8. Jensen inequality

Definition 64 Let $a, b \in \overline{\mathbf{R}}$, with $a<b$. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be an \mathbf{R}-valued function. We say that ϕ is a convex function, if and only if, for all $x, y \in] a, b[$ and $t \in[0,1]$, we have:

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)
$$

Exercise 1. Let $a, b \in \overline{\mathbf{R}}$, with $a<b$. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be a map.

1. Show that $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ is convex, if and only if for all x_{1}, \ldots, x_{n} in $] a, b[$ and $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbf{R}^{+}with $\alpha_{1}+\ldots+\alpha_{n}=1, n \geq 1$, we have:

$$
\phi\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right) \leq \alpha_{1} \phi\left(x_{1}\right)+\ldots \alpha_{n} \phi\left(x_{n}\right)
$$

2. Show that $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, if and only if for all x, y, z with $a<$ $x<y<z<b$ we have:

$$
\phi(y) \leq \frac{z-y}{z-x} \phi(x)+\frac{y-x}{z-x} \phi(z)
$$

3. Show that $\phi:] a, b[\rightarrow \mathbf{R}$ is convex if and only if for all x, y, z with $a<x<$ $y<z<b$, we have:

$$
\frac{\phi(y)-\phi(x)}{y-x} \leq \frac{\phi(z)-\phi(y)}{z-y}
$$

4. Let $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ be convex. Let $\left.x_{0} \in\right] a, b\left[\right.$, and $\left.u, u^{\prime}, v, v^{\prime} \in\right] a, b[$ be such that $u<u^{\prime}<x_{0}<v<v^{\prime}$. Show that for all $\left.x \in\right] x_{0}, v[$:

$$
\frac{\phi\left(u^{\prime}\right)-\phi(u)}{u^{\prime}-u} \leq \frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \leq \frac{\phi\left(v^{\prime}\right)-\phi(v)}{v^{\prime}-v}
$$

and deduce that $\lim _{x \downarrow \downarrow x_{0}} \phi(x)=\phi\left(x_{0}\right)$
5. Show that if $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, then ϕ is continuous.
6. Define $\phi:[0,1] \rightarrow \mathbf{R}$ by $\phi(0)=1$ and $\phi(x)=0$ for all $x \in] 0,1]$. Show that $\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y), \forall x, y, t \in[0,1]$, but that ϕ fails to be continuous on $[0,1]$.

Definition 65 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is a compact topological space if and only if, for all family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω, such that $\Omega=\cup_{i \in I} V_{i}$, there exists a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I such that $\Omega=V_{i_{1}} \cup \ldots \cup V_{i_{n}}$.

In short, we say that (Ω, \mathcal{T}) is compact if and only if, from any open covering of Ω, one can extract a finite sub-covering.
Definition 66 Let (Ω, \mathcal{T}) be a topological space, and $K \subseteq \Omega$. We say that K is a compact subset of Ω, if and only if the induced topological space $\left(K, \mathcal{T}_{\mid K}\right)$ is a compact topological space.

Exercise 2. Let (Ω, \mathcal{T}) be a topological space.

1. Show that if (Ω, \mathcal{T}) is compact, it is a compact subset of itself.
2. Show that \emptyset is a compact subset of Ω.
3. Show that if $\Omega^{\prime} \subseteq \Omega$ and K is a compact subset of Ω^{\prime}, then K is also a compact subset of Ω.
4. Show that if $\left(V_{i}\right)_{i \in I}$ is a family of open sets in Ω such that $K \subseteq \cup_{i \in I} V_{i}$, then $K=\cup_{i \in I}\left(V_{i} \cap K\right)$ and $V_{i} \cap K$ is open in K for all $i \in I$.
5. Show that $K \subseteq \Omega$ is a compact subset of Ω, if and only if for any family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω such that $K \subseteq \cup_{i \in I} V_{i}$, there is a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I such that $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$.
6. Show that if (Ω, \mathcal{T}) is compact and K is closed in Ω, then K is a compact subset of Ω.

Exercise 3. Let $a, b \in \mathbf{R}, a<b$. Let $\left(V_{i}\right)_{i \in I}$ be a family of open sets in \mathbf{R} such that $[a, b] \subseteq \cup_{i \in I} V_{i}$. We define A as the set of all $x \in[a, b]$ such that $[a, x]$ can be covered by a finite number of V_{i} 's. Let $c=\sup A$.

1. Show that $a \in A$.
2. Show that there is $\epsilon>0$ such that $a+\epsilon \in A$.
3. Show that $a<c \leq b$.
4. Show the existence of $i_{0} \in I$ and $c^{\prime}, c^{\prime \prime}$ with $a<c^{\prime}<c<c^{\prime \prime}$, such that $\left.] c^{\prime}, c^{\prime \prime}\right] \subseteq V_{i_{0}}$.
5. Show that $\left[a, c^{\prime}\right]$ can be covered by a finite number of V_{i} 's.
6. Show that $\left[a, c^{\prime \prime}\right]$ can be covered by a finite number of V_{i} 's.
7. Show that $b \wedge c^{\prime \prime} \leq c$ and conclude that $c=b$.
8. Show that $[a, b]$ is a compact subset of \mathbf{R}.

Theorem 34 Let $a, b \in \mathbf{R}, a<b$. The closed interval $[a, b]$ is a compact subset of \mathbf{R}.

Definition 67 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is a Hausdorff topological space, if and only if for all $x, y \in \Omega$ with $x \neq y$, there exists open sets U and V in Ω, such that:

$$
x \in U, y \in V, U \cap V=\emptyset
$$

Exercise 4. Let (Ω, \mathcal{T}) be a topological space.

1. Show that if (Ω, \mathcal{T}) is Hausdorff and $\Omega^{\prime} \subseteq \Omega$, then the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is itself Hausdorff.
2. Show that if (Ω, \mathcal{T}) is metrizable, then it is Hausdorff.
3. Show that any subset of $\overline{\mathbf{R}}$ is Hausdorff.
4. Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of Hausdorff topological spaces. Show that the product topological space $\Pi_{i \in I} \Omega_{i}$ is Hausdorff.

Exercise 5. Let (Ω, \mathcal{T}) be a Hausdorff topological space. Let K be a compact subset of Ω and suppose there exists $y \in K^{c}$.

1. Show that for all $x \in K$, there are open sets V_{x}, W_{x} in Ω, such that $y \in V_{x}, x \in W_{x}$ and $V_{x} \cap W_{x}=\emptyset$.
2. Show that there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of K such that $K \subseteq W^{y}$ where $W^{y}=W_{x_{1}} \cup \ldots \cup W_{x_{n}}$.
3. Let $V^{y}=V_{x_{1}} \cap \ldots \cap V_{x_{n}}$. Show that V^{y} is open and $V^{y} \cap W^{y}=\emptyset$.
4. Show that $y \in V^{y} \subseteq K^{c}$.
5. Show that $K^{c}=\cup_{y \in K^{c}} V^{y}$
6. Show that K is closed in Ω.

Theorem 35 Let (Ω, \mathcal{T}) be a Hausdorff topological space. For all $K \subseteq \Omega$, if K is a compact subset, then it is closed.

Definition 68 Let (E, d) be a metric space. For all $A \subseteq E$, we call diameter of A with respect to d, the element of $\overline{\mathbf{R}}$ denoted $\delta(A)$, defined as $\delta(A)=\sup \{d(x, y): x, y \in A\}$, with the convention that $\delta(\emptyset)=-\infty$.

Definition 69 Let (E, d) be a metric space, and $A \subseteq E$. We say that A is bounded, if and only if $\delta(A)<+\infty$.

ExErcise 6 . Let (E, d) be a metric space. Let $A \subseteq E$.

1. Show that $\delta(A)=0$ if and only if $A=\{x\}$ for some $x \in E$.
2. Let $\phi: \mathbf{R} \rightarrow]-1,1$ [be an increasing homeomorphism. Define $d^{\prime \prime}(x, y)=$ $|x-y|$ and $d^{\prime}(x, y)=|\phi(x)-\phi(y)|$, for all $x, y \in \mathbf{R}$. Show that d^{\prime} is a metric on \mathbf{R} inducing the usual topology on \mathbf{R}. Show that \mathbf{R} is bounded with respect to d^{\prime} but not with respect to $d^{\prime \prime}$.
3. Show that if $K \subseteq E$ is a compact subset of E, for all $\epsilon>0$, there is a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of K such that:

$$
K \subseteq B\left(x_{1}, \epsilon\right) \cup \ldots \cup B\left(x_{n}, \epsilon\right)
$$

4. Show that any compact subset of any metrizable topological space (Ω, \mathcal{T}), is bounded with respect to any metric inducing the topology \mathcal{T}.

Exercise 7. Suppose K is a closed subset of \mathbf{R} which is bounded with respect to the usual metric on \mathbf{R}.

1. Show that there exists $M \in \mathbf{R}^{+}$such that $K \subseteq[-M, M]$.
2. Show that K is also closed in $[-M, M]$.
3. Show that K is a compact subset of $[-M, M]$.
4. Show that K is a compact subset of \mathbf{R}.
5. Show that any compact subset of \mathbf{R} is closed and bounded.
6. Show the following:

Theorem 36 A subset of \mathbf{R} is compact if and only if it is closed, and bounded with respect to the usual metric on \mathbf{R}.

Exercise 8 . Let (Ω, \mathcal{T}) and $\left(S, \mathcal{T}_{S}\right)$ be two topological spaces. Let $f:(\Omega, \mathcal{T}) \rightarrow$ $\left(S, \mathcal{T}_{S}\right)$ be a continuous map.

1. Show that if $\left(W_{i}\right)_{i \in I}$ is an open covering of $f(\Omega)$, then the family $\left(f^{-1}\left(W_{i}\right)\right)_{i \in I}$ is an open covering of Ω.
2. Show that if (Ω, \mathcal{T}) is a compact topological space, then $f(\Omega)$ is a compact subset of $\left(S, \mathcal{T}_{S}\right)$.

Exercise 9.

1. Show that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is a compact topological space.
2. Show that any compact subset of \mathbf{R} is a compact subset of $\overline{\mathbf{R}}$.
3. Show that a subset of $\overline{\mathbf{R}}$ is compact if and only if it is closed.
4. Let A be a non-empty subset of $\overline{\mathbf{R}}$, and let $\alpha=\sup A$. Show that if $\alpha \neq-\infty$, then for all $U \in \mathcal{T}_{\overline{\mathbf{R}}}$ with $\alpha \in U$, there exists $\beta \in \mathbf{R}$ with $\beta<\alpha$ and $] \beta, \alpha] \subseteq U$. Conclude that $\alpha \in \bar{A}$.
5. Show that if A is a non-empty closed subset of $\overline{\mathbf{R}}$, then we have $\sup A \in A$ and $\inf A \in A$.
6. Consider $A=\{x \in \mathbf{R}, \sin (x)=0\}$. Show that A is closed in \mathbf{R}, but that $\sup A \notin A$ and $\inf A \notin A$.
7. Show that if A is a non-empty, closed and bounded subset of \mathbf{R}, then $\sup A \in A$ and $\inf A \in A$.

Exercise 10. Let (Ω, \mathcal{T}) be a compact, non-empty topological space. Let f : $(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a continuous map.

1. Show that if $f(\Omega) \subseteq \mathbf{R}$, the continuity of f with respect to $\mathcal{T}_{\overline{\mathbf{R}}}$ is equivalent to the continuity of f with respect to $\mathcal{T}_{\mathbf{R}}$.
2. Show the following:

Theorem 37 Let $f:(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a continuous map, where (Ω, \mathcal{T}) is a non-empty topological space. Then, if (Ω, \mathcal{T}) is compact, f attains its maximum and minimum, i.e. there exist $x_{m}, x_{M} \in \Omega$, such that:

$$
f\left(x_{m}\right)=\inf _{x \in \Omega} f(x), f\left(x_{M}\right)=\sup _{x \in \Omega} f(x)
$$

Exercise 11. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$, and differentiable on $] a, b[$, with $f(a)=f(b)$.

1. Show that if $c \in] a, b\left[\right.$ and $f(c)=\sup _{x \in[a, b]} f(x)$, then $f^{\prime}(c)=0$.
2. Show the following:

Theorem 38 (Rolle) Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$, and differentiable on $] a, b[$, with $f(a)=f(b)$. Then, there exists $c \in] a, b[$ such that $f^{\prime}(c)=0$.

Exercise 12. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$ and differentiable on $] a, b[$. Define:

$$
h(x) \triangleq f(x)-(x-a) \frac{f(b)-f(a)}{b-a}
$$

1. Show that h is continuous on $[a, b]$ and differentiable on $] a, b[$.
2. Show the existence of $c \in] a, b[$ such that:

$$
f(b)-f(a)=(b-a) f^{\prime}(c)
$$

Exercise 13. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be a map. Let $n \geq 0$. We assume that f is of class C^{n} on $[a, b]$, and that $f^{(n+1)}$ exists on $] a, b[$. Define:

$$
h(x) \triangleq f(b)-f(x)-\sum_{k=1}^{n} \frac{(b-x)^{k}}{k!} f^{(k)}(x)-\alpha \frac{(b-x)^{n+1}}{(n+1)!}
$$

where α is chosen such that $h(a)=0$.

1. Show that h is continuous on $[a, b]$ and differentiable on $] a, b[$.
2. Show that for all $x \in] a, b[$:

$$
h^{\prime}(x)=\frac{(b-x)^{n}}{n!}\left(\alpha-f^{(n+1)}(x)\right)
$$

3. Prove the following:

Theorem 39 (Taylor-Lagrange) Let $a, b \in \mathbf{R}$, $a<b$, and $n \geq 0$. Let $f:[a, b] \rightarrow \mathbf{R}$ be a map of class C^{n} on $[a, b]$ such that $f^{(n+1)}$ exists on $] a, b[$. Then, there exists $c \in] a, b[$ such that:

$$
f(b)-f(a)=\sum_{k=1}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a)+\frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

ExERCISE 14. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be differentiable.

1. Show that if ϕ is convex, then for all $x, y \in] a, b[, x<y$, we have:

$$
\phi^{\prime}(x) \leq \phi^{\prime}(y)
$$

2. Show that if $x, y, z \in] a, b\left[\right.$ with $x<y<z$, there are $\left.c_{1}, c_{2} \in\right] a, b[$, with $c_{1}<c_{2}$ and:

$$
\begin{aligned}
\phi(y)-\phi(x) & =\phi^{\prime}\left(c_{1}\right)(y-x) \\
\phi(z)-\phi(y) & =\phi^{\prime}\left(c_{2}\right)(z-y)
\end{aligned}
$$

3. Show conversely that if ϕ^{\prime} is non-decreasing, then ϕ is convex.
4. Show that $x \rightarrow e^{x}$ is convex on \mathbf{R}.
5. Show that $x \rightarrow-\ln (x)$ is convex on $] 0,+\infty[$.

Definition 70 we say that a finite measure space (Ω, \mathcal{F}, P) is a probability space, if and only if $P(\Omega)=1$.

Definition 71 Let (Ω, \mathcal{F}, P) be a probability space, and (S, Σ) be a measurable space. We call random variable w.r. to (S, Σ), any measurable map X : $(\Omega, \mathcal{F}) \rightarrow(S, \Sigma)$.

Definition 72 Let (Ω, \mathcal{F}, P) be a probability space. Let X be a non-negative random variable, or an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, P)$. We call expectation of X, denoted $E[X]$, the integral:

$$
E[X] \triangleq \int_{\Omega} X d P
$$

Exercise 15. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be a convex map. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ be such that $\left.X(\Omega) \subseteq\right] a, b[$.

1. Show that $\phi \circ X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable.
2. Show that $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$, if and only if $E[|\phi \circ X|]<+\infty$.
3. Show that if $E[X]=a$, then $a \in \mathbf{R}$ and $X=a P$-a.s.
4. Show that if $E[X]=b$, then $b \in \mathbf{R}$ and $X=b P$-a.s.
5. Let $m=E[X]$. Show that $m \in] a, b[$.
6. Define:

$$
\beta \triangleq \sup _{x \in] a, m[} \frac{\phi(m)-\phi(x)}{m-x}
$$

Show that $\beta \in \mathbf{R}$ and that for all $z \in] m, b[$, we have:

$$
\beta \leq \frac{\phi(z)-\phi(m)}{z-m}
$$

7. Show that for all $x \in] a, b[$, we have $\phi(m)+\beta(x-m) \leq \phi(x)$.
8. Show that for all $\omega \in \Omega, \phi(m)+\beta(X(\omega)-m) \leq \phi(X(\omega))$.
9. Show that if $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ then $\phi(m) \leq E[\phi \circ X]$.

Theorem 40 (Jensen inequality) Let (Ω, \mathcal{F}, P) be a probability space. Let $a, b \in \overline{\mathbf{R}}, a<b$ and $\phi:] a, b[\rightarrow \mathbf{R}$ be a convex map. Suppose that $X \in$ $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$ is such that $\left.X(\Omega) \subseteq\right] a, b\left[\right.$ and such that $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$. Then:

$$
\phi(E[X]) \leq E[\phi \circ X]
$$

Solutions to Exercises

Exercise 1.

1. Let $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ be convex. Given $n \geq 1$, let H_{n} be the property that for all x_{1}, \ldots, x_{n} in $] a, b\left[\right.$, and $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbf{R}^{+}such that $\alpha_{1}+\ldots+\alpha_{n}=1$, we have:

$$
\begin{equation*}
\phi\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right) \leq \alpha_{1} \phi\left(x_{1}\right)+\ldots+\alpha_{n} \phi\left(x_{n}\right) \tag{1}
\end{equation*}
$$

H_{1} is obviously true. Since ϕ is convex, H_{2} is also true. Given $n \geq 3$, suppose that H_{n-1} has been proved. Let x_{1}, \ldots, x_{n} in $] a, b\left[\right.$ and $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbf{R}^{+}be such that $\alpha_{1}+\ldots+\alpha_{n}=1$. Define $t=\alpha_{1}+\ldots+\alpha_{n-1}$. If $t=0$, then $\alpha_{i}=0$ for all $i \in\{1, \ldots, n-1\}$, and $\alpha_{n}=1$. So (1) is clearly satisfied. Suppose $t \neq 0$. From our induction hypothesis H_{n-1}, we obtain:

$$
\phi\left(\left(\alpha_{1} x_{1}+\ldots+\alpha_{n-1} x_{n-1}\right) / t\right) \leq\left(\alpha_{1} \phi\left(x_{1}\right)+\ldots+\alpha_{n-1} \phi\left(x_{n-1}\right)\right) / t
$$

i.e. $t \phi(x) \leq \alpha_{1} \phi\left(x_{1}\right)+\ldots+\alpha_{n-1} \phi\left(x_{n-1}\right)$, where x has been defined as $x=\left(\alpha_{1} x_{1}+\ldots+\alpha_{n-1} x_{n-1}\right) / t$. Note that x is an element of $] a, b[$. Let $y=x_{n}$. Since by assumption, ϕ is convex and $t \in[0,1]$, we have:

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)
$$

and thus:

$$
\phi(t x+(1-t) y) \leq \alpha_{1} \phi\left(x_{1}\right)+\ldots+\alpha_{n-1} \phi\left(x_{n-1}\right)+(1-t) \phi(y)
$$

Since $1-t=\alpha_{n}$, we see that (1) is therefore satisfied, which proves that H_{n} is true. This induction argument shows that H_{n} is true for all $n \geq 1$, whenever ϕ is convex. Conversely, if H_{n} is true for all $n \geq 1$, then in particular H_{2} is true, and ϕ is immediately convex.
2. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be convex, and x, y, z with $a<x<y<z<b$. Let $t=(z-y) /(z-x)$. Then $t \in] 0,1[$ and $1-t=(y-x) /(z-x)$. Moreover, we have $y=t x+(1-t) z$. ϕ being convex, we obtain:

$$
\begin{equation*}
\phi(y) \leq \frac{z-y}{z-x} \phi(x)+\frac{y-x}{z-x} \phi(z) \tag{2}
\end{equation*}
$$

Conversely, suppose $\phi:] a, b[\rightarrow \mathbf{R}$ is a map such that (2) holds for all x, y, z with $a<x<y<z<b$. Let $x, z \in] a, b[$ and $t \in[0,1]$. Without loss of generality, we can assume that $x \leq z$. If $t=0, t=1$, or $x=z$, then we immediately have:

$$
\begin{equation*}
\phi(t x+(1-t) z) \leq t \phi(x)+(1-t) \phi(z) \tag{3}
\end{equation*}
$$

Assume that $x<z$ and $t \in] 0,1[$. Define $y=t x+(1-t) z$. Then, $x<y<z$. Moreover, it is easy to check that $(z-y) /(z-x)=t$ and $(y-x) /(z-x)=1-t$. From (2), we conclude that (3) is also satisfied. Hence, we see that ϕ is convex. We have proved that a map $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, if and only if inequality (2) holds, whenever $a<x<y<z<b$.
3. From the previous question, $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, if and only if for all x, y, z with $a<x<y<z<b$, we have:

$$
\phi(y) \leq \frac{z-y}{z-x} \phi(x)+\frac{y-x}{z-x} \phi(z)
$$

which is equivalent to:

$$
\begin{equation*}
\frac{\phi(y)-\phi(x)}{y-x} \leq \frac{\phi(z)-\phi(y)}{z-y} \tag{4}
\end{equation*}
$$

4. Let $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ be convex. Let $\left.x_{0} \in\right] a, b\left[\right.$ and $u, u^{\prime}, v, v^{\prime}$ in $] a, b[$ such that $u<u^{\prime}<x_{0}<v<v^{\prime}$. Let $\left.x \in\right] x_{0}, v[$. Using inequality (4), we obtain:

$$
\frac{\phi\left(u^{\prime}\right)-\phi(u)}{u^{\prime}-u} \leq \frac{\phi\left(x_{0}\right)-\phi\left(u^{\prime}\right)}{x_{0}-u^{\prime}} \leq \frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}}
$$

and furthermore:

$$
\frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \leq \frac{\phi(v)-\phi(x)}{v-x} \leq \frac{\phi\left(v^{\prime}\right)-\phi(v)}{v^{\prime}-v}
$$

So, in particular:

$$
\frac{\phi\left(u^{\prime}\right)-\phi(u)}{u^{\prime}-u} \leq \frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \leq \frac{\phi\left(v^{\prime}\right)-\phi(v)}{v^{\prime}-v}
$$

It follows that there exist $\alpha, \beta \in \mathbf{R}$, such that for all $x \in] x_{0}, v[$:

$$
\alpha\left(x-x_{0}\right) \leq \phi(x)-\phi\left(x_{0}\right) \leq \beta\left(x-x_{0}\right)
$$

We conclude that the right-hand limit, $\lim _{x \downarrow \downarrow x_{0}} \phi(x)$ exists, and is equal to $\phi\left(x_{0}\right)$.
5. Similarly to 4 ., for all $x \in] u^{\prime}, x_{0}$ [, we have:

$$
\frac{\phi\left(u^{\prime}\right)-\phi(u)}{u^{\prime}-u} \leq \frac{\phi\left(x_{0}\right)-\phi(x)}{x_{0}-x} \leq \frac{\phi\left(v^{\prime}\right)-\phi(v)}{v^{\prime}-v}
$$

So there exist $\alpha, \beta \in \mathbf{R}$, such that for all $x \in] u^{\prime}, x_{0}[$:

$$
\alpha\left(x_{0}-x\right) \leq \phi\left(x_{0}\right)-\phi(x) \leq \beta\left(x_{0}-x\right)
$$

We conclude that the left-hand limit, $\lim _{x \uparrow \uparrow x_{0}} \phi(x)$ exists, and is equal to $\phi\left(x_{0}\right)$. Finally, from:

$$
\lim _{x \downarrow \downarrow x_{0}} \phi(x)=\phi\left(x_{0}\right)=\lim _{x \uparrow \uparrow x_{0}} \phi(x)
$$

ϕ is continuous on x_{0}. This being true for all $\left.x_{0} \in\right] a, b[$, we have proved that $\phi:] a, b[\rightarrow \mathbf{R}$ is a continuous map.
6. Let $\phi:[0,1] \rightarrow \mathbf{R}$ be defined by $\phi(0)=1$, and $\phi(x)=0$ for all $x \in] 0,1]$. The fact that:

$$
\phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)
$$

for all $t, x, y \in[0,1]$, is clear. Yet, ϕ obviously fails to be continuous on $[0,1]$. The purpose of this question is to emphasize an important point: in definition (64), we have restricted a convex function to be defined on some open interval $] a, b[$ (it needs to be an interval, as $\phi(t x+(1-t) y)$ needs to be meaningful). If instead, we had allowed a convex function to be defined on some closed interval $[a, b]$, it would not necessarily be continuous.

Exercise 1

Exercise 2.

1. Let (Ω, \mathcal{T}) be a compact topological space. The induced topological space $\left(\Omega, \mathcal{T}_{\mid \Omega}\right)$ is nothing but (Ω, \mathcal{T}) itself. So $\left(\Omega, \mathcal{T}_{\mid \Omega}\right)$ is compact, and Ω is therefore a compact subset of itself.
2. The induced topology $\mathcal{T}_{\mid \emptyset}$ is defined by $\mathcal{T}_{\mid \emptyset}=\{A \cap \emptyset: A \in \mathcal{T}\}$. So $\mathcal{T}_{\mid \emptyset}=\{\emptyset\}$. The topological space $(\emptyset,\{\emptyset\})$ being compact, we see that \emptyset is a compact subset of Ω.
3. Let (Ω, \mathcal{T}) be a topological space and $\Omega^{\prime} \subseteq \Omega$. Let K be a compact subset of Ω^{\prime}. Then $K \subseteq \Omega^{\prime}$, and the topological space $\left(K,\left(\mathcal{T}_{\mid \Omega^{\prime}}\right)_{\mid K}\right)$ is compact. However, the induced topology $\left(\mathcal{T}_{\mid \Omega^{\prime}}\right)_{\mid K}$ coincide with the induced topology $\mathcal{T}_{\mid K}$. It follows that $\left(K, \mathcal{T}_{\mid K}\right)$ is a compact topological space, and K is therefore a compact subset of Ω.
4. Let $\left(V_{i}\right)_{i \in I}$ be a family of open sets in Ω, such that $K \subseteq \cup_{i \in I} V_{i}$. If $x \in K$, then $x \in V_{i} \cap K$ for some $i \in I$. Conversely, if $x \in V_{i} \cap K$ for some $i \in I$, then $x \in K$. So $K=\cup_{i \in I} V_{i} \cap K$. By definition (23) of the induced topology, each $V_{i} \cap K$ is an element of $\mathcal{T}_{\mid K}$, i.e. each $V_{i} \cap K$ is open in K.
5. Let (Ω, \mathcal{T}) be a topological space, and $K \subseteq \Omega$. Suppose K is a compact subset of Ω. Let $\left(V_{i}\right)_{i \in I}$ be a family of open sets in Ω, such that $K \subseteq$ $\cup_{i \in I} V_{i}$. From 4., $K=\cup_{i \in I} V_{i} \cap K$, and each $V_{i} \cap K$ is an open set in K. By assumption, the topological space $\left(K, \mathcal{T}_{\mid K}\right)$ is compact. From definition (65), it follows that there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I, such that:

$$
K=\left(V_{i_{1}} \cap K\right) \cup \ldots \cup\left(V_{i_{n}} \cap K\right)=\left(V_{i_{1}} \cup \ldots \cup V_{i_{n}}\right) \cap K
$$

In particular, $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. Conversely, suppose that $K \subseteq \Omega$ has the property that for any family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω, such that $K \subseteq \cup_{i \in I} V_{i}$, there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I such that $K \subseteq$ $V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. We claim that K is a compact subset of Ω. Indeed, let $\left(W_{i}\right)_{i \in I}$ be a family of open sets in K such that $K=\cup_{i \in I} W_{i}$. Since each W_{i} lies in $\mathcal{T}_{\mid K}$, for all $i \in I$, there exists $V_{i} \in \mathcal{T}$ such that $W_{i}=V_{i} \cap K$. So $K=\cup_{i \in I} V_{i} \cap K$, and in particular $K \subseteq \cup_{i \in I} V_{i}$. By assumption, there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I, such that $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$, and therefore $K=\left(V_{i_{1}} \cup \ldots \cup V_{i_{n}}\right) \cap K=W_{i_{1}} \cup \ldots \cup W_{i_{n}}$. From definition (65), we conclude that $\left(K, \mathcal{T}_{\mid K}\right)$ is compact, i.e. K is a compact subset of Ω.

We have proved that $K \subseteq \Omega$ is a compact subset of Ω, if and only if for any family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω such that $K \subseteq \cup_{i \in I} V_{i}$, there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I, such that $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$.
6. Let (Ω, \mathcal{T}) be a compact topological space. Let $K \subseteq \Omega$, and suppose that K is closed in Ω. Let $\left(V_{i}\right)_{i \in I}$ be a family of open sets in Ω, such that $K \subseteq \cup_{i \in I} V_{i}$. For all $x \in \Omega$, either $x \in K^{c}$ or $x \in V_{i}$ for some $i \in I$ (or both). So $\Omega=\left(\cup_{i \in I} V_{i}\right) \cup K^{c}$. Since K^{c} is assumed to be open in Ω, and (Ω, \mathcal{T}) is compact, from definition (65), there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I, such that $\Omega=V_{i_{1}} \cup \ldots \cup V_{i_{n}}$, or $\Omega=\left(V_{i_{1}} \cup \ldots \cup V_{i_{n}}\right) \cup K^{c}$. In any case, we have $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. Hence, given a family $\left(V_{i}\right)_{i \in I}$ of open sets in Ω, such that $K \subseteq \cup_{i \in I} V_{i}$, we have found a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I, such that $K \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. From 5., we conclude that K is a compact subset of Ω. We have proved that any closed subset of a compact topological space, is itself compact (is a compact subset of it).

Exercise 2

Exercise 3.

1. By assumption, $[a, b] \subseteq \cup_{i \in I} V_{i}$ and in particular, there exists $i \in I$ such that $a \in V_{i}$. So $\{a\}=[a, a]$ can be covered by a finite number of V_{i} 's. We have proved that $a \in A$.
2. Since $a \in V_{i}$ for some i, and V_{i} is open in \mathbf{R}, there exists $\epsilon>0$ such that $[a, a+\epsilon] \subseteq V_{i}$. Since $a<b$, by choosing ϵ small enough, we can ensure that $a+\epsilon \in[a, b]$. Hence, we have found $\epsilon>0$, such that $a+\epsilon \in[a, b]$, and $[a, a+\epsilon]$ is covered by a finite number of V_{i} 's. So we have found $\epsilon>0$, such that $a+\epsilon \in A$.
3. Since $c=\sup A, c$ is an upper-bound of A. From 2., there exists $\epsilon>0$, such that $a+\epsilon \in A$. So $a+\epsilon \leq c$ and in particular, $a<c$. By definition, A is a subset of $[a, b]$. So b is an upper-bound of $A . c$ being the smallest of such upper-bounds, we have $c \leq b$. We have proved that $a<c \leq b$.
4. From 3., $c \in] a, b] \subseteq \cup_{i \in I} V_{i}$. There exists $i_{0} \in I$ with $c \in V_{i_{0}}$. $V_{i_{0}}$ being open in \mathbf{R}, there exist $c^{\prime}, c^{\prime \prime}$ such that $c^{\prime}<c<c^{\prime \prime}$ and $\left.] c^{\prime}, c^{\prime \prime}\right] \subseteq V_{i_{0}}$. Moreover, since $a<c$, it is possible to choose c^{\prime} such that $a<c^{\prime}$. We have proved the existence of $i_{0} \in I$ and c^{\prime}, $c^{\prime \prime}$, with $a<c^{\prime}<c<c^{\prime \prime}$ and $\left.] c^{\prime}, c^{\prime \prime}\right] \subseteq V_{i_{0}}$.
5. Since $c^{\prime}<c$ and c is the smallest of all upper-bounds of A, c^{\prime} cannot be such upper-bound. There exists $x \in A$, such that $c^{\prime}<x$. Since $x \in A$, $[a, x]$ can be covered by a finite number of V_{i} 's. From $\left[a, c^{\prime}\right] \subseteq[a, x]$, we conclude that $\left[a, c^{\prime}\right]$ can also be covered by a finite number of V_{i} 's.
6. From $\left.\left.\left.\left.\left[a, c^{\prime \prime}\right]=\left[a, c^{\prime}\right] \cup\right] c^{\prime}, c^{\prime \prime}\right],\right] c^{\prime}, c^{\prime \prime}\right] \subseteq V_{i_{0}}$ and the fact that $\left[a, c^{\prime}\right]$ can be covered by a finite number of V_{i} 's, we conclude that $\left[a, c^{\prime \prime}\right]$ can also be covered by a finite number of V_{i} 's.
7. Since $\left[a, b \wedge c^{\prime \prime}\right] \subseteq\left[a, c^{\prime \prime}\right]$, it follows from 6 . that $\left[a, b \wedge c^{\prime \prime}\right]$ can be covered by a finite number of V_{i} 's. Moreover, since $b \wedge c^{\prime \prime} \in[a, b]$, we see that $b \wedge c^{\prime \prime} \in A$. Hence, we have $b \wedge c^{\prime \prime} \leq c$. We know from 3. that $c \leq b$. Suppose we had $c<b$. Since $c<c^{\prime \prime}$, this would imply that $c<b \wedge c^{\prime \prime}$, which is a contradiction. It follows that $b=c$.
8. From 7., we have $[a, b]=[a, c] \subseteq\left[a, c^{\prime \prime}\right]$. From 6 ., $\left[a, c^{\prime \prime}\right]$ can be covered by a finite number of V_{i} 's. It follows that $[a, b]$ can also be covered by a finite number of V_{i} 's. In other words, there exists a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I, such that $[a, b] \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. Having assumed that $[a, b] \subseteq \cup_{i \in I} V_{i}$, for an arbitrary family $\left(V_{i}\right)_{i \in I}$ of open sets in \mathbf{R}, we have shown the existence of a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I, such that $[a, b] \subseteq V_{i_{1}} \cup \ldots \cup V_{i_{n}}$. From exercise (2), we see that $[a, b]$ is a compact subset of \mathbf{R}.

Exercise 3

Exercise 4.

1. Let (Ω, \mathcal{T}) be a Hausdorff topological space, and $\Omega^{\prime} \subseteq \Omega$. Let $x, y \in \Omega^{\prime}$ with $x \neq y$. In particular, $x, y \in \Omega$ with $x \neq y$. Since (Ω, \mathcal{T}) is Hausdorff, there exist two open sets U, V in Ω, such that $x \in U, y \in V$ and $U \cap V=\emptyset$. Define $U^{\prime}=U \cap \Omega^{\prime}$ and $V^{\prime}=V \cap \Omega^{\prime}$. Then U^{\prime} and V^{\prime} are elements of the induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$ and furthermore, we have $x \in U^{\prime}, y \in V^{\prime}$ and $U^{\prime} \cap V^{\prime}=\emptyset$. Given two distinct elements x, y of Ω^{\prime}, we have found two disjoint open sets U^{\prime}, V^{\prime} in Ω^{\prime}, containing x and y respectively. This shows that the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ is Hausdorff.
2. Let (Ω, \mathcal{T}) be a metrizable topological space. Let d be a metric on Ω, inducing the topology \mathcal{T} on Ω. Let $x, y \in \Omega$ with $x \neq y$. Define $\epsilon=$ $d(x, y) / 2>0, U=B(x, \epsilon)$ and $V=B(y, \epsilon)$. Then, U, V are open sets in Ω, with $x \in U$ and $y \in V$. Furthermore, if $z \in B(x, \epsilon)$, then $d(x, z)<$ $d(x, y) / 2$ and consequently:

$$
d(x, y) \leq d(x, z)+d(z, y)<d(x, y) / 2+d(z, y)
$$

from which we see that $d(z, y)>d(x, y) / 2=\epsilon$. So $z \notin B(y, \epsilon)$, and we have proved that $U \cap V=\emptyset$. Given two distinct elements x, y of Ω, we have found two disjoint open sets U, V in Ω, containing x and y respectively. This shows that the metrizable topological space (Ω, \mathcal{T}) is Hausdorff.
3. From theorem (13), the topological space $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is metrizable. It follows from 2. that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is Hausdorff. From 1., any subset of $\overline{\mathbf{R}}$ (together with its induced topology) is a Hausdorff topological space.
4. Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of Hausdorff topological spaces. Let $\Omega=\Pi_{i \in I} \Omega_{i}$ and $\mathcal{T}=\odot_{i \in I} \mathcal{T}_{i}$ be the product topology on Ω [definition (56)]. Let $x, y \in \Omega$ with $x \neq y$. There exists $i_{0} \in I$ such that $x\left(i_{0}\right) \neq y\left(i_{0}\right)$. Since $\left(\Omega_{i_{0}}, \mathcal{T}_{i_{0}}\right)$ is Hausdorff, there exist $U_{i_{0}}, V_{i_{0}}$ open sets in $\Omega_{i_{0}}$, such that $x\left(i_{0}\right) \in U_{i_{0}}, y\left(i_{0}\right) \in V_{i_{0}}$ and $U_{i_{0}} \cap V_{i_{0}}=\emptyset$. Define $U=U_{i_{0}} \times \Pi_{i \in I \backslash\left\{i_{0}\right\}} \Omega_{i}$ and
$V=V_{i_{0}} \times \Pi_{i \in I \backslash\left\{i_{0}\right\}} \Omega_{i}$. Then $x \in U, y \in V$ and $U \cap V=\emptyset$. Furthermore, U and V are rectangles of the family of topologies $\left(\mathcal{T}_{i}\right)_{i \in I}$ [definition (52)], and therefore belong to the product topology $\odot_{i \in I} \mathcal{I}_{i}=\mathcal{T}$. Given two distinct elements x, y in Ω, we have found two disjoint open sets U, V in Ω, containing x and y respectively. This shows that the product topological space (Ω, \mathcal{T}) is Hausdorff.

Exercise 4

Exercise 5.

1. Let $x \in K$. Since by assumption, $y \in K^{c}$, we have $x \neq y$. The topological space (Ω, \mathcal{T}) being Hausdorff, there exist open sets V_{x} and W_{x} in Ω, such that $y \in V_{x}, x \in W_{x}$ and $V_{x} \cap W_{x}=\emptyset$.
2. For all $x \in K$, we have $x \in W_{x}$. In particular, $K \subseteq \cup_{x \in K} W_{x}$. K being a compact subset of Ω, and $\left(W_{x}\right)_{x \in K}$ being a family of open sets in Ω, there exists $\left\{x_{1}, \ldots, x_{n}\right\}$ finite subset of K, such that $K \subseteq W_{x_{1}} \cup \ldots \cup W_{x_{n}}$, i.e. $K \subseteq W^{y}=W_{x_{1}} \cup \ldots \cup W_{x_{n}}$.
3. Let $V^{y}=V_{x_{1}} \cap \ldots \cap V_{x_{n}}$. All V_{x} 's being open in Ω, V^{y} is a finite intersection of open sets in Ω, and is therefore open in Ω. Suppose that $x \in V^{y} \cap W^{y}$. Then, there exists $i \in\{1, \ldots, n\}$ such that $x \in W_{x_{i}}$. Since $V^{y} \subseteq V_{x_{i}}$, we see that $x \in W_{x_{i}} \cap V_{x_{i}}$, which contradicts that fact that $W_{x_{i}} \cap V_{x_{i}}=\emptyset$. It follows that $V^{y} \cap W^{y}=\emptyset$.
4. By construction, $y \in V_{x_{i}}$ for all $i \in\{1, \ldots, n\}$. It follows that $y \in V_{x_{1}} \cap$ $\ldots \cap V_{x_{n}}=V^{y}$. Furthermore from 2., $K \subseteq W^{y}$ and from 3., $V^{y} \cap W^{y}=\emptyset$. It follows that for all $x \in V^{y}, x \notin K$. So $V^{y} \subseteq K^{c}$. We have proved that $y \in V^{y} \subseteq K^{c}$.
5. So far, for all $y \in K^{c}$, we have shown the existence of an open set V^{y} in Ω, such that $y \in V^{y} \subseteq K^{c}$. It is clear that $\cup_{y \in K^{c}} V^{y} \subseteq K^{c}$. Conversely, for all $y \in K^{c}$, we have $y \in V^{y}$. So $K^{c} \subseteq \cup_{y \in K^{c}} V^{y}$. We have proved that $K^{c}=\cup_{y \in K^{c}} V^{y}$.
6. From 5 ., K^{c} is a union of open sets in Ω, and is therefore open in Ω. We conclude that K is a closed subset of Ω. The purpose of this exercise is to prove theorem (35).

Exercise 5

Exercise 6.

1. Suppose $A=\{x\}$ for some $x \in E$. Then $\delta(A)=\sup \{0\}=0$. Conversely, suppose $\delta(A)=0$. Then $A \neq \emptyset$, since otherwise we would have $\delta(A)=$ $-\infty$. Suppose A had two distinct elements x and y, We would have $0<d(x, y) \leq \delta(A)$, contradicting the assumption that $\delta(A)=0$. It follows that A has only one element. We have proved that $\delta(A)=0$, if and only if $A=\{x\}$ for some $x \in E$.
2. let $\phi: \mathbf{R} \rightarrow]-1,1$ [be an increasing homeomorphism. Let $d^{\prime}(x, y)=$ $|\phi(x)-\phi(y)|$. Since ϕ is injective, $d^{\prime}(x, y)=0$ is equivalent to $x=y$. So d^{\prime} is clearly a metric on \mathbf{R}. Let A be open for the usual topology on \mathbf{R}, i.e. $A \in \mathcal{T}_{\mathbf{R}} . \phi$ being a homeomorphism, ϕ^{-1} is continuous, and therefore $\phi(A)$ is open in $]-1,1$. It follows that $\phi(A)$ is also open in \mathbf{R}. Let $x \in A$. Then $\phi(x) \in \phi(A)$, and there exists $\epsilon>0$ such that $|\phi(x)-z|<\epsilon \Rightarrow z \in \phi(A)$. Let $y \in \mathbf{R}$ be such that $d^{\prime}(x, y)<\epsilon$. Then $|\phi(x)-\phi(y)|<\epsilon$ and therefore $\phi(y) \in \phi(A) . \phi$ being injective, we see that $y \in A$. We have found $\epsilon>0$, such that $d^{\prime}(x, y)<\epsilon \Rightarrow y \in A$. This shows that A is open with respect to the metric topology induced by d^{\prime}, i.e. $A \in \mathcal{T}_{d^{\prime}}$. This being true for all $A \in \mathcal{T}_{\mathbf{R}}$, we have $\mathcal{T}_{\mathbf{R}} \subseteq \mathcal{T}_{d^{\prime}}$. Conversely, let $A \in \mathcal{T}_{d^{\prime}}$. Let $x \in A$. There exists $\epsilon>0$, such that $d^{\prime}(x, y)<\epsilon \Rightarrow y \in A$. However, ϕ being continuous, there exists $\eta>0$, such that $|x-y|<\eta \Rightarrow d^{\prime}(x, y)<\epsilon$. Hence, we see that $|x-y|<\eta \Rightarrow y \in A$. This shows that A is open with respect to the usual topology on \mathbf{R}, i.e. $A \in \mathcal{T}_{\mathbf{R}}$. This being true for all $A \in \mathcal{T}_{d^{\prime}}$, we have $\mathcal{T}_{d^{\prime}} \subseteq \mathcal{T}_{\mathbf{R}}$, and finally $\mathcal{I}_{d^{\prime}}=\mathcal{T}_{\mathbf{R}}$. We conclude that the metric d^{\prime} induces the usual topology on \mathbf{R}. Let $\delta^{\prime}(\mathbf{R})$ be the diameter of \mathbf{R} with respect to the metric d^{\prime}. For all $x, y \in \mathbf{R}$, we have $d^{\prime}(x, y) \leq 2$. It follows that $\delta^{\prime}(\mathbf{R}) \leq 2$ and in particular $\delta^{\prime}(\mathbf{R})<+\infty$. So \mathbf{R} is bounded with respect to the metric d^{\prime}. However, if $d^{\prime \prime}$ denotes the usual metric on \mathbf{R}, and $\delta^{\prime \prime}(\mathbf{R})$ the diameter of \mathbf{R} with respect to $d^{\prime \prime}$, then it is clear that $\delta^{\prime \prime}(\mathbf{R})=+\infty$. So \mathbf{R} is not bounded with respect to the usual metric on \mathbf{R}.
3. Let K be a compact subset of E. Let $\epsilon>0$. We clearly have $K \subseteq$ $\cup_{x \in K} B(x, \epsilon)$. The family $(B(x, \epsilon))_{x \in K}$ being a family of open sets in E, from exercise (2), there exists $\left\{x_{1}, \ldots, x_{n}\right\}$ finite subset of K, such that $K \subseteq B\left(x_{1}, \epsilon\right) \cup \ldots \cup B\left(x_{n}, \epsilon\right)$.
4. Let (Ω, \mathcal{T}) be a metrizable topological space. Let d be an arbitrary metric inducing the topology \mathcal{T}. Let K be a compact subset of Ω. Taking $\epsilon=1$ in 3., there exists $\left\{x_{1}, \ldots, x_{n}\right\}$ finite subset of K, such that $K \subseteq B\left(x_{1}, 1\right) \cup$ $\ldots \cup B\left(x_{n}, 1\right)$. Let $x, y \in K$. There exists $i, j \in\{1, \ldots, n\}$ such that $x \in B\left(x_{i}, 1\right)$ and $y \in B\left(x_{j}, 1\right)$. It follows that:

$$
d(x, y) \leq d\left(x, x_{i}\right)+d\left(x_{i}, x_{j}\right)+d\left(x_{j}, y\right) \leq 2+M
$$

where $M=\max _{i, j} d\left(x_{i}, x_{j}\right)$. Hence, we see that $\delta(K) \leq 2+M$, where $\delta(K)$ is the diameter of K with respect to the metric d. In particular, $\delta(K)<+\infty$, and K is bounded with respect to the metric d. This is true for all d inducing \mathcal{T}.

Exercise 6

Exercise 7.

1. Since K is bounded with respect to the usual metric on \mathbf{R}, we have $\delta(K)<$ $+\infty$. If $K=\emptyset$, then $K \subseteq[-M, M]$ for any $M \in \mathbf{R}^{+}$. Suppose $K \neq \emptyset$. Then $\delta(K) \in \mathbf{R}^{+}$, and for all $x, y \in K$, we have $|x-y| \leq \delta(K)$. Let
$y_{0} \in K$. For all $x \in K$, we have $|x| \leq \delta(K)+\left|y_{0}\right|$. So $K \subseteq[-M, M]$, with $M=\delta(K)+\left|y_{0}\right|$.
2. Let K^{\prime} denote the complement of K in $[-M, M]$. We have $K^{\prime}=[-M, M] \cap$ K^{c}, where K^{c} is the complement of K in \mathbf{R}. Since by assumption K is closed in \mathbf{R}, K^{c} is open in \mathbf{R}. It follows that $[-M, M] \cap K^{c}$ is open with respect to the induced topology on $[-M, M]$. So K^{\prime} is open in $[-M, M]$, and we conclude that K is closed in $[-M, M]$.
3. From theorem (34), $[-M, M]$ is a compact subset of \mathbf{R}. From $2 ., K$ is a closed subset of $[-M, M]$. From exercise (2)[6.], we conclude that K is a compact subset of $[-M, M]$.
4. From 3., K is a compact subset of $[-M, M]$. It follows from exercise (2)[3.], that K is also a compact subset of \mathbf{R}. We have proved that any closed and bounded subset of \mathbf{R}, is also a compact subset of \mathbf{R}.
5. Let K be a compact subset of \mathbf{R}. Since $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$ is Hausdorff, from theorem (35), K is a closed subset of \mathbf{R}. Moreover, from exercise (6), K is bounded with respect to any metric inducing the usual topology on \mathbf{R}. In particular, it is bounded with respect to the usual metric on \mathbf{R}. We have proved that any compact subset of \mathbf{R} is closed and bounded.
6. From 4., any subset of \mathbf{R} which is closed and bounded, is compact. Conversely, from 5., any compact subset of \mathbf{R} is closed and bounded. This proves theorem (36).

Exercise 8.

1. Let $\left(W_{i}\right)_{i \in I}$ be an open covering of $f(\Omega)$. For all $i \in I, W_{i}$ is open, and $f(\Omega) \subseteq \cup_{i \in I} W_{i}$. Let $x \in \Omega$. Then $f(x) \in f(\Omega)$. There exists $i \in I$, such that $f(x) \in W_{i}$, i.e. $x \in f^{-1}\left(W_{i}\right)$. It follows that $\Omega \subseteq \cup_{i \in I} f^{-1}\left(W_{i}\right)$. Moreover, f being continuous and W_{i} open, each $f^{-1}\left(W_{i}\right)$ is open in Ω. We have proved that $\left(f^{-1}\left(W_{i}\right)\right)_{i \in I}$ is an open covering of Ω.
2. Let $f:(\Omega, \mathcal{T}) \rightarrow\left(S, \mathcal{T}_{S}\right)$ be a continuous map, where (Ω, \mathcal{T}) is a compact topological space. Let $\left(W_{i}\right)_{i \in I}$ be a family of open sets in S, such that $f(\Omega) \subseteq \cup_{i \in I} W_{i}$. From 1., $\left(f^{-1}\left(W_{i}\right)\right)_{i \in I}$ is a family of open sets in Ω, such that $\Omega \subseteq \cup_{i \in I} f^{-1}\left(W_{i}\right) .(\Omega, \mathcal{T})$ being compact, there exists $\left\{i_{1}, \ldots, i_{n}\right\}$ finite subset of I, such that $\Omega \subseteq f^{-1}\left(W_{i_{1}}\right) \cup \ldots \cup f^{-1}\left(W_{i_{n}}\right)$. Let $y \in f(\Omega)$. There exists $x \in \Omega$, such that $y=f(x)$. There exists $k \in\{1, \ldots, n\}$, such that $x \in f^{-1}\left(W_{i_{k}}\right)$, i.e. $f(x) \in W_{i_{k}}$. So $y \in W_{i_{k}}$. We have proved that $f(\Omega) \subseteq W_{i_{1}} \cup \ldots \cup W_{i_{n}}$. Given an arbitrary family $\left(W_{i}\right)_{i \in I}$ of open sets, such that $f(\Omega) \subseteq \cup_{i \in I} W_{i}$, we have found a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I, such that $f(\Omega) \subseteq W_{i_{1}} \cup \ldots \cup W_{i_{n}}$. This shows that $f(\Omega)$ is a compact subset of $\left(S, \mathcal{T}_{S}\right)$.

Exercise 9

1. By construction, the topological space $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is homeomorphic to $[-1,1]$ [definition (34)]. In particular, there exists a continuous map $h:[-1,1] \rightarrow$ \mathbf{R}. From theorem (34), the topological space $[-1,1]$ is compact. From exercise (8), we conclude that $\overline{\mathbf{R}}=h([-1,1])$ is a compact subset of $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$. In other words, $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is a compact topological space.
2. Let K be a compact subset of \mathbf{R}. The usual topology $\mathcal{T}_{\mathbf{R}}$ on \mathbf{R}, is nothing but the topology induced on \mathbf{R}, by the usual topology on $\overline{\mathbf{R}}$, i.e. $\mathcal{T}_{\mathbf{R}}=$ $\left(\mathcal{T}_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R}}$. From exercise (2)[3.], we conclude that K is also a compact subset of $\overline{\mathbf{R}}$.
3. Let K be a compact subset of $\overline{\mathbf{R}}$. Since $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is metrizable, it is a Hausdorff topological space. It follows from theorem (35) that K is closed in $\overline{\mathbf{R}}$. Conversely, suppose K is a closed subset of $\overline{\mathbf{R}}$. From 1 ., $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ is compact. We conclude from exercise (2)[6.], that K is a compact subset of $\overline{\mathbf{R}}$.
4. Let A be a non-empty subset of $\overline{\mathbf{R}}$, and $\alpha=\sup A$. We assume that $\alpha \neq-\infty$ (i.e. A is not reduced to $\{-\infty\}$). Let $U \in \mathcal{T}_{\overline{\mathbf{R}}}$ with $\alpha \in U$. Let $h: \overline{\mathbf{R}} \rightarrow[-1,1]$ be an increasing homeomorphism. Then, $h(U)$ is open in $[-1,1]$, and $h(\alpha) \in h(U)$. Since $\alpha \neq-\infty$, we have $h(\alpha) \neq-1$. There exists $\epsilon>0$, such that we have $] h(\alpha)-\epsilon, h(\alpha)] \subseteq h(U)$, together with $-1<h(\alpha)-\epsilon$. It follows that $] \beta, \alpha] \subseteq U$, where $\beta=h^{-1}(h(\alpha)-\epsilon) \in \mathbf{R}$. Let \bar{A} be the closure of A in $\overline{\mathbf{R}}$ [definition 37]. If $\alpha=-\infty$, since $A \neq \emptyset$, we have $A=\{-\infty\}$. So $\alpha \in A \subseteq \bar{A}$. Suppose that $\alpha \neq-\infty$. We claim that $\alpha \in \bar{A}$. Let $U \in \mathcal{T}_{\overline{\mathbf{R}}}$ be such that $\alpha \in U$. As shown above, there exists $\beta<\alpha, \beta \in \mathbf{R}$, such that $] \beta, \alpha] \subseteq U$. α being the supremum of A, its is the smallest of all upper-bounds of A. Hence, β cannot be such upper-bound, and there exists $c \in A$ such that $c \in] \beta, \alpha] \subseteq U$. Hence, we see that $A \cap U \neq \emptyset$. This being true for all open sets U in $\overline{\mathbf{R}}$ containing α, we have proved that $\alpha \in \bar{A}$. We conclude that for any non-empty subset A of $\overline{\mathbf{R}}$, we have $\alpha=\sup A \in \bar{A}$.
5. Let A be a non-empty closed subset of $\overline{\mathbf{R}}$. From 4., we have $\sup A \in \bar{A}$, and similarly $\inf A \in \bar{A} . A$ being closed in $\overline{\mathbf{R}}$, it coincides with its closure in $\overline{\mathbf{R}}$, i.e. $A=\bar{A}$. So $\sup A \in A$ and $\inf A \in A$. Any non-empty closed subset of $\overline{\mathbf{R}}$ contains its supremum and infimum.
6. Let $A=\{x \in \mathbf{R}: \sin x=0\}$. The map 'sin' being continuous, $A=$ $\sin ^{-1}(\{0\})$ is a closed subset of \mathbf{R}. However, $\inf A=-\infty$ and $\sup A=$ $+\infty$, and consequently, A does not contain its supremum or infimum. In 5., we showed that any non-empty closed subset of $\overline{\mathbf{R}}$ contains its supremum and infimum. This property does not hold for non-empty closed subset of \mathbf{R}. Indeed, \mathbf{R} itself is a closed subset of itself, and does not contain its supremum or infimum. [Note that \mathbf{R} is not closed in $\overline{\mathbf{R}}$].
7. Let A be a non-empty closed and bounded subset of \mathbf{R}. From theorem (36), A is a non-empty compact subset of \mathbf{R}. It follows that it is also a non-empty compact of subset of $\overline{\mathbf{R}}$, and consequently from theorem (35), it is a non-empty closed subset of $\overline{\mathbf{R}}$. We conclude from 5 . that A contains its supremum and infimum, i.e. $\sup A \in A$ and $\inf A \in A$.

Exercise 9

Exercise 10.

1. Let $f:(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a map with $f(\Omega) \subseteq \mathbf{R}$. Suppose f is continuous with respect to $\mathcal{T}_{\mathbf{R}}$. Let U be open in $\overline{\mathbf{R}}$. Then $U \cap \mathbf{R}$ is open in \mathbf{R}, and therefore $f^{-1}(U)=f^{-1}(U \cap \mathbf{R}) \in \mathcal{T}$. So f is continuous with respect to $\mathcal{T}_{\overline{\mathbf{R}}}$. Conversely, suppose f is continuous with respect to $\mathcal{T}_{\overline{\mathbf{R}}}$. Let $V \in \mathcal{T}_{\mathbf{R}}$. There exists $U \in \mathcal{T}_{\overline{\mathbf{R}}}$, such that $V=U \cap \mathbf{R}$. So $f^{-1}(V)=f^{-1}(U) \in \mathcal{T}$. So f is continuous with respect to $\mathcal{T}_{\mathbf{R}}$. We have proved that whenever $f(\Omega) \subseteq \mathbf{R}$, the continuity with respect to $\mathcal{T}_{\mathbf{R}}$ and $\mathcal{T}_{\overline{\mathbf{R}}}$ are equivalent.
2. Let $f:(\Omega, \mathcal{T}) \rightarrow\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ be a continuous map, where (Ω, \mathcal{T}) is a nonempty compact topological space. From exercise (8), $f(\Omega)$ is a non-empty compact subset of $\overline{\mathbf{R}}$. In particular, from theorem (35), it is a non-empty closed subset of $\overline{\mathbf{R}}$. From exercise (9)[5.], we conclude that $f(\Omega)$ contains its supremum and infimum, i.e. sup $f(\Omega) \in f(\Omega)$ and $\inf f(\Omega) \in f(\Omega)$. In other words, there exist x_{m} and x_{M} in Ω, such that;

$$
f\left(x_{m}\right)=\inf _{x \in \Omega} f(x), f\left(x_{M}\right)=\sup _{x \in \Omega} f(x)
$$

This proves theorem (37).
Exercise 10

Exercise 11.

1. Suppose $c \in] a, b\left[\right.$ and $f(c)=\sup f([a, b])$. By assumption, $f^{\prime}(x)$ exists for all $x \in] a, b\left[\right.$. So in particular, $f^{\prime}(c)$ is well defined. For all $x \in[a, b]$, we have $f(x) \leq f(c)$. Hence, for all $x \in] c, b]$, we have $(f(x)-f(c)) /(x-c) \leq 0$. Taking the limit as $x \rightarrow c, c<x$, we obtain $f^{\prime}(c) \leq 0$. Moreover, for all $x \in[a, c[$, we have $(f(c)-f(x)) /(c-x) \geq 0$. Taking the limit as $x \rightarrow c$, $x<c$, we obtain $f^{\prime}(c) \geq 0$. We conclude that $f^{\prime}(c)=0$.
2. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous on $[a, b]$, differentiable on $] a, b[$, with $f(a)=f(b)$. From theorem (34), $[a, b]$ is a compact subset of R. f being continuous, from theorem (37), it attains its maximum and minimum on $[a, b]$. Suppose $\sup f([a, b])=\inf f([a, b])$. Then f is constant on $[a, b]$, and $f^{\prime}(c)=0$ for all $\left.c \in\right] a, b[$. Suppose that we have $\sup f([a, b]) \neq \inf f([a, b])$. Then $\sup f([a, b])$ and $\inf f([a, b])$ cannot both be equal to $f(a)=f(b)$. Changing f into $-f$ if necessary, without loss of generality we can assume that $\sup f([a, b]) \neq f(a)$. Let $c \in[a, b]$ be such that $f(c)=\sup f([a, b])$. Then $f(c) \neq f(a)$ and $f(c) \neq f(b)$. So in fact, we have $c \in] a, b\left[\right.$. Since $f(c)=\sup _{x \in[a, b]} f(x)$, from 1., we conclude that
$f^{\prime}(c)=0$. We have proved the existence of $\left.c \in\right] a, b\left[\right.$, such that $f^{\prime}(c)=0$. This proves theorem (38).

Exercise 11

Exercise 12.

1. h is of the form $h=f+\alpha p$, where $\alpha \in \mathbf{R}$, and p is a polynomial. Since f is continuous on $[a, b]$ and differentiable on $] a, b[$, the same is true of h.
2. We have $h(a)=f(a)$ and $h(b)=f(a)$. So $h(a)=h(b)$, and we can apply Rolle's theorem (38). There exists $c \in] a, b\left[\right.$ such that $h^{\prime}(c)=0$. Since for all $x \in[a, b]$, we have:

$$
h(x)=f(x)-(x-a) \frac{f(b)-f(a)}{b-a}
$$

we have found $c \in] a, b[$, such that:

$$
f(b)-f(a)=(b-a) f^{\prime}(c)
$$

Exercise 13.

1. f is continuous on $[a, b]$, and f^{\prime} exists on $] a, b\left[\right.$. Since f is of class C^{n}, each $f^{(k)}$ is well defined and continuous on $[a, b]$, for all $k \in\{1, \ldots, n\}$. Moreover, each $f^{(k)}$ is differentiable on $[a, b]$, and in particular on $] a, b[$, for all $k \in\{1, \ldots, n-1\}$. In fact, since $f^{(n+1)}$ exist on $] a, b\left[\right.$, each $f^{(k)}$ is differentiable on $] a, b[$ for all $k \in\{1, \ldots, n\}$. We conclude that h is continuous on $[a, b]$, and differentiable on $] a, b[$.
2. For all $k \in\{1, \ldots, n\}$, we have:

$$
\left[(b-x)^{k} f^{(k)}\right]^{\prime}=-k(b-x)^{k-1} f^{(k)}+(b-x)^{k} f^{(k+1)}
$$

Therefore, if we define:

$$
g(x)=\sum_{k=1}^{n} \frac{(b-x)^{k}}{k!} f^{(k)}(x)
$$

we have:

$$
\begin{aligned}
g^{\prime}(x) & =-\sum_{k=1}^{n} \frac{(b-x)^{k-1}}{(k-1)!} f^{(k)}(x)+\sum_{k=1}^{n} \frac{(b-x)^{k}}{k!} f^{(k+1)}(x) \\
& =-\sum_{k=0}^{n-1} \frac{(b-x)^{k}}{k!} f^{(k+1)}(x)+\sum_{k=1}^{n} \frac{(b-x)^{k}}{k!} f^{(k+1)}(x) \\
& =-f^{\prime}(x)+\frac{(b-x)^{n}}{n!} f^{(n+1)}(x)
\end{aligned}
$$

and from:

$$
h(x)=f(b)-f(x)-g(x)-\alpha \frac{(b-x)^{n+1}}{(n+1)!}
$$

we conclude that:

$$
\begin{aligned}
h^{\prime}(x) & =-f^{\prime}(x)+f^{\prime}(x)-\frac{(b-x)^{n}}{n!} f^{(n+1)}(x)+\alpha \frac{(b-x)^{n}}{n!} \\
& =\frac{(b-x)^{n}}{n!}\left(\alpha-f^{(n+1)}(x)\right)
\end{aligned}
$$

3. h is continuous on $[a, b]$, and differentiable on $] a, b[$. Moreover, $h(b)=0=$ $h(a)$. From theorem (38), there exists $c \in] a, b\left[\right.$, such that $h^{\prime}(c)=0$. Hence, from 2., there exists $c \in] a, b\left[\right.$ such that $f^{(n+1)}(c)=\alpha$. From $h(a)=0$, we have:

$$
\begin{equation*}
f(b)-f(a)=\sum_{k=1}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a)+\frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c) \tag{5}
\end{equation*}
$$

Given $a, b \in \mathbf{R}, a<b$ and $n \geq 0$, given $f:[a, b] \rightarrow \mathbf{R}$ of class C^{n} on $[a, b]$, such that $f^{(n+1)}$ exists on $] a, b[$, we have found $c \in] a, b[$ such that equation (5) holds. This proves theorem (39).

Exercise 13

Exercise 14.

1. Let $\phi:] a, b[\rightarrow \mathbf{R}$ be convex and differentiable. Let $x, y \in] a, b[, x<y$. For all $\left.z, z^{\prime} \in\right] x, y\left[\right.$ such that $z<z^{\prime}$, from exercise (1), we have:

$$
\frac{\phi(z)-\phi(x)}{z-x} \leq \frac{\phi\left(z^{\prime}\right)-\phi(z)}{z^{\prime}-z} \leq \frac{\phi(y)-\phi\left(z^{\prime}\right)}{y-z^{\prime}}
$$

z^{\prime} being fixed, taking the limit as $z \downarrow \downarrow x$, we obtain:

$$
\phi^{\prime}(x) \leq \frac{\phi(y)-\phi\left(z^{\prime}\right)}{y-z^{\prime}}
$$

and finally, taking the limit as $z^{\prime} \uparrow \uparrow y, \phi^{\prime}(x) \leq \phi^{\prime}(y)$. We have proved that if a convex function is differentiable, its derivative is non-decreasing.
2. Let $x, y, z \in] a, b[$ with $x<y<z$. Since f is differentiable on $] a, b[$, in particular, it is continuous on $[x, y]$ and differentiable on $] x, y[$. From exercise (12), there exists $\left.c_{1} \in\right] x, y[$ such that;

$$
\begin{equation*}
\phi(y)-\phi(x)=\phi^{\prime}\left(c_{1}\right)(y-x) \tag{6}
\end{equation*}
$$

Similarly, there exists $\left.c_{2} \in\right] y, z[$, such that:

$$
\begin{equation*}
\phi(z)-\phi(y)=\phi^{\prime}\left(c_{2}\right)(z-y) \tag{7}
\end{equation*}
$$

From $x<y<x$, we conclude that $c_{1}<c_{2}$.
3. Let $\phi:] a, b\left[\rightarrow \mathbf{R}\right.$ be differentiable, and such that ϕ^{\prime} is non-decreasing. Let $x, y, z \in] a, b\left[\right.$ be such that $x<y<z$. From 2., there exist $\left.c_{1}, c_{2} \in\right] a, b[$,
$c_{1}<c_{2}$, such that equations (6) and (7) are satisfied. ϕ^{\prime} being nondecreasing, we have $\phi^{\prime}\left(c_{1}\right) \leq \phi^{\prime}\left(c_{2}\right)$. We conclude from (6) and (7) that:

$$
\frac{\phi(y)-\phi(x)}{y-x} \leq \frac{\phi(z)-\phi(y)}{z-y}
$$

From exercise (1), it follows that ϕ is convex. We have proved that a differentiable map on $] a, b[$, with non-decreasing derivative is convex.
4. $x \rightarrow e^{x}$ is differentiable on \mathbf{R}, with non-decreasing derivative. It is therefore convex.
5. $x \rightarrow-\ln (x)$ is differentiable on $] 0,+\infty[$, with non-decreasing derivative. It is therefore convex.

Exercise 14

Exercise 15.

1. Since $\phi:] a, b[\rightarrow \mathbf{R}$ is convex, from exercise (1), it is continuous. It follows that $\phi:(] a, b[, \mathcal{B}(] a, b[)) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable. Since $X \in$ $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$, the map $X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable. In fact, since $X(\Omega) \subseteq] a, b[$, it is also true that $X:(\Omega, \mathcal{F}) \rightarrow(] a, b[, \mathcal{B}(] a, b[))$ is measurable. We conclude that $\phi \circ X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable.
2. Since from 1., $\phi \circ X$ is measurable and \mathbf{R}-valued, it is an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$, if and only if:

$$
E[|\phi \circ X|] \triangleq \int|\phi \circ X| d P<+\infty
$$

3. Suppose $E[X]=a$. Since by assumption, $X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P), E[X] \in \mathbf{R}$. So $a \in \mathbf{R}$. Since $X(\Omega) \subseteq] a, b[$, in particular $X \geq a$. So $X-a \geq 0$ and $\int(X-a) d P=0$. From exercise (7) [6.] of Tutorial 5, we conclude that $X=a P$-a.s., which contradicts $X(\Omega) \subseteq] a, b[$.
4. Suppose $E[X]=b$. Since by assumption, $X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P), E[X] \in \mathbf{R}$. So $b \in \mathbf{R}$. Since $X(\Omega) \subseteq] a, b[$, in particular $X \leq b$. So $b-X \geq 0$ and $\int(b-X) d P=0$. From exercise (7) [6.] of Tutorial 5 , we conclude that $X=b P$-a.s., which contradicts $X(\Omega) \subseteq] a, b[$.
5. Let $m=E[X]$. Since $X(\Omega) \subseteq] a, b[$, we have $a<X<b$. It follows that $a \leq m \leq b$. From 3. and 4., $m=a$ or $m=b$ leads to a contradiction. We conclude that $m \in] a, b[$.
6. We define:

$$
\beta \triangleq \sup _{x \in] a, m[} \frac{\phi(m)-\phi(x)}{m-x}
$$

Since $a<m,] a, m[\neq \emptyset$ and $\beta \neq-\infty$. Let $z \in] m, b[$. Since ϕ is convex, from exercise (1), for all $x \in] a, m[$, we have:

$$
\frac{\phi(m)-\phi(x)}{m-x} \leq \frac{\phi(z)-\phi(m)}{z-m}
$$

It follows that:

$$
\beta \leq \frac{\phi(z)-\phi(m)}{z-m}
$$

In particular, $\beta<+\infty$ and finally $\beta \in \mathbf{R}$.
7. Let $x \in] a, b[$. If $x \in] a, m[$, then by definition of β, we have:

$$
\frac{\phi(m)-\phi(x)}{m-x} \leq \beta
$$

and consequently:

$$
\begin{equation*}
\phi(m)+\beta(x-m) \leq \phi(x) \tag{8}
\end{equation*}
$$

If $x \in] m, b[$, then from 6 ., we have:

$$
\beta \leq \frac{\phi(x)-\phi(m)}{x-m}
$$

and consequently, inequality (8) still holds. We conclude that inequality (8) holds for all $x \in] a, b[$.
8. For all $\omega \in \Omega, X(\omega) \in] a, b[$. From 7., we obtain:

$$
\begin{equation*}
\phi(m)+\beta(X(\omega)-m) \leq \phi(X(\omega)) \tag{9}
\end{equation*}
$$

9. If $\phi \circ X \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, P)$, then $E[\phi \circ X]$ is meaningful. Taking expectations on both sides of (9), we obtain:

$$
\phi(m)+\beta(E[X]-m) \leq E[\phi \circ X]
$$

and since $m=E[X]$, we conclude that $\phi(m) \leq E[\phi \circ X]$. This proves theorem (40).

