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12. Radon-Nikodym Theorem

In the following, (2, F) is an arbitrary measurable space.

Definition 96 Let i and v be two (possibly complex) measures on (Q, F). We
say that v is absolutely continuous with respect to p, and we write v << p,
if and only if, for all E € F:

wWE)=0 = v(E)=0
EXERCISE 1. Let g be a measure on (Q,F) and v € M*(Q,F). Show that
v << p is equivalent to |v| << p.
EXERCISE 2. Let p be a measure on (,F) and v € M*(Q,F). Let ¢ > 0.

Suppose there exists a sequence (E,),>1 in F such that:

1
Vn>1, u(E,) < —, [v(E,)| > ¢

on’
Define:
EélimsupE 2 ﬂ U By
nzl n>1k>n
1. Show that:
wE)= lim pu||(JE|=0
n—-+o0o k>n
2. Show that:

AE) = tim | U B | >

3. Let A\ be a measure on (2, F). Can we conclude in general that:

AE)= lm X | E

n—-+oo
k>n

4. Prove the following:

Theorem 58 Let pu be a measure on (0, F) and v be a complex measure on
(Q,F). The following are equivalent:

(7) v<<p
(@) vl <<p
(i)  Ve>0,36>0,YE € F,u(E) <6 = |[v(E)| < ¢

EXERCISE 3. Let u be a measure on (Q, F) and v € M (Q, F) such that v << p.
Let v1 = Re(v) and vo = Im(v).
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1. Show that 11 << p and vy << p.

2. Show that v;", v, vy, vy are absolutely continuous w.r. to .

EXERCISE 4. Let u be a finite measure on (2, F) and f € L&(Q, F, u). Let S be
a closed proper subset of C. We assume that for all E € F such that u(E) > 0,

we have: )
—— [ fdu € S
u(E) /E‘
1. Show there is a sequence (D,,),>1 of closed discs in C, with:
“+o0
S¢=|]J Dn
n=1
Let ay, € C, 1, > 0 be such that D,, = {2 € C: |z — a,| <r,}.

2. Suppose p(E,) > 0 for some n > 1, where E, = {f € D, }. Show that:

1 / 1
fdp —a,| < / f—anldpy <r,
e - (B S,

3. Show that for all n > 1, u({f € D,}) = 0.

4. Prove the following:

Theorem 59 Let p be a finite measure on (Q,F), f € LE(Q, F,u). Let S be
a closed subset of C such that for oll E € F with u(E) > 0, we have:

1
— dup € S
n(E) /Ef 8
Then, f €S p-a.s.

EXERCISE 5. Let p be a o-finite measure on (9, F). Let (Ey),>1 be a sequence
in F such that £, T Q and p(E,) < 400 for all n > 1. Define w : (Q,F) —
(R,B(R)) as:

A+°°1 1

w=) —————1lg,
el 2n 1+ N(En)

1. Show that for all w € O, 0 < w(w) < 1.

2. Show that w € L& (Q, F, u).

EXERCISE 6. Let i be a o-finite measure on (€2, F) and v be a finite measure
on (2, F), such that v << p. Let w € L (R, F, 1) be such that 0 < w < 1. We
define i = [wdp, i.e.

VE € F | ﬁ(E)é/de
E
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10.

11.

12.

. Show that & is a finite measure on (£, F).

Show that ¢ = v + [ is also a finite measure on (€2, F).
Show that for all f € L§(Q,F,¢), we have f € L§(Q,F,v), fw €

LL(Q, F, 1), and:
[ o= [ rav [ s
Show that for all f € L%(R, F, ¢), we have:
[ 1flav < [ 11140 < ( / |f|2d¢); (6())’}
Show that L& (Q, F,¢) C LL(Q, F,v), and for f € L (Q, F, 6):
‘/fdv < o).l
Show the existence of g € LE(S2, F, ¢) such that:

Ve LA(Q,F,6) | / fv = / fgds (1)

Show that for all E € F such that ¢(E) > 0, we have:

@/Egdcﬁ € [0,1]

Show the existence of g € LZ,(Q, F, ¢) such that g(w) € [0,1] for allw € Q,
and (1) still holds.

Show that for all f € LE(Q,F, ¢), we have:

/f (1-g dv—/fgwdu

Show that for all n > 1 and E € F,
FEQ+g+...+g")peLEQF, ¢)

Show that for all n > 1 and E € F,

/(1—9”“)611/:/g(1+g+---+g”)wdu
E E

+oo
h 2 qw <Z g")
n=0

Show that if A = {0 < g < 1}, then for all £ € F:

v(ENA)= /Ehdu

Define:
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13. Show that {h = +o0} = A® and conclude that p(A°) = 0.
14. Show that for all E € F, we have v(E) = [, hdpu.

15. Show that if y is o-finite on (£, F), and v is a finite measure on (€, F)
such that v << p, there exists h € L (2, F, u), such that h > 0 and:

VE e F, V(E):/ hdp
E
16. Prove the following:

Theorem 60 (Radon-Nikodym:1) Let p be a o-finite measure on (2, F).
Let v be a complex measure on (2, F) such that v << u. Then, there exists
some h € L&(Q, F, ) such that:
VE € F V(E):/ hdu
E

If v is a signed measure on (0, F), we can assume h € Li(Q, F,p).
If v is a finite measure on (Q, F), we can assume h > 0.

EXERCISE 7. Let f = u+1iv € L§(Q, F, 1), such that:

VE € F, /fdu:O
E

where p is a measure on (9, F).

/u+du z/ ud
{u=0}

3. State and prove some uniqueness property in theorem (60).

1. Show that:

2. Show that f =0 pu-a.s.

EXERCISE 8. Let p and v be two o-finite measures on (€2, F) such that v << p.
Let (En)n>1 be a sequence in F such that E, T Q and v(E,) < +oo for all
n > 1. We define:

Vn>1, Vnél/E"él/(Enm-)

1. Show that there exists h,, € Lk (Q, F, ) with h,, > 0 and:

VE € F, vy(E) :/ hndis (2)
E
for all n > 1.

2. Show that for all & € F,

/ iyt < / hrdps
E E
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3. Show that for all n,p > 1,
1
w({hn = hny1 > 5}) =0

4. Show that h,, < h,41 p-a.s.

5. Show the existence of a sequence (hy,)n>1 in Lk (9, F,u) such that 0 <
hp < hygq for all n > 1 and with (2) still holding.

6. Let h = sup,,»; hy,. Show that:

VEEF , v(E) :[Ehdu (3)

7. Show that for all n > 1, [, hdp < +o0.

8. Show that h < 400 p-a.s.

9. Show there exists h : (2, F) — R* measurable, while (3) holds.
10. Show that for all n > 1, h € L (Q, F, u¥n).

Theorem 61 (Radon-Nikodym:2) Let p and v be two o-finite measures
on (,F) such that v << p. There exists a measurable map h : (,F) —
(RT,B(R")) such that:

VE € F, V(E):/hdu
E

EXERCISE 9. Let h,h' : (2, F) — [0, 4+00] be two non-negative and measurable
maps. Let u be a o-finite measure on (€2, F). We assume:

VE e F, /hd,uz/h’du
E E

Let (Ey)n>1 be a sequence in F with E, T Q and u(E),) < 400 for all n > 1.
We define F,, = E, N {h <n} for all n > 1.

1. Show that for all n and E € F, [ hdu™ = [, Wdp"™ < +oc.
2. Show that for all n,p > 1, u(F, N{h > h' +1/p}) = 0.

3. Show that for all n > 1, p({F, N{h #h'}) =0.

4. Show that p({h # '} N{h < 4+o0}) = 0.

5. Show that h = h' p-a.s.

6. State and prove some uniqueness property in theorem (61).
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EXERCISE 10. Take Q = {} and F = P(Q) = {0, {+}}. Let u be the measure
on (Q,F) defined by p(@) = 0 and p({*}) = +oo. Let h,h' : (Q,F) — [0, +o0]
be defined by h(x) = 1 # 2 = h/(x). Show that we have:

VE e F, /hd,uz/h’du
E E

Explain why this does not contradict the previous exercise.

EXERCISE 11. Let p be a complex measure on (€2, F).
1. Show that p << |p|.

2. Show the existence of some h € L&(Q, F, |u|) such that:
VE € £ ulE) = [ b
E
3. If p is a signed measure, can we assume h € Lk (Q, F, |u|)?

EXERCISE 12. Further to ex. (11), define 4, = {|h| < r} for all » > 0.

1. Show that for all measurable partition (E),),>1 of A,:

+oo
> B < rlul(Ar)

[\

. Show that |u[(A,) =0 for all 0 < r < 1.

3. Show that |h| > 1 |ul|-a.s.

4. Suppose that F € F is such that |u|(F) > 0. Show that:
;/ hdlul‘ <1
Wl(E) JE

5. Show that |h| <1 |ul|-a.s.

6. Prove the following:

Theorem 62 For all complex measure p on (2, F), there exists h belonging
to L& (U F, |pl) such that |h| =1 and:

VECF . u(E) = [ hd
E

If u is a signed measure on (Q, F), we can assume h € Lk (Q, F,|u|).

EXERCISE 13. Let A € F, and (A,,),>1 be a sequence in F.

1. Show that if A,, T A then 14, T 14.
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2. Show that if A, | A then 14, | 14.
3. Show that if 14, — 14, then for all u € M (Q, F):
n(A) = lim p(An)
n—-+o0o

EXERCISE 14. Let p1 be a measure on (2, F) and f € L&(Q, F, ).
1. Show that v = [ fdu € M*(Q,F).
2. Let h € L&(Q, F, |v|) be such that [h| = 1 and v = [ hd|v|. Show that for

all B, F € F:
/ledMZ/h1Fd|l/|
E E

3. Show that if g : (2, F) — (C,B(C)) is bounded and measurable:
VE € F, / fodu = / hgd|v|
E E
4. Show that:
VE € F, |[V|(E) :/ fhdu
E
5. Show that for all ' € F,

/Re(fﬁ)duzo , /Im(fﬁ)duzo
E

E
6. Show that fh € RT p-a.s.
7. Show that fh = |f| p-a.s.

8. Prove the following:

Theorem 63 Let pu be a measure on (Q,F) and f € LE(Q,F,pu). Then,
v = [ fdu defined by:

VEeF , V(E)é/fdu
E

is a complex measure on (2, F) with total variation:

VEeF, IVI(E)=/E|f|du

EXERCISE 15. Let u € M'(Q,F) be a signed measure. Suppose that h €
L (2, F,|p|) is such that |h| = 1 and p = [ hd|p|. Define A = {h = 1} and
B={h=-1}.

1. Show that for all E € F, pu™(E) = [, +(1+ h)d|ul.
2. Show that for all E € F, u=(E) = [, 3(1 — h)d|pu/|.
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3. Show that u* = pu4 = u(An -).
4. Show that u= = —pu? = —u(BnN -).
Theorem 64 (Hahn Decomposition) Let u be a signed measure on (9, F).

There exist A,B € F, such that ANB =, Q = AY B and for all E €
pt(E) =p(ANE) and p~(E) = —p(BNE).

7

Definition 97 Let p be a complex measure on (Q,F). We define:

A
Le(Q,F, 1) = Lo (. F, |ul)
and for all f € L§(Q, F, ), the Lebesgue integral of f with respect to p, is

defined as:
N
[ tan® [ su
where h € LE(Q, F, |p|) is such that |h| =1 and p = [ hd|p|.

EXERCISE 16. Let p be a complex measure on (€2, F).
1. Show that for all f: (Q,F) — (C, B(C)) measurable:
feLb@Fw & [Ifidul <+
2. Show that for f € L§(Q, F, pn), [ fdu is unambiguously defined.

Show that for all E € F, 15 € L§(Q, F,p) and [ 1gdu = p(E).

Show that if u is a finite measure, then |u| = pu.

orok W

Show that if p is a finite measure, definition (97) of integral and space
LE(Q, F, u) is consistent with that already known for measures.

6. Show that L (2, F, ) is a C-vector space and that:

/(f"‘ag)dlt:/fdu—i-a/gdu

for all f,g € LE(Q,F,p) and a € C.
7. Show that for all f € L&(Q, F, ), we have:

\ [ sau] < [ 151

EXERCISE 17. Let p,v € M*(Q, F), let a € C.

1. Show that |av| = |al.|v]|
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2. Show that |u+v| < |p| + |v]

w

. Show that L&(Q, F, ) N LE(Q, F,v) € LE(Q,F, 1+ av)
4. Show that for all E € F:

/1Ed(u+au):/1Edu+a/1EdV

5. Show that for all f € L&(Q, F,u) N L (2, F,v):

/fd(u—i—ozu):/fdu—i—a/fdu

EXERCISE 18. Let f : (Q,F) — [0,400] be non-negative and measurable. Let
w and v be measures on (2, F), and « € [0, +o0]:

1. Show that p 4 av is a measure on (€2, F) and:

/fd(quazz):/fdqua/de

2. Show that if u < v, then:
[ fan< [ sav

EXERCISE 19. Let u € MY(Q, F), u1 = Re(p) and po = Im(p).
1. Show that [p1] < |u| and [p2| < |pl.
2. Show that [p] < [pa| + [pa].
3. Show that L&(Q, F, p) = LE(Q, F, 1) N LE(Q, F, pa).
4. Show that:

L& F ) = Le(QF, wf) N Le(Q,F, p1y)
Le(Q,F p2) = LE(QF,ud) N LE(QF,us)

5. Show that for all f € LE(Q,F, p):

/fdu—/fduf—/fdufﬂ</fdu§r—/fdu5>

EXERCISE 20. Let p € MY(Q,F). Let A € F. Let h € L&(2, F, |u|) be such
that |h| = 1 and p = [ hd|p|. Recall that p* = (AN -) and pa = L(F 0)
where Fla ={ANE, E€ F} CF.

1. Show that we also have Fj4 ={F: Fe€F , EC A}
2. Show that p® € M'(Q,F) and 4 € M (A, F4).
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3.

10.

11.
12.
13.
14.

Let E € F and (E,)p>1 be a measurable partition of E. Show:

Zlu )| < lul*(EB)

Show that we have |u?| < |u|4.

Let E € F and (E,)n>1 be a measurable partition of AN E. Show that:
ZIM )| < [t I(ANE)

Show that |p?|(A¢) = 0.
Show that |p?| = |u|”.

Let £ € F|a and (E,),>1 be an Fjs-measurable partition of £. Show
that:

Z lja(En)| < |plia(E)

Show that |pjal < |pfja.

Let F € |4 € F and (Epn)n>1 be a measurable partition of E. Show that
(En)n>1 is also an Fj4-measurable partition of F, and conclude:

Zlu < lryal(E)

Show that |ujal = |p]ja-
Show that ut = [ hd|u?|.
Show that h‘A S LE(A,]:M, |M|A|) and Ha = fh|Ad|M|A|-
Show that for all f € L&(Q2, F, 1), we have:
f]-A € LE(Q,}—,‘LL) ) f € LE(QMF;,L"A) ) f\A € L%}(Aa]:\AvlﬂA)

[ 1adu= [ gat = [ fada

and:

Definition 98 Let f € L5(Q, F, ) , where p is a complex measure on (§2, F).
let A € F. We call partial Lebesgue integral of f with respect to p over A,
the integral denoted fA fdu, defined as:

[t [rindn= [ rat = [ adma

where p? is the complex measure on (0, F), u? = u(An-), f1a is the restriction
of f to A and ju 4 is the restriction of p to F|4, the trace of F on A.
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EXERCISE 21. Prove the following:

Theorem 65 Let f € LE(Q,F, ), where pi is a complex measure on (§2, F).
Then, v = [ fdu defined as:

VE e F | V(E)é/fdu
E
is a complex measure on (Q, F), with total variation:

VE€F ., (E) = [ Ifldu
Moreover, for all measurable map g : (2, F) — (C,B(C)), we have:
g€ L&, Fv) & gf € Lo(Q,F,p)

and when such condition is satisfied:

/gdv: /gfdu

EXERCISE 22. Let (1, F1),..., (2, F,) be measurable spaces, where n > 2.
Let uy € MY (1, F1), -y phn € MY (Qp, Fp). For all i € Ny, let h; belonging
to L&(Q4, Fiy|pi]) be such that |h;| = 1 and p; = [ hid|p;|. For all E €
F1® ... F,, we define:

A

1. Show that € M (1 X ... x Qp, F1 @ ... 0 Fy)
2. Show that for all measurable rectangle A; x ... X A,:

/.L(Al X ... X An) = /J/l(Al) . /J/n(An)

3. Prove the following:

Theorem 66 Let 1, ..., iy, be n complex measures on measurable spaces (1, F1),
respectively, where n > 2. There exists a unique complex measure 1 ®. . .Q L, on
(1 x...xXQ,, F1®...@F,) such that for all measurable rectangle Ay X ... X A,,,
we have:

EXERCISE 23. Further to theorem (66) and exercise (22):
1. Show that |1 @ ... & pn| = [p1| ® ... & |fin]-
2. Show that [ ® ... @ | = [|pall - [|pall-
3. Show that for all £ € F1 ® ... Fy:

u1®...®un(E):/hl...hnd|u1®...®un|
E
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4. LetfeLé(Ql><...><Qn,.i’-'1®...®.7-'n,u1®...®un). Show:
/fd/“@®,Ltn:/fh1hnd|ﬂl|®®|,un|

5. let o be a permutation of {1,...,n}. Show that:

/fdul®...®un:/ fdua(l)---dﬂa(n)
Qo (n) Q1)
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Solutions to Exercises

Exercise 1. Let u be a measure on (£, F) and v € M'(Q,F). Suppose that
v << p. Let E € F be such that u(E) = 0. Let (E,)n>1 be a measurable
partition of E. For each n > 1, we have E,, C E and consequently u(E,) <
w(E). It follows that p(E,) =0 for all n > 1, and from v << p we obtain that
v(Ey,) =0 for all n > 1. Hence:

+oo
D (B =0

This being true for all measurable partition (E,,),>1 of E, it follows from defi-
nition (94) that |v|(E) = 0. We have proved the implication that u(E) = 0 =
|v|(E) = 0 and consequently |v| << p. Conversely, if |v| << p and p(E) = 0,
then |[v|(E) = 0. From |v(E)| < |v|(E) we conclude that v(E) = 0. So v << p.
We have proved the equivalence between v << p and |v| << p. Note that p is
assumed to be a measure, and not a complex measure.

Exercise 1

Exercise 2.

1. Define B,, = Ug>nEx for n > 1. By assumption, u(Ex) < 1/2F for all
k > 1 and consequently:

+oo +oo
1 1
w(Bn) < E w(Ex) < g oF = Gao1 < T
k=n k=n

It follows that p(B,) — 0 as n — +oo. Furthermore, since E is defined
as £ = Ny>1B, and By,41 C B, for all n > 1, we have B,, | E. From
p#(B1) < 400 and theorem (8), we obtain pu(B,) — p(E) as n — +o00. We
have proved that:

wE)= lim pu||(JE|=0

n—-+o0o
k>n

2. If By, = Up>p By, then E = Ny,>1B, and B,41 € B, for all n > 1. From
theorem (57), the total variation |v| of the complex measure v is a finite
measure. In particular |v|(B1) < 400, and applying theorem (8), it follows
that |v|(B,) — |V|(F) as n — +oo. Furthermore, since E,, C B,, for all
n > 1, we have:

e < [V(En)| < W[(En) < |v[(Bn)

and in particular lim |v|(B,) > e¢. We have proved that:

W(E)= lim [v| | (JEx|>e¢

n—-+o0o
k>n
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3. Let A be a measure on (Q,F) and B,, = Up>,Ey for n > 1. Since E =
Np>1By and By, C B, for all n > 1, it is very tempting to conclude that
A(Bpn) — A(E) as n — +oo. However, a careful reading of theorem (8)
shows that we cannot safely apply this theorem, unless A\(By) < +o0o (or
at least A\(B,,) < +oo for some p > 1), which in general is not true. So in
general, we cannot conclude that:

AE)= lm X | E

n—-+oo
k>n

When A = g or A = |v|, we crucially used the assumption that u(Ej) <
1/2F for all k > 1, and the fact that |v| is a finite measure, to obtain
A(B1) < +00.

4. Let p be a measure on (€2, F) and v be a complex measure on (2, F). The
fact that v << p is equivalent to |v| << p, has already been proved in
exercise (1). Suppose the condition:

Ve>0,36 > 0,YE € F,u(E) <6 = |v(E)| < ¢ (4)

holds. Let E € F be such that p(E) = 0. Applying (4), for all € > 0, there
exists § > 0 such that if E’ € F satisfies u(E") < 6, then [v(E’)| < e. Since
u(E) =0, we have p(E) < ¢ for all 6 > 0 and consequently |v(F)| < ¢ for
all € > 0. So v(E) = 0. This shows that v is absolutely continuous with
respect to p, and we have proved that (4) = v << p. Conversely, suppose
that v << u, and that condition (1) does not hold. There exists ¢ > 0
such that for all § > 0 we can find some Es € F with the property that
w(Es) <4 and |v(FE5)| > e. Taking § of the form § = 1/2™ for n > 1, there
exists a sequence (Ey),>1 in F, such that u(E,) < 1/2" and |[v(E,)| > €
for all n > 1. Defining E = limsup E;,, = Np>1Uk>n Ei, we have p(E) =0
from 1. and |v|(E) > € from 2. This contradicts the fact that |v| << pu, or
equivalently the fact that v << p. We have proved that v << p = (4),
which completes the proof of theorem (58).

Exercise 2

Exercise 3.
1. Let p be a measure on (Q, F) and v € M*(Q, F). Suppose that v << p.
Let E € F be such that u(E) = 0. Then v(E) = 0. In particular,

11 (E) = Re(v(E)) = 0 and v5(E) = Im(v(E)) = 0. This shows that
vy << pand v << .

2. From 1. we have 11 << p. From exercise (1), this is equivalent to |v;| <<
w. Hence, if E € F is such that y(E) = 0, then v1(E) = 0 and |11|(E) = 0.
It follows that:

i (B) = 5 (1 l(B) + m(E) =0
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and 1
v (B) = 5 (1 ](B) ~ v (B)) =0
We conclude that v;7 << p and v; << p. We prove similarly that vy
and v, are absolutely continuous with respect to p.
Exercise 3

Exercise 4.

1. Since S is a closed proper subset of C, its complement S¢ is an open
subset of C, which is not empty. Let z = x + iy € S¢. There exists € > 0
such that B(z,¢) C S°. Let 2,3 € Q be such that |z — 2’| < €/2v/2 and
ly — 1| < €/2v/2, and define 2’ = 2’ + iy, Then:

2= =V]e - P+ ly -y <e/2

Let ¢ € Q be such that |z — 2| < € < ¢/2. Then it is clear that z €
B(%',€') and furthermore, for all 2/ € C such that |z’ — z”| < €/, we have:

|z = 2" < |z = 2|+ | —2"| <2 < e

It follows that z € B(z',¢) C B(z,¢) C S¢, where B(z',¢) denotes the
closed disc with center 2z’ and radius €. Hence, for all z € S¢, we are able
to find a closed disc D, in C, such that z € D, C S¢, and furthermore,
such closed disc can be chosen to have a rational radius (¢/ € Q), and
a center with rational coordinates (z/,y’ € Q). In particular, to each
D, where z € S¢, can be associated a triple (z,,¥.,¢.) in Q3, defining a
mapping which is injective. Q2 being a countable set, it follows that D =
{D. : z € 5° is at most countable (and non-empty), and consequently
there exists a surjective map ¢ : N* — D. Defining D,, = ¢(n), from
S¢ = U,escD, we obtain:

+o0o +o0o
s=JD={Jom=JDn

DeD n=1

2. Since p is a finite measure and u(E,) > 0, it is always possible to write
the complex number a,, as a,, = pu(E,)"* [ 5 andp. Consequently, using
theorem (24), we have:

1 1
dp — ap| < ——— — apld
u(En>/E,Lf poo <u<En>/E,L'f nldp

Since E, = {f € Dp} = {|f — an| < rn}, we have the inequality |f —
an|lp, <r,lg,, and consequently:

1 / 1

—— f—an dug—/rnlE”du:rn
N(En) E, | | M(En)

We have proved that:

1
1(E,) /E folp = o

1
w(En)

<

/ |f - O‘n|d,u <r,
En
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3. Let n>1and E, ={f € D,}. Suppose p(E,) > 0. Then:

N(;n)~/E fdM € (5)

n

by assumption. However, from 2.:

7,
—_ fdp —an| <r,
M(En) E,
or equivalently:
),
fdu € D 6
WE) Jp, " ©

Since D, C 5S¢ (5) and (6) form a contradiction. It follows that the
assumption p(E,) > 0 is absurd and therefore u(F,) = 0. We have
proved that u({f € D,}) =0 for all n > 1.

4. Let p be a finite measure on (2, F) and f € LE(Q
closed subset of C such that for all E € F with p(E)

1

We claim that f € S p-a.s. If S = C, there is nothing further to prove.
We assume that S is a proper (closed) subset of C. Let (Dy)n>1 be a
sequence of closed discs in C as in 1. Then S¢ = U,>1D,, and from 3.
uw{f € Dp}) =0 for all n > 1. From {f € S°} = Up>1{f € D,} we
obtain:

,Fop). Let S be a
> 0:

+oo
p{fesP <Y n{feDa})=0

n=1
It follows that if N = {f € S°}, then N € F, u(N) =0 and f(w) € S for
all w € N°. This shows that f € S p-a.s. We have proved theorem (59).

Exercise 4

Exercise 5.

1. Let w € . Since E,, T €, in particular Q = U,>1E,,. There exists p > 1
such that w € E,. Hence:

“+oo
1 1 1 1
ww) =Y el (W) > o > 0

A R 1(En) 201+ p(Ep)
Furthermore:
=1 1 =1
=y = 1 <Y —=1
w(w) 29Ty p(E,) (@) < 2o on
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2. w is R-valued, measurable, and from theorem (19):

=<1 1
= = - 1
/ledu /wdu 2 2"1+u(En)/ Endp < +00

Sow € L (Q,F, p).
Exercise 5

Exercise 6.

1. The fact that g = [wdp is a measure on (2, F) stems from a direct
application of theorem (21). However, the result is pretty straightforward,
with or without theorem (21): it is clear that ji(f)) = 0 and furthermore
from the monotone convergence theorem (19):

+oo +oo
a(E) = /1Ede = Z / lg,wdp = Zﬂ(En)
n=1 n=1

for any £ € F and (E,),>1 measurable partition of E. Since w is non-
negative and is an element of L (Q, F, i), we have:

i) = [ wdp = [ uld < +oc
So i is a finite measure.

2. Since both v and [ are finite measures on (2, F), they are complex mea-
sures with values in R™. So ¢ = v + [i is a complex measure on (£2, F)
(M*(2, F) is a vector space), and it has values in RT. It follows that ¢ is
a finite measure. Alternatively, you may wish to argue that ¢ is a measure
(as the sum of two measures), and that ¢(Q) = v(Q) + () < +o0 since
both v and f1 are finite.

3. Let f: (2,F) — [0,+00] be a non-negative and measurable map, and

consider the equality:
[ o= [ gavs [ fuds (7)

Since ¢ = v+ i and i = [ wdy, this equality is true whenever f is of the
form f = 1 with E € F. By linearity, equation (7) is also true whenever
f is a simple function on (€, F). If f is an arbitrary non-negative and
measurable map, from theorem (18) there exists a sequence (sp)n>1 of
simple functions on (€, F), such that s, T f. Applying equation (7) for
each n > 1, we obtain:

/snd¢: /sndu—i—/snwdu (8)

Since w is non-negative, (s,w),>1 is a non-decreasing sequence of non-
) =
negative and measurable maps, converging simply (i.e. pointwise ) to fw.
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In short, we have s,w T fw, and from the monotone convergence theo-
rem (19), taking the limit in (8) as n — 400, we conclude that equation (7)
is also true for f. Suppose now that f € L5(Q,F, ¢). Applying (7) to | f],

we obtain:
/ \fldv + / | flwdp = / |ldé < +oo

and consequently f € L&(Q, F,v) and fw € L&(Q, F,p). If f is real-
valued, Applying equation (7) once more to f and f~, we obtain:

/ frdo = / Frdv+ / fHwdp (9)
/f a6 = /f du+/f wdy (10)

Subtracting (10) to (9) (all terms being finite, w being non-negative and
fTw, f~w being ﬁnlte) we see that equation (7) is true for f, whenever
[ € LE(Q,F,¢). If f =u+iv where u and v are elements of L (Q, F, ¢),
we conclude that equation (7) is true for f by the linearity of the integral,
and the fact that it is true for v and v. This proves that equation (7) is
in fact true for all f € LE(Q,F, ¢).

and:

4. Let f € LE(Q,F, ¢). From the Cauchy-Schwarz inequality (42):

i< ([ |f|2d¢>> (/ 12d¢)2 -(/ |f|2d¢>)2 ()

In particular, ¢ being a finite measure, [|f|d¢ < +oo and f is also an
element of L&(2, F,¢). 1 Applying 3. to | f|, we have:

[1sav < [1sid+ [ 11wdu= [ 15106

It follows that:

Jiflav < [is1a0 < (/Iledqb)% (b))

5. ¢ being a finite measure, from 4. the inequality [|f]|?d¢ < +oo implies
J1fldv < 400. So LE(Q, F,¢) C Ls(Q2, F,v). Furthermore, given f €
LE(Q,F, ), from 4. and theorem (24):

‘/fdz/ < [ 1510 < Va@ 1

6. Consider the map A : LL(Q, F, ¢) — C defined by:

Vi€ L&(Q, F, 6) /fdy

!This shows that L%(Q,F,¢) C L&(2, F,¢) whenever ¢ is a finite measure. We don’t
need |f| € LL(Q,F, ¢) for equation (7 ) to be true (see proof of 3.)
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Since LE(Q,F,¢) C LE(Q, F,v) A is well-defined, and it is clearly linear.
Furthermore from 5., |A(f)] < /o(Q)| fll2 for all f € LE(Q,F,¢). So A
is also continuous. Applying theorem (55), there exists g’ € LE(Q, F, ¢)
such that A\(f) = [ fg'd¢ for all f’s. Taking g = §’ € LL(Q,F,¢), we
obtain:

vie @ F.6). [ fiv= [ 190

7. Let E € F be such that ¢(E) > 0. ¢ being a finite measure, the map 1g
is an element of LE(Q2, F, ¢). From 6. we have:

/gd¢ /1Egd¢ /1Ed1/_y

Furthermore, since 0 < v(F) < v(E) + i(E) = ¢(E), we obtain:
0< [ gdo < o(p)
Finally since ¢(E) > 0, we see that ¢(E)~! [, gd¢ € [0,1].

8. Since ¢ is a finite measure, we have L%(Q,}', ¢) € L&(Q,F, ¢), as can
be seen from the Cauchy-Schwarz inequality (42). In particular, g is an
element of L&(€2, F, ¢). Furthermore, the interval [0, 1] is a closed subset
of C, and for all E € F with ¢(E) > 0, we have:

1

@/Egdqs e [0.1]

Applying theorem (59), it follows that g € [0,1] ¢-almost surely. There
exists N € F with ¢(N) = 0 such that g(w) € [0,1] for all w € N°.
Define h = glye. Then h € LE(Q, F, ¢) and h(w) € [0,1] for all w € Q.
Furthermore, for all f € LE(Q,F, ¢) we have from 6.:

[ v = [ tgao= [ tordo+ [ sorneas= [ snas

Renaming h by ’g’, we have found g € L%(Q, F, ¢) such that g(w) € [0, 1]
for all w € Q and (1) still holds.

9. Let f € LL(Q,F,¢). Since g € LL(Q,F,¢), from the Cauchy-Schwarz
inequality (42):

[175las < (/|f|2d¢)é (/|g|2d¢)é < 400

It follows that fg € L&(Q, F, ¢). From 3. we have:

[ todo= [ soav+ [ sgudn (11)

all three integrals being well-defined. From 6. we have:

/fduz/fgd¢ (12)
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10.

11.

12.

13.

From (11) and (12), using the linearity of the integral, we obtain:

/f(l —g)dv = /fgwdu

Letn>1and E € F. Let f = (1+g+...4+¢")1g. Then f is a measurable
map and furthermore, since 0 < g < 1, f is also bounded. ¢ being a finite
measure on (2, F), we conclude that f € L& (2, F, ¢).

Let n >1land E € F. Let f=(1+¢g+...+¢")1lg. From 10. f is an
element of L%(Q, F,¢). Applying 9. we obtam

/f (1—-g dl/—/fgwdu
or equivalently:

/ (1—g"dv = / gl+g+...+g"wdn (13)
E E

Let A ={0< g < 1} and define:

+o0o
AN
2o (30)
k=0

and h, = gw(3_p_,g") for n > 1. Then, for all E € F, (hylg)n>1 is a
non-decreasing sequence of non-negative and measurable maps, converging
simply to hlg. By the monotone convergence theorem (19), we have
[ halpdp — [ hlgdpy, ie.

lim gl+g+...+¢")wdy = / hdu (14)
n—+oo |/ p E

Furthermore for all w € A, (1 — g"*!(w)) — 1 asn — +o0, and if w &€ A,
since 0 < g < 1 we have 1 — g"*!(w) = 0 for all n > 1. It follows that
(1 — g™ 1g — 1gna, and v being a finite measure, the condition |(1 —
g"t1)1g| < 1 allows us to apply to dominated convergence theorem (23)
to obtain:

lim (1—g"Hdv = /1E0Adu =v(ENA) (15)
E

n—-+o0o

Using (14) and (15), taking the limit in (13) as n — 4oc:
v(ENA)= / hdp
E

Let w € Q with h(w) = +00 = g(w)w(w) > pey ¢ (w). Since 0 < g < 1 and
0 < w < 1, the series ZZOB g"(w) cannot be convergent, and consequently
g(w) = 1. So w € A® and we have proved that {h = 400} C A°. Con-
versely, suppose that w € A¢. Since 0 < g < 1, we have g(w) = 1. Hence
SF% ¥ (w) = 400, and since w(w) > 0 it follows that h(w) = +oo. This
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14.

15.

16.

shows that A¢ C {h = 400} and finally that {h = +00} = A°. Applying
12. to E = A€, we obtain:

0=v(A°NA) = » hdp = (400)u(A°)

from which we conclude that u(A€) = 0.

Let £ € F. From 12. we have:
v(ENA) = / hdp
E

From 13. we have p(A¢) = 0. Since by assumption, v is absolutely contin-
uous with respect to p (i.e. v << u), we also have v(A°) = 0. It follows
that:

v(E)=v(ENA)+v(ENA°) = / hdu
E

Let p be a o-finite measure on (€2, F) and v be a finite measure on (€, F)
such that v << p. From 14. we have found a map h : (Q,F) — [0, +o0]
non-negative and measurable, such that:

VE e F , v(E) :/ hdu (16)

Furthermore, from 13. we have u({h = +o0}) = 0. It follows that prop-
erty (16) will also hold, if we replace h by hl{j<4o0}. Hence, without loss
of generality, we can assume that h satisfying (16) has values in R™. Since
v is a finite measure, taking £ = Q in (16) we obtain:

/|h|du = /hdu =v(Q) < o0

Soh € L (9, F, ). We have proved the existence of amap h € Lk (Q, F, )
such that h > 0 and property (16) holds.

Let p be a o-finite measure on (2, F), and v be a complex measure on
(Q, F) such that v << p. If v is in fact a finite measure, then 15. guaran-
tees the existence of h € L(2, F, 1) such that:

VE € F, v(E) :/ hdu (17)
E
In fact, the result in 15. is slightly stronger, and allows us to choose h
with values in R*. If v is a signed measure (i.e. it has values in R), then
it can be written as v = v+ — v~ where v and v~ are respectively the
positive part and negative part of v. Since v* and v~ are finite measures
(see exercise (12) of Tutorial 11), which are absolutely continuous with
respect to p1 (see exercise (3)), there exist h™, h~ elements of L} (2, F, u)
with values in R, such that v* = [htdp and v~ = [ h~dp. Defining
h = h* —h~, we obtain an element of L} (2, F, ) for which (by linearity
of the integral) property (17) holds. In the general case when v is an
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arbitrary complex measure, v can be written as v = vy + iy where v,
V9 are two signed measures which are absolutely continuous with respect
to u (see exercise (3)). Hence, there exist hi, ho in L5 (2, F, 1) such that
v1 = [ hidpand vy = [ hodp. Defining h = hq +iha, we obtain an element
of L§(2, F, u) for which (by linearity of the integral) property (17) holds.
This proves the complex version of the Radon-Nikodym theorem (60).

Exercise 6
Exercise 7.

1. The positive part u™ of u is defined as vt = max(0,u). It follows that
ut = ulgy>0) and consequently:

/u*du: /ul{u>0}du:/ udp
- {u>0}

2. By assumption, using £ = {u > 0} € F, we have:

/ fdu:O:/ udu+i/ vdp
{u>0} {u>0} {u=0}

It follows in particular that | {(u>0} udp = 0 and consequently using 1.,
Jutdp = 0. Since u™ is non-negative, this implies that u™ = 0 p-a.s. (See
Exercise (7) of Tutorial 5.). Similarly, from u~ = max(—u,0) = —uly,<o

we obtain:
/ufdu = —/ul{u<0}du = —/ udj
B {u<0}

/ fdu:O:/ udu—l—i/ vdp
{u<0} {u<0} {ugo0}

we see that [u~du = 0 and finally v~ = 0 p-a.s. An identical proof will
show that v = 0 p-a.s. and v~ = 0 p-a.s. Having proved that u™, u=, v+
and v~ are all p-almost surely equal to zero, there exist sets N1, Na, N3
and Ny, elements of F, with u(Ny) = p(N2) = p(Ns) = p(Ng) = 0 and
such that ut(w) = v~ (w) =vT(w) =v~ (w) =0 forallw € NfN...NNJ.
Taking N = Ny U...U Ny, we have found N € F with pu(N) = 0 such
that f(w) =0 for all w € N°. This shows that f =0 u-a.s.

and from:

3. Suppose there exist two maps hq, he € LE(Q, F, ) which satisfy the con-
clusion of theorem (60), i.e. such that:

VE e F, v(E) :/ hldu:/ hadp
E E
Defining f = hy — he € LE(Q, F, p), we obtain:

VE € F, /fdu:O
E
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and from 2. we conclude that f = 0 p-a.s., or equivalently h; = hy u-
a.s. This shows that the Radon-Nikodym derivative of v with respect to
p (ie. the element h of L&(2,F,u) which satisfies the conclusion of
theorem (60)), is unique up to p-almost sure equality.

Exercise 7

Exercise 8.

1. Let n > 1. We have v,(Q) = v(E, N Q) = v(E,) < +00. So v, is a finite
measure, and in particular a complex measure on (2, ). Furthermore, if
E € F is such that u(E) = 0, then u(E, N E) = 0 and it follows from
v << pthat v(E,NE) =01ie. v,(F) = 0. This shows that v, << u, and
the assumptions of theorem (60) are therefore all satisfied. There exists
hy, € L&(QY, F, p) such that:

VE e F , v,(E) :/ hndis
E

Furthermore, v,, being a finite measure, the map h,, can be chosen to lie
in Li (Q,F,p), with h,, > 0.

2. Let £ € F and n > 1. By assumption, E,, C E, 1. Hence:

/ hpdp=v(E,NE)<v(E,y1 NE) = / hpt1dp
E E

3. Let n,p > 1. Since Ay, by 41 have values in R (in fact RT), the difference
hp — hpy1 is meaningful, and from 2. we have:

/ (h — Pin2)da < 0
E

Applying this inequality to E = {h,, — hp+1 > 1/p} we obtain:

1 1
S = oy > 1) < [ (= b)) <0
p p E

from which we conclude that p({h, — hnt1 > 1/p}) = 0.

4. Let n > 1. From:

+oo
1
{hn > hn+1} = U{hn - hn+1 > ];}

p=1
and the fact that u({h, — hnt1 > 1/p}) = 0 for all p > 1, we conclude
that p({hn > hns1}) =0. So hy, < hpyr p-.ass.

5. Given n > 1, let N,, = {hy, > hyp41}. Define N = U,>1N,,. Then,
#(N) = 0 and replacing all h,,’s by hy1ye, we obtain a sequence (hy)n>1
in Ly (Q,F, ) such that 0 < h,, < hy,4q (this time everywhere), where
the new hy’s are p-almost equal to our original h/ s, and therefore such
that equation (2) still holds.
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6. Let h = sup,~; b, and E € F. From (2), for all n > 1 we have:

v(E,NE)= /1Ehndu (18)

From (E,NE) 1 E and theorem (7), v(E,NE) — v(E) asn — +o00. From
1ghy, T 1gh and the monotone convergence theorem (19), f lgh,dp —
J 1ghdp as n — +oo. Taking the limit in (18) as n — 400, we conclude
that:

VEEeF, V(E):/hdu
E

7. Let n > 1. From 6. we have:
/ hdp = v(E,) < 400
En
8. From (4+00)1{,— 4o} < h and 7. we obtain:
(+00)a(En N {h = +o0}) < / hdp < +00
Ey

It follows that wu(E, N{h = +o0}) = 0 for all n > 1. From E, N {h =
+o00} T {h =400} and theorem (7), we obtain:

p({h = +o0}) = T (B, 1 {h=+o0}) =0
We conclude that h < 400 p-a.s.

9. Replacing h by hl{,<io}, we obtain a measurable map with values in
R*, which is p-almost surely equal to our original h, and therefore such
that equation (3) still holds.

10. h has values in R™ and is measurable, while from 7.:

/ hdpFr = / hdp < +o0
En

So h € L (0, F, nfm).
Exercise 8

Exercise 9.

1. Let n>1 and E € F. We have:

/ hdpfr = / hdp = / B dp = / ' dptr
E F,NE F,NE E

Furthermore:

/ hduF” = /]—EhlE,Ll{hgn}dﬂ < TL‘LL(En) < 400
E
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2. Let n>1and p> 1. Applying 1. to E={h > h' +1/p}:

1
/ B dptr = / hdptr > / Rdpt + = pu(F, N E)

E E E p

and since [, B'dp"™ < +oo, it follows that p(F, N E) = 0.

3. Let n > 1. From the equality:
+o0 1

{h>h}= U{h>h’+]—)}

p=1

and the fact that u(F, N{h > h' +1/p}) = 0 for all p > 1, we have
w(F,n{h > h'}) = 0. A similar argument shows that u(F,N{h" > h}) = 0.
It follows that u(F, N{h # h'}) =0.

4. By assumption, F,, = E,, N {h < n}. Hence, F,, C F,, 11 for all n > 1 and
Up>1F, = {h < +o0}. In short, F,, T {h < 400}, and consequently we
have F,, N {h # W'} 1 {h # W'} N {h < +o0}. Applying theorem (7), we
conclude that:

W # WY {h < +ooh) = lim_u(Fu 1 {h ) = 0

5. The assumption made on h and h’, namely:

VE € F /hduz/h'd,u
E E

is symmetric in terms h and h’. Using 4. where h and h' have been
interchanged, we obtain u({h # h'} N {h’ < 4+00}) = 0. Since the set
{h # KW'} can be decomposed as:

{h#h'}y = ({h#0}0{h < +ooh)u ({h # I} N{h" < +o0})
we conclude that p({h # h'}) =0, i.e. h=h' p-as.

6. Let h and A’ be two maps satisfying the conclusion of theorem (61). Then
in particular, h and A’ are non-negative and measurable, while satisfying:

VE € F, /hdu:/h'du
E E

This exercise shows that h = b’ p-a.s. In other words, the Radon Nikodym
derivative of v with respect to p (i.e. the map h which satisfies the con-
clusion of theorem (61)) is unique, up to p-almost sure equality.

Exercise 9

Exercise 10. The sigma-algebra F has only two elements, () and {x}. If £ =0,

then:
/hdu:O:/ e
E E
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If E = {x}, then:

[ b= 1) = o0 = 2 plts) = [ W

In any case, we have fE hdu = fE h'du. Although h and A’ are not p-almost
surely equal, this does not contradict exercise (9), as the measure p is not
sigma-finite.

Exercise 10

Exercise 11.

1. Let E € F be such that |p|(E) = 0. Since |u(E)| < |u|(E) we have
u(E) =0, and consequently p << |u].

2. From theorem (57), the total variation |p| of u is a finite measure on
(Q,F). In particular, it is sigma-finite. p being a complex measure such
that 1 << |p|, we can apply theorem (60): there exists h € L&(2, F, |ul)
such that:

VECF . u(E)= [ hdu
E

3. If p is in fact a signed measure, then from theorem (60), h can indeed be
chosen to lie in L (2, F, |u|).

Exercise 11

Exercise 12.

1. Let A, = {|h] < r} (for some r > 0) and (E,),>1 be a measurable
partition of A,.. From exercise (11), for all n > 1:

) = \ / hdlul‘ ] < i)

where the first inequality stems from theorem (24), and the second from
the fact that F,, C {|h| < r}. It follows that:

+o0o +o0o
Do E <) |ul(Bn) = rlul(Ar)
n=1 n=1

2. |1|(A,) being the least upper bound of all sums 3" [u(E,)| as (Ep)n>1
ranges across all measurable partitions of A,, it follows from 1. that
le|(Ar) < rlul(Ar). When 0 < 7 < 1, this can only occur if |u|(A,) = 0.

3. From the equality:

{lnl <1} = U{Ihl <1——}

p=2

and the fact that |u|({|h| < 1—1/p}) = |u[(A1_1/p) = 0 for all p > 2, it
follows that |u|({|h| <1}) =0, ie. |h| > 1 |pu|-as.
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4. Let E € F be such that |u|[(E) > 0. We have:

s | |- <

5. Applying theorem (59) to the closed disc S = {|z| < 1} and the finite
measure |p|, we conclude from 4. that h € S |ul-a.s. or equivalently that
|h] <1 |p|-a.s.

6. Having proved that |h| > 1 |u|-a.s. and |h| < 1 |pl-a.s., the set N = {|h| >
1}U{|h| < 1} is such that |u|(N) = 0. Replacing h by hlye+1x, we obtain
an element of L& (€2, F, |u|) such that |h| = 1 (this time everywhere), which
is almost surely equal to our original h, and therefore such that:

VECF . u(E)= [ hdu
E

From 3. of exercise (11), if u is a signed measure, then h can be chosen to
lie in Lk (9, F, |p|). This proves theorem (62).

Exercise 12

Exercise 13.

1. Suppose A, T A. Then A,, C A, 41 for all n > 1, and furthermore A =
Up>14n. Let we Qandn > 1. If 14, (w) =0, then 14, (w) < 14, (w)
is clear. If 14, (w) = 1, then w € A, and consequently w € A, 11, so
14,,,(w) = 1. In any case, we have 14, (w) < 1a,,,(w). This shows
that 14, <14, , for all n > 1. Since A, C A for all n > 1, we obtain
similarly that 14, <14 for all n > 1, and consequently sup,,;~; 14, < 1a.
Let w € Q. If 14(w) = 0, then 1a(w) < sup,~; la,(w) is clear. If
la(w) = 1 then w € A = Up>14,, and there exists n > 1 such that
w€ A, Sola,(w)=1<sup,~;1a,(w). In any case, we have 14(w) <
sup,,>1 14, (w). This shows that:

la=suply, = lim 14,

n>1 n—-+o0o
and finally, we have proved that 14, T 14.

2. Suppose that A, | A. Then A1 C A, for alln > 1 and A = Nyp>14,.
It follows that A5, C A5, for alln > 1 and A° = U,>1 45, or equivalently
that A5, T A°. Applying 1. we obtain that 14c T 14c. Since 14c =1—14,
for all n > 1 and 14 = 1 — 14, we conclude that 14, , < 14, for all
n>1and 14 =lim, 14,. We have proved that 14, | 14.

3. Suppose that 14, — 14 and let u € M*(€2, F). From theorem (62), there
exists h € L§(Q, F, |u|) such that:

VE € F u(B) = [ hdy
E
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In particular, pu(A,) = [ 14, hd|u| for all n > 1. The hypothesis 14, —
14 implies in particular that 14,h — 1ah, and since |14, h| < |h| €
L (Q,F,|u]), the dominated convergence theorem (23) allows us to con-
clude that:

i _p(A,) = Jim [ 14, bl = [ Lahdlul = ()

n—-+o0o
Exercise 13
Exercise 14.

1. Let f € L&(Q, F,u) and v : F — C be defined by:
VE e F, z/(E)z/fdu
E

The fact that v € M'(Q, F) has already been proved in ex. (3) of Tu-
torial 11. For a slightly leaner proof, here is the following: let £ € F
and (Ep),>1 be a measurable partition of E. For all n > 1, we define
A, =FE ¢...WE,. Then, from 14, =1p, + ...+ 1g, we obtain:

W) = [ Lafdn =3 [1scfdn=3" vlEn) (19)
k=1 k=1

Furthermore, from A,, T E we have 14, T 1g and consequently 14, f —
lgf. Since |14, f| < |f| € LK (2, F, u) for all n > 1, it follows from the
dominated convergence theorem (23) that:

lim v(A,) = nEIJIrloo/lA"fd’u = /lEfdu =v(E) (20)

n—-+o0o

Comparing (19) with (20), it appears that the series sz v(E}) converges
to v(FE). So v is indeed a complex measure on (2, F).

2. From theorem (62), there is h € L&(Q, F, [v|) with |h] = 1 and:
VE € F, v(E) :/ hd|v|
B

Let E, F € F. We have:

/Eflpdu:/Emedu:I/(EﬂF):/Ehlpd|1/|

3. Given g : 2 — C bounded and measurable, we claim that:

VE € F, /fgdu:/hgd|1/| (21)
E E

From 2., equation (21) is true whenever g is of the form g = 1p with
F € F. By the linearity of the integral, (21) is also true whenever g is
a simple function on (2, F). Suppose g is non-negative and measurable,
while being bounded. From theorem (18), there exists a sequence (sy,)n>1
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of simple functions on (2, F), such that s, T ¢g. Having proved (21) for
simple functions, for all n > 1 we have:

/1Efsndu: /1Eh5nd|u| (22)

From s, — g we obtain 1gfs, — 1gfg and 1ghs, — 1ghg. Since
1efsn] < |flg € Lx(Q,F,pn) (since g is bounded) and |1ghs,| < |h|lg €
Ly (Q,F,|v]), it follows from the dominated convergence theorem (23)
that [1gfs,dp — [1gfgdp and [1ghs,djv| — [1ghgd|v| as n — +oc.
Taking the limit in (22) as n — 400, we see that (21) is true whenever
g is non-negative and measurable, while being bounded. If ¢ is now an
arbitrary C-valued map which is measurable and bounded, then it can
be expressed as ¢ = g1 — g2 + i(gs — g4) where each g; is non-negative,
measurable and bounded. From the linearity of the integral, we conclude
that (21) is also true for g, which completes the proof of our initial claim.

4. Since |h| = 1, applying (21) to g = h, we obtain for all E € F:

/fhdu /hhd|u| /d|y| (B

5. The total variation |v| of the complex measure v being a finite measure
n (Q,F) (theorem (57)), it has values in R". Hence:

/ERe(fﬁ)du ~ Re ([E fhdu> — Re(||(E)) > 0
and:

[ 1m( Ry = m < / fﬁdu> — Im(|v](E)) = 0

6. Define g1 = Re(fh) and go = Im(fh). Then g; and go are elements of
L& (9, F, 1), and from 5. we have [, gidu > 0 while [}, gadp = 0 for all
E € F. Since S = R" and S = {0} are closed subset of C, it is very
tempting to apply theorem (59) in an attempt to conclude that ¢; € R
p-a.s. and go = 0 p-a.s. Unfortunately, p is not assumed to be a finite
measure (it is not even assumed to be sigma-finite) and theorem (59)
should therefore be forgotten here. Taking E = {¢g1 < —1/n} for some
n > 1, we obtain:

1
0< / gidp < _H“({gl <-1/n}) <0
E

from which we see that u({g1 < —1/n}) = 0 for all n > 1. Since {¢1 <
0} = Up>1{g1 < —1/n}, it follows that p({g1 < 0}) = 0 and consequently,
g1 € RT p-a.s. Similarly, from fE godp = 0 for all E € F, we obtain
g2 € RT pras. and —go € RT p-as. It follows that go = 0 p-a.s.
We have proved that Re(fh) € R* p-a.s. while Im(fh) = 0 p-a.s., so
fh e RT p-as.
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7. From 6. there exists N € F with u(N) = 0 and f(w)h(w) € R* for all
w € N€. In particular, since |h| = 1, for all w € N

fwh(w) = [fw)h(w)] = | f(w)]
It follows that fh = |f| p-a.s.

8. Let p be a measure on (2, F) and f € Lg(Q,F,p). Then, from part 1.
of this exercise, v = [ fdu is a complex measure on (£, F). Furthermore,
from 4. we have:

VE € F, |y|(E)=[Efﬁdu

Finally, from 7. we have fh = |f| pu-a.s. We conclude that:

VB e F . (E) = [ Ifldu
This completes the proof of theorem (63).
Exercise 14
Exercise 15.

1. The positive part u™ of the signed measure u is defined by the formula
ut = (|| + 1)/2 (see exercise (12) of Tutorial 11). It follows that for all
EeF:

i (8) = 5l E)+ 5 [ ndlul = [ S0+ myde

2. The negative part u~ of the signed measure yu is defined as = = (Ju| —
1)/2. Hence, for all E € F:

_ 1 1 1
p(E) = lul(B) ~ 5 [l = [ S0~ e
E E
3. Since h € Ly (2, F,|p|) is R-valued and |h| = 1, h can only assume the

values 1 and —1. Having defined A = {h =1}, (1+h)/2 =0 on A° and
for all £ € F we have:

1 1
it E) = [ S mdil= [ S (23)
B2 ANnE 2
Furthermore, since h = (1 + h)/2 on A:
1
pang) = [ hdul = [ S0+ ndu (24)
ANE ANE

Comparing (23) with (24), we obtain ut = p#.
4. Having defined B = {h = —1}, we have for all £ € F:

po@)= [ =il = [ S0 -nau
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since (1 —h)/2 =0 on B°. Furthermore:

1
pENE) = [ hdl == [ 0 -nda
BNE BNE

since h = —(1 — h)/2 on B. This shows that u~ = —u®”, and completes
the proof of theorem (64).

Exercise 15

Exercise 16.

1. Let f: (2, F)— (C,B(C)) be measurable. From definition (97), any ele-
ment of L§(Q2, F, p) is an element of L(Q2, F, |u]), and therefore satisfies:

/ | Fldl] < +oo (25)

Conversely, if f satisfies the integrability condition (25), then it is an
element of L&(Q, F,|u|) and therefore an element of L&(Q, F, ).

2. Let f € LE(Q, F, u). The integral of f w.r. to u is defined as:

[ fan [ salu (26)

where h is any element of L&(Q,F, |u|) with |h| = 1 and p = [ hd|yl
(there is at least one such h by virtue of theorem (62)). This definition is
potentially ambiguous, as h may not be unique. However, if A’ is another
element of L (2, F, |p|) with |h/| = 1 and p = [ W/d|ul, then for all E € F,

we have:
/ hdly = / Wl

which implies that f p(h =1 )d|p| = 0. Using exercise (7), it follows that
h = h' |pul-a.s. and consequently the r.h.s integral of equation (26) is
unchanged, when replacing h by h’. We conclude that equation (26) is in
fact unambiguous, as its r.h.s integral does not depend on the particular
choice of element h € L& (2, F, |pu|) with |h] =1 and p = [ hd|p.

3. Let E € F. Then 1g : (2,F) — (C,B(C)) is measurable, and further-

more:
/ 11 p|d]ye] = / 1pd|u] = |p|(E) < +oo

since |p| is a finite measure on (2, F) (see theorem (57)). Using 1. it
follows that 1g is an element of L& (9, F, 1), as defined in definition (97).
Moreover, we have:

[ 1w = [ vetail = [ bl = ue)
E
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4. If 1 is a finite measure (complex measure with values in R™), then for all
E € F and (E,,)n>1 measurable partition of E:

+oo +oo
Do luE) =Y u(En) = u(E)
n=1 n=1

In particular, u(F) is an upper bound of all sums :z |(En)l, as (En)n>1
ranges through all measurable partitions of E. It follows that |u|(E) <
w(E). Since u(E) = |u(E)| < |u|(E) is clear, we conclude that |u| = p.

5. Suppose that p is a finite measure. Then p is not only a measure, but also a
complex measure. It follows that definition (97) of the space L&(Q2, F, p),
and of the integral [ fdp (valid for complex measures), is potentially in
conflict with the definitions already known for measures (definitions (46)
and (48)). However, since p = |y, the space L (2, F, 1) of definition (97)
being defined as Lg(§2, F,|u|), coincide with that of definition (46). Fur-
thermore, h = 1 being an element of L&(Q, F,|u|) with |h] = 1 and
p = [ hd|p|, the integral [ fdp of definition (97) can be expressed as:

[ tin= [ hial = [ sl = [ san

where the r.h.s integral is that of definition (48). We conclude that defi-
nition (97) which extends the notion of integral with respect to complex
measures, is consistent with previous definitions laid out for measures.

6. The space L&(S2, F, pu) being defined as L&(Q2, F, |u|), it is a C-vector
space. Let h € LE(2, F, |u|) be such that |h| = 1 and p = [ hd|u|. Then,
for all f,g € LE(Q,F,p) and a € C, following definition (97) we have:

[ +agan = [(7+agnd

[ sl +a [ ghi
= /fdu+a/gdu

where the second equality stems from the linearity of the integral, already
established for measures.

7. Let f € LE(Q,F,pu) and h be as in definition (97). Then, from theo-
rem (24), we have:

\ / fdu‘ - ‘ / fhdlul‘ < [1vlalul = [ 171l

Exercise 16

Exercise 17.
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1. Let E € F and (E,)n>1 be a measurable partition of E. Then:

+oo
> lov(E, I—IaIZIV )| < lellv|(E)

It follows that |a|[v|(E) is an upper bound of all 37 |av(E,)| as (B )n>1
ranges through all measurable partitions of E. Slnce |av|(E) is the small-
est of such upper bounds, we obtain the inequality |av|(E) < |a||v|(E).
This being true for all E € F, we have proved that |av| < |a||v| for all
a € C. If « =0, then |av| = |a||v| is clear. If a # 0, then applying what
we have just proved to v/ = av and o/ = 1/a we obtain:

p=| 2| < &

and consequently |af|lv| < |av|. This shows that |av| = |a|lv| for all
ve M (QF)and a € C.

|av|

2. Let E € F and (E,),>1 be a measurable partition of E. Then:

+o0o +o0o
ZI(quV)(En)ISZIu |+ZIV )< (el +1vD(E)

Tt follows that (|u| 4 |v|)(E) is an upper bound of all sums > |(u +
v)(Ey)| as (Ep)n>1 ranges through all measurable partitions of E |+
v|(E) being the smallest of such upper bounds, we have |u + v|(E) <
(lp|+17])(E). This being true for all E € F, we have proved that |u+v| <
|l + [v]-

3. Let f € LE(QF, 1) N LE(Y, F,v). Then f is C-valued, measurable, and
satisfies [ |f]d|u| < +oo with [|f|d|v| < 4oc0. Using 2. and 1., for all
aeC:

ln+av| < |p| + [av| = [u] + |allv|
Hence, for all £ € F, we have:

[ 1pdit avl < [ 1edul + jal [ 1o

By linearity, if s is a simple function on (2, F), we obtain:

/ sdlp + av| < / sdlul + o / sdlv|

Approximating | f| by a sequence simple functions (see theorem (18)) and
using the monotone convergence theorem (19):

[t avi < [ iflan + 1ol [ 17idp] < +oo

So f € L&(Q, F, i+ av), and we have proved the inclusion:
Lo, F, 1) N Le(Q, F,v) C Le(QF, p+ av)
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4. Using 3. of exercise (16), we have:

[1pdnsar) = (et an)(e)
W(E) + av(EB)

5. Let f € LE(, F, 1) N LE(Q, F,v). We claim that:

/fd w+av) = /fdu—ka/fdl/ (27)

Note from 3. that f € L5 (2, F, u+ av) and all integrals of equation (27)
are therefore well defined. Furthermore from 4., (27) is true whenever
f is of the form f = 1p with E € F. By linearity (proved in 6. of
exercise (16)), equation (27) is in fact true whenever f is a simple function
n (2, F). Suppose now that f : (Q,F) — [0, +0o0] is non-negative and
measurable, while being an element of L (€2, F, ) N L&(Q, F,v). From
theorem (18), there exists a sequence (s, )n>1 of simple functions on (€2, F)
such that s, 1 f. Let h € L&(9,F,|u + av|) be such that |h| = 1
and p + av = [ hd|p+ av|. Then, s,h — fh and furthermore |s,h| =
|sn| = 80 < f € L&(LF, |p + av|). From the dominated convergence
theorem (23), we have:

hIJIrl Spd(p+ av) = hm sphd|p + av|
- /fmm+aw

— [ fdu+ av)

We show similarly that:

n—-—4oo

lim Spdp = / fdu
and:

lim sndu—/fdll

n—-4oo

Having proved (27) for all simple functions on (€2, F), we have:

/snd(u—i—al/) :/sndu—i—a/sndl/

and taking the limit as n — 400, we see that (27) is also true for f non-negative,
measurable and belonging to L (€2, F, 1) N LE(Q, F,v).

If fis an arbitrary element of L& (Q,F, n) N LE(Q, F,v), then it can be
expressed as f = f1 — fa +i(f3 — f1) where each f; is non-negative, measurable
and belonging to L&(Q, F, 1) N LE(Q, F,v). Equation (27) being true for each
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fi, it follows by linearity that (27) is also true for f. We have proved that (27)
is true for all elements f of € L&(Q, F, u) N LE(Q, F,v).
Exercise 17

Exercise 18.
1. Let p,v be two measures on (€, F) and « € [0, +0o0]. Then:
(4 av)(0) = p(®) + av(®) =0 (28)

Note that from the convention (+00) x 0 = 0, equation (28) is still true in
the case when oo = +00. Furthermore, if A € F and (A, ),>1 is a sequence
of pairwise disjoint elements of F with A = W&,>1A4,,, then:

(4+av)(A) = p(A)+av(4)
+oo +oo
= Z 1(An) + o Z v(An)
oo oy
= S ) + Y an(4n)

+o0o
= Y uAn) + ar(Ay)

+oo
= D (n+av)(Ay)
n=1
Note that the third equality is still true if &« = oo orv(A) = >, o, v(4,) =
+oo. It follows that p+av is countably additive, and we have proved that
it is indeed a measure on (2, F). Now, given f : (Q,F) — [0, +00], we
claim that:

/ fd(p+ av) = / fdu+a / fdv (29)

(29) is obviously true when f is of the form f = 1g with £ € F. By
linearity (which is still valid, even if @ = +00), (29) is also true when
f is a simple function on (2, F). If f is an arbitrary non-negative and
measurable map, from theorem (18) there exists a sequence (S )n>1 of
simple functions on (92, F), such that s, T f. Having proved (29) for any
simple function, for all n > 1 we have:

/snd(u+a1/) = /sndu—i—a/sndu (30)

From the monotone convergence theorem (19), taking the limit in (30) as
n — 400, we conclude that (29) is also true for f. Note that if & = 400
and (un)n>1 Is a sequence in [0, +00] converging to some u € [0, +o0],
then it is not true in general that au,, — au. Indeed, consider the case
when u,, = 1/n. Then au = (+00) x 0 = 0 while au,, = (+00) x (1/n) =
+oo for all n > 1, and (oup),>1 does not converge to au. However,
if u,, < upyq for all n > 1, then the convergence au, — au is true.
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Indeed, if w = sup,,~; un, = 0, then u,, = 0 for all n > 1 and consequently
au, =0 = au. If u # 0, then u,, # 0 for n large enough, and consequently
au, = +0o = au for n large enough. All this to say that even in the case
when a = 400, the convergence « [ s,dv — « [ fdv is true.

[ fan< [ sav (31)

Since p < v, (31) is true when f = 1g, and E € F. By linearity, (31)
is also true when f is a simple function on (2, F). If f is an arbitrary
non-negative and measurable map, from theorem (18) there exists a se-
quence (sp)n>1 of simple functions on (€2, F), such that s, 1 f. Having
proved (31) for any simple function, for all n > 1 we have:

/ sndp < / il (32)

From the monotone convergence theorem (19), taking the limit in (32) as
n — +o00, we conclude that (31) is also true for f.

2. We claim that:

Exercise 18

Exercise 19.

1. Since 1 = Re(p), for all F € F we have |pui(F)| < |u(F)|. Hence, if
E € F and (E,),>1 is a measurable partition of E:

+oo +oo
Dol (E) <) (Bl < [ul(E)

It follows that |u|(F) is an upper bound of all 3> |1 (E,)|, as (En)n>1
ranges through all measurable partitions of E. Since |u1|(E) is the smallest
of such upper bounds, |p1|(E) < |u|(E). This being true for all E € F,
we conclude that 1| < |p]. We show similarly that |pe| < |ul.

2. Let E € F and (E,)n>1 be a measurable partition of E:

+oo +o0o
S (B <D I (En)| + [p2(En)| < pal(E) + |p2| ()
n=1 n=1

|| (E) being the supremum of all sums involved on the Lh.s of this in-
equality, we conclude that |u|(E) < [u|(E) + |p2|(F) for all E € F, ie.
that |p] < |pa| + |pel.

3. Let f:(Q,F) — (C,B(C)) be a measurable map. Proving:
Lé(Qaf7 M) = Lé(Qafv Ml) N LE(Q7‘7:) /J/Q)

amounts to showing the equivalence:

[l < +oc e [ iflalpn] < +oc, [ 171dlal < +00 (33
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From |p1] < |p] and |pe| < |p| using exercise (18) we obtain:

/ Fldl] < / il (34)

and:
/ |Fldlual < / il (35)

Furthermore, from |u| < |u1| 4 |u2| and exercise (18)

8):
[ st < [ 11l + 1) = [l + [ 1rldal - 0)
The equivalence (33) follows easily from (34), (35) and (36).
4. Let f:(Q,F) — (C,B(C)) be a measurable map. Proving:
Lo, F, ) = Lo(Q, F, 1) N Lo(Q, F, 7))
amounts to showing the equivalence:

/ Fldlan] < +oo & / |Fldut < +oo, / fldug <400 (37)

The positive and negative parts p; and p] of y; being defined as uf =
(lper] = p1)/2 and py = (Jua] — p1)/2 (see exercise (12) of Tutorial 11), we
have |1 = pi + py . Using exercise (18):

[istdon = [ 1sidut + [ 151

Hence, the equivalence (37) is clear. We show similarly that:

L&(Q,F, i) = Le(Q,F,13) N Le(Q, F, 1)

5. Let f € L§(Q,F,pn). We claim that

[ rau= [ it = [ san +z( [rat - | fdug) (39)

Note that from 3. and 4. we have:
f € Le(Q,F, i) N Le(Q, F, p17) 0 Le(Q, F, i3 ) N Le(Q, Fy py)

and consequently all integrals in (38) are well-defined. Applying exer-
cise (17) to the complex measures (in fact signed measures) pi, po and

« = i, we obtain:
[ tan= [ i+ [ o (39)

Applymg exercise (17) to the complex measures (in fact finite measures)
ui, uy and a = —1 we obtain:

[ aws = [ saut = [ rauz (40)
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Similarly, we have:

[ fana= | saut - / fdiz (41)

Equation (38) follows from (39), (40) and (
Exercise 19
Exercise 20.
1. By definition, the trace of F on A is given by:
FuS{ANE:EecF}
Since A is an element of F, it is clear that F|4 C F', where:
F'={E:EeF,ECA}

For the reverse inclusion, note that if £ € F’ then F can be written as
E=ANFEand E € F. So E is an element of F| 4.

2. Let E € F and (E,,)n>1 be a measurable partition of E. Then (ANE,,)n>1
is a measurable partition of ANE. Since p is a complex measure of (2, F),
we have:

WANE) ZuAmE (42)

i.e. the right-hand-side series converges to p(ANE). By the very definition
of u#, (42) can be re-expressed as:

+o0o
= Z NA (En) (43)

i.e. the right-hand-side series converges to u”(E). This shows that u*

a complex measure on (€2, F).

Let I € F4 and (E),),>1 be a measurable partition of F, i.e. a sequence
of pairwise disjoint elements of F|4 with £ = &J:iolEn From 1., F and
every F, is an element of F, (while being a subset of A). pu being a
complex measure on ({2, F), we have:

+oo
E)=7_ ulEy) (44)

i.e. the right-hand-side series converges to u(E). Since p4 is defined as
the restriction of y1 to F|4, and since E and all E,’s are elements of F|4,
(45) can be equivalently expressed as:

wa(E ZN\A (45)

i.e. the right-hand-side series converges to ji4(F). This shows that 4
is a complex measure on (A, F| ).
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3. Let E € F and (E,,)n>1 be a measurable partition of E. Then (ANE,,)n>1
is a measurable partition of AN E. Hence:

+oo
S Iu(AN Byl < |ul(AN E)

n=1

or equivalently:
Zlu )l < [l (B)

4. From the previous section 3., |u|*(E) is an upper bound of all sums

2 WA(Ey)|, as (Ep)n>1 ranges through all measurable partitions of

E. Since |p|(E) is the smallest of such upper bounds, we have |u?|(E) <
||A(F). This being true for all E € F, we conclude that |u?| < [u]4.

5. Let E € F and (E),)n>1 be a measurable partition of ANE. For alln > 1,
E,, C A and consequently p(E,) = u?(E,). Hence:

+o0o
> (B I—Zlu )| < A (ANE)
n=1

6. Let (E,)n>1 be a measurable partition of A°. Then:

+o0o +o0o
Z |:UA(En)| = Z |M(A N En)' =0

|14|(A°) being the supremum of all sums Z LB, as (Bn)n>1
ranges through all measurable partitions of A€, we Conclude that |p?|(A°) =
0.

7. From 5. it follows that [ |(ANE) is an upper bound of all sums 3" |u(E,, )|,
as (Ep)n>1 ranges through all measurable partitions of ANE. [u|(ANE)
being the smallest of such upper bounds, we have |u|(ANE) < |u?|(ANE).
However, from 6. we have |u|(A°) = 0, and consequently:

W (B) = [ [(ANE) + |p|(A° N E) = [u?|(AN E)

It follows that |u|(AN E) < |u?|(E). This being true for all E € F, we
see that |[u|* < |u?|. Having proved in 4. that |u?| < ||, we conclude
that |u| = |u|*. In other words, the total variation of the restriction of
1 to A, is equal to the restriction of the total variation of y to A.

8. Let E € F4 and (E,)n>1 be an F|4-measurable partition of E. Since
Fila €F, E € F and (E,)p>1 is also an F-measurable partition of E.
Hence:

Zlu )l < |pl(E) (46)
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10.

11.

12.

pa and |u| 4 being respectively the restrictions of 1 and |u| to F|4, (46)
can be re-expressed as:

Z lja(En)| < |plia(E)

Given E € ﬂA, it appears from 8. that |ufj4(F) is an upper bound of

all sums Z L lma(ER)], as (Ep)n>1 ranges through all 7| 4-measurable
partitions of E Since |pa|(E) is the smallest of such upper bounds, we
have [14|(E) < |pu|ja(E). This being true for all E € F|4, we conclude

that [p4] < [ulja-

Let £ € Fa and (E,)n,>1 be an F-measurable partition of E. From 1.
we have E € F and E C A. Tt follows that E,, C A for all n > 1 and
consequently E, € Fj4. So (E)n>1 is also an F|4-measurable partition
of E. Hence:

Z la(En)| < [al(E)

which can be equivalently ertten as:
Z |[1(Bn)| < [p1al(E)

Given E € F|4, it appears from 10. that |u4[(F) is an upper bound

of all sums 7% |u(E,)|, as (E,)n>1 ranges through all F-measurable
partitions of E. Since |u|(E) is the smallest of such upper bounds, we have

Hl(E) < lial(B), or equivalently since E € Fia, |l a(E) < |ujal(E).
This being true for all £ € F|4, |p|ja < [pa]. Having proved in 9. that
It al < |plja, we conclude that |pal = |pfa-

By assumption, h € L&(, F,|u|) is such that |h| = 1 and u = [ hd]ul.
In particular, for all £ € F:

WME) = p(ANE)

= [
ANE

= et
- / (h1p)d]pul

— [ bl
E

— [ bl
E
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where the first equality stems from the definition of ', the second from
the fact that g = [ hd|p|, the third, fourth and fifth from a use of defini-
tion (49) and finally the sixth from the fact that [u|* = [u“|. This being
true for all E € F, we have proved that u* = [ hd|u?|.

13. Since h € L§(Q, F, |p]), from definition (49), k4 is an element of L (A, Fa, [p]ja)-
Having proved that [u|ja = |pjal, it follows that hja € L& (A, Fia, |pal)
2. Furthermore, for all £ € Fla:

ma(E) = p(E)
= plANE)

— [
ANE

— [t
= /h|A(1E)|Ad|M|\A

= /h\Ad|ﬂ||A
E

- / Biadlu
E

where the first equality stems from the definition of 1 4, the second from
the fact that E C A, the third from the fact that g = [ hd|u|, the fourth,
fifth and sixth from definition (49) an finally the seventh from the fact
that |u|ja = |pal.- This being true for all £ € Fj4, we conclude that
wa = J hadlpal

14. Let f € LE(Q,F, ). From definition (97), this is equivalent to f €
L&(Q2, F,|u]). Applying definition (49), we have:

flAEL%:(Q,]:, |M|)7 fEL%:(Q,f, |:U/|A)a f|A EL%J(AaﬂA7 |/J/||A)
and since |u|* = |p?| and |p|j4 = g 4], we obtain:

flAEL%}(Q,}—, |M|)7 feLé(Qafv |,U'A|)a f|A ELE(Aa-T:\Av |,U'\A|)
Moreover, since |h| =1 and p = [ hd|u|, from definition (97):

[ f1adu= [ sniadi (47)

and similarly, since p? = [ hd|p?| and |p|? = |p?]:

[ it = [ hit = [ st (48)

20ne may argue that |hjal =1 and |u| 4] is a finite measure. ..
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Furthermore since pya = [ hyad|pa| and |plja = [pal:

/f\Adﬂ\A = /f|Ah\Ad|N\A| = /(fh)|Ad|H||A (49)
Finally, from definition (49):
/ fhtadpl = [ fhlut = [ (1) adll (50)
Comparing (47), (48) and (49) with (50), we conclude that:

/ fradn = [ gt = [ fadua

Exercise 21. Let f € L§(Q, F, i), where p is a complex measure on (£, F).
Let h € LE(Q, F, |u|) be such that |h| =1 and p = [ hd|p|. Let v = [ fdpu, i.e.
be the map defined by:

Exercise 20

VE € F V(E):/fdu

From definitions (98), (97) and (49), for all E € F:

/ frodn= [ fhipdul = [ frdp

It follows that v = [ fhd|u|, and applying theorem (63), v is therefore a complex
measure on (2, F), with total variation |v| given by:

VEeF, W|(E / | Fld]p = / Fldlul

Let g : (Q,F) — (C,B(C)) be measurable. Applying theorem (21) to |v| =

J | f|d||, we obtain:
[ista = [ islslai

and therefore we have the equivalence:

/ gldlv] < +oo & / lgfld]] < +oo
ie.
g€ LE(Q,F,v) & gf € LE(Q,F, p)

When such condition is satisfied, we claim that:

[ oav= [ osa (51)

This equality is clearly true when g is of the form g = 1 where E € F (such
a g would automatically lie in L§(Q, F,v) since |v| is a finite measure). By
the linearity of the integral (with respect to complex measures, such a linearity
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is proved in exercise (16)), equation (51) is also true when g is a simple func-
tion on (2, F). If g is non-negative and measurable, while being an element of
L&(Q, F,v), from theorem (18) there exists a sequence (sy,),>1 of simple func-
tions on (€2, F), such that s,, | g. Let k be an arbitrary element of L& (€2, F, |v|)
with |k| =1 and v = [ kd|v|. Then:

lim [ s,dv = lim [ s,kdV|
n—-+00 n—-+00

— [ k)
/gdz/

where the first and third equalities stem from definition (97), and the second
from the dominated convergence theorem (23) (and the fact that s,k — gk with
|snk| = sn, < g€ L&(Q,F,|v])). Similarly:

Jim s fdp n;gloo/s fhd|pl
— [ asndu

- / ofdu

where the first and third equalities stem from definition (97), and the second
from the dominated convergence theorem (23) (and the fact that s, fh — gfh
with |s, fh| = s,|f| < glf| € L&(Q,F,|u|)). Having proved (51) for simple

functions, for all n > 1:
/Sndl/: /snfdu

and taking the limit as n — +o0, we see that (51) is also true whenever g is
non-negative and measurable, while being an element of L&(Q, F,v). If g is
an arbitrary element L& (€, F,v), then it can be decomposed as g = g1 — g2 +
i(g3 — ga) where each g; is non-negative and measurable, while being an element
of LE(Q, F,v). By linearity, equation (51) is also true for g.

Exercise 21

Exercise 22.

1. Let Q= x .. xQpand F=F1 ® ... F,. Then:

VE € F u(E):/hdy
E

where h = hy ... hy, and v = |u1|®. .. ®|py| is the product measure, as de-
fined in definition (62). Each total variation |u;| being a finite measure, v
is also a finite measure, and furthermore |h| = |hq]...|h,| = 1. Moreover,
the map h is clearly measurable with respect to F, as the equality:

VBeB(C), hy ' (B)=Q x ... xh; }(B) x ... x Q,

(2
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shows that each h; (viewed as a map defined on the product space (€2, F))
is measurable. It follows that p is of the form u = [ hdv, where h €
L&(Q, F,v). From theorem (63), we conclude that y is a complex measure
on (Q,F). In fact, theorem (63) goes further, asserting that the total
variation of p is:

VE € F, lul(B) = [ v = [ 1pdv = v(E)
E
e |pl=v=|ml®...®|unl

2. Let A= A; x...x A, be a measurable rectangle. We have:

/ h1h2d|u1| ® |M2| /h1h21A1 ><A2d|ﬂl| ® |M2|
A

1 XAz

/ (haLay)(haay )l | ® [z

[ (Jonsiost) o
/hllAl (/h21A2d|M2|) i)

- / L, pn(Az) |

= () / haLa,di |

= (A1) - pa(Az)

Where crucially, the third equality stems from Fubini theorem (33). If
n = 2, then we have nothing further to prove. If n > 2, we consider the
induction hypothesis, for 2 < k < n:

/B grdve = pa (A1) - .. pe(Ar) (52)

where By, = A1 X ... X A, v, = || ® ... ® |uk| and gi is defined as
gk = hi...hg. If we assume that such induction hypothesis is true for
some k with 2 < k <n — 1, then:

/ Grr1dvki = /(glek)(thlAm)de@Iuk+1|
B

k41
/glek (/ hk+11Ak+1d|Mk+1|> dvy

= uk+1(Ak+1)/ grdvy
By,

= (A1) g1 (Agt1)

where the second equality stems from Fubini theorem (33) and the fourth
from our induction hypothesis (52). This shows that (52) is in fact true
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for all k =2,...,n, and finally:

H(A) = /B gndv = (A1) - pin(An)

n

3. We have proved that u is a complex measure on (€2, F) such that for all
measurable rectangle A = A; x ... X A,:

H(A) = (AL . 1 (An)

In order to prove theorem (66), it remains to show that such a measure
is unique. Suppose p and v are two complex measures on (€2, F) which
coincide on the set of measurable rectangles F; 11 ... 11 F,,. We define:

D—{E€F, u(b) = v(E)}

Then AL IT... 1T F, C D, and D is easily seen to be a Dynkin system
on (2,F). Indeed, Q being a measurable rectangle, we have Q € D.
Furthermore, If A, B € D and A C B, Then:

w(B\A) = p(A)+pu(B\A) —pu(A)
= wu(B)—pu(A)
= v(B)—-v(A)
= v(B\4)

and therefore B\ A € D. Moreover, if (A, ),>1 is a sequence of elements
of D such that A,, T A, then using exercise (13):

pd)= lm p(An) = lm v(An)=r(4)

and therefore A € D. So D is indeed a Dynkin system on (£2, F). The set
of measurable rectangles being closed under finite intersection (and being
a subset of D), from the Dynkin system theorem (1), we have:

o(F 1. .11F,) CD

and consequently F = F; ® ... ® F, C D. It follows that D = F and
finally ;1 = v. This proves theorem (66).

Exercise 22

Exercise 23.
1. We saw in exercise (22) that the complex measure p defined by:
VE € F M(E):/Ehl...hnd|u1|®...®|un| (53)
satisfies the requirement of theorem (66), and is therefore equal to the

product measure (11 ®. . .Q u,,. Furthermore, we proved using theorem (63)
that |u| = || ® ... @ |unl.
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1 @ ... © pal ()
] @ . @ |1 (©)
1] (921) - - - ] (25)
=l - lpall

”:U1®---®Mn“

3. From (53) and |pu| = |u1]| ® ... @ |un|, we obtain:
VE € F u(E):/ hi...hpd|p
E

4. Having shown that p = [ hd|u| with h = hy...h, (Jh| = 1), it follows
from definition (97) that for all f € L§(Q,F, p):

[ fdn= [ sudi
or equivalently:

/fd/“@®,Ltn:/fh1hnd|ﬂl|®®|,un|
5. Let o be a permutation of N, and h = hy...h,. Then:

/fdu1®---®un /fhd|u1|®---®lun|

[ o] i)
Qo (n)

Q1)
/ cee / fdua(l) .. .dug(n)
Qo (n) Qo1

where the second equality stems from exercise (17) of Tutorial 7, and the
third equality from:

/ fhdlpeyl = hog2) ---h(r(n)/ Thoydlpio)l
Qs (1) Q1)

o(n

= ha(2)~~ha(n)/Q fdpo )
o (1)

followed by an induction argument.

Exercise 23
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