*(s) denotes its integral with
respect to p.

EXERCISE 7. Let f : (Q,F) — [0, +00] be a non-negative and measurable map.

1.
2.
3.

10.

Show that [ fdu € [0, +o0].
Show that [ fdu = I*(f), whenever f is a simple function.

Show that [ gdu < [ fdu, whenever g : (2, F) — [0, 4+0oc] is non-negative
and measurable map with g < f.

. Show that [(cf)du = c [ fdp, if 0 < ¢ < 400. Explain why both integrals

are well defined. Is the equality still true for ¢ = 0.

For n > 1, put A, = {f > 1/n}, and s, = (1/n)14,. Show that s, is a
simple function on (£, F) with s,, < f. Show that A4,, T {f > 0}.

Show that [ fdu=0 = u({f >0})=0.

Show that if s is a simple function on (2, F) with s < f, then u({f >
0}) = 0 implies I*(s) = 0.

Show that [ fdu=0 < p({f>0})=0.

Show that [(+00)fdu = (+00) [ fdu. Explain why both integrals are
well defined.

Show that (+00)1l{j—1) < f and:

/ (+00)L{— 1oy dp = (+o0)({f = +o0})

1

i.e. for all w € Q, the sequence (sn(w))p>1 is non-decreasing and converges to f(w) €

[0, +-o00].
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11.
12.

Show that [ fdu < 400 = p({f =+o0}) = 0.

Suppose that ©(2) = 400 and take f = 1. Show that the converse of the
previous implication is not true.

EXERCISE 8. Let s be a simple function on (£, ). Let A € F.

1.
2.

3.

4.

Show that s14 is a simple function on (€2, F).
Show that for any partition s = > | a;14, of s, we have:
I'"(s1a) = Y aip(A; N A)
i=1

Let v : F — [0,400] be defined by v(A) = I#(sla). Show that v is a

measure on JF.

Suppose A, € F, A, T A. Show that I*(sla,) T I*(sla).

EXERCISE 9. Let (fn)n>1 be a sequence of non-negative and measurable maps
fn 1 (Q,F) — [0,400], such that f, T f.

1.
2.
3.

9.
10.

Recall what the notation f,, T f means.

Explain why f : (Q,F) — (R, B(R)) is measurable.
Let o = sup,,>; [ fudp. Show that [ fudu T o
Show that a < [ fdpu.

Let s be any simple function on (£2, F) such that s < f. Let ¢ €]0, 1[. For
n > 1, define A, = {cs < f,,}. Show that A, € F and A, 1 Q.

Show that cI*(sla,) < [ fndp, for all n > 1.
Show that cI*(s) < a.

Show that I*(s) < .

Show that [ fdu < a.

Conclude that [ f,du 1 [ fdp.

Theorem 19 (Monotone Convergence) Let (0, F,u) be a measure space.
Let (fn)n>1 be a sequence of non-negative and measurable maps fy : (0, F) —
[0, +00] such that f, 1 f. Then [ fodp 1 [ fdp.

EXERCISE 10. Let f,g: (2, F) — [0, 4+0c0] be two non-negative and measurable
maps. Let a,b € [0, +00].
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1. Show that if (f,)n>1 and (gn)n>1 are two sequences of non-negative and
measurable maps such that f, 1 f and g, T g, then f,, + g, T f +g.

2. Show that [(f + g)dp = [ fdu+ [ gdp.

3. Show that [(af +bg)du=a [ fdu+b [ gdu.
EXERCISE 11. Let (f,,)n>1 be a sequence of non-negative and measurable maps
fn: (0, F) — [0, +0c]. Define f =31 f,.

1. Explain why f: (Q,F) — [0,4o00] is well defined, non-negative and mea-
surable.

2. Show that [ fdu =7 [ fadp.

Definition 44 Let (Q,F,u) be a measure space and let P(w) be a property
depending on w € Q. We say that the property P(w) holds p-almost surely,
and we write P(w) p-a.s., if and only if:

AN eF, p(N)=0, Yw € N P(w) holds
EXERCISE 12. Let P(w) be a property depending on w € , such that {w € Q:
P(w) holds} is an element of the o-algebra F.
1. Show that P(w) , p-a.s. <& p({w € Q:P(w) holds}®) = 0.

2. Explain why in general, the right-hand side of this equivalence cannot be
used to defined p-almost sure properties.

EXERCISE 13. Let (92, F, 1) be a measure space and (A, ),>1 be a sequence of
clements of F. Show that (U2 4,) < 3275 u(A,).

n=1

EXERCISE 14. Let (fn)n>1 be a sequence of maps f, : Q — [0, +00].
1. Translate formally the statement f,, T f p-a.s.
2. Translate formally f, — f p-a.s. and Vn, (f,, < fni1 p-a.s.)

3. Show that the statements 1. and 2. are equivalent.

EXERCISE 15. Suppose that f,¢: (2, F) — [0, 400] are non-negative and mea-
surable with f = ¢ p-a.s.. Let N € F, u(N) = 0 such that f = g on N°€.
Explain why [ fdu = [(f1n)dp+ [(f1ne)dp, all integrals being well defined.
Show that [ fdu = [ gdu.

EXERCISE 16. Suppose (fn)n>1 is a sequence of non-negative and measurable
maps and f is a non-negative and measurable map, such that f,, T f p-a.s.. Let
N € F, p(N) =0, such that f,, T f on N¢. Define f, = fplnye and f = flne.

1. Explain why f and the f,’s are non-negative and measurable.
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2. Show that f, T f.
3. Show that [ fhdu 1 [ fdu.

EXERCISE 17. Let (f,)n>1 be a sequence of non-negative and measurable maps
fn (2, F) = [0,+00]. For n > 1, we define g,, = infy>,, fx.

1. Explain why the g,’s are non-negative and measurable.

2. Show that g, T liminf f,.

3. Show that [ g,du < [ fndp, for all n > 1.

4. Show that if (u)n>1 and (vy,),>1 are two sequences in R with u, < v,
for all n > 1, then liminf u,, < liminf v,,.

5. Show that [(liminf f,)dpu < liminf [ f,du, and recall why all integrals
are well defined.

Theorem 20 (Fatou Lemma) Let (Q, F, u) be a measure space, and let ( fr)n>1
be a sequence of mon-negative and measurable maps f, : (Q,F) — [0,+00].
Then:

/(hm inf f,)du < hm mf/fndu

n—-+oo

EXERCISE 18. Let f : (Q,F) — [0, +00] be a non-negative and measurable map.
Let A e F.

L. Recall what is meant by the induced measure space (A, Fj4, p4). Why
is it important to have A € F. Show that the restriction of f to A,
fia : (A, Fja) — [0, +o0] is measurable.

2. We define the map pu : F — [0, +oo] by p(E) = p(ANE), forall E € F.
Show that (2, F, u) is a measure space.

3. Consider the equalities:

Joriaan= [ rant = [ @)

For each of the above integrals, what is the underlying measure space
on which the integral is considered. What is the map being integrated.
Explain why each integral is well defined.

4. Show that in order to prove (2), it is sufficient to consider the case when
f is a simple function on (Q, F).

5. Show that in order to prove (2), it is sufficient to consider the case when
f is of the form f = 1p, for some B € F.

6. Show that (2) is indeed true.
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Definition 45 Let f : (Q,F) — [0,+00] be a non-negative and measurable
map, where (0, F, 1) is a measure space. let A € F. We call partial Lebesgue
integral of f with respect to p over A, the integral denoted fA fdp, defined as:

/A fau® [(rradn= [ gat = [adua

where p? is the measure on (0, F), p* = p(AnNe), fia is the restriction of f
to A and p 4 is the restriction of p to F|4, the trace of F on A.

EXERCISE 19. Let f,g: (Q,F) — [0, +00] be two non-negative and measurable
maps. Let v : F — [0, +oo] be defined by v(A) = [, fdpu, for all A € F.

1. Show that v is a measure on F.

/gdv: /gfdu

Theorem 21 Let f : (Q,F) — [0,400] be a non-negative and measurable
map, where (Q,F,u) is a measure space. Let v : F — [0,400] be defined
by v( fA fdu, for all A € F. Then, v is a measure on F, and for all
g: (Q .7-') [0, +00] non-negative and measurable, we have:

/gdv: /gfdu

Definition 46 The L'-spaces on a measure space (0, F, ), are:

2. Show that:

Lir(QF, mé{f:(ﬂ,}') — (R, B(R)) measurable, / |fldp < —l—oo}

L&(Q, F, ué{f:(ﬂ,}') — (C, B(C)) measurable, / |fldp < —l—oo}

EXERCISE 20. Let f: (2, F) — (C,B(C)) be a measurable map.
1. Explain why the integral [|f|du makes sense.
2. Show that f: (Q,F) — (R,B(R)) is measurable, if f(2) C R.

Show that Lk (9, F, ) C L&(Q, F, ).

- W

5. Show that L& (9, F, p

(€,
R
Show that Li (Q, F,u) = {f € L&(Q, F,pn) , () CR}
L is closed under R-linear combinations.
cl

)
)=
)i
)i

6. Show that L& (€, F, 1) is closed under C-linear combinations.
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Definition 47 Let u: Q — R be a real-valued function defined on a set ). We
call positive part and negative part of u the maps ut and u™ respectively,
defined as ut = max(u,0) and v~ = max(—u,0).

EXERCISE 21. Let f € L&(Q, F, u). Let u = Re(f) and v = I'm(f).

1.
2.
3.

Show that u =ut —uw",v=0v" —v™, f=ut —u™ +i(vt —v7).
Show that |u| = u™ +u™, [v| = vT + v~
Show that u™,u=,v", v, |f],u,v,|ul, |v] all lie in L (2, F, u).

Explain why the integrals [wdu, [u=du, [vTdu, ['v™du are all well de-
fined.

We define the integral of f with respect to u, denoted [ fdu, as [ fdu =
Jutdp — [u=dp+i(fvTdp— [vTdu). Explain why [ fdu is a well
defined complex number.

In the case when f(Q) C CN[0,+o0c] = R", explain why this new def-

inition of the integral of f with respect to p is consistent with the one
already known (43) for non-negative and measurable maps.

Show that [ fdp = [wudp+i [ vdp and explain why all integrals involved
are well defined.

Definition 48 Let f = u+iv € L5(Q, F, ) where (Q,F, ) is a measure
space. We define the Lebesgue integral of f with respect to p, denoted [ fdy,

as:

/fdpé/ufrdu—/udu+i</v+du—/vdu)

EXERCISE 22. Let f =u+ive LE(Q,F,p) and A € F.

1.

Show that fla € LE(Q,F, u).

2. Show that f € L&(Q,F, u?).

3. Show that fi4 € L& (A, Fla, pa)
4.
5

Show that [(f1a)du = [ fdu® = [ fladpa.

. Show that 4. is: [, utdp — [yu~dp+i ([, vidu— [, v=dp).

Definition 49 Let f € LE(Q,F, ) , where (Q, F, ) is a measure space. let
A € F. We call partial Lebesgue integral of f with respect to u over A, the
integral denoted fA fdu, defined as:

/A fau® [(rradn= [ gat = [Gadua

where p? is the measure on (0, F), u* = p(AnNe), fia is the restriction of f
to A and p4 is the restriction of p to F|4, the trace of F on A.
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EXERCISE 23. Let f,g € LR (0, F,p) andlet h=f +g
1. Show that:

/h+du+/f_du+/g_du:/h_du+/f+du+/g+du

2. Show that [ hdu = [ fdu+ [ gdpu.

3. Show that [(—f)du=— [ fdu

4. Show that if &« € R then [(af)dp = a [ fdp.
5. Show that if f < g then [ fdu < [ gdu

6. Show the following theorem.

Theorem 22 For all f,g € L§(Q, F, 1) and o € C, we have:

/(af+g)du:a/fdu+/gdu

EXERCISE 24. Let f, g be two maps, and (f,)n>1 be a sequence of measurable
maps fn : (Q,F) — (C,B(C)), such that:

(1) Yw e Q, nEIJIrlOO fo(w) = f(w) in C

(i) V=1, |ful<g
(iil) g€ Lk(F.p)

Let (un)n>1 be an arbitrary sequence in R..
1. Show that f € L§(Q, F,p) and f, € LE(Q, F, ) for all n > 1.

2. For n > 1, define h,, = 2g — |f,, — f|. Explain why Fatou lemma (20) can
be applied to the sequence (hy,)n>1.

3. Show that liminf(—u,) = — limsup u,.

4. Show that if € R, then liminf(o + u,) = o + lim inf w,,.

5. Show that uw,, — 0 as n — +o0 if and only if limsup |u,| = 0.
6. Show that [(2¢)du < [(2g)dp —limsup [ |f, — fldu

7. Show that limsup [ |f, — f|dp = 0.

8. Conclude that [ |f, — fldu — 0 as n — +oo.
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Theorem 23 (Dominated Convergence) Let (f,)n>1 be a sequence of mea-
surable maps f, : (Q,F) — (C,B(C)) such that f, — f in C? . Suppose that
there exists some g € Ly (Q,F,p) such that |fn| < g for all n > 1. Then
fofn € LE(QUF,p) for allm > 1, and:

Jim [ 14 fldn =0
EXERCISE 25. Let f € L&(Q, F, p) and put z = [ fdu. Let a € C, be such
that |o| =1 and az = |z|. Put u = Re(af).
1. Show that u € Lk (2, F, u)
2. Show that u < |f|
3. Show that | [ fdu| = [(af)dp.
4. Show that [(af)dp = [ udp.

5. Prove the following theorem.

Theorem 24 Let f € L&(Q, F, ) where (2, F, ) is a measure space. We

have:
‘/fdu‘ < [ 171ds

2i.e. for all w € Q, the sequence (fn(w)),>1 converges to f(w) € C
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Solutions to Exercises

Exercise 1. Let A C Q. Suppose 14 is measurable. Then in particular A =
(14)~*({1}) € F. Conversely, suppose A € F. Let B € B(R). If {0,1} C B,
then (14)71(B) =Q. If {0,1} N B = {1}, then (14)"}(B) = A. If {0,1} N B =
{0}, then (14)71(B) = A°. Finally, if {0,1} N B = 0, then (14)"'(B) = 0. In
any case, (14)"1(B) € F. We have proved that 14 : (Q,F) — (R,B(R)) is
measurable, if and only if A € F.

Exercise 1

Exercise 2. Let s = > I"  a;14, be a simple function on (2, F). For all
i=1,...,n, A; € F. From exercise (1), each characteristic function 14, is
measurable. Using exercise (19) of the previous tutorial, each ;1 4, is measur-
able. In fact, since a; € R, a;14, is a measurable map with values in R, (it
is also a non-negative and measurable map). It follows from exercise (19), that
s = > a;la, is measurable with respect to F and B(R). However, s has
values in RT, and B(R") C B(R). So s is also measurable with respect to F
and B(R™).

Exercise 2

Exercise 3.

1. Suppose z,y € s() and P(x) = ¥(y). Then ¢(wy) = ¢(wy). So for all
i=1,...,n, 1a,(wy) = 14, (wy). Hence, s(w,) = s(wy). However, w, and
wy have been chosen to be such that = s(w,) and y = s(wy). It follows
that x =y, and ¢ : s(2) — {0,1}" is an injective map. Since {0,1}" is a
finite set, we conclude that s(£2) is itself a finite set. By definition (40), it
is also a subset of R*.

2. Let t =3~ c5(q) @l{s=a}- From 1., 5() is a finite set, and ¢ is therefore
well defined as a finite sum of weighted characteristic functions. Let w € .
Let o/ = s(w). Then, 1j,—0y(w) =1, and 1,—ny(w) = 0 for all o € 5()
such that o # o'. Tt follows that ¢(w) = o'. Hence, t(w) = s(w). This
being true for all w € 0, we have proved that ¢t = s.

3. From 2., s can be represented as s = Zaes(ﬂ)a1{3=ﬂ(}' 5(2) being a
finite set, there exists a bijection v : {1,...,n} — s(2), for some n > 1
3. Foralli=1,...,n, we define o; = (i) and A; = {s = v(i)}. Then,
it is clear that s = E?:l a;14,. Moreover, each o; is an element of R™.
From exercise (2), s is a measurable map, and A; € F foralli=1,...,n.
Let w € Q and @ = s(w). ~ being onto, there exists ¢ € {1,...,n}
such that v(i) = a. Sow € {s = v(i)} = A; and we have proved that
QC AjU...UA,. Each A; being a subset of 2, we have Q = A;U...UA,.
Finally, suppose there exists w € A; N A;. Then, s(w) = (i) and s(w) =
~v(4). v being injective, i = j. It follows that the A;’s are pairwise disjoint,
and therefore Q = A1 W...WA,. We have proved that any simple function

31f Q = () and s(Q) = 0, write s = 1y and there is nothing else to prove.
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s on (€, F), can be expressed as s = Y ., a;14,, where n > 1, a; € R,
A;e Fand Q=A10...WA,.

Exercise 3

Exercise 4.

L. Let t = >, ;aila,np,. For each (i,7), a; € R* and A, N B; € F. If
(i,7) # (¢,7"), then i # @' or j # j'. In the first case, the A;’s being
pairwise disjoint, A; N A, = (. In the second case, B; N B;; = (). In any
case, (A; N B;j)N (A NBj) = 0. It follows that the A; N B;’s are pairwise
disjoint, and Q@ = t; jA; N B;. Let w € Q. There exists a unique (¢, j) such
that w € A; N Bj. We have t(w) = a; = s(w). It follows that s = ¢t. We
have proved that t = Zi’ ;j&ila,na, is a partition of the simple function
s.

2. Let P be the property (a1 + ...+ ap) = xai + ...+ za,. Suppose z = 0.
Then z(a; +...+ap) = 0. Moreover, for alli = 1,...,p, we have za; = 0.
It follows that property P is true. Suppose x = +o0 and a; = 0 for all
i=1,...,p. Then a; +...+ap, =0, and z(ay + ...+ a,) = 0. Moreover,
za; = 0 for all ¢ and property P is true. Suppose z = 400 and a; > 0 for
some i = 1,...,p. Then xa; = 400, and therefore za; + ...+ za, = +oo.
However, a1 + ... + a, is also strictly positive with £ = 4o00. Hence,
xz(a1 + ...+ ap) = 400 and property P is true. Suppose 0 < z < +o0.
If a; < 400 for all 4, then property P is true by virtue of the distributive
law in R. Suppose a; = +oo for some ¢. Then xa; = +oo and za; +

..+ za, = +o00. However, a1 + ...+ a, is also equal to +o0, with > 0.
So z(a1 + ...+ a,) = +oo and property P is true. We have proved that
property P is true in all cases.

3. Since 2 = B1W...W By, we have A; = WL (A4;NBy), foralli=1,...,n
i being a measure on (2, F), it follows that p(A;) = Z;’;l w(A4; N By).

Hence:
n

DA =) Z (4;N By)
i=1 j=1

=1

From the distributive property proved in 2., we obtain:

Zazu ZZ%NA N B;) (3)

Similarly, we have:

ZﬂjM(Bj) = ZZ (A N By) (4)

Suppose A; N Bj = (. Then in particular, 1(A; N Bj) =0 and a;pu(A; N
Bj) = Bju(A; N Bj). If A; N Bj # 0, there exists w € A; N B; in which
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case, a; = s(w) = F;. In any case, a;pu(A4; N Bj) = Bju(A; N Bj), and we
conclude from (3) and (4) that:

ZOQM Zﬂjﬂ

4. Given a simple function s on (2, F), the integral of s with respect to
is defined from (42) as I*(s) = Y." , a;u(4;), where > 7 a;14, is an
arbitrary partition of s. We know from exercise (3) that such partition
exists, but it may not be unique. However, since we proved in 3. that the
sum Y ., a;pu(A;) is invariant across all partitions of s, there is no ambi-
guity as to what I*(s) actually refers to, and definition (42) is therefore
legitimate.

Exercise 4
Exercise 5.

1. From definition (40), s+t = Y1 | o;la, + Z;ﬂ:l Bj1p, is clearly a simple
function on (2, F). Since Q = Wi A4; and Q@ = W2, B;, we have =
Wi,j A; N B;. Furthermore:

||
i M:

Z ailang; (5)

and:

3

Zﬂj]‘AimBj (6)

=1 j=1

It follows that:

S—I—t:ZZ(ai—Fﬂj)lAmBj (7)

i=1 j=1
As a finite sum involving o; + 3; € R" and 4; N B; € F, with Q =
W; jA; N Bj, equation (7) defines a partition of s+t.

2. Since Q =W, ;A; N Bj, equations (5), (6) and (7) are partitions of s, ¢t and
s + t respectively. From definition (42), we obtain:
n m
I(s+t) =Y > (i + B)u(Ai N By) = I"(s) + I"(t)
i=1 j=1

3. as = Y. aa;la,. Since o € RT, each aa; € RT. It follows from
definition (40) that as is a simple function on (2, F).

4. 3" | aa;lya, being a partition of as, From definition (42) and the dis-
tributive property of exercise (4), we have:

Mas) = Z ao;u(A;) =« <Z ozi,u(Ai)> = alt(s)

www.probability.net


http://www.probability.net

Solutions to Exercises 14

5. If @ = 400 or a < 0, the map as may not have values in R™. In particular,
as may not be a simple function. As definition (42) only defines the
integral of simple functions, I*(as) may not be meaningful.

6. Suppose s < t. Equations (5) and (6) being partitions of s and ¢ respec-
tively, from definition (42), we have:
n m
IH(S) = Z Z Oéi/L(Ai N BJ)
i=1 j=1

and:

() = > Bin(Ai N By)
i=1 j=1
If A; N B; =0, then in particular u(A; N B;) = 0, and we have a;u(A4; N
B;) < Biu(A; N Bj). If A; N Bj # 0, then there exists w € A; N Bj, in
which case, a; = s(w) < t(w) = §;. In any case, we have a;u(A; N B;) <
Bjp(A; N Bj). This being true for all (4, j), it follows that I*(s) < I*(t).

Exercise 5

Exercise 6.

1. Since f is measurable, each set {k/2™ < f < (k+1)/2"} belongs to F, for
n>1land k=0,...,n2" —1. {n < f} is also an element of F. Moreover,
k/2" € RT and n € R*. It follows from definition (40) that each s, as
defined by (1), is indeed a simple function on (€2, F).

2. [0, +o0] = (wgi’;—l[k/w, (k +1) /2"[) W [n, +00]. Hence:

n2"—1
Q = F1([0, +00]) = < 4 {zﬁn <f< %}) Win < f}

k=0

It follows that equation (1) is indeed a partition of s,,.

3.Let n > 1 and w € Q. Suppose f(w) € [0,n]. Then, there exists
k € {0,...,n2™ — 1}, such that f(w) € [k/2",(k + 1)/2"[. In particu-
lar, sp(w) = k/2" < f(w). If f(w) € [n,+o0], then s,(w) =n < f(w).
In any case, sp(w) < f(w). This being true for all w € Q, s, < f. Sup-
pose f(w) € [k/2", (k +1)/2"[. Then, f(w) € [(2k)/2""L, (2k + 1)/2"H|
or alternatively, we have f(w) € [(2k + 1)/2"1 (2k + 2)/2"*[. In the
first case, s,(w) = k/2" = (2k)/2"T! = s,,1(w). In the second case,
sp(w) =k/2" < (2k+1)/2"" = 5,41 (w). In both cases, we have s, (w) <
Sp+41(w). Suppose that f(w) € [n,+o00]. Then, either f(w) € [n,n + 1]
or f(w) € [n+ 1,+00]. In the first case, s,11(w) = k/2"F! for some
ke {n2"*1 ... (n+1)2""1—1}, and in particular, s, (w) =n < k/2" =
Sn+1(w). In the second case, s, (w) =n < n+1=s,11(w). In both cases,
we have s, (w) < s,41(w). We have proved that s, < s,41 < f.
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4. Let w € Q. If f(w) = +oo, then w € {n < f}, for all n > 1. It follows
that s,(w) =n for all n > 1, and s,(w) — 400 = f(w). If f(w) < +o0,
then f(w) € [0, N[ for some integer N > 1. For all n > N, f(w) € [0,n],
and therefore s,(w) = k/2", for some k € {0,...,n2"™ — 1}, such that
k/2" < f(w) < (k+1)/2". In particular, 0 < f(w) — s,(w) < 1/2". This
being true for all n > N, we see that s,(w) — f(w). We have proved that
for all w € Q, the sequence (sp(w))n>1 converges to f(w). From 3., this
sequence is non-decreasing. Finally, we have s,, T f. The purpose of this
exercise is to prove theorem (18).

Exercise 6

Exercise 7.

1. 0 = 0.1 is a simple function on (€2, F). Since f is non-negative, 0 < f.
From definition (43), it follows that I*(0) < [ fdu. Since I*(0) = 0, we
conclude that [ fdu € [0, +oo].

2. Suppose f is a simple function on (€2, F). Let s be another simple function
on (Q,F), such that s < f. From exercise (5), we have I*(s) < I*(f).
It follows that I*(f) is an upper-bound of all I#(s) for s simple function
on (Q,F) with s < f. The Lebesgue integral [ fdu being the smallest of
such upper-bound, we have [ fdu < I*(f). However, since f < f and f
is a simple function on (Q,F), from definition (43), I*(f) < [ fdu. We
conclude that [ fdu = I*(f).

3. Let g : (2, F) — [0, 4+00] be non-negative and measurable such that g < f.
Let s be a simple function on (€2, F) such that s < g. Then in particular,
s < f, and it follows from definition (43) that I*(s) < [ fdu. Hence,
[ fdp is an upper-bound of all I#(s), for s simple function on (€, F) with
s < g. The Lebesgue integral [ gdu being the smallest of such upper-
bound, we have [ gdu < [ fdpu.

4. Let 0 < ¢ < +oo. Since f is non-negative and measurable, [ fdu is
well-defined by virtue of definition (43). However, c¢f is also non-negative
and measurable’. So [(cf)du is also well-defined. Let s be a simple
function on (2, F) such that s < f. Since ¢ € R", from exercise (5),
¢s is also a simple function on (Q,F). We have ¢s < ¢f. From defini-
tion (43), it follows that I*(cs) < [(cf)dp. However, from exercise (5),
IM(cs) = el*(s). Since ¢ > 0, we have I*(s) < ¢! [(cf)du. Hence,
¢! [(ef)dp is an upper-bound of all I#(s), for s simple function on
(2, F) with s < f. The Lebesgue integral [ fdu being the smallest of
such upper-bound, we have [ fdu < ¢! [(cf)du. Multiplying both sides
by ¢, we obtain that ¢ [ fdu < [(cf)dp. Similarly, since 0 < 1/c¢ < +o0,
we have ¢! [(cf)dp < [ cf)du, ie. [(cf)dp < c[ fdu. We con-
clude that [(cf)du = c [ fdu. If ¢ = 0, whether or not [ fdu = +oo,
we have ¢ [ fdpu = 0. Since 0 is a simple function on (2, F), we have

4See exercise (19) of the previous tutorial. (Beware of external links !)
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J0dp = 1#(0) = 0. It follows that the equality [(cf)du = ¢ [ fdu is still
true in the case when ¢ = 0.

5. f being measurable, A, = {f > 1/n} is an element of the o-algebra
F. Since 1/n € RT, from definition (40) it follows that s, = (1/n)l4,
is a simple function on (2, F). Suppose that w € Q. If w € A,, then
snw) =0 < f(w). fw € A,, then s,(w) = 1/n < f(w). In any case,
sp(w) < f(w). It follows that s, < f. Let n > 1, if w € A,, then
f(w) > 1/n and in particular f(w) > 1/(n+1). So w € A,y1 and we
see that A, C A,41. For allm > 1, A, C {f > 0}. Tt follows that
Ut A4, C {f > 0}. Conversely, if f(w) > 0, then there exists n > 1
such that f(w) > 1/n. So {f > 0} C US> A,. We have proved that
An C Apyq with USS A, = {f >0}, ie A, T{f >0}

6. Suppose that [ fdu = 0. Givenn > 1, let s, and A,, be defined as in 5. s,,
being a simple function on (2, F) with s,, < f, from definition (43) we have
IM(sp) < [ fdu = 0. Hence, we have I*(s,) = 0. From definition (42),
I"(sp) = (1/n)u(Ay). Tt follows that u(A,) = 0 for all n > 1. However,
from 5., we have A,, T {f > 0}. Using theorem (7), pu(A,) T n({f > 0}).
It follows that u({f > 0}) = lim,— 40 pt(A,) = 0. We have proved that

[ Fdu=0= p({f >0}) =0.

7. Let s be a simple function on (2, F) with s < f. Suppose that pu({f >
0}) = 0. Let s = I, a;14, be a partition of the simple function s.
From definition (42), I*(s) = Y i ; a;pu(A;). Let i € {1,...,n}. If a; > 0
and w € A;, Ay,..., A, being pairwise disjoint, a; = s(w) < f(w). In
particular, 0 < f(w). Hence, A; C {f > 0}. p being a measure on F,
we have® p(A;) < p({f > 0}). It follows that p(A4;) = 0. In particular,
aip(4;) = 0. If a; = 0, whether or not p(4;) = 4oo, we still have
a;p(A4;) = 0. We conclude that I*(s) = Y7 a;pu(A;) = 0.

8. [ fdp =0 = p({f > 0}) =0 was proved in 6. Suppose conversely that
pw({f > 0}) = 0. Let s be a simple function on (2, F) such that s < f.
From 7., I*(s) = 0. Tt follows that 0 is an upper-bound of all I*(s) for s
simple function on (2, F) with s < f. The Lebesgue integral [ fdu being
the smallest of such upper-bound, we have [ fdu < 0. However, from 1.,
J fdp > 0. We have proved that [ fdu =0, if and only if u({f > 0} = 0.

9. f being non-negative and measurable, [ fdu is well-defined, by virtue
of definition (43). However, (+00)f is also non-negative and measur-
able®. So [(+00)fdu is also well-defined. Suppose that [ fdu = 0. Then,
(+00) [ fdu = 0. From 8. (or 6.), we have pu({f > 0}) = 0. How-
ever, {f > 0} = {(+o0)f > 0}. So p({(+o0)f > 0}) = 0. Hence,
from 8., [(4+o00)fdu = 0. It follows that [(+o00)fdu = (4+o0) [ fdu.
Suppose [ fdu > 0. Then, (+o00) [ fdu = 4oo. However, from 8.,

5See exercise (9) of Tutorial 2. (Beware of external links !)
6See exercise (19) of the previous tutorial. (Beware of external links !)
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uw({f >0})>0. Let A= {f >0} ={(4+00)f = +oo}. For alln > 1, we
have nly < (+o00)f. Using 3., 2., and the fact that nl 4 is a simple function
on (9, F), we see that nu(A) < [(+00) fdu, for all n > 1. Since pu(A) > 0,
we have [(+00)fdp = +00. We conclude that [(+00)fdp = (+00) [ fdu
is true in all possible cases. Looking back at 4., [(cf)dp = c [ fdu is
therefore true for all ¢ € [0, 4+o00].

10. If w € {f = +oo}, then (+00)lff—yoo}(w) = +00 = f(w). fw & {f =
+o0}, then (+00)1 540} (w) = 0 < f(w). Inany case, (+00)1 15— o0} (w) <
f(w). Using 9. and 2., we have:

/(+0°)1{f:+oo}du = (+OO)/1{f:+00}dM = (+o0)u({f = +o0})

11. Suppose [ fdu < +oo. From 10., (400)1{j=yo} < f. Using 3. and
10., we have (+oo)u({f = +oo}) < [ fdu. It follows that (+oo)u({f =
+oo}) < +oo. Hence, u({f = +o0}) =0.

12. If f =1, then f = 1.1g and [ fdu = I"*(f) = p(2) = +oo. However,
u({f = +o0}) = u(@) = 0. Hence, the converse of 11. is not true in
general.

Exercise 7

Exercise 8.

L. If s = Y  a;1a, is a simple function on (2, F), then we have sl =
Z?:l a;lana, with a; € RT and AN A; € F. From definition (40), sl
is indeed a simple function on (€2, F).

2. If s = Y7, a;la, is a partition of s, from definition (41), we have
O =wl A, It follows that @ = (W7 ,(A N A;)) W A°. Hence, sly =
Z?:l a@;lana, +0.14c is a partition of s14. From definition (42), we have:

I*(sla) = ZazuAﬁA)—l—OuAc ZaluAﬂA)

i=1 i=1

3. v(0) = I*(0) = 0. Let (Bg)r>1 be a sequence of pairwise disjoint elements

of F. Let A=W, >{By. Let s =Y.' | a;14, be a partition of s. For all
i =1,...,n, ANA; = W[ (Br N A;). ubeing a measure on F, we have
(AN ) Zk 1 (B N A;). Hence, using 2.:

~.

+oco n “+o0
I"(sla) ZQ’M (AN Ay) ZZO{MU (BN A4;) ZI”(slBk)
=1 k=11=1 k=1

It follows that v(A) = S/ v(B},). We have proved that v is indeed a
measure on F'.

"See definition (9). (Beware of external links !)
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4. From 3., v is a measure on F. If (A4,)p>1 is a sequence of elements of
F, such that A, 1 A, using theorem (7), we have v(4,,) T v(A4). In other
words, I*(sla,) T I*(sla).

Exercise 8

Exercise 9.

L. fn 1T f means that for all w € Q, f,(w) T f(w). In other words, the
sequence (fp(w))n>1 is non-decreasing and converges to f(w) in R.

2. The fact that f : (Q,F) — (R,B(R)) is measurable, is a consequence
of exercise (15), and the fact that f = sup,,~; fn. One can also apply
theorem (17), and argue that as a limit of measurable maps with values
in the metrizable space R, f is itself a measurable map.

3. Let a = sup,,>4 [ fadp. Since f, < fnqq for all n > 1, from exercise (7),

J fadp < [ fog1du. Being a non-decreasing sequence in R, ([ frdu)n>1
converges to its supremum. So [ f,du 1 a.

4. Since f = sup,,>; fn, for all n > 1, f,, < f. From exercise (7), [ fodp <
J fdp. Tt follows that [ fdu is an upper-bound of all [ f,du for n > 1.
Since « is the smallest of such upper-bound, we have a < [ fdpu.

5. From exercise (5), ¢s is itself a simple function on (2, F). From exer-
cise (2), it is therefore measurable. Hence, given n > 1, both ¢s and f,
are measurable. It follows that®A,, = {cs < f,} € F. Let n > 1. Suppose
w € A,. Then, cs(w) < fr(w) < frnr1(w). Sow € Appq and A, C Ayqq.
Let w € Q. If s(w) = 0, then w € A4, for all n > 1. Suppose s(w) > 0.
Then, we have 0 < s(w) < +o0. Since ¢ €]0, 1], we have cs(w) < s(w).
It follows that cs(w) < f(w) = sup,,>; fn(w). Since f(w) is the smallest
upper-bound of all f,(w) for n > 1, we see that cs(w) cannot be such
upper-bound. There exists n > 1 such that cs(w) < fn(w). In particu-
lar, there exists n > 1, such that w € A,. Hence, Q = U;tiolAn, with
An CApig, ie Ay T Q.

6. For alln > 1, we have csla, < f,. Hence, using exercise (7), [ csla, dp <
[ frdp. But [esla, dup=c [ sla,du. From exercise (8), sla, is a simple
function on (2, F). Using exercise (7) once more, [sla, dp = I*(sla,).
We conclude that cI#(sla,) < [ fodp for all n > 1.

7. From exercise (8), since A, T Q, I*(sla,) 1 I*(s). In particular, cI*(sl4,) 1
cI*(s)?. From 3., J fadp 1 a. From 6., cI#(sla,) < [ fndp for all n > 1.
Taking the limit as n — 400, we conclude that cI*(s) < a.

8. Since cI*(s) < « for all ¢ €]0, 1], we have I*(s) < a.

8See exercise (17) of the previous tutorial. (Beware of external links !)
91f we had ¢ = 400 and ay, = 1/n, then ay, | 0, but cay, | 0 fails to be true.
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9.

10.

From 8., « is an upper-bound of all I#(s) for s simple function on (2, F),
such that s < f. The Lebesgue integral [ fdu being the smallest of such
upper-bound, we have [ fdu < a.

From 4. and 9., we have o = [ fdu. Using 3., we conclude that [ f,du T
J fdp. Inother words, ([ fndi)n>1 is a non-decreasing sequence in [0, +-00],
converging to [ fdu. The purpose of this exercise is to prove theorem (19).

Exercise 9

Exercise 10.

1.

3.

Given two sequences (o, )n>1 and (B,)n>1 in R converging to o € R and
[ € R respectively, the fact that «,, + 8, — « + ( is known and easy
to prove. However, when we allow (av,)n>1 and (8,)n>1 to be sequences
in R, with limits «, 3 in R, problems may occur. For a start, the sum
an + Bn may not be meaningful. Or indeed, even if «,, + 3, does make
sense, it is possible that the sum a4 § doesn’t. In the case when (ay)n>1
and (8n)n>1 are sequences in [0, 4o0c], then all a,, + 6,,’s and a + (§ are
meaningful. If both o« and 3 are finite, then a,, + £, — « + 3 stems from
the known real case'®. If & = 400 or 8 = +00, then o + 3 = 400, and
it is easy to prove that o, + 3, — +o00. Now, if f, T f and g, T g, then
for all w € Q, (fn(w))n>1 and (gn(w))n>1 are non-decreasing sequences in
[0, +00] converging to f(w) and g(w) respectively. So (fn(w) + gn(w))n>1
is non-decreasing, and converges to f(w) + g(w), i.e. frn+gn T f+g.

. Let f,g: (2,F) — [0,+00] be two non-negative and measurable maps.

From theorem (18), there exist two sequences (sp)n>1 and (fp)p>1 of
simple functions on (2, F), such that s, 1 f and t,, T g. Hence, s, +t, 1
f +g. From the monotone convergence theorem (19), we have [(s, +
to)dp T [(f + g)dp. From exercise (5), sy + ¢, is a simple function on
(2, F). It follows from exercise (7) that [(s,+t,)du = I"(s,+t,). Hence,
IM(sp +tn) T [(f + g)dp. Similarly, I*(s,) 1 [ fdp and I*(t,) T [ gdp.
However from exercise (5), we have:
I* (s +tn) = T*(sy) + IT*(tn)

Taking the limit as n — +o00, we obtain:

/(f+9)du=/fdu+/gdu

This is an immediate application of 2. and exercise (7).

Exercise 10

Exercise 11.

1.

Given w € Q, f(w) = Z;:i fr(w) is a series of non-negative terms. It
is therefore well-defined and non-negative. Given n > 1, all fi’s being
measurable, the partial sum g, = Y.;_, fi is itself measurable!!. So

10Both sequences are eventually with values in R.
1 Gee exercise (19) of the previous tutorial. (Beware of external links !)
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f = sup,>, gn is measurable'>. We conclude that f = S0 fi is well-
defined, non-negative and measurable.

2. Given n > 1, let g, = >} _, fr. Since g, T f, from the monotone
convergence theorem (19), we have [ g,dp 1 [ fdp. However, from ex-
ercise (10), [gndu = >_;_, | fedp. Hence, we see that the sequence
(> r—y [ frdp)n>1 converges to [ fdu. In other words, we have [ fdu =

St [ frdp
Exercise 11

Exercise 12.

1. Let M = {w € Q: P(w) holds}¢. By assumption, M € F. Suppose that
P(w) holds p-almost surely. From definition (44), there exists N € F such
that u(N) = 0 and P(w) holds for all w € N°¢. In particular, N¢ C M°.
So M C N, and therefore u(M) < u(N)'3. Since u(N) = 0, we see that
w(M) = 0. Conversely, suppose that u(M) = 0. From the very definition
of M, for all w € M¢, P(w) holds. From definition (44), it follows that
P(w) holds p-almost surely. We have proved that P(w) holds p-almost
surely, if and only if u(M) = 0.

2. In all generality, the set {w € © : P(w) holds} may not be an element
of F. Hence, a notation such as u({w € Q : P(w) holds}®) may not be
meaningful. It follows that such notation cannot be used in any criterion
defining p-almost sure properties.

Exercise 12

Exercise 13. Let (Q,F, 1) be a measure space and (Ay),>1 be a sequence of
elements of F. Define By = A; and for alln > 1, B, 11 = A1\ (B1U...UBy,).
Then (By)n>1 is a sequence of elements of F, and we claim that U,>14, =
Wp>1By. Indeed, it is clear that B, C A, for all n > 1 and consequently
Un>1Bn € Up>14,. Furthermore, if € U,,>1 A4, there exists n > 1 such that
x € Ay. Theset {n € N :z € A,} is therefore a non-empty subset of N and has
a smallest element, say p > 1. Then x € A, and for all k < p we have x ¢ A;. In
particular for all k& < p, x € Bj,. Hence, it is clear that z € B,. We have proved
that Up>14, C Up>1B, and finally U,>14,, = Uy>1B,. It remains to show
that the B,,’s are pairwise disjoint. Suppose n # m and = € B, N B,,. Without
loss of generality, we may assume that n < m. But z € B,, implies « ¢ B,
which is a contradiction. So the B,’s are indeed pairwise disjoint. Having
proved that U,>1 A, = W,>1B,, we conclude from the fact that B, C A,
implies u(B,,) < u(A4,) * and:

+o0o +oo +oo +oo
N(UAn> :M<LﬂBn> ZM(Bn)SZM(An)
n=1 n=1

n=1 n=1

12See exercise (15) of the previous tutorial.
13See exercise (9) of Tutorial 2. (Beware of external links !)
14See exercise (9) of Tutorial 2.

www.probability.net


http://www.probability.net

Solutions to Exercises 21

Exercise 13
Exercise 14.

1. From definition (44), the statement f, 7 f p-a.s. is formally translated
as follows: there exists N € F such that pu(N) = 0, and for all w € N°€,
we have f,(w) T f(w), i.e. the sequence (f,(w))n>1 is non-decreasing and
converges to f(w).

2. From definition (44), f, — f p-a.s. and f,, < fp41 p-a.s. for alln > 1, is
formally translated as follows: there exist N € F and a sequence (N, )n>1
of elements of F, such that ©(N) = 0 and p(N,,) =0 for all n > 1, and for
allw € N¢, fp(w) — f(w), and givenn > 1 and w € N¢, fn(w) < fot1(w).

3. Suppose that f,, T f p-a.s., i.e. that statement 1. is satisfied. Taking N,, =
N for all n > 1, it is clear that statement 2. is also satisfied. Conversely,
suppose that statement 2. is satisfied. Define M = N U (Uﬁi‘an) Then
M € F, and from exercise (13), we have u(M) < u(N) 4+ 2% u(N,).
So u(M) = 0. Moreover, for all w € M€, it is clear that f,(w) T f(w). Tt
follows that f,, T f p-a.s. is true. We have proved that both statements 1.
and 2. are equivalent. This exercise is pretty important. More generally,
if a condition P(w) is true p-a.s and another condition Q(w) is true p-a.s.,
then (P(w) and Q(w)) is also true p-a.s.. In fact, we have just seen that
this factoring of ’u-a.s.” is valid for a countable number of conditions,
which is a straightforward application of the fact that a countable union
of measurable sets (belonging to F) of p-measure 0, is itself measurable
(belonging to F) of p-measure 0.

Exercise 14

Exercise 15. Given B € B(R), {fly € B} isequal to {f € B} NN if 0 ¢ B,
orequal to ({f € BfNN)UN°if 0 € B. In any case, {fly € B} € F and fly
is therefore non-negative and measurable. Similarly f1yc is non-negative and
measurable. So both integrals [ f1ndp and [ f1nedp are well-defined by virtue
of definition (43). Since f = fly+ flne, we have [ fdu = [ flydu+ [ flyedp,
from exercise (10). Similarly, [gdp = [glnydp+ [ glnedp. However, for all
w € N¢ f(w) =g(w). It follows that flyc = glye. Moreover, u(NN) = 0. Since
{f1ny > 0} C N, we see that u({f1x > 0}) = 0. Hence, from exercise (7),
J flndp = 0. Similarly, [ ¢glydp = 0. We conclude that:

/fdu=/f11vcdu=/glzvcduz/gdu

Exercise 15
Exercise 16.

1. Given B € B(R), {flye € B} is either equal to {f € B} N N¢ or
({f € B} N N¢) U N, depending on whether 0 € B or not. In any case
{flne € B} € F,and f = f1ye is therefore non-negative and measurable.
Similarly, for all n. > 1, f, = f,1ye is non-negative and measurable.
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2.

If w € N, then f,(w) = fo(w) T f(w) = f(w). If w € N, then f,(w) =0
for all n > 1, and f(w) = 0. In any case, f,(w) T f(w). We have proved
that f, T f.

From 2., we have f, T f. Hence, from the monotone convergence theo-
rem (19), [ fodu 1 [ fdu. However, from the very definition of f and f,,,
there exists N € F with u(N) = 0, such that for all w € N¢, f(w) = f(w)
and f,(w) = fu(w). In other words, from definition (44), f = f p-a.s.
and f, = f, p-a.s.. From exercise (15), it follows that [ fdu = [ fdu
and [ fodp = [ fadp for all n > 1. We conclude that [ fodp T [ fdp.
Although it may not appear to be the case, this exercise is very important.
The monotone convergence theorem (19) states that whenever f,, T f, we
have [ fpdp 1 [ fdp. In this exercise, we proved that in fact, a weaker
condition of f, T f p-a.s. is sufficient to ensure that [ f,du T [ fdu. We
obtained that result with a standard technique of cleaning up our functions
f and f,’s, to ensure that f,, T f everywhere, as opposed to p-a.s.. It is
important to be familiar with this technique. In my experience, theorems
with almost sure conditions are confusing to students, and are an encour-
agement to poor rigor and sloppy reasoning15. Hence, most theorems in
these tutorials, at least in the early stages, will be stated with everywhere
conditions. So you may need to clean up your assumptions again in the
future. . .

Exercise 16

Exercise 17.

1.

Since gp, = infr>p fr, gn is a countable infimum of measurable maps. It is
therefore measurable'®, and is obviously non-negative.

. Let w € Qandn > 1. For all k > n, we have g, (w) < fi(w). In particular,

gn(w) is a lower-bound of all fi(w) for &k > n+ 1. Since gp41(w) is the
greatest of such lower-bound, we have g,(w) < gn41(w). It follows that

(gn(w))n>1 is a non-decreasing sequence in R, which therefore converges
to its supremum. Hence, g, 1 sup,>; gn = liminf f,'7.

For all n > 1, we have g, < f,. From exercise (7), it follows that [ g,,du <

J fdp.

Let (un)n>1 and (vy)n>1 be two sequences in R with u,, < v, for all
n > 1. For all & > n, we have infy>, ur < up < vi. Hence, infy>, uy is
a lower-bound of all v;’s for k£ > n. It follows that infy>, up < infr>, vg.
Hence, for all n > 1, we have inf;>, u, < sup,,~; infy>, vp = liminfo,.
In other words, lim inf v,, is an upper-bound of all infy>p up forn > 1. It
follows that sup,,~; infy>; v < liminf vy, i.e. liminf u, < liminfw,.

I5Particularly when dealing with questions of measurability in a non-complete measure

space.

16See exercise (15) of the previous tutorial. (Beware of external links !)
17 See definition (36) of the previous tutorial.
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5. liminf f,, is measurable'®, and is obviously non-negative. The integral
J(liminf f,,)dp is therefore well-defined by virtue of definition (43). The
same can be said of [ fndu for all n > 1. From 3., we have [ g,dp <
[ fndp, for all n > 1. It follows from 4. that:

limJirnf/gndu < 1imJirnf/fndu (8)
However, from 2., g, 1 liminf f,,. From the monotone convergence theo-
rem (19), [ gndp 1 [(liminf f,,)dp. In particular, the sequence ([ gndp)n>1
converges to [(liminf f,,)du. It follows from theorem (16), that:

1iminf/gndu = /(liminf fn)dp (9)

n—-+oo n—-+o0o

Comparing (8) with (9), we conclude that:

/(hm inf f,)du < hm 1nf/fnd,u

TL—> (o]
The purpose of this exercise is to prove Fatou lemma (20).
Exercise 17
Exercise 18.

1. Fla ={ANB: B € F} is the trace on A of the o-algebra F'°, which
is a o-algebra on A%°. Since A € F, Fla € F. Tt is therefore meaningful
to define p4 as the restriction of y to Fj4, which is a measure?! on Fla-
It is important that we have A € F, since otherwise, y4 would not be
meaningful. Let B € B(R). fja being the restriction of f to A, we have
(fla)'(B) ={z € A: f(z) € B} = AN f~(B). Since f is measurable,
[ (B) € F. It follows that (fja)~*(B) € Fjla. We have proved that
fia : (A, Fla) — [0, +00] is measurable.

2. Let (En)n>1 be a sequence of pairwise disjoint elements of F. Let F =
X E,. Then, ANE =w!>(ANE,). ubeingameasure on F, p(AN
) Zn S HANE,). It follows that p ( ) =302 pA(Ey). Tt is clear
that () = 0. We have proved that p* is a measure on F. (2, F, u4)

is therefore a measure space?2.

3. Consider the following equality:

[t = [ raut = [ (10)

J(f1a)dp is an integral defined on (€2, F, ). The map being integrated
is f14 which is non-negative and measurable. The integral is therefore

18See exercise (18) of the previous tutorial. (Beware of external links !)
19Gee definition (22). (Beware of external links !)

20Gee exercise (15) of Tutorial 3.

21See definition (9).

228ee definition (19). (Beware of external links !)
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well-defined. [ fdu? is an integral defined on (€2, F, u?). The map being
integrated is f which is non-negative and measurable. The integral is
therefore well-defined. [(fa)dpuja is an integral defined on (A, Fja, jta)-
The map being integrated is the restriction f|4 which is non-negative and
measurable with respect to F| 4. The integral is therefore well-defined. At
this stage, we do not know whether equation (10) is true, but at least, all
its terms are meaningful. . .

4. Suppose that equation (10) is true, whenever f is a simple function on
(Q, F). Suppose that f is an arbitrary non-negative and measurable map.
From theorem (18), f can be approximated by a non-decreasing sequence
of simple functions on (€, F). In other words, there exists a sequence
(Sn)n>1 of simple functions on (£, F), such that s, 1 f. In particular,
spla T fla and (sp)ja T fla. Having assumed that equation (10) is true
for all simple functions on (2, F), for all n > 1, we have:

Jtsutadn = [[suaut = [s2)iadua (11)

From the monotone convergence theorem (19), taking the limit as n —
+oo in (11) , we obtain equation (10). We conclude that in order to
prove equation (10), it is sufficient to consider the case when f is a simple
function on (2, F).

5. Suppose that equation (10) is true whenever f is of the form f = 1p,
for B e F. Let s = Y. ; 14, be a simple function on (2, F). Then,
sla=> 1" a;j(1a,14) and 54 = >/, @i(1a,)ja. Using the linearity of
the integral proved in exercise (10):

/slAdu:Zai/lAilAdp (12)
=1

/sduA = Zai/lAiduA (13)
=1

/5|AdN\A = Zai/(lA,;)\Adu\A (14)
=1

Having assumed that equation (10) is true for all measurable characteristic
functions, for all i = 1,...,n, we have:

/1Ai1AdN:/1Aid,uA :/(1Ai)\AdMA (15)

We conclude from (12), (13), (14) and (15) that equation (10) is true for
all simple functions s on (2, F). Using, 4., equation (10) is therefore true
for any non-negative and measurable map f. Hence, in order to prove

equation (10), it is sufficient to consider the case when f is of the form
f=1pfor Be F.
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6. Suppose f is of the form f = 15 with B € F. Then, we have fl14 = 14n3,
and [ fladp = p(ANB). Moreover, we have [ fdu? = u#(B) = u(ANB).
Finally, since® (1p)ja = 1%p, we have [(1p)jadua = pa(ANB) =
u(ANDB). We conclude that equation (10) is true for f. From 5., it follows
that equation (10) is true for all non-negative and measurable maps. The
purpose of this exercise is to justify definition (45). The techniques used
in this exercise will be used over and over again in the future. Very
often, when an equality between integrals has to be proved, one starts
by verifying such equality for characteristic functions. By linearity, the
equality can be extended to all simple functions. Using theorem (18) and
the monotone convergence theorem (19), it can then be proved to be true
for all non-negative and measurable maps.

Exercise 18

Exercise 19.

1. Let (A,)n>1 be a sequence of pairwise disjoint elements of 7. Let A =
Wi A,. Then, 14 = Z:g 14, , and consequently fls = :g fla,.
Hence, [ fladp =Y, [ fla,du, as proved in exercise (11). Tt follows
that v(A) = SIS v(A,). Tt is clear that v(0) = [ flgdu = 0. We
conclude that v is indeed a measure on F.

2. Suppose g is of the form g = 1z with B € F. Then, we have [ gdv =
v(B) = [5 fdu= [ flpdu = [ fgdu. By linearity, it follows that [ gdv =
[ gfdp is true whenever g is a simple function on (Q,F). If g is an
arbitrary non-negative and measurable map, from theorem (18), there
exists a sequence (sy)n>1 of simple functions in (2, F), such that s,, T g.
From [s,dv = [s,fdp and the monotone convergence theorem (19),
taking the limit as n — 400, we conclude that [ gdv = [ gfdp.

Exercise 19

Exercise 20.

1. |f| is non-negative and measurable. The integral [ |f|du is therefore well-
defined.

2. if f is real-valued, and measurable with respect to B(C), then it is also
measurable with respect to B(R)), since B(R) C B(C). We have not proved
this inclusion before. Here is one way of doing it: the usual metric on R
is the metric induced by the usual metric on C. From theorem (12), 7 =
(7c)|Rr., i-e. the usual topology on R is induced from the usual topology on
C. From the trace theorem (10), it follows that B(R) = B(C)g, i.e. that
the Borel o-algebra on R is the trace on R, of the Borel o-algebra on C.
In particular, since R € B(C) (it is closed in C), we have B(R) C B(C).

23We write 1% ~p as opposed to 1anp to emphasize the fact that it is the characteristic
function of AN B, viewed as a subset of A. In other words, it is a map defined on A, not ...
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3. If f is measurable with respect to B(R), then it is also measurable with
respect to B(C). Indeed, given B € B(C), we have BN R € B(R) and
therefore, f~1(B) = f~Y(BNR) € F. It follows that L5 (2, F,u) C
L&(Q.F, p).

4. If f € Ly (9, F, u), then it is real-valued, and from 3., it is also an element
of L§(Q, F, p). Conversely, if f is real-valued and belongs to Lg (2, F, p),
then from 2., it is also measurable with respect to B(R), and therefore lies
in L{ (€, F, u). We have proved that Lk (2, F,u) = {f € L&(Q, F,p) :
f(Q) SR}

5. Let f,g € LR(,F,p) and o, 3 € R. Then af + (g is measurable®*.
Moreover, since |af + Bg| < |a||f] + |8||g|, from exercise (7), and by
linearity, we have:

/ lof + Bgldu < | / \Fldu+ 16 / lgldy < +o0

We conclude that af + 3g € L (2, F, u).

6. Let f,g € L§(Q,F,p) and o, € C. Then, af + Bg is measurable®.
Moreover, since |af + Bg| < |a||f] + |8]|g|, from exercise (7), and by
linearity, we have:

[+ salau < jal [ 171dn-+181 [ lgldn < +0
We conclude that af + 3¢ € LE(Q, F, ).
Exercise 20
Exercise 21.

1. vt —u~ = max(u,0) — max(—u,0) = max(u,0) + min(u, 0). Hence, ut —
u~ = u+0 = u, and similarly, v™ — v~ = v. Finally, we have f = u+iv =
ut —u” (vt —v7).

2. Let w € Q. If u(w) > 0, then u™ (w) = u(w) and v~ (w) = 0. If u(w)
then ut(w) = 0 and u™ (w) = —u(w). In any case, ut (w)+u™ (w) = |u|(w).
So |u| = ut +u~, and similarly |v] = vT + 0.

e
&

3. f being measurable, |f|, u and v are also measurable?S. It follows that
|u| and |v| are also measurable. From 1. and 2., we have u™ = (|u| +u)/2
and v~ = (Ju| —u)/2. So uwt, u~ and similarly v, v~ are measurable.
Moreover, ut, v, v, v™, | f], u, v, |u| and |v| are all maps with values
in R. Finally, we have u™,u"™ < |u| < |f|, and consequently, using ex-
ercise (7), [u~dp < [|uldp < [|fldp < +oo. It follows that u~ (and

24See exercise (19) of the previous tutorials. (Beware of external links !)

25Both the real and imaginary parts of a f + 3g are measurable. Conclude with exercise (25)
of the previous tutorial. (Beware of external links !)

26Gee exercise (24) of the previous tutorial. (Beware of external links !)
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ut since [uTdpu < 400), u, |u| and |f| are all elements of Lg (2, F, p).
Similarly, v=, v™, v, |v] also lie in L (Q, F, ).

4. wt, u~, vt and v~ are all non-negative and measurable. Their integrals
Jutdp, [u=dp, [vtdp and [v~dp are therefore well-defined.

5. [ fdp = [urdp — [wdp+i([vtdp — [v-du). Each integral [utdp,
Ju~dp, [vtdp and [v”dp, is not only well-defined, but is also finite,
ie. lie in RT. It follows that [ fdu is a well-defined complex number.

6. In the case when f € L&(Q,F, p) is such that f(Q) € RT, then [ fdu
is potentially ambiguous. On the one hand, f being non-negative and
measurable, [ fdu is defined by virtue of definition (43). On the other
hand, f being an element of L&(Q, F,u), [ fdu = [uTdp — [u=du +
i(fvTdp — [v™dw). However, since f has value in RT, f = u™ and
u” =vt =v" =0. it follows that the two definitions of [ fdu coincide.

7. From 3., u,v € LL(Q,F,u) € L& F,p). It follows that [udu and
[ vdp are well-defined, as [udp = [utdp—[uw dpand [vdp = [vTdu—
Jvmdu. So [ fdu= [udp+1i [ vdp.

Exercise 21

Exercise 22.

1. Let B € B(C). 10 € B, then (f14)"1(B) = (AN f~1(B))& A°. {0 & B,
then (f14)"Y(B) = AN f~%(B). In any case, since f is measurable and
A€ F,wehave (fl14)"1(B) € F. It follows that f1, is measurable. From
|f1a] = |f]1a < |f], we have [|flaldp < [|f]dp < 4+o00. We conclude
that f14 is an element of L (2, F, p).

2. From definition (45), [|fldu® = [, |fldp = [|f|ladp < +oc. f being
complex valued and measurable, f € L5 (2, F, u).

3. Let B € B(C). Then, (f|A)_ (B)=AnfYB) e .7-"‘14 It follows that
fia : (A, Fla) — (C,B(C)) is measurable. Moreover, using definition (45):

/|f\A|dﬂ\A*/|f||Adu\A—/ |fldp = /|f|1AdM<+OO

We conclude that f4 € LC(A,]-'|A, )

4. Since flA € L&(Q,F, p), J fladp is well-defined by virtue of defini-
tion (48). We have

/flAdu /u+1Adu—/u_1Ad,u+i (/v"’lAdu—/v_lAd,u)

Since f € L& (2, F, u?), [ fdu? is well-defined, and:

/fduA:/quduA —/ufduA +1 </v+du‘4 —/vduA)
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Since fia € L& (A, Fia, ia), | fladpa is well-defined, and:

/f\Adﬂ\A:/utquA —/UfAdu\A +1 </’UT4dM|A _/UﬁqdﬂA)

Using definition (45), [ut1lady = [utdp? = fu‘t‘d,um, with similar

expressions involving u~, v* and v~. We conclude that [ flady =
[ fdp? = [ fladpa.
5. From:

/flAdM:/qulAdu—/u*lAdu—i—i (/erlAdu—/led,u)

and definition (45), we have:

/flAd,u:/zﬁ'du—/u_d,u—i—i (/v+du—/v_du>
A A A A

Exercise 22

Exercise 23.
1. rom h = ht —h™, f = ff — f~ and ¢ = g7 — ¢g—, we obtain that

Rt +f~+g =h" + fT +g". By linearity, proved in exercise (10), we
conclude that:

/h*du +/f*du +/g*du :/h’du +/f+du +/g+du (16)

2. Since f, g and h belong to Lk (9, F, u), all six integrals in equation (16)
are finite. It follows that equation (16) can be re-arranged as:

Jrtdu= [wdn= [ £rau= [£aws [otdn- [gan

From definition (48), we conclude that:

[ = [ s+ [ ga (17)

3. From definition (47), (—f)* = f~ and (—f)” = f*. It follows from
definition (48) that:

Jenau= [ rau- [ rau=- [ sau (18)

4. Suppose a € RT. Then, (af)t = af™ and (af)” = af~. From defini-
tion (48), and by linearity proved in exercise (10) for non-negative maps
and a > 0, we have:

J@nin=[artdu- [ardu=a [ sa (19)
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If o <0, applying equation (19) to (—«)f and then using equation (18),
we see that:

/(af)du = a/fdu (20)
We conclude that equation (20) is satisfied for all o € R.

5. If f < g, then fT 4+ ¢~ < f~ + g'. From exercise (7) and by linearity for
non-negative maps, we obtain:

/f*dwr/g‘dué/f‘dwr/g*du

All integrals being finite, this can be re-arranged as:

[reau-[rans [gtan- [ g an

We conclude that [ fdu < [ gdu. This is an extension of exercise (7) (3.)
to the case when f,g € L (Q,F, u).

6. Proving theorem (22) may be seen as an immediate consequence of equa-
tions (17) and (20). In fact, these equalities have only been established
for a € R, and f,g € LL(Q, F, ). Hence, a little more work is required.
Suppose that f,g € LE(Q, F, ). Let us write f = u+iv, and g = v/ +iv'.
From exercise (21), all maps u, v, v’ and v’ are elements of Lg (9, F, p1).
It follows from equation (17) that [(u + «')du = [udp + [w'dp and
J(w+v")dp = [vdp + [v'dp. However, also from exercise (21), [ fdu =
Judp + i [vdp, with similar equalities, [ gdp = [«'dp+ i [v'dp and:

/(f+9)dM: /(U+U/)du+i/(v+v/)du

We conclude that [(f + g)dp = [ fdp + [ gdp, and equation (17) is
therefore satisfied for f,g € L&(Q, F,n). Furthermore, if @ € R, Then
af = (au) + i(av), with au and av in Li(Q,F,p). It follows from
equation (20) that we have [(au)dy = o [udp and [(av)dp = o [ vdp.
However, again from exercise (21), [(af)dp = [(ou)dp + i [(aw)dp.
Hence, [(af)dp = o fdp, and equation (20) is true for @ € R, and
f € L& F,p). If a =i, then aof = —v + 4u and therefore:

/(af)du:—/vdu-i—z’/udu:a/fdu

Finally, if « =z + iy € C, with z,y € R, we have:

[t@ndn= [@rdu+ [Gusau

with [(zf)dp =2 [ fdp, and furthermore:

/(iyf)du = i/(yf)du = iy/fdu
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We conclude that [(af)du = o [ fdu, and equation (20) is therefore
satisfied for all & € C, and f € LE(Q, F, ). This completes the proof of
theorem (22).

Exercise 23

Exercise 24.

1. Let n > 1. By assumption, f, is C-valued and measurable. Moreover,
since 0 < |f,| < g and g € L (2, F, p):

/Ifnldu < /gdu< +00

It follows that f, € LE(Q, F, u). Given w € €, the sequence (f,,(w))n>1
converges to f(w) in C. This excludes possible limits like +00 or —co. So
f is C-valued. As a limit of measurable maps with values in a metrizable
space, f is itself a measurable map?”. Finally, since |f,,(w)| < g(w) for all
n > 1 and w € Q, taking the limit as n — +o0, we see that |f(w)| < g(w),

and consequently:
/Ifldu < /gdu < 400

We conclude that f € L& (2, F, ).

2. Given n > 1, since f,f, € L&(Q,F,pn), fn — [ is also an element of
L&(Q,F, ). So |fn — fl € LR(Q,F,pn), and since g € Lk (Q, F,p), we
have h,, = 29 — | fn — f| € Lx (2, F, 1). In particular, h,, is a measurable
map. Moreover, we have |f, — f| < |fn|+|f| < 2¢, and consequently h,, >
0. It follows that (hy),>1 is a sequence of non-negative and measurable
maps. We conclude that Fatou lemma (20) can legitimately be applied to
it.

3. Let (un)n>1 be a sequence in R. Given n > 1 and k > n, we have
infg>p (—ug) < —ug, and consequently up < —infg>,(—ug). It follows
that supy>,, ur < —infr>,(—ug). In particular:

lim sup u,, = inf
n——+o0 n>

(sup uk) < supup < — inf (—ug)
k>n k>n k=n

or equivalently, infy>,(—ug) < —limsupu,. It follows that — lim supu,
is an upper-bound of all infy>y,(—ug), for n > 1. liminf(—wu,) be-
ing the smallest of such upper-bound, we conclude that liminf(—u,) <
—limsupu,. Givenn > 1 and k > n, we have u < supys,, Uk, and conse-
quently —supys,, ur < —ug. It follows that —supys,, up < infr>n (—ug).
In particular: B

—supu < inf (—ug) < sup (inf (—uk)> = liminf(—uy)
k>n k>n n>1 >n n—-+o00

27See theorem (17). (Beware of external links !)
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or equivalently — lim inf(—uw,,) < supys,, ug. It follows that — lim inf(—wu,,)
is a lower-bound of all sup;,, ux, for n > 1. limsup u,, being the greatest
of such lower-bound, we conclude that — lim inf(—w,) < limsupu,. We
have proved that:

lim inf(—u,) = — limsup u,

n—-+00 n——+00

4. Since o € R, for all n > 1, the sum ’a + u,,’ is always meaningful in R.

The sum '« + liminf u,,’ is also meaningful in R. Let n > 1 and k& > n.
We have infy>, (o + u) < o+ ug. Since o € R, this inequality can be
re-arranged as —a + infg>p, (o + ug) < ug. It follows that:

—a+ inf (a0 + ug) < inf ugp < sup (inf uk> = lim inf u,,
k>n k>n n>1 >n n—-+00

Re-arranging this inequality, we see that a + lim inf u,, is an upper-bound
of all infg>,, (a4 wuy) for n > 1. Since lim inf(a+wu,,) is the smallest of such
upper-bound, we conclude that we have liminf(a + u,) < a + liminf w,.
Similarly:

liminf u,, = liminf(—a + a + u,) < —a+ liminf(a + u,)

n—-+o0o n—-+oo n—-+oo

We have proved that for all o € R:

liminf(a 4+ u,) = a + liminf u,

n—-+o0o n—-+o0o

5. Suppose that v, — 0 as n — +o0. Then |u,| — 0 and consequently, using
theorem (16), liminf |u,| = limsup |u,| = 0. Conversely, if lim sup |u,| =
0, then:

0 < liminf |u,| < limsup |u,| =0
n—-+0o0 n—-4oo

Hence, we see that liminf |u,| = limsup |u,| = 0. From theorem (16), we
conclude that (|uy,|)n>1 converges to 0. We have proved that u, — 0, if
and only if limsup |u,| = 0.

6. Let h, be defined as in 2. Since f,, — f, we have h,, — 2¢. In particular,
liminf h,, = 2g. Applying Fatou lemma (20) to the sequence (hy)n>1, we
obtain:

[Cordn <timnt [ (20~ 15, - fl)du
By linearity proved in theorem (22):

[ o< tmpnt ( Jegan— [ 5. - fldu>

Since g € L{ (Q, F, p), [(2g)dp € R. From 4.:

Jeadn< [@odns tmint (- [ 15, - slan)
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Finally, using 3., we obtain:

/(2g)du < /(29 du—hmsup/lfn — fldp (21)

7. Since [(2g)dp € R, inequality (21) can be simplified as:

0< —1imsup/|fn — fldp

n—-+oo

from which we conclude that limsup [ |f, — f|du = 0.

It follows from 5. and 7. that [|f, — fldu — 0, as n — +oo. The
purpose of this exercise is to prove theorem (23). Called the Dominated
Convergence Theorem, this theorem is one of the corner stones of the
Lebesgue integration theory, together with the Monotone Convergence
Theorem (19), and Fatou Lemma (20).

Exercise 24

Exercise 25.

1.

Since f € L§(Q, F,pu) and a € C, af € L§(Q,F, p). From exercise (21),
it follows that u = Re(af) € Ly (2, F, u).

. We have u = Re(af) < |Re(af)| < |af| =|f|.

We have | [ fdu| = |2 = az = a [ fdu = [(af)du

From 3., [(af)dp € R. However, from exercise (21), we have:
/(af)du = /Re(af)du—l—i/[m(af)du

It follows that [(af)du = [ Re(af)du = [udp.

From 3. and 4., we have | [ fdu| = [udp. However, from 2., we have
u < |f]. From exercise (23) (5.), [udu < [|f|dp. Finally, we conclude
that | [ fdu| < [|f|dp. This proves theorem (24).

Exercise 25
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