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4. Measurability

Definition 25 Let A and B be two sets, and f : A — B be a map. Given
A’ C A, we call direct image of A’ by f the set denoted f(A’), and defined by

fA) ={f(z) : we A}

Definition 26 Let A and B be two sets, and f : A — B be a map. Given
B’ C B, we call inverse image of B’ by f the set denoted f~(B'), and defined
by fA(B)Y={x : z€ A, f(x) € B'}.

EXERCISE 1. Let A and B be two sets, and f : A — B be a bijection from A to
B. Let A’ C A and B’ C B.
1. Explain why the notation f~!(B’) is potentially ambiguous.

2. Show that the inverse image of B’ by f is in fact equal to the direct image
of B by f~L

3. Show that the direct image of A’ by f is in fact equal to the inverse image
of A by f~1.
Definition 27 Let (Q,7) and (S,7s) be two topological spaces. A map [ :
Q — S is said to be continuous if and only if:
VBeTs, fYB)eT

In other words, if and only if the inverse image of any open set in S is an open
set in €.

We Write f: (Q,7) — (S,7s) is continuous, as a way of emphasizing the two
topologies 7 and 7g with respect to which f is continuous.

Definition 28 Let E be a set. A map d: E x E — [0,+00[ is said to be a
metric on E, if and only if:

(7) Ve,ye E , dlz,y) =0 & z=y
(i) Ve,y € B, d(z,y) = d(y, )
(i) Ve e B, dwy) < d@2) +d(zy)

Definition 29 A metric space is an ordered pair (E,d) where E is a set,
and d is a metric on E.

Definition 30 Let (E,d) be a metric space. For all x € E and € > 0, we
define the so-called open ball in E:

Ba,) S {y : ye E, dz,y) <}
We call metric topology on E, associated with d, the topology T2 defined by:

TLEUCE NVzeUJe>0,B(z,e) CU
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EXERCISE 2. Let 72 be the metric topology associated with d, where (E,d) is
a metric space.

1. Show that 7,2 is indeed a topology on E.

2. Given z € F and € > 0, show that B(x,¢) is an open set in E.

EXERCISE 3. Show that the usual topology on R is nothing but the metric
topology associated with d(z,y) = |z — y].

EXERCISE 4. Let (F,d) and (F,) be two metric spaces. Show that a map
f+ E — F is continuous, if and only if for all z € E and ¢ > 0, there exists
1 > 0 such that for all y € E:

dz,y) <n = (f(z),fly) <e

Definition 31 Let (Q2,7) and (S,7s) be two topological spaces. A map f :
Q — S is said to be a homeomorphism, if and only if f is a continuous
bijection, such that f~' is also continuous.

Definition 32 A topological space (Q,T) is said to be metrizable, if and only
if there exists a metric d on 2, such that the associated metric topology coincides
with T, d.e. T¢ =T.

Definition 33 Let (E,d) be a metric space and F C E. We call induced
metric on F, denoted d|r, the restriction of the metric d to F' x F', i.e. djp =

d|F><F-

EXERCISE 5. Let (F,d) be a metric space and F C E. We define Tp = (T4)|r

as the topology on F' induced by the metric topology on E. Let 7/, = T}f " be

the metric topology on F' associated with the induced metric djp on F'.
1. Show that Tr C T;.

2. Given A € T}, show that A = (UyeaB(z,€;))NF for some ¢, >0, x € A,
where B(z, €, ) denotes the open ball in E.

3. Show that 7/, C Tp.

Theorem 12 Let (E,d) be a metric space and F C E. Then, the topology on

F induced by the metric topology, is equal to the metric topology on F associated
with the induced metric, i.e. (TF)p = ’ng‘p,

EXERCISE 6. Let ¢ : R —] — 1,1 be the map defined by:
A X
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1. Show that [—1,0[ is not open in R.

2. Show that [—1,0] is open in [—1,1].

3. Show that ¢ is a homeomorphism between R and | — 1, 1].

4. Show that lim, 400 ¢(x) = 1 and lim,—, o ¢(x) = —1.
EXERCISE 7. Let R = [—00,+00] = RU {—00,400}. Let ¢ be defined as in
exercise (6), and ¢ : R — [—1, 1] be the map defined by:

B p(r) if zeR
o(x) = 1 if z=+c0
-1 if z=-x

Define:
T £ {UCR, ¢(U) isopen in [—1,1]}

1. Show that ¢ is a bijection from R to [~1,1], and let 1) = ¢~ L.
Show that 7g is a topology on R.

Show that ¢ is a homeomorphism between R and [—1,1].

= W N

Show that [—oo,2[, ]3,+00], |3, +oc[ are open in R.

5. Show that if ¢/ : R — [~
is open, if and only if ¢’

1] is an arbitrary homeomorphism, then U C R
) is open in [—1, 1].

1,
(
Definition 34 The usual topology on R is defined as:

Ta 2 {UCR, ¢(U) is open in [—1,1]}
where ¢ : R — [—1,1] is defined by ¢(—o00) = —1, ¢(+00) = 1 and:

VvzeR |, o(x)

EXERCISE 8. Let ¢ and ¢ be as in exercise (7). Define:
T2 (TR)r 2{UNR, U e Ty}

1. Recall why 77 is a topology on R.

N

Show that for all U C R, ¢(UNR) = ¢(U)N] — 1, 1][.
Explain why if U € T, ¢(U NR) is open in | — 1, 1].

Show that 7' C Tg, (the usual topology on R).

Let U € 7Tr. Show that ¢(U) is open in | — 1,1[ and [-1, 1].

S v W

Show that 7g C T
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7.

8.

Show that 7g = 77, i.e. that the usual topology on R induces the usual
topology on R.

Show that B(R) = B(I_{)|R ={BNR, BeBR)}

EXERCISE 9. Let d : R x R — [0, +00[ be defined by:

Ve, y) ERxR , d(z,y) = |¢(x) — d(y)|

where ¢ is an arbitrary homeomorphism from R to [—1,1].

1.
2.
3.

Show that d is a metric on R.

Show that if U € Tg, then ¢(U) is open in [—1,1]

Show that for all U € Tz and y € ¢(U), there exists ¢ > 0 such that:
Vze[-1,1], |z—y|<e = z€¢U)

Show that 75 C Tl—g.

Show that for all U € TI% and x € U, there is € > 0 such that:
VyeR, |p(z) —d(y)| <e = yeU

Show that for all U € T¢, ¢(U) is open in [—1,1].

Show that ng CTx

Prove the following theorem.

Theorem 13 The topological space (R, Tg) is metrizable.

Definition 35 Let (Q,F) and (S,%) be two measurable spaces. A map f :
Q — S is said to be measurable with respect to F and %, if and only if:

VBeXx, ffY(B)eF

We Write f: (Q,F) — (S,X) is measurable, as a way of emphasizing the two
o-algebras F and X with respect to which f is measurable.

EXERCISE 10. Let (©,F) and (5, X) be two measurable spaces. Let S’ be a set
and f: Q — S be a map such that f(2) C S’ C 5. We define ¥’ as the trace of
Yon S ie ¥ =X,

1.

2.

Show that for all B € ¥, we have f~1(B) = f~4(BnS’)

Show that f: (2, F) — (S,X) is measurable, if and only if f : (Q,F) —
(8',%) is itself measurable.
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3. Let f: Q — R™. Show that the following are equivalent:
(1) f:(Q,F) — (RT,B(R")) is measurable
(i%) f:(QF)— (R,B(R)) is measurable
(13) f:(Q,F) — (R,B(R)) is measurable

EXERCISE 11. Let (2, F), (S,%), (S1,%1) be three measurable spaces. let f :
(Q,F) — (5,%) and g : (S,%) — (S1,%1) be two measurable maps.

1. For all B C Sy, show that (go f)"Y(B) = f~(¢7*(B))

2. Show that go f: (Q,F) — (S1,%1) is measurable.

EXERCISE 12. Let (2, F) and (S, X) be two measurable spaces. Let f: Q — S
be a map. We define:

r2{Beyx, fY(B)erF
1. Show that f=1(S) = Q.
2. Show that for all B C S, f~%(B¢) = (f~1(B))".
3. Show that if B,, € S,n > 1, then f~1(U! > B,) = U/ f~1(B,)
4. Show that I' is a o-algebra on S.

5. Prove the following theorem.

Theorem 14 Let (2, F) and (S,X) be two measurable spaces, and A be a set
of subsets of S generating ¥, i.e. such that ¥ = o(A). Then f: (Q,F) — (5,%)
1s measurable, if and only if:

VBeA , fYBeF

EXERCISE 13. Let (©,7) and (S, 7s) be two topological spaces. Let f: Q — S
be a map. Show that if f: (Q,7) — (S, 7s) is continuous, then f : (2, B(Q)) —
(S,B(S)) is measurable.

EXERCISE 14. We define the following subsets of the power set P(R):

¢ 2 {[-,d,ceR}
C; 2 {[~o0,c[, ceR}
Cs = {le,+o0] , c€ R}
Cy 2 {Je, +x] , ce R}

1. Show that Co and Cy4 are subsets of Tg.

2. Show that the elements of C; and Cs are closed in R.
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3. Show that for all i = 1,2,3,4, 0(C;) € B(R).
4. Let U be open in R. Explain why U N R is open in R.

5. Show that any open subset of R is a countable union of open bounded
intervals in R.

6. Let a < b, a,b € R. Show that we have:
+oo +oo

]avb[: U]avb_l/n]: U[a+1/nvb[

n=1 n=1
7. Show that for all i = 1,2, 3,4, ]a, b[€ o(C;).
8. Show that for all i = 1,2,3,4, {{—o0}, {+o0}} C o(C;).
9. Show that for all i = 1,2,3,4, 0(C;) = B(R)

10. Prove the following theorem.

Theorem 15 Let (2, F) be a measurable space, and f : 2 — R be a map. The
following are equivalent:
(1) f:(Q,F) — (R,B(R)) is measurable
(i) VBeBR), {feB}eF
(iii) VYeeR, {f<cleF
(iv) VeeR, {f<c}eF
)
)

~

(v VeeR, {c< f}eF
(vi VeeR, {c< f}eF

EXERCISE 15. Let (§2, F) be a measurable space. Let (f,)n>1 be a sequence of
measurable maps f,, : (2, F) — (R, B(R)). Let g and h be the maps defined by
g(w) =inf,>1 fr(w) and h(w) = sup,,>; fa(w), for all w € Q.

1. Let ¢ € R. Show that {¢ < g} =ni>{c < f.}.
2. Let ¢ € R. Show that {h < c} =N {f. < ).
3. Show that g,h: (Q,F) — (R, B(R)) are measurable.

Definition 36 Let (v,,)n,>1 be a sequence in R. We define:

u = lim inf v, = sup <inf vk>

n—o0 n>1 \k2n
and:

AL A
w = limsup v, = inf | sup vy
n— 400 n>1 \g>n

Then, u,w € R are respectively called lower limit and upper limit of the
sequence (Vy)p>1-
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EXERCISE 16. Let (v,)n,>1 be a sequence in R. for n > 1 we define u,, =
infy>p v, and w,, = SUDj >, Vk- Let u and w be the lower limit and upper limit
of (vn)n>1, respectively.

1. Show that u, < upy1 <u, for all n > 1.
. Show that w < wy 1 < wy, for all n > 1.
. Show that u,, — v and w,, — w as n — +o0.

2
3
4. Show that u, < v, < w,, for all n > 1.
5. Show that u < w.

6

. Show that if u = w then (v,),>1 converges to a limit v € R, with u =
v = w.

7. Show that if a,b € R are such that u < a < b < w then for all n > 1,
there exist N1, No > n such that vy, <a < b < wvp,.

8. Show that if a,b € R are such that v < a < b < w then there exist two
strictly increasing sequences of integers (ny)r>1 and (my)r>1 such that
for all £ > 1, we have v,, <a <b < vp,.

9. Show that if (vy,),>1 converges to some v € R, then u = w.

Theorem 16 Let (v,),>1 be a sequence in R. Then, the following are equiv-
alent:

(7) lim inf v,, = limsup v,
n—-+oo n—-+oo

(i) lim v, exists in R.
n—-+o0o

in which case:

lim v, = liminf v, = limsupwv,
n—-+00 n—-+00 n—-+o0o

EXERCISE 17. Let f,g : (Q,F) — (R,B(R)) be two measurable maps, where
(Q, F) is a measurable space.
1. Show that {f < g} = Ure({f <7} N {r <g}).

2. Show that the sets {f < g}, {f > g},{f =9}, {f < g}, {f > g} belong to
the o-algebra F.

EXERCISE 18. Let (£, F) be a measurable space. Let (f.)n>1 be a sequence
of measurable maps f, : (2, F) — (R,B(R)). We define g = liminf f,, and
h = limsup f, in the obvious way:

Yw e Q, g(w) 2 liminf frn(w)

n—-—+00

Yw e Q, h(w) = lim sup f,, (w)

n—-+o0o
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orok W

. Show that g, h: (Q,F) — (R, B(R)) are measurable.

Show that g < h, ie. Vw € Q , g(w) < h(w).
Show that {g =h} € F.
Show that {w:w € Q, lim, ;oo fn(w) exists in R} € F.

Suppose = {g = h}, and let f(w) = lim,— 400 frn(w), for all w € Q.
Show that f: (2, F) — (R, B(R)) is measurable.

EXERCISE 19. Let f,g : (Q,F) — (R,B(R)) be two measurable maps, where
(Q, F) is a measurable space.

1.

10.

11.

Show that —f,[f|, f* = max(f,0) and f~ = max(—f,0) are measurable
with respect to F and B(R).

. Let a € R. Explain why the map a + f may not be well defined.

Show that (a + f) : (2, F) — (R, B(R)) is measurable, whenever a € R.

Show that (a.f) : (2, F) — (R, B(R)) is measurable, for alla € R. (Recall
the convention 0.00 = 0).

Explain why the map f + g may not be well defined.

Suppose that f > 0 and g > 0, i.e. f(2) C [0,+00] and also g(2) C
[0, +00]. Show that {f + g < c} ={f <c—g}, for all c € R. Show that
f+g:(QF)— (R,B(R)) is measurable.

Show that f + g : (Q,F) — (R,B(R)) is measurable whenever f + g is
well-defined, i.e. when the following condition holds:

({f =400} N{g=—oc}) U({f = —00} N {g = +00}) =¥

Show that 1/f : (Q,F) — (R,B(R)) is measurable, in the case when
f(@) SR\ {0}

Suppose that f is R-valued. Show that f defined by f(w) = f(w) if
f(w) # 0 and f(w) =1if f(w) = 0, is measurable with respect to F and
B(R).

Suppose f and g take values in R. Let f be defined as in 9. Show that for
all ¢ € R, the set {fg < ¢} can be expressed as:

{f>0n{g<e/fHuf<0in{g>c/fHo({f=01n{f<c})

Show that fg: (Q,F) — (R, B(R)) is measurable, in the case when f and
g take values in R.
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EXERCISE 20. Let f,g : (2, F) — (R,B(R)) be two measurable maps, where

(Q, F) is a measurable space. Let f, g, be defined by:

oo flw) if fw) ¢ {—o0,+oo}
f(W)—{ 1 if  f(w) e {—o0, 400}

g(w) being defined in a similar way. Consider the partitions of Q, Q = A; ¥
AsWAs WAL W A5 and Q = By W By W B3 W By W By, where Ay = {f E]O, +OO[},
Ay = {f €] —00,0[}, A3 = {f =0}, Ay = {f =—oc}, 45 = {f = +oo} and
Bi1, By, B3, By, Bs being defined in a similar way with g. Recall the conventions
0 % (+00) =0, (—o0) X (+00) = (—00), etc. ..

1. Show that f and g are measurable with respect to F and B(R)).
2. Show that all A;’s and B;’s are elements of F.

3. Show that for all B € B(R):

{fge B}y = [ (AinB;n{fg € B})

4,J=1

4. Show that A; N B; N {fg € B} = A;N B; N {fg € B}, in the case when
1<i<3and1<j<S3.

5. Show that A; N B; N{fg € B} is either equal to () or A; N B;, in the case
when ¢ > 4 or j > 4.

6. Show that fg: (Q,F) — (R,B(R)) is measurable.
Definition 37 Let (2, 7) be a topological space, and A C Q. We call closure
of A in Q, denoted A, the set defined by:
A2{2eQ :2eUecT=UNAAD}

EXERCISE 21. Let (E,7) be a topological space, and A C E. Let A be the
closure of A.

1. Show that A C A and that A is closed.

2. Show that if B is closed and A C B, then A C B.

3. Show that A is the smallest closed set in E containing A.
4. Show that A is closed if and only if A = A.

5. Show that if (F,7) is metrizable, then:
A={x€E : Ve>0, B(z,e)NA#0}

where B(z,€) is relative to any metric d such that 74 = 7.
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EXERCISE 22. Let (E,d) be a metric space. Let A C E. For all x € E, we
define:

d(z, A) 2 inf{d(z,y) : ye A} 2 D)
where it is understood that inf ) = +oc.

1. Show that for all z € E, d(x, A) = d(z, A).
2. Show that d(z, A) = 0, if and only if » € A.
3. Show that for all z,y € E, d(z, A) < d(x,y) + d(y, A).
4. Show that if A # 0, |d(z, A) — d(y, A)| < d(z,y).
5. Show that ® 4 : (E,7%) — (R, 7g) is continuous.
6. Show that if A is closed, then A = &, ({0})
EXERCISE 23. Let (2, F) be a measurable space. Let (f,)n>1 be a sequence of

measurable maps f,, : (2, F) — (E,B(E)), where (E,d) is a metric space. We
assume that for all w € €, the sequence (fy, (w)),>1 converges to some f(w) € E.

1. Explain why liminf f,, and lim sup f,, may not be defined in an arbitrary
metric space F.

2. Show that f : (Q, F) — (E,B(E)) is measurable, if and only if f~!(A) € F
for all closed subsets A of E.

3. Show that for all A closed in E, f~'(A) = (®4 o f)"'({0}), where the
map P4 : E — R is defined as in exercise (22).

4. Show that ®4 o f,, : (,F) — (R, B(R)) is measurable.

5. Show that f: (Q,F) — (E,B(E)) is measurable.
Theorem 17 Let (2, F) be a measurable space. Let (fn)n>1 be a sequence of
measurable maps fp, : (Q,F) — (E,B(E)), where (E,d) is a metric space. Then,

if the limit f = lim f,, exists on , the map [ : (Q,F) — (E,B(E)) is itself
measurable.

Definition 38 The usual topology on C, the set of complex numbers, is
defined as the metric topology associated with d(z,z") = |z — 2'|.

EXERCISE 24. Let f: (Q,F) — (C,B(C)) be a measurable map, where (£, F)
is a measurable space. Let u = Re(f) and v = Im(f). Show that u,v,|f] :
(Q,F) — (R, B(R)) are all measurable.

EXERCISE 25. Define the subset of the power set P(C):
C 2 {la,b[x]e,d[ , a,b,c,d € R}
where it is understood that:

Ja,b[x]e,d[2 {z =z +iy € C, (x,y) €la,b[x]c, d[}
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1. Show that any element of C is open in C.
2. Show that o(C) C B(C).

3. Let z = o 4+ iy € C. Show that if || < n and |y| < n then we have

2| < V2.

4. Let U be open in C. Show that for all z € U, there are rational numbers
az,by, ¢y, d, such that z €la,, b,[x]c,,d.[C U.

5. Show that U can be written as U = U:i’iAn where A, € C.
6. Show that o(C) = B(C).

7. Let (2, F) be a measurable space, and u,v : (Q2,F) — (R, B(R)) be two
measurable maps. Show that u +iv : (Q,F) — (C, B(C)) is measurable.
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Solutions to Exercises

Exercise 1.

1. f : A — B being a bijection, the notation f~! by itself is meaningful.
From definition (26), f~!(B’) denotes the inverse image of B’ by f. How-
ever, from definition (25), f~*(B’) also denotes the direct image of B’ by
f~t So f~1(B’) is ambiguous.

2. Let f~1(B’) denote the inverse image of B’ by f. Let g = f~! and g(B’)
be the direct image of B’ by g. Let 2 € f~'(B’). Then x € A and
f(z) € B'. Let y = f(x). Then = = g(y) with y € B’. It follows that
x € g(B'), and f~1(B’) C g(B’). Conversely, let z € g(B’). There exists
y € B’ such that © = ¢g(y) € A. Hence, f(z) = y € B’, and we see
that z € f~1(B’). It follows that g(B’) C f~1(B’). We have proved that

f7HB) = g(B).

3. Let g = f~'. Then f = g~!, and applying 2. to g, we have g~ 1(A") =
f(A"), where g~1(A’) denotes an inverse image.

Exercise 1
Exercise 2.

1. Any statement of the form Vz € §),..., is true. Hence, ) € Tg. It is
clear that E € 74, and (i) of definition (13) is satisfied for 72. Let
A,B € T8, and x € AN B. Since z € A € T, there exists ¢ > 0 such
that B(x,e1) € A. Similarly, there exist ez > 0 such that B(z,e2) C B.
Let € = min(ey,e2). Then € > 0 and B(z,e) C AN B. It follows that
ANB € T and (ii) of definition (13) is satisfied for 7,¢. Let (A;)icr
be a family of elements of 74, and x € U;erA;. There exists i € I, such
that z € A;. Since A; € TZ, there exists € > 0 such that B(z,e) C A;.
In particular, B(z,e) C UjerA;. It follows that U;erA; € T2, and (iii)
of definition (13) is satisfied for 72. Having checked (i), (ii) and (i) of
definition (13), we conclude that 72 is indeed a topology on E.

2. Let y € B(x,€). Then d(z,y) < e. Let n = ¢ — d(z,y). Then n > 0, and
for all z € B(y,n), from (iii) of definition (28):
d(z,z) < d(z,y) + d(y,z) < d(z,y) +n=¢

It follows that B(y,n) C B(w,€), and we have proved that B(z,¢) € TZ.
In other words, the open ball B(x,€) is an open set in E, with respect to
the metric topology on FE.

Exercise 2

Exercise 3. If £ = R and d(z,y) = |z — y|, then for all z € R and € > 0, we
have B(x,¢) =]z — €, 2+ ¢[. Comparing definition (17) for the usual topology on
R, with definition (30), it appears that the usual topology on R, 7gr, is nothing
but the metric topology 7¢.
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Exercise 3

Exercise 4. Let P be the property that for all z € E and € > 0, there exists
1 > 0 such that for all y € E:

dz,y) <n = o(f(2), f(y) <e

Suppose that property P is true. Let B € ’T}é be an open set in F, and = €
f~YB). Then f(z) € B. Since B € T}, from definition (30) there exists ¢ > 0
such that B(f(x),e) C B. However, from property P, there exists n > 0, such
that:

yeBxn) = [y eB(f(z)e
It follows that if y € B(x,n), then f(y) € B, i.e. y € f~Y(B). Hence, B(x,n) C
f~Y(B). We have proved that f~%(B) is an open set in E, i.e. f~1(B) € T4.
This being true for all B € 7}, from definition (27) we conclude that f : B — F
is continuous.
Conversely, suppose that f is continuous. Let z € E and € > 0. From exer-
cise (2), the open ball B(f(x),€) is an open set in F. Since f is continuous,
it follows that f~!(B(f(z),€)) is an open set in F, which furthermore contains
x. There exists n > 0, such that B(z,n) C f~*(B(f(x),€)). In other words, if
y € B(x,n), then f(y) € B(f(x),¢), or equivalently:

dz,y) <n = o(f(2), f(y) <e

It follows that property P is true. We have proved that property P is equivalent
to f: E — F being continuous.
Exercise 4

Exercise 5.

1. Let A € 7p. From definition (23) of an induced topology, there exists
B € T2, such that A = BN F. Let € A. Then in particular = € B
and from definition (30), there exists € > 0 such that B(x,€) C B, where
B(z,€) is the open ball in E:

B(z,e) 2 {y € E : d(x,y) < ¢}
If B’(z,€) denotes the open ball in F:

B'(x,¢) 2 {ye F: dpp(x,y) <e}
then from d| (2, y) = d(z,y) for all (z,y) € F?, we conclude that B (z,€) =
B(z,e) N F, for all © € F. Hence, we see that B'(x,e) C BNF = A. It
follows that A € Tﬁ " = T}. We have proved that Tp C 7.

2. Let A € T/. By definition (30), for all © € A, there exists €, > 0 such
that B'(x,e;) C A, where B’(z,¢e,) is the open ball in F. However,
for all z € F, B'(z,e,) = B(x,e;) N F, where B(x,¢€;) is the open ball
in E. It follows that + € B(z,e;) N F C A for all x € A. Finally,
A= (UgeaB(z,e;)) N F.
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3. A topology being closed under arbitrary union, and an open ball being
open for the metric topology, it follows from 2. that any A € 7/. can be
expressed as A = B N F,where B is open for the metric topology on E,
i.e. B € Tg. Hence, any A € T}, belongs to (T2),r = Tr. We have proved
that 7, C 7p. The purpose of this exercise is to prove theorem (12).
Given any subset F' of a metric space (E,d), the topology on F' induced
by the metric topology on E is a very natural topology for F. However,
(F,d|p) being itself a metric space, the corresponding metric topology is
also a very natural topology for F. Fortunately, theorem (12) states that
these two topologies do in fact coincide.

Exercise b
Exercise 6.

1. If [-1, 0] was open in R, there would exist ¢ > 0 such that | —1—¢, —14¢[C
[—1,0[. This is obviously not the case.

2. [-1,0[=] — 2,0[N[-1,1]. Since | — 2,0[ is open in R, [—1,0[ is of the form
[-1,0[= An[-1,1] with A € Tg. [-1,0[ is therefore an element of the
induced topology on [—1,1]. In other words, [—1,0[ is an open set in
[_L 1]

3. Let ¢ :]—1,1[— R be defined by ¢ (y) = y/(1—1y|). It is easy to check that
od(x)=xforallz € R, and po)(y) =y for all y €] — 1,1][. It follows
that ¢ is a bijection and ¢~ = 1. The fact that ¢ and 1) are continuous,
may be regarded as an obvious point. However, if one wants to prove
it from principles contained in these tutorials, the following argument
can be used: from exercise (3), the usual topology on R is in fact the
metric topology associated with d(x,y) = |« —y|. From theorem (12), the
induced topology on ] — 1, 1] is also the metric topology associated with
d(z,y) = |z — y|. Consequently, the two topologies being metric, we can
prove the continuity of ¢ and v using exercise (4). For x > 0 and y > 0,

we have: | |
r—y
— =7 |- 1
) = 6] = T3 < ko =] o
and: . y
- 7 <
[6(@) + W)l = T + 7, Sl tl
and since ¢(—x) = —@(x) for all @ € R, it is easy to check that equa-

tion (1) actually holds for all z,y € R. The continuity of ¢ is therefore
an immediate consequence of exercise (4). Let z €] —1,1[ and € > 0 be
given. For all y €] — 1, 1], we have:

z—y a(lz] = |y|)
() = (y)l = +
L=yl (== =y
Using the fact that ||z| — |y|| < |z — y| and |z| < 1, we obtain:

B 7 — | = — |
[P(x) —P(y)| < =Ty + (1= [z (1 =|y] .
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Let 1 > 0 be such that —1 < z — 1 < x +m < 1. Then, the map
y — 1/(1 — |y|) is bounded on |z — 11,z 4+ n1[. It follows from (2) that
there exists M € R* such that for all y €]x — 91,z + m|:

[9(@) ~ )] < Mz —y| + = fo —y

) =Yy <Mz —-—yl+ ——lr—y
(1 — =)

Consequently, choosing 1 > 0 sufficiently small, it is possible to ensure that
[(z) —(y)| <e, for all y €]z —n, x + n[. We conclude from exercise (4)
that 4 is continuous. Since ¢ and v are continuous, ¢ is a homeomorphism
from R to] —1,1].

4. Given € > 0 and = > max(1/e — 1,0), we have:
1
1=
6) 1/ = 1

It follows that ¢(x) — 1 as & — 4o00. Since ¢(—x) = —¢(z) for all z € R,
we conclude that ¢(z) — —1 as © — —o0.

Exercise 6

Exercise 7.

1. Let y € [-1,1]. If y = 1, then y = ¢(4+00). If y = —1, then y = $(—0o0).
If y €] —1,1], ¢ being onto, there exists x € R such that y = ¢(z) = ¢(z).
In any case, there exists z € R such that y = ¢(z). So ¢ is onto. Suppose
71,79 € R are such that ¢(z1) = ¢(x2). If ¢(21) €] — 1, 1], then ¢(21) =
#(x2), and ¢ being injective, 1 = xo. If ¢(x1) = 1, then z; = x5 = +o0.
If ¢(x1) = —1, then 2y = x5 = —o0. In any case, x; = x5. It follows that
¢ is injective. Finally, ¢ is a bijection.

2. ¢(0) = 0 is open in [-1,1]. So 0 € Tg. ¢(R) = [—1,1] is open in [-1,1],
so R € Tg. Let A, B € Tg. Using exercise (1), any direct image by ¢ can
also be viewed as an inverse image by 1. Hence, we have:

J(ANB) =y H(ANB) =9~ (A) NP~ (B) = ¢(4) N ¢(B)

Since A and B lie in Tg, both ¢(A) and ¢(B) are open in [—1,1]. It follows
that ¢(A N B) is open in [—1,1], so AN B € Tz. Hence, we see that Tg
is closed under finite intersection. Let (A;);cr be a family of elements of
Tg. We have:
O(UicrAi) = v (Uier Ai) = Uicrd™ ' (Ai) = Uierd(As)

Each ¢(A;) being open in [~1,1], ¢(U;erA;) is also open in [—1,1]. Tt
follows that U;er A; € 7. Hence, we see that Tg is closed under arbitrary
union. we have proved that 7g is indeed a topology on R.

3. From 1. we know that ¢ is a bijection from R to [~1,1]. Let B be open
n [—1,1]. We have:

B=(¢poy) '(B) =y (67 (B))
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Using exercise (1), we see that B = ¢(¢~1(B)). So ¢(¢~*(B)) is open
in [~1,1]. From the very definition of 7g, it follows that ¢—*(B) € Tg.
From definition (27) we conclude that ¢ is continuous. Let A be open in
R, i.e. A€ Tg. By definition, ¢(A) is open in [—1,1]. Using exercise (1),
#(A) = p~1(A). Hence, 1)~1(A) is open in [~1,1]. From definition (27)
we conclude that ¢ is continuous. Finally, ¢ is a homeomorphism from R

to [—1,1].
4. We have:
P([—00,2)) = [-1,2/3[ = ]-00,2/3[N[-1,1]
95(]3)'*'00]) = ]3/471] = ]3/4,-}—00[(7[-1,1]
95(]3)'*'00[) = ]3/471[ = ]3/471[0[_1a1]

It follows that ¢([—o0,2[), ¢(]3, +0o0]) and ¢(]3,4oc]) are all open sets in
[—1,1]. Consequently, [—o0,2][, ]3, +0oc] and ]3, +00[ are open in R.

5. Let ¢’ : R — [—1,1] be an arbitrary homeomorphism, and ' = (¢')7L.
Suppose U C R is open in R, i.e. U € Tg. Since ¢’ is continuous,
(¢")71(U) is open in [—1,1]. Using exercise (1), (')~} (U) = ¢'(U). So
¢'(U) is open in [—1,1]. Conversely, suppose ¢'(U) is open in [—1,1] for
U C R. Since ¢’ is continuous, (¢')~1(¢/'(U)) is open in R. However,
using exercise (1):

(@) 7' (V) = (¢)H W) U) = @ o) (U)=U

Hence, U is open in R. The purpose of this exercise is to give a formal
description of the usual topology on R, leading to definition (34).

Exercise 7
Exercise 8.

1. From definition (23), 7" is the topology on R induced by 7g.

2. Let U C R. Let y € ¢(UNR). There exists * € UNR such that y = ¢(x).
In particular, y €] —1,1[ and y = ¢(x) with 2 € U. So y € ¢(U)N] — 1, 1[.
Conversely, suppose that y € ¢(U)N] — 1,1[. There exists € U such
that y = ¢(z). But é(z) €] — 1, 1[ implies that that € R, and therefore
é(r) = ¢(x) =y. Soz € UNR and ¢(x) = y. It follows that y € p(UNR.).

We have proved that ¢(U NR) = ¢(U)N] — 1, 1].

3. Let U € Tg. By definition, ¢(U) is open in [1,1]. There exists B open
in R, such that ¢(U) = BN [—1,1]. Hence, ¢(U)N] —1,1[= BN] — 1,1[.
From 2., (U NR) = BN] — 1,1][. We conclude that ¢(U N R) is open in
] - 17 1[

4. Let V € 7'. By definition, there exists U € T such that V' = UNR. From
3., we see that ¢(V) is open in ] — 1,1[. ¢ being continuous, ¢~ (¢(V)) is
therefore open in R. However, using exercise (1):

o o(V) =7 (T (V) = (od) (V) =V
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It follows that V is open in R, i.e. V € Tr. We have proved that 7’ C T

5. Let U € Tr. Since U C R, it is easy to check that ¢(U) = ¢(U). Using
exercise (1), ¢(U) =¢~1(U), and 1 being continuous, 1»~1(U) is open in
] —1,1[. Tt follows that ¢(U) is open in | — 1,1[. There exists B open in
R, such that ¢(U) = BN] — 1,1[. In particular ¢(U) is also open in R,
with ¢(U) = ¢(U) N [—1,1]. We conclude that ¢(U) is open in [—1,1].

6. For all U € 7g, from 5., ¢(U) is open in [—1,1]. Tt follows that U € Tg.
We have proved that Tg C Tg.

7. Let U € Tg. From 6., U € Tg. However, since U C R, we have U =
UNR. From U € Tz we conclude that U € 7'. We have proved that
Tr C7T'. From 4., T' C Tr. It follows that 7g = 7. In other words, the
topology on R induced by the usual topology on R, is nothing but the
usual topology on R.

8. Using the trace theorem (10), we have:
BR)r = 0(Tp)r = o((Tr)jr) = o(Tr) = B(R)
Exercise 8

Exercise 9.

1. d(z,y) = 0 is equivalent to ¢(x) = ¢(y), which is in turn equivalent to
x =y. So (i) of definition (28) is satisfied for d. The fact that (ii) is also
satisfied is completely obvious. Given x,y, z € R, we have:

[6(x) — oY) < [d(x) — ¢(2)] + [d(2) — d(y)l

It follows that (4ii) of definition (28) is also satisfied for d. We have proved
that d is indeed a metric on R.

2. Let U € Ty and ¢ = ¢~ 1. Since, ¢p(U) = 1~ 1(U), ¥ being continuous,
¢(U) is open in [—1, 1].

3. Let U € Tg and y € ¢(U). From 2., ¢(U) is open in [—1,1]. From
theorem (12), the induced topology on [—1,1] is also the metric topology
associated with d(z,y) = |z — y| on [~1,1]2. Hence, there exists ¢ >
0 such that B'(y,e) C ¢(U), where B'(y,¢€) is the open ball in [—1,1].
Equivalently, there exists ¢ > 0, such that:

Vze[-1,1], |z—y|<e = z€ o) (3)

4. Let U € Tg. Let z € U and y = ¢(z). Then y € ¢(U). From 3.,
there exists € > 0 such that property (3) holds. Let ' € B(x,€) where
B(z,¢€) is the open ball in R. Then d(z,2') < e, ie. |p(z') —y| < e
Since ¢(z') € [—1,1], from property (3), we see that ¢(a’) € ¢(U). There
exists 2/ € U such that ¢(2’) = ¢(2”). ¢ being injective, 2’ = x" and
in particular 2’ € U. We have proved that B(z,e) C U. It follows that
Ue Tlg. This being true for all U € Tg, we conclude that 7z C Tf(ti'
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5. Let U € T¢ and x € U. From definition (30), there exists € > 0 such that
B(z,€¢) C U. In other words, there exists € > 0 such that:

VyeR, |p(x) —o(y)|<e = yelU (4)

6. Let U € T¢ and z € ¢(U). There exists # € U such that z = ¢(x). Let
e > 0 be such that property (4) holds. Let 2z’ € B’(z,¢€), where B’(z,€)
is the open ball in [~1,1]. ¢ being onto, there exists y € R such that
z' = ¢(y). Since |z—2’| < €, we have |¢(x) —¢(y)| < e. Using property (4),
y € U. It follows that 2z’ € ¢(U). We have proved that B'(z,€) C ¢(U).
So ¢(U) is open in [—1, 1] with respect to the metric topology on [—1,1].
From theorem (12), this topology coincide with the induced topology on
[—1,1]. Finally, ¢(U) is open in [—1,1].

7. Let U € T4, and ¢ = ¢~'. From 6., ¢(U) =
¢ being continuous ¢~ (p~H(U)) = (o ¢p)~1(

have proved that ’Tlg C7Tx.

Y~ 1(U) is open in [—1,1].
U) = U is open in R. We

8. We have ng = Tx. d is a metric on R, for which the associated metric
topology coincide with the usual topology on R. From definition (32),
(R, Tg) is metrizable. This proves theorem (13).

Exercise 9
Exercise 10.

1. Let B C S. For all x € Q, since f(2) C S, f(z) € B is equivalent to
f(z) € BNS'. Hence, f~YB)=f"1(BnNY).

2. From definition (35), f : (Q,F) — (5,%) is measurable, if and only if
f~YB) € F,for all B € ¥. From 1., this is equivalent to f~1(BNS’) € F,
for all B € %, or in other words, f~!(B’) € F, for all B’ € ¥jg = ¥
It follows that the measurability of f viewed as a function with values in
(5,30), is equivalent to the measurability of f viewed as a function with

values in (57, %').

3. From the trace theorem (10) and the fact that the topologies on R and
R™ are induced from the topology on R, B(R) = B(R)g and B(R") =
B(R)r+- So the equivalence between (i), (ii) and (ii7) is a direct appli-
cation of 2.

Exercise 10
Exercise 11.

1. Let BC &;. Forall x € Q, go f(z) € B is equivalent to f(z) € g~}(B),
which is in turn equivalent to z € f~1(g~!(B)). It follows that (g o
f)~(B) = f~1(¢g~%(B)). Note that we have used this property on several
occasions in the solutions of exercises (7) and (8).
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2. Let B € 1. Since g : (S,X) — (S1,%1) is measurable, we have g~ !(B) €
Y. Since f : (2, F) — (S,%) is measurable, we have f~'(¢g~'(B)) € F.
Using 1., we see that (f o g)~'(B) € F. It follows that fog: (Q,F) —
(S1,%1) is measurable.

Exercise 11

Exercise 12.

1. f being defined on €, any inverse image by f is by definition (26) a subset
of Q. Moreover, for all z € Q, f(z) € S. Soz € f~1(S) and Q C f~1(S).
We have proved that Q = f~1(S).

2. For all z € Q, f(x) € B¢ is equivalent to x ¢ f~1(B). So f~1(B°) =
(fH(B))".

3. Let (B;)ier be a family of subsets of S. f(z) € U;erB; is equivalent to
f(x) € B; for some i € I, which is in turn equivalent to z € U;er f~1(B;).
So f~Y(UierB;) = Uier f1(B;). Note that we have used this property in
the solution of exercise (7).

4. Y being a o-algebra on S, S € ¥. From 1., f~1(S) = Q, and F being
a o-algebraon Q, Q € F. So f71(S) e F,and S €T. Let BeT. In
particular B € ¥ and therefore B¢ € ¥. Moreover from 2., f~1(B¢) =
(f~Y(B))c. Since B € T, f~1(B) € F and therefore (f~1(B))¢ € F. It
follows that f~!(B¢) € F and we see that B¢ € I'. We have proved that T’
is closed under complementation. Let (B,,),>1 be a sequence of elements
of I'. In particular (By),>1 is a sequence of elements of ¥ and therefore
Ut B, € ¥. Moreover, f~Y(US>B,) = US> f~Y(B,). Since B, € T,
foralln > 1, f~4(B,) € F for all n > 1 and therefore U}> f~1(B,,) € F.
It follows that f~1(U/> B,) € F and we see that U7> B, € T. We have
proved that I' is closed under countable union. Finally, I is a o-algebra
on S.

5. Suppose f: (2, F) — (S5,%) is measurable. Since A C X, for all B € A,
f~Y(B) € F. Conversely, suppose that the weaker condition of f~(B) €
F for all B € A, is satisfied. Then, A C I". From 4., I' is a o-algebra
on S. Since the o-algebra o(A) generated by A is the smallest o-algebra
on S containing A, we obtain that o(A) C I'. However g(A) = X. It
follows that ¥ C T, and in particular, f~*(B) € F for all B € ¥. So
f:(Q,F) — (S,X) is measurable. This proves theorem (14).

Exercise 12

Exercise 13. Let f: (£,7) — (5,7s) be continuous. By definition (16) , the
Borel o-algebra B(.9) is generated by the set of all open sets, i.e. B(S) = o(7s).
Since f is continuous, for all B € 7Tg, we have f~1(B) € 7. In particular, for all
B e Tg, f~Y(B) € B(Q2). Using theorem (14), we conclude that f : (2, B(Q2)) —
(S,B(S)) is measurable.
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Exercise 13

Exercise 14.

1.

Let é:R — [—1, 1] be defined as in definition (34). Then, for all ¢ € R,
d([—o0,¢]) = [-1, ¢(c)[ and ¢(]e, +o0]) =]¢(c),1]. Both sets being open
in [—1, 1], we conclude that C; C 7T and Cy C 7.

Using 1., for all ¢ € R, we have [—o0, ¢]® =]¢,+o0] € Tz and [¢, +00]¢ =
[—00, c[€ Tg. Hence, the complements of any element of C; or C3 is open
in R. It follows that any element of C; or C3 is closed in R.

Let i =1,...,4. From 1. and 2., any element of C; is either closed or open
in R. In any case, it is a Borel set in R. Hence, C; C B(R). Since o(C;) is
the smallest o-algebra on R containing C;, we conclude that o(C;) C B(R).

From exercise (8), the usual topology on R induces the usual topology on
R. Hence, for allU € Tg, UNR € (Tg)|r = R, i.e. UNR is open in R.

Let U be open in R. For all z € U, there exists ¢, > 0 such that |z —
€, T + €,[C U. Let p, €]z — €, 2[NQ and ¢, €],z + €,[NQ. Then,
T €]pa, ¢[C U. Tt follows that U = U;erA4;, where I is the countable set
I ={lps,q.[: x € U} and A; =i for all i € I. We have proved that U can
be expressed as a countable union of open bounded intervals in R'.

For all n > 1, Ja,b — 1/n] Cla, b[ and [a + 1/n,b[C|a, b]. Moreover, for all
x €la, b|, there exists n > 1 with a + 1/n < 2 < b—1/n. It follows that:

+oo +oo
]avb[: U]avb_l/n]:U[a+1/nvb[
For all a,b € R, |a,b] =]a, +o0]\]b, +00] = [—00,b] \ [-00,a]. So Ja,b] €

o(Cy) No(Cy). Similarly [a, b€ o(C2) No(C3). Using 6., we conclude that
la,bl€ o(C;), for all i =1,...,4.

{400} = Npln,+o0] = NypJn, +o0] = N,[—o0,n|® = N,[—oo,n[¢. We
conclude that {+oo} € o(C;), and similarly {—oco} € o(C;), for all i =
1,...,4.

Leti =1,...,4. Let U € Tg. From 4., UNR € Tg. From 5., UNR
can be expressed as a countable union of open bounded intervals in R.
From 7., any such interval is an element of o(C;). It follows that UNR €
o(C;). However, U = (UNR)W A, where A is either @), {—oo}, {400}
or {—o0,+00}. We conclude from 8. that in any case, U € o(C;). We
have proved that 7g C o(C;), and therefore B(R) C o(C;). From 3.,
a(C;) € B(R). Finally o(C;) = B(R).

LI you think this proof was a bit quick, see Exercise (7) of the previous tutorial.
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10. Given B C R, {f € B} denotes f~(B). (i) < (i) is just definition (35).
Similarly, {f < ¢} = f~!([~o00,(]), etc...and the equivalence between
(), and (ii4), (iv), (v) and (vi), stems from a direct application of theo-

rem (14), using o(C;) = B(R).
Exercise 14

Exercise 15.

1. Let w € {¢ < g} = g7 ([e,+<]). Then ¢ < g(w) = inf,>1 fu(w). In
particular, for all n > 1, ¢ < f,(w). So w € NI {c < f,}. Conversely,
suppose that ¢ < f,(w) for all n > 1. Then ¢ is a lower-bound of all
fn(w)'s for n > 1. g(w) being the greatest of such lower-bound, we have

¢ < g(w). We have proved that {c < g} = N> {c < f.}.

2. Let we {h < ¢} = h™!([-o0,c]). Then sup,s;fn(w) =h(w) < c. In
particular, for all n > 1, f,(w) < c. So w € NF29{fn < c}. Conversely,
suppose that f,(w) < ¢ for all n > 1. Then ¢ is an upper-bound of all

fn(w)’s for n > 1. h(w) being the smallest of such upper-bound, we have
h(w) < e. We have proved that {h < ¢} = N2 {f, < c}.

3. All f,’s being measurable, using theorem (15), we conclude from 1. and
2. that g, h : (Q,F) — (R, B(R)) are measurable.

Exercise 15

Exercise 16.

1. Let n > 1. For all k > n, u, = infy>pvr < vp. In particular, u,
is a lower-bound of all v;’s for K > n + 1. wu,41 being the greatest of
such lower-bound, we see that u, < u,4+1. From definition (36), we have
U = sup,>; Un. In particular, v is an upper-bound of all u,’s. We have
proved that u,, < Upt1 < U.

2. Let n > 1. For all £ > n, v < supgs, Uk = Wy. In particular, w, is
an upper-bound of all v;’s for k > n + 1. w,,1 being the smallest of
such upper-bound, we see that w,11 < w,. From definition (36), we have
w = inf,>; w,. In particular, w is a lower-bound of all w,’s. We have
proved that w < wy 41 < wy,.

3. From 1., (u,),>1 is a non-decreasing sequence in R.. It therefore converges
to sup,,~; 4, = u. Indeed, suppose u = +oc. Then, u being the smallest
of all u,’s upper-bounds, for all A € R, there exists N > 1 such that
A < un. Since (up)n>1 is non-decreasing, we have A < u,, for all n > N.
It follows that u, T 4+oo. If uw = —oco, then u,, = —oc for all n > 1 and
U, T —oo. If uw € R, then given € > 0, u — € < u. So u — € cannot be an
upper-bound of all u,’s. There exists N > 1 such that u — e < uy < u.
Since (un)n>1 is non-decreasing, we have u —e < u,, < u for allm > N. Tt
follows that u, T w. Similarly, (wy),>1 being a non-increasing sequence
in R, it converges to inf,>1 wy, =w. So w, | w.
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4. For all n > 1, uy, = infg>p vk < vy < SUPgs, Vb = Wy
5. From u,, < w,, taking the limit as n — +o00, we obtain u < w.

6. From 5., foralln > 1, u,, < vy < wy. Ifu=w, then (Un)n>1 and (wp)n>1
converge to the same limit v € R. It follows that (v,),>1 also converges
to u € R.

7. Let a,b € R, with u < a < b < w. Let n > 1. In particular, we have
Uup < a < b < w,. Since u,, = infy>, vy, uy is the greatest lower-bound
of all v,’s for k > n. It follows that a cannot be such lower-bound. There
exists N1 > n such that vy, < a. Similarly, b cannot be an upper-bound
of all v’s for k > n. There exists Ny > n such that b < vy,.

8. From 7., there exist n;,m; > 1, such that vy, < a < b < vp,. Let
n = max(ni + 1,mq +1). Using 7. once more, there exist ns, ms > n such
that v,, < a < b < vy,,. In particular, we have n; < ny and my; < mo. By
induction, we can therefore construct two strictly increasing sequences of
integers (ng)r>1 and (mg)g>1 such that v,, <a <b < vy, forall k> 1.

9. Suppose that (v,,),>1 converges to some v € R. From 5., u < w. Suppose
u<w,andleta,b € R, u <a<b<w. Using 8., let (ng)r>1 and (mg)r>1
be two strictly increasing sequences of integers such that v,, < a <b <
Up,, - Taking the limit as & — +o0, we obtain v < a < b < v which is a
contradiction. It follows that if (v;,),>1 converges to some v € R, then
U= w.

Exercise 16

Exercise 17.

1. Let w € {f < g}. Then f(w) < g(w). There exists a rational number
r € Q such that f(w) <r < g(w). It follows that w € {f <r}N{r <g}.
So {f < g} CUreq{f <r}n{r < g} The reverse inclusion is clear.

2. Since f and g are measurable, {f < r} = f~!([—oo,7[) and {r < g} =
g t(Jr, +c]) are both elements of F, for all » € Q. Using 1., and the
fact that Q is a countable set, it follows that {f < g} € F. Similarly,
{g < [} € F. Moreover, we have {f < g} ={g< f}cre Fand {g < f} =
{f<glccF. Finally, {f =g} = {f <g} N {g< [} € F.

Exercise 17

Exercise 18.

1. Let g, = infy>,, fi and h,, = sup>,, fi, for all n > 1. Being a countable
infimum and supremum of measurable maps, using exercise (15), we see
that g, and h,, are measurable for all n > 1. Since g = sup,,~; gn and
h = inf,>1 hy, we conclude also from exercise (15), that g, h : (Q, F) —
(R, B(R)) are measurable.
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Using 5. of exercise (16), g(w) < h(w), for all w € . So g < h.

Since f,g : (2, F) — (R,B(R)) are measurable, using exercise (17), we
conclude that {g = h} € F.

The set {w : w € Q, lim, 4o fn(w) exists in R} is by virtue of theo-
rem (16), equal to {g = h}. From 3., it is therefore an element of F.

If fo(w) — f(w) for all w € Q, using theorem (16), f = g = h. From 1.,
f:(Q,F) — (R,B(R)) is itself measurable.

Exercise 18

Exercise 19.

1.

For all c € R, {—f < ¢} = {—c < f}. From theorem (15), we see that — f
is measurable. From {|f| < ¢} = {—c < f} N {f < ¢}, |f| is measurable.
If ¢ <0, then {fT < ¢} =0. If ¢ > 0, then {f* < ¢} = {f < ¢}. In any
case {fT < c} € F and it follows that f* is measurable. Similarly, f~ is
measurable.

An expression of the form (+00) + (—oc) is meaningless. Since f takes
values in R, given ¢ € R and w € , the sum a + f(w) may not be
meaningful.

Let a € R. Then a+ f is meaningful as a map defined on €. Given ¢ € R,
we have {a + f < ¢} = {f < ¢—a}. We conclude from theorem (15) that
a + f is measurable.

Let a € R. From 1., —f is measurable whenever f is measurable. Without
loss of generality, we can therefore assume that a > 0. If 0 < a < 400, then
for all ¢ € R, {a.f < ¢} ={f < ¢/a}. Tt follows from theorem (15) that
a.f is measurable. If ¢ = 0, since by convention 0.(4+00) = 0.(—o0) = 0,
we have a.f = 0. Given ¢ € R, {a.f < ¢} is either ) or Q. In any case
{a.f < ¢} € F, and a.f is measurable. If a = 400, then for all ¢ € R, we
have {a.f < c}={f <0} if ¢ <0, and {a.f < c}={f <0} W {f =0} if
¢ > 0. In any case, {a.f < ¢} € F and a.f is measurable.

Given w € Q, the sum f(w) + g(w) may not be meaningful.

If f>0and g > 0, the sum f + g is meaningful as a map defined on €.
Let w € {f + g < ¢} where ¢ € R. In particular, g(w) < +00. Subtracting
g(w) from both side of the inequality, we obtain f(w) < ¢ — g(w), i.e.
w € {f <c—g}. Conversely, if f(w) < ¢— g(w), then g(w) is again finite,
and f(w) 4+ g(w) <ec. So{f+g <c} ={f <c—g}. This equality may
have looked obvious in the first place. However, it is easy to make mistake
with algebra and inequalities involving +0o and —oco...From 1., —g is a
measurable map. Using 3., for all ¢ € R, ¢ — g is also measurable. From
exercise (17), {f < ¢— g} € F. Finally, using theorem (15), we conclude
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that f +g¢ : (Q,F) — (R,B(R)) is measurable. The sum of two non-
negative and measurable maps, is itself a non-negative and measurable
map.

7. Suppose we have:

({f =400} N{g=—oc}) U ({f = =00} N {g = +00}) =¥

Then f + g is meaningful as a map defined on . As in 6., given ¢ € R
we wish to argue that {f + g < ¢} = {f < ¢—g}. Given w € Q,
this amounts to checking the equivalence between the two inequalities
fw)+g(w) < cand f(w) < ¢ — g(w), which is obviously true in the case
when f(w), g(w) € R. Since the only other possible case is f(w) = g(w) =
+o0 or f(w) = g(w) = —o0, such equivalence is clear and we have proved
that the equality {f + g < ¢} = {f < ¢ — ¢} holds. As in 6. we conclude
that f+g: (9, F) — (R, B(R)) is measurable. The sum of two R-valued
measurable maps is itself measurable, provided it is well-defined.

8. If f(©2) € R\ {0}, then 1/f is meaningful as a map defined on Q. Let
ceR. Ife >0, then {1/f < ¢} ={f <0tw{f > 1/c}. If c =0,
then {1/f < ¢} = {f < 0}. In the final case when ¢ < 0, we have
{1/f <} ={1/e < f}Nn{f < 0}. In any case, {1/f < ¢} € F, and we
conclude from theorem (15) that 1/f : (2, F) — (R, B(R)) is measurable.

9. Let B € B(R). Then {f € B} = ({f € B}n{f =0} )w{f =0},if 1 € B.
Otherwise, {f € B} = {f € B}nN{f = 0}°. In any case, {f € B} € F
and f: (Q,F) — (R, B(R)) is measurable.

10. We have Q = {f > 0}w{f <0}w{f =0} If f(w) >0, then f(w)g(w) <
c is equivalent to g(w) < ¢/f(w). If f(w) < 0, then f(w)g(w) < c is
equivalent to g(w) > ¢/f(w). Finally, if f(w) = 0, then f(w)g(w) < c is
equivalent to f(w) < c¢. It follows that {fg < ¢} can be expressed as:

{f>0n{g<e/fHw{f<0in{g>c/fHu({f=0tn{f<c})

11. Whether or not f and g take values in R, the product fg is meaningful
as a map defined on Q. In the case when f(2) C R and ¢(Q2) C R,
given ¢ € R, we can use the decomposition of {fg < ¢} obtained in 10.
Furthermore, from 9., f is a measurable map with values in R\ {0}. Using
8., 1/f is measurable. From 4., ¢/f is also measurable. It follows from
exercise (17), that {g < ¢/f} € F and {g > ¢/f} € F. Hence, all sets
involved in 10. are elements of F. So {fg < ¢} € F. We conclude from
theorem (15) that fg: (Q, F) — (R, B(R)) is measurable. In the following
exercise, we shall extend this result to the more general case when f and
g have arbitrary values in R.

Exercise 19

Exercise 20.
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1. For all B € B(R), the inverse image f~!(B) can be written as:

B =1 BN R) v (AN ({f=+oot W {f=—00}))

where A = Qif 1 € B, and A = () otherwise. It follows that f~Y(B)eF,
and f is measurable. Similarly, g is measurable.

2. All A;’s and Bj’s are inverse images of Borel sets in R, by measurable
maps. They are therefore elements of F.

3. Since Q =W} ;_; A; N By, for all B € B(R), we have:

{fge By = [ (AinB;n{fg€ B}

4,J=1

4. Forall 1 <i,j <3 and w € A; N Bj, f(w) € R and g(w) € R. In
particular, f(w) = f(w), and g(w) = g(w). Hence, we conclude that

5. Suppose ¢ > 4 or j > 4. Then, for allw € A;NBj, f(w)g(w) is either —oo,

0 or +00. More specifically, f(w)g(w) = a, with:
—oo if (i,7) € {(1,4),(2,5),(4,5),(5,4),(5,2), (4, 1)}
a= 0 if (4, .7) € {(3a4)7 (3a5)7( )7 (5a3)}
+oo if (4,7) € {(1,5),(2,4), (4,4),(5,5), (5, 1), (4,2)}

Hence, given B € B(R), A, N B;N{fge€ B} =0 ifa ¢ B, and A; N B; N
{ngB}:AzﬂBJ if a € B.

6. Let B € B( _) From 1., f and g are measurable. Moreover, by construc-
tion, both f and g take values in R. From exercise (19), it follows that
fg is measurable. Hence, {fg € B} € F. From 2., all A;’s and Bj’s are
elements of F. Using 4., whenever 1 <i,j <3, A; ﬂB N{fge B} eF.
However, from 5., we also have A, N B;N{fg € B} € .7-", for all i > 4 or
j > 4. We conclude from 3. that {fg € B} € F. We have proved that
fg:(Q,F)— (R,B(R)) is measurable.

Exercise 20

Exercise 21.

1. Let x € A. Suppose U € 7T is such that x € U. Then z € UN A. In
particular, U N A # (. So z € A. We have proved that A C A. Suppose
x ¢ A. From definition (37), there exists an open set U, € T such that
x € U, and U,NA = (). Moreover, for ally € U,, fromU, € T, U,NA=10
and definition (37), we see that y ¢ A. Hence, for all x € A°, there exists
U, € T, such that x € U, C A°. Tt follows that A¢ = UmgAUx, and A¢ is
therefore an open set in E. Hence, A is closed in E.
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2. Suppose that B is closed and A C B. Then B¢ € T. Suppose that A C B
is false. There exists € AN B¢. From z € B¢ € 7 and definition (37),
we see that B¢ N A # (). This contradicts the assumption that A C B. Tt
follows that 4 C B.

3. From 1., A is indeed a closed set containing A. From 2., A is the smallest
closed set containing A.

4. Suppose A = A. Then from 1., A is closed. Conversely, suppose that A
is closed. Since A C A, using 2., A C A. However from 1., A C A. So
A = A. We have proved that A is closed, if and only if A = A.

5. Suppose 7 is the metric topology associated with some metric d on F.
Let A’ be defined by:

A'={z€FE : Ye>0, B(z,e) NA#0}

Let € A. For all € > 0, from exercise (2), B(z,€) is an open set in E,
which furthermore contains x. Hence, from definition (37), B(z,€) N A #
() and we see that = € A’. So A C A’. Conversely, suppose z € A’.
Let U € 7 be such that x € U. 7 being the metric topology, from
definition (30), there exists € > 0 such that B(x,e) C U. However, since
r €A, B(x,e) N A# (. In particular, U N A # (). It follows that z € A,
and A’ C A. We have proved that A = A’.

Exercise 21

Exercise 22.

1. By definition, for all y € A, d(z, A) < d(x,y). From exercise (21), A C A.
It follows that d(x, A) is a lower-bound of all d(z,y) for y € A. d(x, A)
being the greatest of such lower-bound, we have d(z, A) < d(x, A). Sup-
pose d(z,A) < d(z, A). Let o € R be such that d(z, ) < a < d(z, A).
It follows from d(z, A) < a, that a cannot be a lower-bound of all d(x,)
for y € A. There exists y € A such that d(z,y) < a. Since y € A, from
exercise (21), for all € > 0, B(y,€) N A # (. There exists z € A such that
d(y,z) < e. In particular:

A, A) < d(w,2) < d(w,y) +d(y, 2) < a+e

€ > 0 being arbitrary, it follows that d(x, A) < . This is a contradiction.
We conclude that d(z, A) = d(z, A).

2. Suppose that d(z, A) = 0. For all ¢ > 0, ¢ cannot be a lower-bound of
all d(z,y) for y € A. There exists y € A, such that d(x,y) < e. In other
words, B(x,e) N A # (. Hence, from exercise (21), x € A. Conversely,
suppose # € A. Then for all € > 0, B(z,¢) N A # (. Let y € B(z,¢) N A.
We have d(z, A) < d(z,y) < e. e > 0 being arbitrary, it follows that
d(z,A) < 0. However, 0 is a lower-bound of all d(z,y) for y € A. So
0 < d(z,A). Hence d(z, A) = 0. We have proved that d(x, A) = 0, if and
only if z € A.
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3. Let z,y € E. For all z € A, we have:
d(z, A) < d(z,2) < d(z,y) + d(y, z)

Subtracting d(z,y) € R from both side of the inequality, the difference
d(xz, A) — d(z,y) appears as a lower-bound of all d(y, z) for z € A. d(y, A)
being the greatest of such lower-bound, d(x, A) —d(z,y) < d(y, A). Hence,
d(z, A) < d(z,y) +d(y, A).

4. Let z,y € E. If A # (), there exists z € A. From the inequality d(z, A) <
d(z, z), we have in particular d(z, A) < 400 and similarly d(y, A) < +o0.
The difference d(z, A)—d(y, A) is therefore meaningful. d(x, A) < d(z,y)+
d(y, A) is obtained from 3. Similarly, d(y, A) < d(y,x)+d(z, A). Tt follows
that [d(z, 4) — d(y, A)| < d(z,y).

5. If A = (), then for all z € E, ®4(x) = +0co. The map ®4 is therefore
continuous. If A # 0, then from 4., for all z,y € E, |Pa(z) — Pa(y)| <
d(z,y). From theorem (12), the induced topology on R™ coincide with
the metric topology. Using exercise (4), it follows that ®4 : (E,74) —
(R, 7g+) is continuous. However, for all U € Tz, U NRT € Tg+ and
therefore, ®,'(U) = ®,'(UNR*Y) € TZ. So @, : (B, 7T2) — (R, Tg) is
also continuous. Note that §(u,v) = |u — v| is not a metric on R. Hence,
we could not use exercise (4) to prove directly the continuity of ® 4, viewed

as a map with values in R.

6. Suppose that A is closed. From exercise (21), A = A. Hence, from 2.,
d(z, A) = 0 is equivalent to 2 € A. So A = &, ({0}).

Exercise 22

Exercise 23.

1. The upper and lower limits as defined in definition (36), require the notions
of infimums and supremums. Such notions may not be meaningful on an
arbitrary metric space (E, d).

2. Let A be the set of all closed sets in E. T2 being the metric topology on
E, the Borel o-algebra on E is generated by 72, i.e. B(E) = o(72). In
fact, B(E) is also generated by A. Indeed, for all A € A, A° € T2. In
particular A° € B(FE), and therefore we have A € B(E). So A C B(E)
and consequently, o(A) C B(E). However, for all U € 74, U¢ € A. In
particular, U¢ € o(A), and therefore U € o(A). So 72 C o(A) and
consequently, we have B(E) C o(A). We have proved that B(E) = o(A).
From theorem (14), we conclude that a map f : (Q,F) — (E,B(FE)) is
measurable, if and only if f=1(A) € F, for all A € A.

3. Let A be closed in E. From exercise (22), A = ®,*({0}). Hence, f~'(A) =
FH@LT{0}) = (®a0 f)~'({0}).
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4. Let n > 1. By assumption, f, : (Q,F) — (E, B(FE)) is measurable. From
exercise (22), @4 : (E,72) — (R,7g) is continuous. Using exercise (13),
it follows that ®4 : (E,B(E)) — (R,B(R)) is measurable. We conclude
from exercise (11) that the map ®4 o f, : (2, F) — (R, B(R)) is measur-
able. Note that this is true for all A C E, irrespective of whether or not
A is closed.

5. Let A C E. By assumption, for all w € Q, f,(w) — f(w). Since P4
is continuous, it follows that ®4 o f,(w) — P4 o f(w). A more direct
justification of this fact is as follows: f,(w) — f(w) is a short way of
saying that given € > 0, there exists N > 1, such that n > N implies that
d(fn(w), f(w)) < e. In the case when A # (), from exercise (22), we see that
n > N also implies that |P4(fn(w)) — Pa(f(W))] < d(fn(w), f(w)) < e.
Hence, ®4 o fp(w) — P4 o f(w). The fact that this is still true when
A = () is clear. Since ®4 o f,, is a measurable map for all n > 1, we see
from exercise (18) that ®4 o f : (Q,F) — (R,B(R)) is measurable. In
particular, (®4 o f)~1({0}) € F. However, from 3., (&4 o f)"1({0}) =
f~1(A), whenever A is closed in E. We have proved that f~1(A) € F,
for all A closed in E. From 2., we conclude that f: (Q,F) — (E,B(E))
is measurable. The purpose of this exercise is to prove theorem (17).

Exercise 23

Exercise 24. For all z, 2’ € C, we have |Re(z) — Re(2)| < |z — 2|, [Im(z) —
Im(z")] < |z = 2| and ||z| — |7/|| < |z — 2/|. From exercise (4), it follows
that Re,Im,|.| : (C,7c) — (R,7r) are all continuous maps. From exer-
cise (13), Re,Im,|.|: (C,B(C)) — (R, B(R)) are therefore measurable. Since
[ (Q,F) — (C,B(C)) is measurable, using exercise (11), we conclude that
u=Reo f,v=1Imo fand |f|=].|o f are all measurable with respect to F
and B(R). In fact, using exercise (10), they are also measurable with respect
to F and B(R). Essentially, this last point is a direct consequence of the fact
that given B € B(R), BNR € B(R).

Exercise 24

Exercise 25.

1. Let A =la,b[x]c,d[€ C, and z = x + iy € A. Then z €]a,b[ and y €]c, d].
Let € > 0 be such that |z—2'| < € = 2’ €]a,b[, and [y—y'| < e = ¥ €, d[.
Then |z — 2/| < e= 2’ € A, for all 2z’ € C. Hence, there exists € > 0 such
that B(z,e) C A. We have proved that A is open in C.

2. From 1., C C 7¢. In particular, C C B(C). The o-algebra o(C) generated
by C being the smallest o-algebra on C containing C, we conclude that

#(C) C B(C).

3. If || < m and |y| <7, then |z| < /22 +y2 < V2n.

4. Let U be open in C, and z = x + 1y € U. There exists ¢ > 0, such that
B(z,e) CU. Let n = ¢/v/2. Using 3., we have |z —n, z+n[x]y —n, y +n[C
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U. Let a, €]z —n,z[NQ, and b, €|z, z +n[NQ. Let ¢, €ly —n,y[NQ and
d. €ly,y +n[NQ. Then, we have z €a.,b,[x]c.,d,[C U.

5. Let I be the set I = {Jay, b,[x]c,,d.[,z € U}. Then I is finite or countable,
and U = U;c;B; where B; =i € C, for all ¢ € I. In order to express U
as a union indexed by the set of positive integers IN*, the following can
be done: Let ¢ : I — N* be an arbitrary injection. For all n > 1, define
Ay as A, =B, ifney(l) and n = 9(i), and A, = 0 if n € ¥(I). Then,
A, € C for all n > 1, and we have U = U/ > A,,.

6. It follows from 5. that 7¢ C o(C). The Borel o-algebra B(C) being the
smallest o-algebra on C containing all open sets, we see that B(C) C o(C).
Hence, from 2., o(C) = B(C).

7. Let f = u +iv. Then, f~1(A) = u(Ja,b]) N v~ (Je,d]), for all A =
Ja,b[x]c,d[€ C. Since u and v are assumed to be measurable, u~1(]a, b[) €
F and v=Y(Je,d[) € F. Tt follows that f~1(A) € F. Using 6., we conclude
from theorem (14) that f is measurable with respect to F and B(C).

Exercise 25
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