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5. Lebesgue Integration
In the following, (Ω,F , µ) is a measure space.

Definition 39 Let A ⊆ Ω. We call characteristic function of A, the map
1A : Ω→ R, defined by:

∀ω ∈ Ω , 1A(ω)
4
=
{

1 if ω ∈ A
0 if ω 6∈ A

Exercise 1. Given A ⊆ Ω, show that 1A : (Ω,F) → (R̄,B(R̄)) is measurable
if and only if A ∈ F .

Definition 40 Let (Ω,F) be a measurable space. We say that a map s : Ω→
R+ is a simple function on (Ω,F), if and only if s is of the form :

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+ and Ai ∈ F , for all i = 1, . . . , n.

Exercise 2. Show that s : (Ω,F) → (R+,B(R+)) is measurable, whenever s
is a simple function on (Ω,F).

Exercise 3. Let s be a simple function on (Ω,F) with representation s =∑n
i=1 αi1Ai . Consider the map φ : Ω→ {0, 1}n defined by φ(ω) = (1A1(ω), . . . , 1An(ω)).

For each y ∈ s(Ω), pick one ωy ∈ Ω such that y = s(ωy). Consider the map
ψ : s(Ω)→ {0, 1}n defined by ψ(y) = φ(ωy).

1. Show that ψ is injective, and that s(Ω) is a finite subset of R+.

2. Show that s =
∑

α∈s(Ω) α1{s=α}

3. Show that any simple function s can be represented as:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+, Ai ∈ F and Ω = A1 ] . . . ]An.

Definition 41 Let (Ω,F) be a measurable space, and s be a simple function
on (Ω,F). We call partition of the simple function s, any representation of
the form:

s =
n∑
i=1

αi1Ai

where n ≥ 1, αi ∈ R+, Ai ∈ F and Ω = A1 ] . . . ]An.
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Exercise 4. Let s be a simple function on (Ω,F) with two partitions:

s =
n∑
i=1

αi1Ai =
m∑
j=1

βj1Bj

1. Show that s =
∑

i,j αi1Ai∩Bj is a partition of s.

2. Recall the convention 0× (+∞) = 0 and α × (+∞) = +∞ if α > 0. For
all a1, . . . , ap in [0,+∞], p ≥ 1 and x ∈ [0,+∞], prove the distributive
property: x(a1 + . . .+ ap) = xa1 + . . .+ xap.

3. Show that
∑n

i=1 αiµ(Ai) =
∑m

j=1 βjµ(Bj).

4. Explain why the following definition is legitimate.

Definition 42 Let (Ω,F , µ) be a measure space, and s be a simple function
on (Ω,F). We define the integral of s with respect to µ, as the sum, denoted
Iµ(s), defined by:

Iµ(s)
4
=

n∑
i=1

αiµ(Ai) ∈ [0,+∞]

where s =
∑n
i=1 αi1Ai is any partition of s.

Exercise 5. Let s, t be two simple functions on (Ω,F) with partitions s =∑n
i=1 αi1Ai and t =

∑m
j=1 βj1Bj . Let α ∈ R+.

1. Show that s+ t is a simple function on (Ω,F) with partition:

s+ t =
n∑
i=1

m∑
j=1

(αi + βj)1Ai∩Bj

2. Show that Iµ(s+ t) = Iµ(s) + Iµ(t).

3. Show that αs is a simple function on (Ω,F).

4. Show that Iµ(αs) = αIµ(s).

5. Why is the notation Iµ(αs) meaningless if α = +∞ or α < 0.

6. Show that if s ≤ t then Iµ(s) ≤ Iµ(t).

Exercise 6. Let f : (Ω,F)→ [0,+∞] be a non-negative and measurable map.
For all n ≥ 1, we define:

sn
4
=

n2n−1∑
k=0

k

2n
1{ k2n≤f< k+1

2n }
+ n1{n≤f} (1)

1. Show that sn is a simple function on (Ω,F), for all n ≥ 1.
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2. Show that equation (1) is a partition sn, for all n ≥ 1.

3. Show that sn ≤ sn+1 ≤ f , for all n ≥ 1.

4. Show that sn ↑ f as n→ +∞1.

Theorem 18 Let f : (Ω,F)→ [0,+∞] be a non-negative and measurable map,
where (Ω,F) is a measurable space. There exists a sequence (sn)n≥1 of simple
functions on (Ω,F) such that sn ↑ f .

Definition 43 Let f : (Ω,F) → [0,+∞] be a non-negative and measurable
map, where (Ω,F , µ) is a measure space. We define the Lebesgue integral of
f with respect to µ, denoted

∫
fdµ, as:∫

fdµ
4
= sup{Iµ(s) : s simple function on (Ω,F) , s ≤ f}

where, given any simple function s on (Ω,F), Iµ(s) denotes its integral with
respect to µ.

Exercise 7. Let f : (Ω,F)→ [0,+∞] be a non-negative and measurable map.

1. Show that
∫
fdµ ∈ [0,+∞].

2. Show that
∫
fdµ = Iµ(f), whenever f is a simple function.

3. Show that
∫
gdµ ≤

∫
fdµ, whenever g : (Ω,F)→ [0,+∞] is non-negative

and measurable map with g ≤ f .

4. Show that
∫

(cf)dµ = c
∫
fdµ, if 0 < c < +∞. Explain why both integrals

are well defined. Is the equality still true for c = 0.

5. For n ≥ 1, put An = {f > 1/n}, and sn = (1/n)1An . Show that sn is a
simple function on (Ω,F) with sn ≤ f . Show that An ↑ {f > 0}.

6. Show that
∫
fdµ = 0 ⇒ µ({f > 0}) = 0.

7. Show that if s is a simple function on (Ω,F) with s ≤ f , then µ({f >
0}) = 0 implies Iµ(s) = 0.

8. Show that
∫
fdµ = 0 ⇔ µ({f > 0}) = 0.

9. Show that
∫

(+∞)fdµ = (+∞)
∫
fdµ. Explain why both integrals are

well defined.

10. Show that (+∞)1{f=+∞} ≤ f and:∫
(+∞)1{f=+∞}dµ = (+∞)µ({f = +∞})

1 i.e. for all ω ∈ Ω, the sequence (sn(ω))n≥1 is non-decreasing and converges to f(ω) ∈
[0,+∞].
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11. Show that
∫
fdµ < +∞ ⇒ µ({f = +∞}) = 0.

12. Suppose that µ(Ω) = +∞ and take f = 1. Show that the converse of the
previous implication is not true.

Exercise 8. Let s be a simple function on (Ω,F). Let A ∈ F .

1. Show that s1A is a simple function on (Ω,F).

2. Show that for any partition s =
∑n

i=1 αi1Ai of s, we have:

Iµ(s1A) =
n∑
i=1

αiµ(Ai ∩A)

3. Let ν : F → [0,+∞] be defined by ν(A) = Iµ(s1A). Show that ν is a
measure on F .

4. Suppose An ∈ F , An ↑ A. Show that Iµ(s1An) ↑ Iµ(s1A).

Exercise 9. Let (fn)n≥1 be a sequence of non-negative and measurable maps
fn : (Ω,F)→ [0,+∞], such that fn ↑ f .

1. Recall what the notation fn ↑ f means.

2. Explain why f : (Ω,F)→ (R̄,B(R̄)) is measurable.

3. Let α = supn≥1

∫
fndµ. Show that

∫
fndµ ↑ α.

4. Show that α ≤
∫
fdµ.

5. Let s be any simple function on (Ω,F) such that s ≤ f . Let c ∈]0, 1[. For
n ≥ 1, define An = {cs ≤ fn}. Show that An ∈ F and An ↑ Ω.

6. Show that cIµ(s1An) ≤
∫
fndµ, for all n ≥ 1.

7. Show that cIµ(s) ≤ α.

8. Show that Iµ(s) ≤ α.

9. Show that
∫
fdµ ≤ α.

10. Conclude that
∫
fndµ ↑

∫
fdµ.

Theorem 19 (Monotone Convergence) Let (Ω,F , µ) be a measure space.
Let (fn)n≥1 be a sequence of non-negative and measurable maps fn : (Ω,F) →
[0,+∞] such that fn ↑ f . Then

∫
fndµ ↑

∫
fdµ.

Exercise 10. Let f, g : (Ω,F)→ [0,+∞] be two non-negative and measurable
maps. Let a, b ∈ [0,+∞].
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1. Show that if (fn)n≥1 and (gn)n≥1 are two sequences of non-negative and
measurable maps such that fn ↑ f and gn ↑ g, then fn + gn ↑ f + g.

2. Show that
∫

(f + g)dµ =
∫
fdµ+

∫
gdµ.

3. Show that
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

Exercise 11. Let (fn)n≥1 be a sequence of non-negative and measurable maps
fn : (Ω,F)→ [0,+∞]. Define f =

∑+∞
n=1 fn.

1. Explain why f : (Ω,F)→ [0,+∞] is well defined, non-negative and mea-
surable.

2. Show that
∫
fdµ =

∑+∞
n=1

∫
fndµ.

Definition 44 Let (Ω,F , µ) be a measure space and let P(ω) be a property
depending on ω ∈ Ω. We say that the property P(ω) holds µ-almost surely,
and we write P(ω) µ-a.s., if and only if:

∃N ∈ F , µ(N) = 0 , ∀ω ∈ N c,P(ω) holds

Exercise 12. Let P(ω) be a property depending on ω ∈ Ω, such that {ω ∈ Ω :
P(ω) holds} is an element of the σ-algebra F .

1. Show that P(ω) , µ-a.s.⇔ µ({ω ∈ Ω : P(ω) holds}c) = 0.

2. Explain why in general, the right-hand side of this equivalence cannot be
used to defined µ-almost sure properties.

Exercise 13. Let (Ω,F , µ) be a measure space and (An)n≥1 be a sequence of
elements of F . Show that µ(∪+∞

n=1An) ≤
∑+∞

n=1 µ(An).

Exercise 14. Let (fn)n≥1 be a sequence of maps fn : Ω→ [0,+∞].

1. Translate formally the statement fn ↑ f µ-a.s.

2. Translate formally fn → f µ-a.s. and ∀n, (fn ≤ fn+1 µ-a.s.)

3. Show that the statements 1. and 2. are equivalent.

Exercise 15. Suppose that f, g : (Ω,F)→ [0,+∞] are non-negative and mea-
surable with f = g µ-a.s.. Let N ∈ F , µ(N) = 0 such that f = g on N c.
Explain why

∫
fdµ =

∫
(f1N )dµ +

∫
(f1Nc)dµ, all integrals being well defined.

Show that
∫
fdµ =

∫
gdµ.

Exercise 16. Suppose (fn)n≥1 is a sequence of non-negative and measurable
maps and f is a non-negative and measurable map, such that fn ↑ f µ-a.s.. Let
N ∈ F , µ(N) = 0, such that fn ↑ f on N c. Define f̄n = fn1Nc and f̄ = f1Nc .

1. Explain why f̄ and the f̄n’s are non-negative and measurable.
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2. Show that f̄n ↑ f̄ .

3. Show that
∫
fndµ ↑

∫
fdµ.

Exercise 17. Let (fn)n≥1 be a sequence of non-negative and measurable maps
fn : (Ω,F)→ [0,+∞]. For n ≥ 1, we define gn = infk≥n fk.

1. Explain why the gn’s are non-negative and measurable.

2. Show that gn ↑ lim inf fn.

3. Show that
∫
gndµ ≤

∫
fndµ, for all n ≥ 1.

4. Show that if (un)n≥1 and (vn)n≥1 are two sequences in R̄ with un ≤ vn
for all n ≥ 1, then lim inf un ≤ lim inf vn.

5. Show that
∫

(lim inf fn)dµ ≤ lim inf
∫
fndµ, and recall why all integrals

are well defined.

Theorem 20 (Fatou Lemma) Let (Ω,F , µ) be a measure space, and let (fn)n≥1

be a sequence of non-negative and measurable maps fn : (Ω,F) → [0,+∞].
Then: ∫

(lim inf
n→+∞

fn)dµ ≤ lim inf
n→+∞

∫
fndµ

Exercise 18. Let f : (Ω,F)→ [0,+∞] be a non-negative and measurable map.
Let A ∈ F .

1. Recall what is meant by the induced measure space (A,F|A, µ|A). Why
is it important to have A ∈ F . Show that the restriction of f to A,
f|A : (A,F|A)→ [0,+∞] is measurable.

2. We define the map µA : F → [0,+∞] by µA(E) = µ(A∩E), for all E ∈ F .
Show that (Ω,F , µA) is a measure space.

3. Consider the equalities:∫
(f1A)dµ =

∫
fdµA =

∫
(f|A)dµ|A (2)

For each of the above integrals, what is the underlying measure space
on which the integral is considered. What is the map being integrated.
Explain why each integral is well defined.

4. Show that in order to prove (2), it is sufficient to consider the case when
f is a simple function on (Ω,F).

5. Show that in order to prove (2), it is sufficient to consider the case when
f is of the form f = 1B, for some B ∈ F .

6. Show that (2) is indeed true.
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Definition 45 Let f : (Ω,F) → [0,+∞] be a non-negative and measurable
map, where (Ω,F , µ) is a measure space. let A ∈ F . We call partial Lebesgue
integral of f with respect to µ over A, the integral denoted

∫
A
fdµ, defined as:∫

A

fdµ
4
=
∫

(f1A)dµ =
∫
fdµA =

∫
(f|A)dµ|A

where µA is the measure on (Ω,F), µA = µ(A ∩ •), f|A is the restriction of f
to A and µ|A is the restriction of µ to F|A, the trace of F on A.

Exercise 19. Let f, g : (Ω,F)→ [0,+∞] be two non-negative and measurable
maps. Let ν : F → [0,+∞] be defined by ν(A) =

∫
A
fdµ, for all A ∈ F .

1. Show that ν is a measure on F .

2. Show that: ∫
gdν =

∫
gfdµ

Theorem 21 Let f : (Ω,F) → [0,+∞] be a non-negative and measurable
map, where (Ω,F , µ) is a measure space. Let ν : F → [0,+∞] be defined
by ν(A) =

∫
A
fdµ, for all A ∈ F . Then, ν is a measure on F , and for all

g : (Ω,F)→ [0,+∞] non-negative and measurable, we have:∫
gdν =

∫
gfdµ

Definition 46 The L1-spaces on a measure space (Ω,F , µ), are:

L1
R(Ω,F , µ)

4
=
{
f : (Ω,F)→ (R,B(R)) measurable,

∫
|f |dµ < +∞

}
L1

C(Ω,F , µ)
4
=
{
f : (Ω,F)→ (C,B(C)) measurable,

∫
|f |dµ < +∞

}

Exercise 20. Let f : (Ω,F)→ (C,B(C)) be a measurable map.

1. Explain why the integral
∫
|f |dµ makes sense.

2. Show that f : (Ω,F)→ (R,B(R)) is measurable, if f(Ω) ⊆ R.

3. Show that L1
R(Ω,F , µ) ⊆ L1

C(Ω,F , µ).

4. Show that L1
R(Ω,F , µ) = {f ∈ L1

C(Ω,F , µ) , f(Ω) ⊆ R}

5. Show that L1
R(Ω,F , µ) is closed under R-linear combinations.

6. Show that L1
C(Ω,F , µ) is closed under C-linear combinations.

www.probability.net

http://www.probability.net


Tutorial 5: Lebesgue Integration 8

Definition 47 Let u : Ω→ R be a real-valued function defined on a set Ω. We
call positive part and negative part of u the maps u+ and u− respectively,
defined as u+ = max(u, 0) and u− = max(−u, 0).

Exercise 21. Let f ∈ L1
C(Ω,F , µ). Let u = Re(f) and v = Im(f).

1. Show that u = u+ − u−, v = v+ − v−, f = u+ − u− + i(v+ − v−).

2. Show that |u| = u+ + u−, |v| = v+ + v−

3. Show that u+, u−, v+, v−, |f |, u, v, |u|, |v| all lie in L1
R(Ω,F , µ).

4. Explain why the integrals
∫
u+dµ,

∫
u−dµ,

∫
v+dµ,

∫
v−dµ are all well de-

fined.

5. We define the integral of f with respect to µ, denoted
∫
fdµ, as

∫
fdµ =∫

u+dµ −
∫
u−dµ + i

(∫
v+dµ−

∫
v−dµ

)
. Explain why

∫
fdµ is a well

defined complex number.

6. In the case when f(Ω) ⊆ C ∩ [0,+∞] = R+, explain why this new def-
inition of the integral of f with respect to µ is consistent with the one
already known (43) for non-negative and measurable maps.

7. Show that
∫
fdµ =

∫
udµ+ i

∫
vdµ and explain why all integrals involved

are well defined.

Definition 48 Let f = u + iv ∈ L1
C(Ω,F , µ) where (Ω,F , µ) is a measure

space. We define the Lebesgue integral of f with respect to µ, denoted
∫
fdµ,

as: ∫
fdµ

4
=
∫
u+dµ−

∫
u−dµ+ i

(∫
v+dµ−

∫
v−dµ

)
Exercise 22. Let f = u+ iv ∈ L1

C(Ω,F , µ) and A ∈ F .

1. Show that f1A ∈ L1
C(Ω,F , µ).

2. Show that f ∈ L1
C(Ω,F , µA).

3. Show that f|A ∈ L1
C(A,F|A, µ|A)

4. Show that
∫

(f1A)dµ =
∫
fdµA =

∫
f|Adµ|A.

5. Show that 4. is:
∫
A u

+dµ−
∫
A u
−dµ+ i

(∫
A v

+dµ−
∫
A v
−dµ

)
.

Definition 49 Let f ∈ L1
C(Ω,F , µ) , where (Ω,F , µ) is a measure space. let

A ∈ F . We call partial Lebesgue integral of f with respect to µ over A, the
integral denoted

∫
A
fdµ, defined as:∫

A

fdµ
4
=
∫

(f1A)dµ =
∫
fdµA =

∫
(f|A)dµ|A

where µA is the measure on (Ω,F), µA = µ(A ∩ •), f|A is the restriction of f
to A and µ|A is the restriction of µ to F|A, the trace of F on A.
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Exercise 23. Let f, g ∈ L1
R(Ω,F , µ) and let h = f + g

1. Show that:∫
h+dµ+

∫
f−dµ+

∫
g−dµ =

∫
h−dµ+

∫
f+dµ+

∫
g+dµ

2. Show that
∫
hdµ =

∫
fdµ+

∫
gdµ.

3. Show that
∫

(−f)dµ = −
∫
fdµ

4. Show that if α ∈ R then
∫

(αf)dµ = α
∫
fdµ.

5. Show that if f ≤ g then
∫
fdµ ≤

∫
gdµ

6. Show the following theorem.

Theorem 22 For all f, g ∈ L1
C(Ω,F , µ) and α ∈ C, we have:∫

(αf + g)dµ = α

∫
fdµ+

∫
gdµ

Exercise 24. Let f, g be two maps, and (fn)n≥1 be a sequence of measurable
maps fn : (Ω,F)→ (C,B(C)), such that:

(i) ∀ω ∈ Ω , lim
n→+∞

fn(ω) = f(ω) in C

(ii) ∀n ≥ 1 , |fn| ≤ g
(iii) g ∈ L1

R(Ω,F , µ)

Let (un)n≥1 be an arbitrary sequence in R̄.

1. Show that f ∈ L1
C(Ω,F , µ) and fn ∈ L1

C(Ω,F , µ) for all n ≥ 1.

2. For n ≥ 1, define hn = 2g − |fn − f |. Explain why Fatou lemma (20) can
be applied to the sequence (hn)n≥1.

3. Show that lim inf(−un) = − lim supun.

4. Show that if α ∈ R, then lim inf(α+ un) = α+ lim inf un.

5. Show that un → 0 as n→ +∞ if and only if lim sup |un| = 0.

6. Show that
∫

(2g)dµ ≤
∫

(2g)dµ− lim sup
∫
|fn − f |dµ

7. Show that lim sup
∫
|fn − f |dµ = 0.

8. Conclude that
∫
|fn − f |dµ→ 0 as n→ +∞.
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Theorem 23 (Dominated Convergence) Let (fn)n≥1 be a sequence of mea-
surable maps fn : (Ω,F) → (C,B(C)) such that fn → f in C2 . Suppose that
there exists some g ∈ L1

R(Ω,F , µ) such that |fn| ≤ g for all n ≥ 1. Then
f, fn ∈ L1

C(Ω,F , µ) for all n ≥ 1, and:

lim
n→+∞

∫
|fn − f |dµ = 0

Exercise 25. Let f ∈ L1
C(Ω,F , µ) and put z =

∫
fdµ. Let α ∈ C, be such

that |α| = 1 and αz = |z|. Put u = Re(αf).

1. Show that u ∈ L1
R(Ω,F , µ)

2. Show that u ≤ |f |

3. Show that |
∫
fdµ| =

∫
(αf)dµ.

4. Show that
∫

(αf)dµ =
∫
udµ.

5. Prove the following theorem.

Theorem 24 Let f ∈ L1
C(Ω,F , µ) where (Ω,F , µ) is a measure space. We

have: ∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ

2i.e. for all ω ∈ Ω, the sequence (fn(ω))n≥1 converges to f(ω) ∈ C
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Solutions to Exercises
Exercise 1. Let A ⊆ Ω. Suppose 1A is measurable. Then in particular A =
(1A)−1({1}) ∈ F . Conversely, suppose A ∈ F . Let B ∈ B(R̄). If {0, 1} ⊆ B,
then (1A)−1(B) = Ω. If {0, 1} ∩B = {1}, then (1A)−1(B) = A. If {0, 1} ∩B =
{0}, then (1A)−1(B) = Ac. Finally, if {0, 1} ∩ B = ∅, then (1A)−1(B) = ∅. In
any case, (1A)−1(B) ∈ F . We have proved that 1A : (Ω,F) → (R̄,B(R̄)) is
measurable, if and only if A ∈ F .

Exercise 1

Exercise 2. Let s =
∑n

i=1 αi1Ai be a simple function on (Ω,F). For all
i = 1, . . . , n, Ai ∈ F . From exercise (1), each characteristic function 1Ai is
measurable. Using exercise (19) of the previous tutorial, each αi1Ai is measur-
able. In fact, since αi ∈ R+, αi1Ai is a measurable map with values in R, (it
is also a non-negative and measurable map). It follows from exercise (19), that
s =

∑n
i=1 αi1Ai is measurable with respect to F and B(R̄). However, s has

values in R+, and B(R+) ⊆ B(R̄). So s is also measurable with respect to F
and B(R+).

Exercise 2

Exercise 3.

1. Suppose x, y ∈ s(Ω) and ψ(x) = ψ(y). Then φ(ωx) = φ(ωy). So for all
i = 1, . . . , n, 1Ai(ωx) = 1Ai(ωy). Hence, s(ωx) = s(ωy). However, ωx and
ωy have been chosen to be such that x = s(ωx) and y = s(ωy). It follows
that x = y, and ψ : s(Ω)→ {0, 1}n is an injective map. Since {0, 1}n is a
finite set, we conclude that s(Ω) is itself a finite set. By definition (40), it
is also a subset of R+.

2. Let t =
∑
α∈s(Ω) α1{s=α}. From 1., s(Ω) is a finite set, and t is therefore

well defined as a finite sum of weighted characteristic functions. Let ω ∈ Ω.
Let α′ = s(ω). Then, 1{s=α′}(ω) = 1, and 1{s=α}(ω) = 0 for all α ∈ s(Ω)
such that α 6= α′. It follows that t(ω) = α′. Hence, t(ω) = s(ω). This
being true for all ω ∈ Ω, we have proved that t = s.

3. From 2., s can be represented as s =
∑

α∈s(Ω) α1{s=α}. s(Ω) being a
finite set, there exists a bijection γ : {1, . . . , n} → s(Ω), for some n ≥ 1
3. For all i = 1, . . . , n, we define αi = γ(i) and Ai = {s = γ(i)}. Then,
it is clear that s =

∑n
i=1 αi1Ai . Moreover, each αi is an element of R+.

From exercise (2), s is a measurable map, and Ai ∈ F for all i = 1, . . . , n.
Let ω ∈ Ω and α = s(ω). γ being onto, there exists i ∈ {1, . . . , n}
such that γ(i) = α. So ω ∈ {s = γ(i)} = Ai and we have proved that
Ω ⊆ A1∪ . . .∪An. Each Ai being a subset of Ω, we have Ω = A1∪ . . .∪An.
Finally, suppose there exists ω ∈ Ai ∩ Aj . Then, s(ω) = γ(i) and s(ω) =
γ(j). γ being injective, i = j. It follows that the Ai’s are pairwise disjoint,
and therefore Ω = A1] . . .]An. We have proved that any simple function

3If Ω = ∅ and s(Ω) = ∅, write s = 1∅ and there is nothing else to prove.
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s on (Ω,F), can be expressed as s =
∑n
i=1 αi1Ai, where n ≥ 1, αi ∈ R+,

Ai ∈ F and Ω = A1 ] . . . ]An.

Exercise 3

Exercise 4.

1. Let t =
∑

i,j αi1Ai∩Bj . For each (i, j), αi ∈ R+ and Ai ∩ Bj ∈ F . If
(i, j) 6= (i′, j′), then i 6= i′ or j 6= j′. In the first case, the Ai’s being
pairwise disjoint, Ai ∩ Ai′ = ∅. In the second case, Bj ∩ Bj′ = ∅. In any
case, (Ai ∩Bj)∩ (Ai′ ∩Bj′ ) = ∅. It follows that the Ai∩Bj ’s are pairwise
disjoint, and Ω = ]i,jAi∩Bj . Let ω ∈ Ω. There exists a unique (i, j) such
that ω ∈ Ai ∩ Bj . We have t(ω) = αi = s(ω). It follows that s = t. We
have proved that t =

∑
i,j αi1Ai∩Bj is a partition of the simple function

s.

2. Let P be the property x(a1 + . . .+ ap) = xa1 + . . .+ xap. Suppose x = 0.
Then x(a1 + . . .+ ap) = 0. Moreover, for all i = 1, . . . , p, we have xai = 0.
It follows that property P is true. Suppose x = +∞ and ai = 0 for all
i = 1, . . . , p. Then a1 + . . .+ ap = 0, and x(a1 + . . .+ ap) = 0. Moreover,
xai = 0 for all i and property P is true. Suppose x = +∞ and ai > 0 for
some i = 1, . . . , p. Then xai = +∞, and therefore xa1 + . . .+ xap = +∞.
However, a1 + . . . + ap is also strictly positive with x = +∞. Hence,
x(a1 + . . . + ap) = +∞ and property P is true. Suppose 0 < x < +∞.
If ai < +∞ for all i, then property P is true by virtue of the distributive
law in R. Suppose ai = +∞ for some i. Then xai = +∞ and xa1 +
. . .+ xap = +∞. However, a1 + . . .+ ap is also equal to +∞, with x > 0.
So x(a1 + . . . + ap) = +∞ and property P is true. We have proved that
property P is true in all cases.

3. Since Ω = B1 ] . . .]Bm, we have Ai = ]mj=1(Ai ∩Bj), for all i = 1, . . . , n.
µ being a measure on (Ω,F), it follows that µ(Ai) =

∑m
j=1 µ(Ai ∩ Bj).

Hence:
n∑
i=1

αiµ(Ai) =
n∑
i=1

αi

 m∑
j=1

µ(Ai ∩Bj)


From the distributive property proved in 2., we obtain:

n∑
i=1

αiµ(Ai) =
n∑
i=1

m∑
j=1

αiµ(Ai ∩Bj) (3)

Similarly, we have:
m∑
j=1

βjµ(Bj) =
n∑
i=1

m∑
j=1

βjµ(Ai ∩Bj) (4)

Suppose Ai ∩ Bj = ∅. Then in particular, µ(Ai ∩ Bj) = 0 and αiµ(Ai ∩
Bj) = βjµ(Ai ∩ Bj). If Ai ∩ Bj 6= ∅, there exists ω ∈ Ai ∩ Bj in which
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case, αi = s(ω) = βj . In any case, αiµ(Ai ∩Bj) = βjµ(Ai ∩Bj), and we
conclude from (3) and (4) that:

n∑
i=1

αiµ(Ai) =
m∑
j=1

βjµ(Bj)

4. Given a simple function s on (Ω,F), the integral of s with respect to µ
is defined from (42) as Iµ(s) =

∑n
i=1 αiµ(Ai), where

∑n
i=1 αi1Ai is an

arbitrary partition of s. We know from exercise (3) that such partition
exists, but it may not be unique. However, since we proved in 3. that the
sum

∑n
i=1 αiµ(Ai) is invariant across all partitions of s, there is no ambi-

guity as to what Iµ(s) actually refers to, and definition (42) is therefore
legitimate.

Exercise 4

Exercise 5.

1. From definition (40), s+ t =
∑n
i=1 αi1Ai +

∑m
j=1 βj1Bj is clearly a simple

function on (Ω,F). Since Ω = ]ni=1Ai and Ω = ]mj=1Bj , we have Ω =
]i,jAi ∩Bj . Furthermore:

s =
n∑
i=1

m∑
j=1

αi1Ai∩Bj (5)

and:

t =
n∑
i=1

m∑
j=1

βj1Ai∩Bj (6)

It follows that:

s+ t =
n∑
i=1

m∑
j=1

(αi + βj)1Ai∩Bj (7)

As a finite sum involving αi + βj ∈ R+ and Ai ∩ Bj ∈ F , with Ω =
]i,jAi ∩Bj , equation (7) defines a partition of s+t.

2. Since Ω = ]i,jAi ∩Bj , equations (5), (6) and (7) are partitions of s, t and
s+ t respectively. From definition (42), we obtain:

Iµ(s+ t) =
n∑
i=1

m∑
j=1

(αi + βj)µ(Ai ∩Bj) = Iµ(s) + Iµ(t)

3. αs =
∑n

i=1 ααi1Ai. Since α ∈ R+, each ααi ∈ R+. It follows from
definition (40) that αs is a simple function on (Ω,F).

4.
∑n

i=1 ααi1Ai being a partition of αs, From definition (42) and the dis-
tributive property of exercise (4), we have:

Iµ(αs) =
n∑
i=1

ααiµ(Ai) = α

(
n∑
i=1

αiµ(Ai)

)
= αIµ(s)
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5. If α = +∞ or α < 0, the map αs may not have values in R+. In particular,
αs may not be a simple function. As definition (42) only defines the
integral of simple functions, Iµ(αs) may not be meaningful.

6. Suppose s ≤ t. Equations (5) and (6) being partitions of s and t respec-
tively, from definition (42), we have:

Iµ(s) =
n∑
i=1

m∑
j=1

αiµ(Ai ∩Bj)

and:

Iµ(t) =
n∑
i=1

m∑
j=1

βjµ(Ai ∩Bj)

If Ai ∩Bj = ∅, then in particular µ(Ai ∩ Bj) = 0, and we have αiµ(Ai ∩
Bj) ≤ βjµ(Ai ∩ Bj). If Ai ∩ Bj 6= ∅, then there exists ω ∈ Ai ∩ Bj , in
which case, αi = s(ω) ≤ t(ω) = βj . In any case, we have αiµ(Ai ∩ Bj) ≤
βjµ(Ai ∩Bj). This being true for all (i, j), it follows that Iµ(s) ≤ Iµ(t).

Exercise 5

Exercise 6.

1. Since f is measurable, each set {k/2n ≤ f < (k+1)/2n} belongs to F , for
n ≥ 1 and k = 0, . . . , n2n− 1. {n ≤ f} is also an element of F . Moreover,
k/2n ∈ R+ and n ∈ R+. It follows from definition (40) that each sn as
defined by (1), is indeed a simple function on (Ω,F).

2. [0,+∞] =
(
]n2n−1
k=0 [k/2n, (k + 1)/2n[

)
] [n,+∞]. Hence:

Ω = f−1([0,+∞]) =

(
n2n−1⊎
k=0

{
k

2n
≤ f < k + 1

2n

})
] {n ≤ f}

It follows that equation (1) is indeed a partition of sn.

3. Let n ≥ 1 and ω ∈ Ω. Suppose f(ω) ∈ [0, n[. Then, there exists
k ∈ {0, . . . , n2n − 1}, such that f(ω) ∈ [k/2n, (k + 1)/2n[. In particu-
lar, sn(ω) = k/2n ≤ f(ω). If f(ω) ∈ [n,+∞], then sn(ω) = n ≤ f(ω).
In any case, sn(ω) ≤ f(ω). This being true for all ω ∈ Ω, sn ≤ f . Sup-
pose f(ω) ∈ [k/2n, (k + 1)/2n[. Then, f(ω) ∈ [(2k)/2n+1, (2k + 1)/2n+1[
or alternatively, we have f(ω) ∈ [(2k + 1)/2n+1, (2k + 2)/2n+1[. In the
first case, sn(ω) = k/2n = (2k)/2n+1 = sn+1(ω). In the second case,
sn(ω) = k/2n ≤ (2k+1)/2n+1 = sn+1(ω). In both cases, we have sn(ω) ≤
sn+1(ω). Suppose that f(ω) ∈ [n,+∞]. Then, either f(ω) ∈ [n, n + 1[
or f(ω) ∈ [n + 1,+∞]. In the first case, sn+1(ω) = k/2n+1 for some
k ∈ {n2n+1, . . . , (n+1)2n+1−1}, and in particular, sn(ω) = n ≤ k/2n+1 =
sn+1(ω). In the second case, sn(ω) = n ≤ n+ 1 = sn+1(ω). In both cases,
we have sn(ω) ≤ sn+1(ω). We have proved that sn ≤ sn+1 ≤ f .
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4. Let ω ∈ Ω. If f(ω) = +∞, then ω ∈ {n ≤ f}, for all n ≥ 1. It follows
that sn(ω) = n for all n ≥ 1, and sn(ω) → +∞ = f(ω). If f(ω) < +∞,
then f(ω) ∈ [0, N [ for some integer N ≥ 1. For all n ≥ N , f(ω) ∈ [0, n[,
and therefore sn(ω) = k/2n, for some k ∈ {0, . . . , n2n − 1}, such that
k/2n ≤ f(ω) < (k + 1)/2n. In particular, 0 ≤ f(ω)− sn(ω) < 1/2n. This
being true for all n ≥ N , we see that sn(ω)→ f(ω). We have proved that
for all ω ∈ Ω, the sequence (sn(ω))n≥1 converges to f(ω). From 3., this
sequence is non-decreasing. Finally, we have sn ↑ f . The purpose of this
exercise is to prove theorem (18).

Exercise 6

Exercise 7.

1. 0 = 0.1Ω is a simple function on (Ω,F). Since f is non-negative, 0 ≤ f .
From definition (43), it follows that Iµ(0) ≤

∫
fdµ. Since Iµ(0) = 0, we

conclude that
∫
fdµ ∈ [0,+∞].

2. Suppose f is a simple function on (Ω,F). Let s be another simple function
on (Ω,F), such that s ≤ f . From exercise (5), we have Iµ(s) ≤ Iµ(f).
It follows that Iµ(f) is an upper-bound of all Iµ(s) for s simple function
on (Ω,F) with s ≤ f . The Lebesgue integral

∫
fdµ being the smallest of

such upper-bound, we have
∫
fdµ ≤ Iµ(f). However, since f ≤ f and f

is a simple function on (Ω,F), from definition (43), Iµ(f) ≤
∫
fdµ. We

conclude that
∫
fdµ = Iµ(f).

3. Let g : (Ω,F)→ [0,+∞] be non-negative and measurable such that g ≤ f .
Let s be a simple function on (Ω,F) such that s ≤ g. Then in particular,
s ≤ f , and it follows from definition (43) that Iµ(s) ≤

∫
fdµ. Hence,∫

fdµ is an upper-bound of all Iµ(s), for s simple function on (Ω,F) with
s ≤ g. The Lebesgue integral

∫
gdµ being the smallest of such upper-

bound, we have
∫
gdµ ≤

∫
fdµ.

4. Let 0 < c < +∞. Since f is non-negative and measurable,
∫
fdµ is

well-defined by virtue of definition (43). However, cf is also non-negative
and measurable4. So

∫
(cf)dµ is also well-defined. Let s be a simple

function on (Ω,F) such that s ≤ f . Since c ∈ R+, from exercise (5),
cs is also a simple function on (Ω,F). We have cs ≤ cf . From defini-
tion (43), it follows that Iµ(cs) ≤

∫
(cf)dµ. However, from exercise (5),

Iµ(cs) = cIµ(s). Since c > 0, we have Iµ(s) ≤ c−1
∫

(cf)dµ. Hence,
c−1

∫
(cf)dµ is an upper-bound of all Iµ(s), for s simple function on

(Ω,F) with s ≤ f . The Lebesgue integral
∫
fdµ being the smallest of

such upper-bound, we have
∫
fdµ ≤ c−1

∫
(cf)dµ. Multiplying both sides

by c, we obtain that c
∫
fdµ ≤

∫
(cf)dµ. Similarly, since 0 < 1/c < +∞,

we have c−1
∫

(cf)dµ ≤
∫
c−1(cf)dµ, i.e.

∫
(cf)dµ ≤ c

∫
fdµ. We con-

clude that
∫

(cf)dµ = c
∫
fdµ. If c = 0, whether or not

∫
fdµ = +∞,

we have c
∫
fdµ = 0. Since 0 is a simple function on (Ω,F), we have

4See exercise (19) of the previous tutorial. (Beware of external links !)

www.probability.net

http://www.probability.net


Solutions to Exercises 16

∫
0dµ = Iµ(0) = 0. It follows that the equality

∫
(cf)dµ = c

∫
fdµ is still

true in the case when c = 0.

5. f being measurable, An = {f > 1/n} is an element of the σ-algebra
F . Since 1/n ∈ R+, from definition (40) it follows that sn = (1/n)1An
is a simple function on (Ω,F). Suppose that ω ∈ Ω. If ω 6∈ An, then
sn(ω) = 0 ≤ f(ω). If ω ∈ An, then sn(ω) = 1/n < f(ω). In any case,
sn(ω) ≤ f(ω). It follows that sn ≤ f . Let n ≥ 1, if ω ∈ An, then
f(ω) > 1/n and in particular f(ω) > 1/(n + 1). So ω ∈ An+1 and we
see that An ⊆ An+1. For all n ≥ 1, An ⊆ {f > 0}. It follows that
∪+∞
n=1An ⊆ {f > 0}. Conversely, if f(ω) > 0, then there exists n ≥ 1

such that f(ω) > 1/n. So {f > 0} ⊆ ∪+∞
n=1An. We have proved that

An ⊆ An+1 with ∪+∞
n=1An = {f > 0}, i.e. An ↑ {f > 0}.

6. Suppose that
∫
fdµ = 0. Given n ≥ 1, let sn and An be defined as in 5. sn

being a simple function on (Ω,F) with sn ≤ f , from definition (43) we have
Iµ(sn) ≤

∫
fdµ = 0. Hence, we have Iµ(sn) = 0. From definition (42),

Iµ(sn) = (1/n)µ(An). It follows that µ(An) = 0 for all n ≥ 1. However,
from 5., we have An ↑ {f > 0}. Using theorem (7), µ(An) ↑ µ({f > 0}).
It follows that µ({f > 0}) = limn→+∞ µ(An) = 0. We have proved that∫
fdµ = 0⇒ µ({f > 0}) = 0.

7. Let s be a simple function on (Ω,F) with s ≤ f . Suppose that µ({f >
0}) = 0. Let s =

∑n
i=1 αi1Ai be a partition of the simple function s.

From definition (42), Iµ(s) =
∑n

i=1 αiµ(Ai). Let i ∈ {1, . . . , n}. If αi > 0
and ω ∈ Ai, A1, . . . , An being pairwise disjoint, αi = s(ω) ≤ f(ω). In
particular, 0 < f(ω). Hence, Ai ⊆ {f > 0}. µ being a measure on F ,
we have5 µ(Ai) ≤ µ({f > 0}). It follows that µ(Ai) = 0. In particular,
αiµ(Ai) = 0. If αi = 0, whether or not µ(Ai) = +∞, we still have
αiµ(Ai) = 0. We conclude that Iµ(s) =

∑n
i=1 αiµ(Ai) = 0.

8.
∫
fdµ = 0 ⇒ µ({f > 0}) = 0 was proved in 6. Suppose conversely that

µ({f > 0}) = 0. Let s be a simple function on (Ω,F) such that s ≤ f .
From 7., Iµ(s) = 0. It follows that 0 is an upper-bound of all Iµ(s) for s
simple function on (Ω,F) with s ≤ f . The Lebesgue integral

∫
fdµ being

the smallest of such upper-bound, we have
∫
fdµ ≤ 0. However, from 1.,∫

fdµ ≥ 0. We have proved that
∫
fdµ = 0, if and only if µ({f > 0} = 0.

9. f being non-negative and measurable,
∫
fdµ is well-defined, by virtue

of definition (43). However, (+∞)f is also non-negative and measur-
able6. So

∫
(+∞)fdµ is also well-defined. Suppose that

∫
fdµ = 0. Then,

(+∞)
∫
fdµ = 0. From 8. (or 6.), we have µ({f > 0}) = 0. How-

ever, {f > 0} = {(+∞)f > 0}. So µ({(+∞)f > 0}) = 0. Hence,
from 8.,

∫
(+∞)fdµ = 0. It follows that

∫
(+∞)fdµ = (+∞)

∫
fdµ.

Suppose
∫
fdµ > 0. Then, (+∞)

∫
fdµ = +∞. However, from 8.,

5See exercise (9) of Tutorial 2. (Beware of external links !)
6See exercise (19) of the previous tutorial. (Beware of external links !)
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µ({f > 0}) > 0. Let A = {f > 0} = {(+∞)f = +∞}. For all n ≥ 1, we
have n1A ≤ (+∞)f . Using 3., 2., and the fact that n1A is a simple function
on (Ω,F), we see that nµ(A) ≤

∫
(+∞)fdµ, for all n ≥ 1. Since µ(A) > 0,

we have
∫

(+∞)fdµ = +∞. We conclude that
∫

(+∞)fdµ = (+∞)
∫
fdµ

is true in all possible cases. Looking back at 4.,
∫

(cf)dµ = c
∫
fdµ is

therefore true for all c ∈ [0,+∞].

10. If ω ∈ {f = +∞}, then (+∞)1{f=+∞}(ω) = +∞ = f(ω). If ω 6∈ {f =
+∞}, then (+∞)1{f=+∞}(ω) = 0 ≤ f(ω). In any case, (+∞)1{f=+∞}(ω) ≤
f(ω). Using 9. and 2., we have:∫

(+∞)1{f=+∞}dµ = (+∞)
∫

1{f=+∞}dµ =(+∞)µ({f = +∞})

11. Suppose
∫
fdµ < +∞. From 10., (+∞)1{f=+∞} ≤ f . Using 3. and

10., we have (+∞)µ({f = +∞}) ≤
∫
fdµ. It follows that (+∞)µ({f =

+∞}) < +∞. Hence, µ({f = +∞}) = 0.

12. If f = 1, then f = 1.1Ω and
∫
fdµ = Iµ(f) = µ(Ω) = +∞. However,

µ({f = +∞}) = µ(∅) = 0. Hence, the converse of 11. is not true in
general.

Exercise 7

Exercise 8.

1. If s =
∑n

i=1 αi1Ai is a simple function on (Ω,F), then we have s1A =∑n
i=1 αi1A∩Ai with αi ∈ R+ and A ∩ Ai ∈ F . From definition (40), s1A

is indeed a simple function on (Ω,F).

2. If s =
∑n

i=1 αi1Ai is a partition of s, from definition (41), we have
Ω = ]ni=1Ai. It follows that Ω = (]ni=1(A ∩ Ai)) ] Ac. Hence, s1A =∑n

i=1 αi1A∩Ai +0.1Ac is a partition of s1A. From definition (42), we have:

Iµ(s1A) =
n∑
i=1

αiµ(A ∩Ai) + 0.µ(Ac) =
n∑
i=1

αiµ(A ∩Ai)

3. ν(∅) = Iµ(0) = 0. Let (Bk)k≥1 be a sequence of pairwise disjoint elements
of F . Let A = ]+∞

k=1Bk. Let s =
∑n

i=1 αi1Ai be a partition of s. For all
i = 1, . . . , n, A ∩Ai = ]+∞

k=1(Bk ∩ Ai). µ being a measure on F , we have
µ(A ∩Ai) =

∑+∞
k=1 µ(Bk ∩Ai). Hence, using 2.:

Iµ(s1A) =
n∑
i=1

αiµ(A ∩Ai) =
+∞∑
k=1

n∑
i=1

αiµ(Bk ∩Ai) =
+∞∑
k=1

Iµ(s1Bk)

It follows that ν(A) =
∑+∞
k=1 ν(Bk). We have proved that ν is indeed a

measure on F7.
7See definition (9). (Beware of external links !)
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4. From 3., ν is a measure on F . If (An)n≥1 is a sequence of elements of
F , such that An ↑ A, using theorem (7), we have ν(An) ↑ ν(A). In other
words, Iµ(s1An) ↑ Iµ(s1A).

Exercise 8

Exercise 9.

1. fn ↑ f means that for all ω ∈ Ω, fn(ω) ↑ f(ω). In other words, the
sequence (fn(ω))n≥1 is non-decreasing and converges to f(ω) in R̄.

2. The fact that f : (Ω,F) → (R̄,B(R̄)) is measurable, is a consequence
of exercise (15), and the fact that f = supn≥1 fn. One can also apply
theorem (17), and argue that as a limit of measurable maps with values
in the metrizable space R̄, f is itself a measurable map.

3. Let α = supn≥1

∫
fndµ. Since fn ≤ fn+1 for all n ≥ 1, from exercise (7),∫

fndµ ≤
∫
fn+1dµ. Being a non-decreasing sequence in R̄, (

∫
fndµ)n≥1

converges to its supremum. So
∫
fndµ ↑ α.

4. Since f = supn≥1 fn, for all n ≥ 1, fn ≤ f . From exercise (7),
∫
fndµ ≤∫

fdµ. It follows that
∫
fdµ is an upper-bound of all

∫
fndµ for n ≥ 1.

Since α is the smallest of such upper-bound, we have α ≤
∫
fdµ.

5. From exercise (5), cs is itself a simple function on (Ω,F). From exer-
cise (2), it is therefore measurable. Hence, given n ≥ 1, both cs and fn
are measurable. It follows that8An = {cs ≤ fn} ∈ F . Let n ≥ 1. Suppose
ω ∈ An. Then, cs(ω) ≤ fn(ω) ≤ fn+1(ω). So ω ∈ An+1 and An ⊆ An+1.
Let ω ∈ Ω. If s(ω) = 0, then ω ∈ An for all n ≥ 1. Suppose s(ω) > 0.
Then, we have 0 < s(ω) < +∞. Since c ∈]0, 1[, we have cs(ω) < s(ω).
It follows that cs(ω) < f(ω) = supn≥1 fn(ω). Since f(ω) is the smallest
upper-bound of all fn(ω) for n ≥ 1, we see that cs(ω) cannot be such
upper-bound. There exists n ≥ 1 such that cs(ω) < fn(ω). In particu-
lar, there exists n ≥ 1, such that ω ∈ An. Hence, Ω = ∪+∞

n=1An, with
An ⊆ An+1, i.e. An ↑ Ω.

6. For all n ≥ 1, we have cs1An ≤ fn. Hence, using exercise (7),
∫
cs1Andµ ≤∫

fndµ. But
∫
cs1Andµ = c

∫
s1Andµ. From exercise (8), s1An is a simple

function on (Ω,F). Using exercise (7) once more,
∫
s1Andµ = Iµ(s1An).

We conclude that cIµ(s1An) ≤
∫
fndµ for all n ≥ 1.

7. From exercise (8), sinceAn ↑ Ω, Iµ(s1An) ↑ Iµ(s). In particular, cIµ(s1An) ↑
cIµ(s)9. From 3.,

∫
fndµ ↑ α. From 6., cIµ(s1An) ≤

∫
fndµ for all n ≥ 1.

Taking the limit as n→ +∞, we conclude that cIµ(s) ≤ α.

8. Since cIµ(s) ≤ α for all c ∈]0, 1[, we have Iµ(s) ≤ α.

8See exercise (17) of the previous tutorial. (Beware of external links !)
9If we had c = +∞ and αn = 1/n, then αn ↓ 0, but cαn ↓ 0 fails to be true.
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9. From 8., α is an upper-bound of all Iµ(s) for s simple function on (Ω,F),
such that s ≤ f . The Lebesgue integral

∫
fdµ being the smallest of such

upper-bound, we have
∫
fdµ ≤ α.

10. From 4. and 9., we have α =
∫
fdµ. Using 3., we conclude that

∫
fndµ ↑∫

fdµ. In other words, (
∫
fndµ)n≥1 is a non-decreasing sequence in [0,+∞],

converging to
∫
fdµ. The purpose of this exercise is to prove theorem (19).

Exercise 9

Exercise 10.

1. Given two sequences (αn)n≥1 and (βn)n≥1 in R converging to α ∈ R and
β ∈ R respectively, the fact that αn + βn → α + β is known and easy
to prove. However, when we allow (αn)n≥1 and (βn)n≥1 to be sequences
in R̄, with limits α, β in R̄, problems may occur. For a start, the sum
αn + βn may not be meaningful. Or indeed, even if αn + βn does make
sense, it is possible that the sum α+β doesn’t. In the case when (αn)n≥1

and (βn)n≥1 are sequences in [0,+∞], then all αn + βn’s and α + β are
meaningful. If both α and β are finite, then αn + βn → α+ β stems from
the known real case10. If α = +∞ or β = +∞, then α + β = +∞, and
it is easy to prove that αn + βn → +∞. Now, if fn ↑ f and gn ↑ g, then
for all ω ∈ Ω, (fn(ω))n≥1 and (gn(ω))n≥1 are non-decreasing sequences in
[0,+∞] converging to f(ω) and g(ω) respectively. So (fn(ω) + gn(ω))n≥1

is non-decreasing, and converges to f(ω) + g(ω), i.e. fn + gn ↑ f + g.

2. Let f, g : (Ω,F) → [0,+∞] be two non-negative and measurable maps.
From theorem (18), there exist two sequences (sn)n≥1 and (tn)n≥1 of
simple functions on (Ω,F), such that sn ↑ f and tn ↑ g. Hence, sn + tn ↑
f + g. From the monotone convergence theorem (19), we have

∫
(sn +

tn)dµ ↑
∫

(f + g)dµ. From exercise (5), sn + tn is a simple function on
(Ω,F). It follows from exercise (7) that

∫
(sn+tn)dµ = Iµ(sn+tn). Hence,

Iµ(sn + tn) ↑
∫

(f + g)dµ. Similarly, Iµ(sn) ↑
∫
fdµ and Iµ(tn) ↑

∫
gdµ.

However from exercise (5), we have:

Iµ(sn + tn) = Iµ(sn) + Iµ(tn)

Taking the limit as n→ +∞, we obtain:∫
(f + g)dµ =

∫
fdµ+

∫
gdµ

3. This is an immediate application of 2. and exercise (7).

Exercise 10

Exercise 11.

1. Given ω ∈ Ω, f(ω) =
∑+∞

k=1 fk(ω) is a series of non-negative terms. It
is therefore well-defined and non-negative. Given n ≥ 1, all fk’s being
measurable, the partial sum gn =

∑n
k=1 fk is itself measurable11. So

10Both sequences are eventually with values in R.
11See exercise (19) of the previous tutorial. (Beware of external links !)
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f = supn≥1 gn is measurable12. We conclude that f =
∑+∞
k=1 fk is well-

defined, non-negative and measurable.

2. Given n ≥ 1, let gn =
∑n

k=1 fk. Since gn ↑ f , from the monotone
convergence theorem (19), we have

∫
gndµ ↑

∫
fdµ. However, from ex-

ercise (10),
∫
gndµ =

∑n
k=1

∫
fkdµ. Hence, we see that the sequence

(
∑n

k=1

∫
fkdµ)n≥1 converges to

∫
fdµ. In other words, we have

∫
fdµ =∑+∞

k=1

∫
fkdµ.

Exercise 11

Exercise 12.

1. Let M = {ω ∈ Ω : P(ω) holds}c. By assumption, M ∈ F . Suppose that
P(ω) holds µ-almost surely. From definition (44), there exists N ∈ F such
that µ(N) = 0 and P(ω) holds for all ω ∈ N c. In particular, N c ⊆ M c.
So M ⊆ N , and therefore µ(M) ≤ µ(N)13. Since µ(N) = 0, we see that
µ(M) = 0. Conversely, suppose that µ(M) = 0. From the very definition
of M , for all ω ∈ M c, P(ω) holds. From definition (44), it follows that
P(ω) holds µ-almost surely. We have proved that P(ω) holds µ-almost
surely, if and only if µ(M) = 0.

2. In all generality, the set {ω ∈ Ω : P(ω) holds} may not be an element
of F . Hence, a notation such as µ({ω ∈ Ω : P(ω) holds}c) may not be
meaningful. It follows that such notation cannot be used in any criterion
defining µ-almost sure properties.

Exercise 12

Exercise 13. Let (Ω,F , µ) be a measure space and (An)n≥1 be a sequence of
elements of F . Define B1 = A1 and for all n ≥ 1, Bn+1 = An+1 \(B1∪ . . .∪Bn).
Then (Bn)n≥1 is a sequence of elements of F , and we claim that ∪n≥1An =
]n≥1Bn. Indeed, it is clear that Bn ⊆ An for all n ≥ 1 and consequently
∪n≥1Bn ⊆ ∪n≥1An. Furthermore, if x ∈ ∪n≥1An there exists n ≥ 1 such that
x ∈ An. The set {n ∈ N : x ∈ An} is therefore a non-empty subset of N and has
a smallest element, say p ≥ 1. Then x ∈ Ap and for all k < p we have x 6∈ Ak. In
particular for all k < p, x 6∈ Bk. Hence, it is clear that x ∈ Bp. We have proved
that ∪n≥1An ⊆ ∪n≥1Bn and finally ∪n≥1An = ∪n≥1Bn. It remains to show
that the Bn’s are pairwise disjoint. Suppose n 6= m and x ∈ Bn ∩Bm. Without
loss of generality, we may assume that n < m. But x ∈ Bm implies x 6∈ Bn
which is a contradiction. So the Bn’s are indeed pairwise disjoint. Having
proved that ∪n≥1An = ]n≥1Bn, we conclude from the fact that Bn ⊆ An
implies µ(Bn) ≤ µ(An) 14 and:

µ

(
+∞⋃
n=1

An

)
= µ

(
+∞⊎
n=1

Bn

)
=

+∞∑
n=1

µ(Bn) ≤
+∞∑
n=1

µ(An)

12See exercise (15) of the previous tutorial.
13See exercise (9) of Tutorial 2. (Beware of external links !)
14See exercise (9) of Tutorial 2.
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Exercise 13

Exercise 14.

1. From definition (44), the statement fn ↑ f µ-a.s. is formally translated
as follows: there exists N ∈ F such that µ(N) = 0, and for all ω ∈ N c,
we have fn(ω) ↑ f(ω), i.e. the sequence (fn(ω))n≥1 is non-decreasing and
converges to f(ω).

2. From definition (44), fn → f µ-a.s. and fn ≤ fn+1 µ-a.s. for all n ≥ 1, is
formally translated as follows: there exist N ∈ F and a sequence (Nn)n≥1

of elements of F , such that µ(N) = 0 and µ(Nn) = 0 for all n ≥ 1, and for
all ω ∈ N c, fn(ω)→ f(ω), and given n ≥ 1 and ω ∈ N c

n, fn(ω) ≤ fn+1(ω).

3. Suppose that fn ↑ f µ-a.s., i.e. that statement 1. is satisfied. Taking Nn =
N for all n ≥ 1, it is clear that statement 2. is also satisfied. Conversely,
suppose that statement 2. is satisfied. Define M = N ∪ (∪+∞

n=1Nn). Then
M ∈ F , and from exercise (13), we have µ(M) ≤ µ(N) +

∑+∞
n=1 µ(Nn).

So µ(M) = 0. Moreover, for all ω ∈ M c, it is clear that fn(ω) ↑ f(ω). It
follows that fn ↑ f µ-a.s. is true. We have proved that both statements 1.
and 2. are equivalent. This exercise is pretty important. More generally,
if a condition P(ω) is true µ-a.s and another condition Q(ω) is true µ-a.s.,
then (P(ω) and Q(ω)) is also true µ-a.s.. In fact, we have just seen that
this factoring of ’µ-a.s.’ is valid for a countable number of conditions,
which is a straightforward application of the fact that a countable union
of measurable sets (belonging to F) of µ-measure 0, is itself measurable
(belonging to F) of µ-measure 0.

Exercise 14

Exercise 15. Given B ∈ B(R̄), {f1N ∈ B} is equal to {f ∈ B} ∩N if 0 6∈ B,
or equal to ({f ∈ B}∩N)∪N c if 0 ∈ B. In any case, {f1N ∈ B} ∈ F and f1N
is therefore non-negative and measurable. Similarly f1Nc is non-negative and
measurable. So both integrals

∫
f1Ndµ and

∫
f1Ncdµ are well-defined by virtue

of definition (43). Since f = f1N+f1Nc , we have
∫
fdµ =

∫
f1Ndµ+

∫
f1Ncdµ,

from exercise (10). Similarly,
∫
gdµ =

∫
g1Ndµ +

∫
g1Ncdµ. However, for all

ω ∈ N c, f(ω) = g(ω). It follows that f1Nc = g1Nc . Moreover, µ(N) = 0. Since
{f1N > 0} ⊆ N , we see that µ({f1N > 0}) = 0. Hence, from exercise (7),∫
f1Ndµ = 0. Similarly,

∫
g1Ndµ = 0. We conclude that:∫

fdµ =
∫
f1Ncdµ =

∫
g1Ncdµ =

∫
gdµ

Exercise 15

Exercise 16.

1. Given B ∈ B(R̄), {f1Nc ∈ B} is either equal to {f ∈ B} ∩ N c or
({f ∈ B} ∩ N c) ∪ N , depending on whether 0 ∈ B or not. In any case
{f1Nc ∈ B} ∈ F , and f̄ = f1Nc is therefore non-negative and measurable.
Similarly, for all n ≥ 1, f̄n = fn1Nc is non-negative and measurable.
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2. If ω ∈ N c, then f̄n(ω) = fn(ω) ↑ f(ω) = f̄(ω). If ω ∈ N , then f̄n(ω) = 0
for all n ≥ 1, and f̄(ω) = 0. In any case, f̄n(ω) ↑ f̄(ω). We have proved
that f̄n ↑ f̄ .

3. From 2., we have f̄n ↑ f̄ . Hence, from the monotone convergence theo-
rem (19),

∫
f̄ndµ ↑

∫
f̄dµ. However, from the very definition of f̄ and f̄n,

there exists N ∈ F with µ(N) = 0, such that for all ω ∈ N c, f̄(ω) = f(ω)
and f̄n(ω) = fn(ω). In other words, from definition (44), f̄ = f µ-a.s.
and f̄n = fn µ-a.s.. From exercise (15), it follows that

∫
f̄dµ =

∫
fdµ

and
∫
f̄ndµ =

∫
fndµ for all n ≥ 1. We conclude that

∫
fndµ ↑

∫
fdµ.

Although it may not appear to be the case, this exercise is very important.
The monotone convergence theorem (19) states that whenever fn ↑ f , we
have

∫
fndµ ↑

∫
fdµ. In this exercise, we proved that in fact, a weaker

condition of fn ↑ f µ-a.s. is sufficient to ensure that
∫
fndµ ↑

∫
fdµ. We

obtained that result with a standard technique of cleaning up our functions
f and fn’s, to ensure that fn ↑ f everywhere, as opposed to µ-a.s.. It is
important to be familiar with this technique. In my experience, theorems
with almost sure conditions are confusing to students, and are an encour-
agement to poor rigor and sloppy reasoning15. Hence, most theorems in
these tutorials, at least in the early stages, will be stated with everywhere
conditions. So you may need to clean up your assumptions again in the
future. . .

Exercise 16

Exercise 17.

1. Since gn = infk≥n fk, gn is a countable infimum of measurable maps. It is
therefore measurable16, and is obviously non-negative.

2. Let ω ∈ Ω and n ≥ 1. For all k ≥ n, we have gn(ω) ≤ fk(ω). In particular,
gn(ω) is a lower-bound of all fk(ω) for k ≥ n + 1. Since gn+1(ω) is the
greatest of such lower-bound, we have gn(ω) ≤ gn+1(ω). It follows that
(gn(ω))n≥1 is a non-decreasing sequence in R̄, which therefore converges
to its supremum. Hence, gn ↑ supn≥1 gn = lim inf fn17.

3. For all n ≥ 1, we have gn ≤ fn. From exercise (7), it follows that
∫
gndµ ≤∫

fndµ.

4. Let (un)n≥1 and (vn)n≥1 be two sequences in R̄ with un ≤ vn for all
n ≥ 1. For all k ≥ n, we have infk≥n uk ≤ uk ≤ vk. Hence, infk≥n uk is
a lower-bound of all vk’s for k ≥ n. It follows that infk≥n uk ≤ infk≥n vk.
Hence, for all n ≥ 1, we have infk≥n uk ≤ supn≥1 infk≥n vk = lim inf vn.
In other words, lim inf vn is an upper-bound of all infk≥n uk for n ≥ 1. It
follows that supn≥1 infk≥1 uk ≤ lim inf vn, i.e. lim inf un ≤ lim inf vn.

15Particularly when dealing with questions of measurability in a non-complete measure
space.

16See exercise (15) of the previous tutorial. (Beware of external links !)
17 See definition (36) of the previous tutorial.
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5. lim inf fn is measurable18, and is obviously non-negative. The integral∫
(lim inf fn)dµ is therefore well-defined by virtue of definition (43). The

same can be said of
∫
fndµ for all n ≥ 1. From 3., we have

∫
gndµ ≤∫

fndµ, for all n ≥ 1. It follows from 4. that:

lim inf
n→+∞

∫
gndµ ≤ lim inf

n→+∞

∫
fndµ (8)

However, from 2., gn ↑ lim inf fn. From the monotone convergence theo-
rem (19),

∫
gndµ ↑

∫
(lim inf fn)dµ. In particular, the sequence (

∫
gndµ)n≥1

converges to
∫

(lim inf fn)dµ. It follows from theorem (16), that:

lim inf
n→+∞

∫
gndµ =

∫
(lim inf
n→+∞

fn)dµ (9)

Comparing (8) with (9), we conclude that:∫
(lim inf
n→+∞

fn)dµ ≤ lim inf
n→+∞

∫
fndµ

The purpose of this exercise is to prove Fatou lemma (20).

Exercise 17

Exercise 18.

1. F|A = {A ∩ B : B ∈ F} is the trace on A of the σ-algebra F19, which
is a σ-algebra on A20. Since A ∈ F , F|A ⊆ F . It is therefore meaningful
to define µ|A as the restriction of µ to F|A, which is a measure21 on F|A.
It is important that we have A ∈ F , since otherwise, µ|A would not be
meaningful. Let B ∈ B(R̄). f|A being the restriction of f to A, we have
(f|A)−1(B) = {x ∈ A : f(x) ∈ B} = A ∩ f−1(B). Since f is measurable,
f−1(B) ∈ F . It follows that (f|A)−1(B) ∈ F|A. We have proved that
f|A : (A,F|A)→ [0,+∞] is measurable.

2. Let (En)n≥1 be a sequence of pairwise disjoint elements of F . Let E =
]+∞
n=1En. Then, A ∩ E = ]+∞

n=1(A ∩ En). µ being a measure on F , µ(A ∩
E) =

∑+∞
n=1 µ(A∩En). It follows that µA(E) =

∑+∞
n=1 µ

A(En). It is clear
that µA(∅) = 0. We have proved that µA is a measure on F . (Ω,F , µA)
is therefore a measure space22.

3. Consider the following equality:∫
(f1A)dµ =

∫
fdµA =

∫
(f|A)dµ|A (10)∫

(f1A)dµ is an integral defined on (Ω,F , µ). The map being integrated
is f1A which is non-negative and measurable. The integral is therefore

18See exercise (18) of the previous tutorial. (Beware of external links !)
19See definition (22). (Beware of external links !)
20See exercise (15) of Tutorial 3.
21See definition (9).
22See definition (19). (Beware of external links !)
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well-defined.
∫
fdµA is an integral defined on (Ω,F , µA). The map being

integrated is f which is non-negative and measurable. The integral is
therefore well-defined.

∫
(f|A)dµ|A is an integral defined on (A,F|A, µ|A).

The map being integrated is the restriction f|A which is non-negative and
measurable with respect to F|A. The integral is therefore well-defined. At
this stage, we do not know whether equation (10) is true, but at least, all
its terms are meaningful. . .

4. Suppose that equation (10) is true, whenever f is a simple function on
(Ω,F). Suppose that f is an arbitrary non-negative and measurable map.
From theorem (18), f can be approximated by a non-decreasing sequence
of simple functions on (Ω,F). In other words, there exists a sequence
(sn)n≥1 of simple functions on (Ω,F), such that sn ↑ f . In particular,
sn1A ↑ f1A and (sn)|A ↑ f|A. Having assumed that equation (10) is true
for all simple functions on (Ω,F), for all n ≥ 1, we have:∫

(sn1A)dµ =
∫
sndµ

A =
∫

(sn)|Adµ|A (11)

From the monotone convergence theorem (19), taking the limit as n →
+∞ in (11) , we obtain equation (10). We conclude that in order to
prove equation (10), it is sufficient to consider the case when f is a simple
function on (Ω,F).

5. Suppose that equation (10) is true whenever f is of the form f = 1B,
for B ∈ F . Let s =

∑n
i=1 αi1Ai be a simple function on (Ω,F). Then,

s1A =
∑n

i=1 αi(1Ai1A) and s|A =
∑n
i=1 αi(1Ai)|A. Using the linearity of

the integral proved in exercise (10):∫
s1Adµ =

n∑
i=1

αi

∫
1Ai1Adµ (12)

∫
sdµA =

n∑
i=1

αi

∫
1Aidµ

A (13)

∫
s|Adµ|A =

n∑
i=1

αi

∫
(1Ai)|Adµ|A (14)

Having assumed that equation (10) is true for all measurable characteristic
functions, for all i = 1, . . . , n, we have:∫

1Ai1Adµ =
∫

1Aidµ
A =

∫
(1Ai)|Adµ|A (15)

We conclude from (12), (13), (14) and (15) that equation (10) is true for
all simple functions s on (Ω,F). Using, 4., equation (10) is therefore true
for any non-negative and measurable map f . Hence, in order to prove
equation (10), it is sufficient to consider the case when f is of the form
f = 1B for B ∈ F .
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6. Suppose f is of the form f = 1B with B ∈ F . Then, we have f1A = 1A∩B,
and

∫
f1Adµ = µ(A∩B). Moreover, we have

∫
fdµA = µA(B) = µ(A∩B).

Finally, since23 (1B)|A = 1∗A∩B, we have
∫

(1B)|Adµ|A = µ|A(A ∩ B) =
µ(A∩B). We conclude that equation (10) is true for f . From 5., it follows
that equation (10) is true for all non-negative and measurable maps. The
purpose of this exercise is to justify definition (45). The techniques used
in this exercise will be used over and over again in the future. Very
often, when an equality between integrals has to be proved, one starts
by verifying such equality for characteristic functions. By linearity, the
equality can be extended to all simple functions. Using theorem (18) and
the monotone convergence theorem (19), it can then be proved to be true
for all non-negative and measurable maps.

Exercise 18

Exercise 19.

1. Let (An)n≥1 be a sequence of pairwise disjoint elements of F . Let A =
]+∞
n=1An. Then, 1A =

∑+∞
n=1 1An , and consequently f1A =

∑+∞
n=1 f1An .

Hence,
∫
f1Adµ =

∑+∞
n=1

∫
f1Andµ, as proved in exercise (11). It follows

that ν(A) =
∑+∞
n=1 ν(An). It is clear that ν(∅) =

∫
f1∅dµ = 0. We

conclude that ν is indeed a measure on F .

2. Suppose g is of the form g = 1B with B ∈ F . Then, we have
∫
gdν =

ν(B) =
∫
B
fdµ =

∫
f1Bdµ =

∫
fgdµ. By linearity, it follows that

∫
gdν =∫

gfdµ is true whenever g is a simple function on (Ω,F). If g is an
arbitrary non-negative and measurable map, from theorem (18), there
exists a sequence (sn)n≥1 of simple functions in (Ω,F), such that sn ↑ g.
From

∫
sndν =

∫
snfdµ and the monotone convergence theorem (19),

taking the limit as n→ +∞, we conclude that
∫
gdν =

∫
gfdµ.

Exercise 19

Exercise 20.

1. |f | is non-negative and measurable. The integral
∫
|f |dµ is therefore well-

defined.

2. if f is real-valued, and measurable with respect to B(C), then it is also
measurable with respect to B(R), since B(R) ⊆ B(C). We have not proved
this inclusion before. Here is one way of doing it: the usual metric on R
is the metric induced by the usual metric on C. From theorem (12), TR =
(TC)|R, i.e. the usual topology on R is induced from the usual topology on
C. From the trace theorem (10), it follows that B(R) = B(C)|R, i.e. that
the Borel σ-algebra on R is the trace on R, of the Borel σ-algebra on C.
In particular, since R ∈ B(C) (it is closed in C), we have B(R) ⊆ B(C).

23We write 1∗A∩B as opposed to 1A∩B to emphasize the fact that it is the characteristic
function of A∩B, viewed as a subset of A. In other words, it is a map defined on A, not Ω. . .
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3. If f is measurable with respect to B(R), then it is also measurable with
respect to B(C). Indeed, given B ∈ B(C), we have B ∩ R ∈ B(R) and
therefore, f−1(B) = f−1(B ∩ R) ∈ F . It follows that L1

R(Ω,F , µ) ⊆
L1

C(Ω,F , µ).

4. If f ∈ L1
R(Ω,F , µ), then it is real-valued, and from 3., it is also an element

of L1
C(Ω,F , µ). Conversely, if f is real-valued and belongs to L1

C(Ω,F , µ),
then from 2., it is also measurable with respect to B(R), and therefore lies
in L1

R(Ω,F , µ). We have proved that L1
R(Ω,F , µ) = {f ∈ L1

C(Ω,F , µ) :
f(Ω) ⊆ R}.

5. Let f, g ∈ L1
R(Ω,F , µ) and α, β ∈ R. Then αf + βg is measurable24.

Moreover, since |αf + βg| ≤ |α||f | + |β||g|, from exercise (7), and by
linearity, we have:∫

|αf + βg|dµ ≤ |α|
∫
|f |dµ+ |β|

∫
|g|dµ < +∞

We conclude that αf + βg ∈ L1
R(Ω,F , µ).

6. Let f, g ∈ L1
C(Ω,F , µ) and α, β ∈ C. Then, αf + βg is measurable25.

Moreover, since |αf + βg| ≤ |α||f | + |β||g|, from exercise (7), and by
linearity, we have:∫

|αf + βg|dµ ≤ |α|
∫
|f |dµ+ |β|

∫
|g|dµ < +∞

We conclude that αf + βg ∈ L1
C(Ω,F , µ).

Exercise 20

Exercise 21.

1. u+ − u− = max(u, 0)−max(−u, 0) = max(u, 0) + min(u, 0). Hence, u+−
u− = u+0 = u, and similarly, v+−v− = v. Finally, we have f = u+ iv =
u+ − u− + i(v+ − v−).

2. Let ω ∈ Ω. If u(ω) ≥ 0, then u+(ω) = u(ω) and u−(ω) = 0. If u(ω) ≤ 0,
then u+(ω) = 0 and u−(ω) = −u(ω). In any case, u+(ω)+u−(ω) = |u|(ω).
So |u| = u+ + u−, and similarly |v| = v+ + v−.

3. f being measurable, |f |, u and v are also measurable26. It follows that
|u| and |v| are also measurable. From 1. and 2., we have u+ = (|u|+ u)/2
and u− = (|u| − u)/2. So u+, u− and similarly v+, v− are measurable.
Moreover, u+, u−, v+, v−, |f |, u, v, |u| and |v| are all maps with values
in R. Finally, we have u−, u+ ≤ |u| ≤ |f |, and consequently, using ex-
ercise (7),

∫
u−dµ ≤

∫
|u|dµ ≤

∫
|f |dµ < +∞. It follows that u− (and

24See exercise (19) of the previous tutorials. (Beware of external links !)
25Both the real and imaginary parts of αf+βg are measurable. Conclude with exercise (25)

of the previous tutorial. (Beware of external links !)
26See exercise (24) of the previous tutorial. (Beware of external links !)
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u+ since
∫
u+dµ < +∞), u, |u| and |f | are all elements of L1

R(Ω,F , µ).
Similarly, v−, v+, v, |v| also lie in L1

R(Ω,F , µ).

4. u+, u−, v+ and v− are all non-negative and measurable. Their integrals∫
u+dµ,

∫
u−dµ,

∫
v+dµ and

∫
v−dµ are therefore well-defined.

5.
∫
fdµ =

∫
u+dµ −

∫
u−dµ + i(

∫
v+dµ −

∫
v−dµ). Each integral

∫
u+dµ,∫

u−dµ,
∫
v+dµ and

∫
v−dµ, is not only well-defined, but is also finite,

i.e. lie in R+. It follows that
∫
fdµ is a well-defined complex number.

6. In the case when f ∈ L1
C(Ω,F , µ) is such that f(Ω) ⊆ R+, then

∫
fdµ

is potentially ambiguous. On the one hand, f being non-negative and
measurable,

∫
fdµ is defined by virtue of definition (43). On the other

hand, f being an element of L1
C(Ω,F , µ),

∫
fdµ =

∫
u+dµ −

∫
u−dµ +

i(
∫
v+dµ −

∫
v−dµ). However, since f has value in R+, f = u+ and

u− = v+ = v− = 0. it follows that the two definitions of
∫
fdµ coincide.

7. From 3., u, v ∈ L1
R(Ω,F , µ) ⊆ L1

C(Ω,F , µ). It follows that
∫
udµ and∫

vdµ are well-defined, as
∫
udµ =

∫
u+dµ−

∫
u−dµ and

∫
vdµ =

∫
v+dµ−∫

v−dµ. So
∫
fdµ =

∫
udµ+ i

∫
vdµ.

Exercise 21

Exercise 22.

1. Let B ∈ B(C). If 0 ∈ B, then (f1A)−1(B) = (A∩f−1(B))] Ac. If 0 6∈ B,
then (f1A)−1(B) = A ∩ f−1(B). In any case, since f is measurable and
A ∈ F , we have (f1A)−1(B) ∈ F . It follows that f1A is measurable. From
|f1A| = |f |1A ≤ |f |, we have

∫
|f1A|dµ ≤

∫
|f |dµ < +∞. We conclude

that f1A is an element of L1
C(Ω,F , µ).

2. From definition (45),
∫
|f |dµA =

∫
A |f |dµ =

∫
|f |1Adµ < +∞. f being

complex valued and measurable, f ∈ L1
C(Ω,F , µA).

3. Let B ∈ B(C). Then, (f|A)−1(B) = A ∩ f−1(B) ∈ F|A. It follows that
f|A : (A,F|A)→ (C,B(C)) is measurable. Moreover, using definition (45):∫

|f|A|dµ|A =
∫
|f ||Adµ|A =

∫
A

|f |dµ =
∫
|f |1Adµ < +∞

We conclude that f|A ∈ L1
C(A,F|A, µ|A).

4. Since f1A ∈ L1
C(Ω,F , µ),

∫
f1Adµ is well-defined by virtue of defini-

tion (48). We have:∫
f1Adµ=

∫
u+1Adµ−

∫
u−1Adµ+ i

(∫
v+1Adµ−

∫
v−1Adµ

)
Since f ∈ L1

C(Ω,F , µA),
∫
fdµA is well-defined, and:∫

fdµA=
∫
u+dµA −

∫
u−dµA + i

(∫
v+dµA −

∫
v−dµA

)
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Since f|A ∈ L1
C(A,F|A, µ|A),

∫
f|Adµ|A is well-defined, and:∫

f|Adµ|A=
∫
u+
|Adµ|A −

∫
u−|Adµ|A + i

(∫
v+
|Adµ|A −

∫
v−|Adµ|A

)
Using definition (45),

∫
u+1Adµ =

∫
u+dµA =

∫
u+
|Adµ|A, with similar

expressions involving u−, v+ and v−. We conclude that
∫
f1Adµ =∫

fdµA =
∫
f|Adµ|A.

5. From:∫
f1Adµ=

∫
u+1Adµ−

∫
u−1Adµ+ i

(∫
v+1Adµ−

∫
v−1Adµ

)
and definition (45), we have:∫

f1Adµ=
∫
A

u+dµ−
∫
A

u−dµ+ i

(∫
A

v+dµ−
∫
A

v−dµ

)
Exercise 22

Exercise 23.

1. From h = h+ − h−, f = f+ − f− and g = g+ − g−, we obtain that
h+ + f− + g− = h− + f+ + g+. By linearity, proved in exercise (10), we
conclude that:∫

h+dµ+
∫
f−dµ+

∫
g−dµ =

∫
h−dµ+

∫
f+dµ+

∫
g+dµ (16)

2. Since f , g and h belong to L1
R(Ω,F , µ), all six integrals in equation (16)

are finite. It follows that equation (16) can be re-arranged as:∫
h+dµ−

∫
h−dµ =

∫
f+dµ−

∫
f−dµ+

∫
g+dµ−

∫
g−dµ

From definition (48), we conclude that:∫
hdµ =

∫
fdµ+

∫
gdµ (17)

3. From definition (47), (−f)+ = f− and (−f)− = f+. It follows from
definition (48) that:∫

(−f)dµ =
∫
f−dµ−

∫
f+dµ = −

∫
fdµ (18)

4. Suppose α ∈ R+. Then, (αf)+ = αf+ and (αf)− = αf−. From defini-
tion (48), and by linearity proved in exercise (10) for non-negative maps
and α ≥ 0, we have:∫

(αf)dµ =
∫
αf+dµ−

∫
αf−dµ = α

∫
fdµ (19)
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If α ≤ 0, applying equation (19) to (−α)f and then using equation (18),
we see that: ∫

(αf)dµ = α

∫
fdµ (20)

We conclude that equation (20) is satisfied for all α ∈ R.

5. If f ≤ g, then f+ + g− ≤ f− + g+. From exercise (7) and by linearity for
non-negative maps, we obtain:∫

f+dµ+
∫
g−dµ ≤

∫
f−dµ+

∫
g+dµ

All integrals being finite, this can be re-arranged as:∫
f+dµ−

∫
f−dµ ≤

∫
g+dµ−

∫
g−dµ

We conclude that
∫
fdµ ≤

∫
gdµ. This is an extension of exercise (7) (3.)

to the case when f, g ∈ L1
R(Ω,F , µ).

6. Proving theorem (22) may be seen as an immediate consequence of equa-
tions (17) and (20). In fact, these equalities have only been established
for α ∈ R, and f, g ∈ L1

R(Ω,F , µ). Hence, a little more work is required.
Suppose that f, g ∈ L1

C(Ω,F , µ). Let us write f = u+ iv, and g = u′+ iv′.
From exercise (21), all maps u, v, u′ and v′ are elements of L1

R(Ω,F , µ).
It follows from equation (17) that

∫
(u + u′)dµ =

∫
udµ +

∫
u′dµ and∫

(v + v′)dµ =
∫
vdµ+

∫
v′dµ. However, also from exercise (21),

∫
fdµ =∫

udµ+ i
∫
vdµ, with similar equalities,

∫
gdµ =

∫
u′dµ+ i

∫
v′dµ and:∫

(f + g)dµ =
∫

(u+ u′)dµ+ i

∫
(v + v′)dµ

We conclude that
∫

(f + g)dµ =
∫
fdµ +

∫
gdµ, and equation (17) is

therefore satisfied for f, g ∈ L1
C(Ω,F , µ). Furthermore, if α ∈ R, Then

αf = (αu) + i(αv), with αu and αv in L1
R(Ω,F , µ). It follows from

equation (20) that we have
∫

(αu)dµ = α
∫
udµ and

∫
(αv)dµ = α

∫
vdµ.

However, again from exercise (21),
∫

(αf)dµ =
∫

(αu)dµ + i
∫

(αv)dµ.
Hence,

∫
(αf)dµ = α

∫
fdµ, and equation (20) is true for α ∈ R, and

f ∈ L1
C(Ω,F , µ). If α = i, then αf = −v + iu and therefore:∫

(αf)dµ = −
∫
vdµ+ i

∫
udµ = α

∫
fdµ

Finally, if α = x+ iy ∈ C, with x, y ∈ R, we have:∫
(αf)dµ =

∫
(xf)dµ+

∫
(iyf)dµ

with
∫

(xf)dµ = x
∫
fdµ, and furthermore:∫

(iyf)dµ = i

∫
(yf)dµ = iy

∫
fdµ
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We conclude that
∫

(αf)dµ = α
∫
fdµ, and equation (20) is therefore

satisfied for all α ∈ C, and f ∈ L1
C(Ω,F , µ). This completes the proof of

theorem (22).

Exercise 23

Exercise 24.

1. Let n ≥ 1. By assumption, fn is C-valued and measurable. Moreover,
since 0 ≤ |fn| ≤ g and g ∈ L1

R(Ω,F , µ):∫
|fn|dµ ≤

∫
gdµ < +∞

It follows that fn ∈ L1
C(Ω,F , µ). Given ω ∈ Ω, the sequence (fn(ω))n≥1

converges to f(ω) in C. This excludes possible limits like +∞ or −∞. So
f is C-valued. As a limit of measurable maps with values in a metrizable
space, f is itself a measurable map27. Finally, since |fn(ω)| ≤ g(ω) for all
n ≥ 1 and ω ∈ Ω, taking the limit as n→ +∞, we see that |f(ω)| ≤ g(ω),
and consequently: ∫

|f |dµ ≤
∫
gdµ < +∞

We conclude that f ∈ L1
C(Ω,F , µ).

2. Given n ≥ 1, since f, fn ∈ L1
C(Ω,F , µ), fn − f is also an element of

L1
C(Ω,F , µ). So |fn − f | ∈ L1

R(Ω,F , µ), and since g ∈ L1
R(Ω,F , µ), we

have hn = 2g − |fn − f | ∈ L1
R(Ω,F , µ). In particular, hn is a measurable

map. Moreover, we have |fn−f | ≤ |fn|+ |f | ≤ 2g, and consequently hn ≥
0. It follows that (hn)n≥1 is a sequence of non-negative and measurable
maps. We conclude that Fatou lemma (20) can legitimately be applied to
it.

3. Let (un)n≥1 be a sequence in R̄. Given n ≥ 1 and k ≥ n, we have
infk≥n(−uk) ≤ −uk, and consequently uk ≤ − infk≥n(−uk). It follows
that supk≥n uk ≤ − infk≥n(−uk). In particular:

lim sup
n→+∞

un = inf
n≥1

(
sup
k≥n

uk

)
≤ sup

k≥n
uk ≤ − inf

k≥n
(−uk)

or equivalently, infk≥n(−uk) ≤ − lim supun. It follows that − lim supun
is an upper-bound of all infk≥n(−uk), for n ≥ 1. lim inf(−un) be-
ing the smallest of such upper-bound, we conclude that lim inf(−un) ≤
− lim supun. Given n ≥ 1 and k ≥ n, we have uk ≤ supk≥n uk, and conse-
quently − supk≥n uk ≤ −uk. It follows that − supk≥n uk ≤ infk≥n(−uk).
In particular:

− sup
k≥n

uk ≤ inf
k≥n

(−uk) ≤ sup
n≥1

(
inf
k≥n

(−uk)
)

= lim inf
n→+∞

(−un)

27See theorem (17). (Beware of external links !)
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or equivalently − lim inf(−un) ≤ supk≥n uk. It follows that − lim inf(−un)
is a lower-bound of all supk≥n uk, for n ≥ 1. lim supun being the greatest
of such lower-bound, we conclude that − lim inf(−un) ≤ lim supun. We
have proved that:

lim inf
n→+∞

(−un) = − lim sup
n→+∞

un

4. Since α ∈ R, for all n ≥ 1, the sum ’α + un’ is always meaningful in R̄.
The sum ’α + lim inf un’ is also meaningful in R̄. Let n ≥ 1 and k ≥ n.
We have infk≥n(α + uk) ≤ α + uk. Since α ∈ R, this inequality can be
re-arranged as −α+ infk≥n(α+ uk) ≤ uk. It follows that:

−α+ inf
k≥n

(α+ uk) ≤ inf
k≥n

uk ≤ sup
n≥1

(
inf
k≥n

uk

)
= lim inf

n→+∞
un

Re-arranging this inequality, we see that α+ lim inf un is an upper-bound
of all infk≥n(α+uk) for n ≥ 1. Since lim inf(α+un) is the smallest of such
upper-bound, we conclude that we have lim inf(α + un) ≤ α+ lim inf un.
Similarly:

lim inf
n→+∞

un = lim inf
n→+∞

(−α+ α+ un) ≤ −α+ lim inf
n→+∞

(α+ un)

We have proved that for all α ∈ R:

lim inf
n→+∞

(α + un) = α+ lim inf
n→+∞

un

5. Suppose that un → 0 as n→ +∞. Then |un| → 0 and consequently, using
theorem (16), lim inf |un| = lim sup |un| = 0. Conversely, if lim sup |un| =
0, then:

0 ≤ lim inf
n→+∞

|un| ≤ lim sup
n→+∞

|un| = 0

Hence, we see that lim inf |un| = lim sup |un| = 0. From theorem (16), we
conclude that (|un|)n≥1 converges to 0. We have proved that un → 0, if
and only if lim sup |un| = 0.

6. Let hn be defined as in 2. Since fn → f , we have hn → 2g. In particular,
lim inf hn = 2g. Applying Fatou lemma (20) to the sequence (hn)n≥1, we
obtain: ∫

(2g)dµ ≤ lim inf
n→+∞

∫
(2g − |fn − f |)dµ

By linearity proved in theorem (22):∫
(2g)dµ ≤ lim inf

n→+∞

(∫
(2g)dµ−

∫
|fn − f |dµ

)
Since g ∈ L1

R(Ω,F , µ),
∫

(2g)dµ ∈ R. From 4.:∫
(2g)dµ ≤

∫
(2g)dµ+ lim inf

n→+∞

(
−
∫
|fn − f |dµ

)
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Finally, using 3., we obtain:∫
(2g)dµ ≤

∫
(2g)dµ− lim sup

n→+∞

∫
|fn − f |dµ (21)

7. Since
∫

(2g)dµ ∈ R, inequality (21) can be simplified as:

0 ≤ − lim sup
n→+∞

∫
|fn − f |dµ

from which we conclude that lim sup
∫
|fn − f |dµ = 0.

8. It follows from 5. and 7. that
∫
|fn − f |dµ → 0, as n → +∞. The

purpose of this exercise is to prove theorem (23). Called the Dominated
Convergence Theorem, this theorem is one of the corner stones of the
Lebesgue integration theory, together with the Monotone Convergence
Theorem (19), and Fatou Lemma (20).

Exercise 24

Exercise 25.

1. Since f ∈ L1
C(Ω,F , µ) and α ∈ C, αf ∈ L1

C(Ω,F , µ). From exercise (21),
it follows that u = Re(αf) ∈ L1

R(Ω,F , µ).

2. We have u = Re(αf) ≤ |Re(αf)| ≤ |αf | = |f |.

3. We have |
∫
fdµ| = |z| = αz = α

∫
fdµ =

∫
(αf)dµ.

4. From 3.,
∫

(αf)dµ ∈ R. However, from exercise (21), we have:∫
(αf)dµ =

∫
Re(αf)dµ+ i

∫
Im(αf)dµ

It follows that
∫

(αf)dµ =
∫
Re(αf)dµ =

∫
udµ.

5. From 3. and 4., we have |
∫
fdµ| =

∫
udµ. However, from 2., we have

u ≤ |f |. From exercise (23) (5.),
∫
udµ ≤

∫
|f |dµ. Finally, we conclude

that |
∫
fdµ| ≤

∫
|f |dµ. This proves theorem (24).

Exercise 25
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