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6. Product Spaces

In the following, I is a non-empty set.

Definition 50 Let (92;)icr be a family of sets, indexed by a non-empty set I.
We call Cartesian product of the family (2;)icr the set, denoted T;c18;, and
defined by:

[T & (w: I — Uieri, wii) e, Viel)

icl
In other words, 11;c1Q; is the set of all maps w defined on I, with values in
Uier€i, such that w(i) € Q; for alli€ 1.

Theorem 25 (Axiom of choice) Let (;)icr be a family of sets, indexed by
a non-empty set I. Then, I1;c;82; is non-empty, if and only if Q; is non-empty
for all i€ I'.

EXERCISE 1.

1. Let Q be a set and suppose that Q; = Q,Vi € I. We use the notation
instead of IT;<;€2;. Show that Q7 is the set of all maps w : I — Q.

2. What are the sets RR" , RN | [0,1]N, RR?

3. Suppose I = N*. We sometimes use the notation Hzi‘jﬂn instead of
I,en=€2,. Let S be the set of all sequences (z,)n>1 such that =, € Q,
for all n > 1. Is S the same thing as the product I17>3Q,,?

4. Suppose I = N, ={1,...,n}, n > 1. We use the notation O x ... x £,
instead of Ijcqy,.. €. Forw € Q1 x ... x €y, it is customary to write
(wi,...,wy) instead of w, where we have w; = w(i). What is your guess
for the definition of sets such as R, R", Q", C".

5. Let F, F,G be three sets. Define F x F X (.

Definition 51 Let I be a non-empty set. We say that a family of sets (Ix)xen,
where A # (), is a partition of I, if and only if:

(Z) YA e A, I,\7é®
()  YANEA, AEN = LNy =0
(ZZZ) I =Uyxealn

EXERCISE 2. Let (€2;);er be a family of sets indexed by I, and (Iy)xea be a
partition of the set I.

1. For each X € A, recall the definition of IT;cy, £2;.

'When I is finite, this theorem is traditionally derived from other axioms.
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2. Recall the definition of Ixep (ILier, ).
3. Define a natural bijection ® : I;e ;€ — Txea (Tier, Q4).

4. Define a natural bijection 1 : RP x R™ — RP™ for all n,p > 1.

Definition 52 Let (2;)ics be a family of sets, indexed by a non-empty set I.
Foralli € I, let & be a set of subsets of ;. We define a rectangle of the family
(&i)ier, as any subset A of ;182 of the form A = Tl;cr A; where A; € £U{Q;}
for all i € I, and such that A; = Q; except for a finite number of indices i € I.
Consequently, the set of all rectangles, denoted 11;c1E;, is defined as:

I1E 2 {HAi CA; € & UL, Ay #Q; for finitely many i € 1}
icl icl
EXERCISE 3. (€):er and (&;)ier being as above:

1. Show that if I =N, and Q; € & foralli=1,...,n,then & 11... 11, =
{Alx...xAn : Aie&-,WEI}.

2. Let A be a rectangle. Show that there exists a finite subset J of I such
that: A = {w € s w(j) € 4, , Vj € J} for some A;’s such that
Aj S 8j, for all j € J.

Definition 53 Let (Q;, Fi)icr be a family of measurable spaces, indexed by a
non-empty set I. We call measurable rectangle , any rectangle of the family
(F:)ier. The set of all measurable rectangles is given by %:

H]—“i 2 {HAi Ay e Fy, A £ Qy for finitely many i € I}
icl il

Definition 54 Let (Q;, F;)icr be a family of measurable spaces, indexed by a
non-empty set I. We define the product o-algebra of (F;)icr, as the o-algebra
on I;c1Q;, denoted ®;c1Fi, and generated by all measurable rectangles, i.e.

@7 2(11%)
el icl
EXERCISE 4.

1. Suppose I = N,,. Show that F; ® ... ® F, is generated by all sets of the
form Ay X ...x A, where A; € F; foralli=1,...,n.

2. Show that B(R)® B(R)®B(R) is generated by sets of the form A x B x C
where A, B,C € B(R).

2Note that Q; € F; for all i € I.
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3. Show that if (2, F) is a measurable space, B(R") ® F is the o-algebra
on R x Q generated by sets of the form B x F' where B € B(R™') and
FecF.

EXERCISE 5. Let (€;)ier be a family of non-empty sets and &; be a subset of
the power set P(§;) for all ¢ € I.
1. Give a generator of the o-algebra ®;cr0o(&;) on ;e ;.

2. Show that:

o <H &) c @ a(&)

i€l i€l

3. Let A be a rectangle of the family (0(&;))ier. Show that if A is not empty,
then the representation A = Il;c;A; with A; € o(&;) is unique. Define
Ja={iel:A #Q;}. Explain why J4 is a well-defined finite subset of
1.

4. If A € Iero(&;), Show that if A = ), or A # () and J4 = 0, then
A€ J(Hie[é‘i).

EXERCISE 6. Everything being as before, Let n > 0. We assume that the
following induction hypothesis has been proved:

Ae]]oE),A#0,cardJa=n = Aco (H&>
el i€l

We assume that A is a non empty measurable rectangle of (o(&;))ier with
cardJo = n+ 1. Let Js = {i1,...,in+1} be an extension of J4. For all

B C Q;,, we define:
AP 2T A

il
where each 4; is equal to A; except A;, = B. We define the set:

Fé{BQQil : ABEU<H&->}
i€l

1. Show that A% £ (), cardJ e, =n and that AR e Mera(&)).
2. Show that ©;, € T.

3. Show that for all B C ;,, we have A%1\B = A%\ AB,

4. Show that BeT'= Q;, \ BeT.

5. Let B, C Q;,, n > 1. Show that AYB» = UnzlAB".

6. Show that I' is a o-algebra on €2;, .
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7. Let Be&;,,and fori € I:define B; = Q; for all i’s except B;, = B. Show
that AP = A% N (HlejBl)

8. Show that o(&;,) CT.
9. Show that A = A% and A € o(I1;c;&;).
10. Show that IT;c;0(&;) C o(I;er&s).
11. Show that O'(Hie]gi) = ®i610(5i)~
Theorem 26 Let (€2;);er be a family of non-empty sets indexed by a non-empty

set I. For alli € I, let & be a set of subsets of );. Then, the product o-algebra
®Ric10(&;) on the Cartesian product 11, is generated by the rectangles of

(gi)iel; .6 :
®0’(8L‘) =0 (H(%)

il iel

EXERCISE 7. Let 7r denote the usual topology in R. Let n > 1.
1. Show that TRHHTR:{Al X...xA, A ETR}.
2. Show that B(R) ® ... @ B(R) =o(Tg II... I 7r).

3. Define C; = {Jai,b1] X ...xJan,bs] : a;,b; € R}. Show that Co C
SI...IIS, where S = {Ja,b] : a,b € R}, but that the inclusion is strict.

4. Show that SIT...1IS C o(Cs).
5. Show that B(R) ® ... ® B(R) = o(Ca2).

EXERCISE 8. Let  and Q' be two non-empty sets. Let A be a subset of {2 such
that 0 # A # Q. Let £ = {A} CP(Q) and & =0 C P(L).

1. Show that o(€) = {0, A, A°,Q}.

2. Show that o (&) = {0,Q'}.

3. DefineC={Ex F, E€& F €&} and show that C = 0.
4. Show that EI1& = {Ax 2, Q x '},

5. Show that o (&) @ o(€') = {0, A x Q' A° x O/, Q x Q'}.

6. Conclude that o(€) ® o(€') # o(C) = {#,Q x Q).

EXERCISE 9. Let n > 1 and p > 1 be two positive integers.

1. Define F = B(R)®...@ B(R), and § = B(R) ®...® B(R). Explain

n p
why F ® G can be viewed as a o-algebra on R"P.
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2. Show that F ® G is generated by sets of the form A; x ... x A, 1, where
A, e BR),i=1,...,n+0p.

3. Show that:
BR)®..9BR)=(BR)®...9BR))(BR)®...9BR))

n+p n p

EXERCISE 10. Let (£2;, F;)ier be a family of measurable spaces. Let (I))xea,
where A # (), be a partition of I. Let Q = II;c;Q; and Q' = Ixep (ILier£2:).

1. Define a natural bijection between P(Q2) and P(£').

2. Show that through such bijection, A = Il;c;A; C , where A; C €, is
identified with A/ = H)\EA (Hiel,\ Al) Q Q,.

3. Show that Hie]Fi = HAEA(HiEI,\fi)~

4. Show that ®i€[-7:i = ®)\€A(®i€h}—i)~
Definition 55 Let Q be set and A be a set of subsets of Q. We call topology
generated by A, the topology on Q, denoted T (A), equal to the intersection of
all topologies on ), which contain A.
EXERCISE 11. Let Q be a set and A C P(Q).

1. Explain why 7 (A) is indeed a topology on €.

2. Show that 7 (A) is the smallest topology 7 such that A C 7.

3. Show that the metric topology on a metric space (E,d) is generated by

the open balls A = {B(z,¢) : x € E,e > 0}.

Definition 56 Let (2;,7;)icr be a family of topological spaces, indexed by a
non-empty set I. We define the product topology of (7;),cr, as the topology
on I;eQ;, denoted ®,c17;, and generated by all rectangles of (T;)icr, i.e.

(OTeT (]_[ T)
icl iel
EXERCISE 12. Let (€, 7;)ier be a family of topological spaces.
1. Show that U € ®;¢17;, if and only if:
VeeU, VellieT,, zeVCU
2. Show that I;c;7; C ®ier7;.
3. Show that ®;erB(;) = o(ILieT;).
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4. Show that ®;c1B(Q;) C B(ILc18;).

EXERCISE 13. Let n > 1 be a positive integer. For all z,y € R", let:

n
A
(xay) = szyz
i=1
and we put ||| = /(x, x).

1. Show that for all t € R, ||z + ty||® = ||z||* + t2|y||*> + 2t(x, y).

2. From ||z + ty||? > 0 for all ¢, deduce that |(z,y)| < ||z||.||y|-

3. Conclude that ||z + y|| < [|z|| + ||y]|-

EXERCISE 14. Let (Q1,71), ..., (Qn, 7n), n > 1, be metrizable topological spaces.
Let dy,...,d, be metrics on €y, ...,8,, inducing the topologies 71,...,7, re-
spectively. Let Q = Q1 x ... x 0, and 7 be the product topology on €. For all
x,y € ), we define:

1. Show that d: Q x Q — R1 is a metric on Q.

2. Show that U C ) is open in 2, if and only if, for all x € U there are open
sets Uy, ..., U, in Qy,...,Q, respectively, such that:

relU; x...xU, CU

3. Let U € 7 and z € U. Show the existence of € > 0 such that:
(Vi=1,....,ndi(x;,y;) <€) = yeU

4. Show that T C Téi.

5. Let U € T and o € U. Show the existence of € > 0 such that:
x € B(x1,€) X ... X B(xp,e) CU

6. Show that Té’l cT.

7. Show that the product topological space (€2,7) is metrizable.
8. For all z,y € €, define:

A
d(zy) = ) dilwi,y)
d"(z,y) = max  di(wi,yi)

Show that d’, d” are metrics on €.
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9.

10.

Show the existence of o/, 3, " and $” > 0, such that we have o/d’ <
d S ﬂ/d, and a"d" S d S 6,/d/,~

Show that d’ and d”’ also induce the product topology on (.

EXERCISE 15. Let (Q,,7,)n>1 be a sequence of metrizable topological spaces.
For all n > 1, let d,, be a metric on €2, inducing the topology 7,. Let Q =
H+°° Q,, be the Cartesian product and 7 be the product topology on €. For all
x,y € Q, we define:

9.
10.

+oo

d(x,y) 2 Z 2%(1 A dn (20, Yn))

n=1

. Show that for all a,b € RT, we have 1A (a+b) <1Aa+1Ab.

Show that d is a metric on 2.

Show that U C Q is open in €, if and only if, for all x € U, there is an
integer N > 1 and open sets Uy, ..., Uy in Qq,...,Qy respectively, such

that:
+oo

zelix..xUxvx [[ Q@ucU
n=N+1

Show that d(z,y) < 1/2" = dp(Tn,yn) < 27d(z,y).

Show that for all U € 7 and x € U, there exists € > 0 such that d(z,y) <
e = yeU.

Show that 7 C 7.

Let U € ngi and z € U. Show the existence of ¢ > 0 and N > 1, such
that:

|
22— (IANdp(Tn,yn)) <€ = yelU
Show that for allUETéi and x € U, there is ¢ > 0 and N > 1 such that:

x € B(x1,€) X ... x B(ay,€ H Q,CU
n=N+1

Show that Té’l cT.

Show that the product topological space (€2, 7) is metrizable.

Definition 57 Let (Q,7) be a topological space. A subset H of T is called a
countable base of (2,7), if and only if H is at most countable, and has the

property:

VUeT,IHCH, U= ]V
VeH'
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EXERCISE 16.
1. Show that H = {]r,q[ : 7,q € Q} is a countable base of (R, Tr).

2. Show that if (Q,7) is a topological space with countable base, and " C €,
then the induced topological space (€', 7o) also has a countable base.

3. Show that [—1, 1] has a countable base.

4. Show that if (Q,7) and (5,7g) are homeomorphic, then (€2,7) has a
countable base if and only if (S, 7g) has a countable base.

5. Show that (R, 7g) has a countable base.

EXERCISE 17. Let (9,7, )n>1 be a sequence of topological spaces with count-
able base. For n > 1, Let {V,¥ : k € I,} be a countable base of (£2,,,7,,) where

I,, is a finite or countable set. Let © = II52 €, be the Cartesian product and

7T be the product topology on Q. For all p > 1, we define:

+oo
Hpé{vlklxmxvpkpx H Q, (k;l,..,,kp)ellx...xlp}
n=p+1

and we put H = Up>1H?.
1. Show that for all p > 1, H? C 7.
2. Show that H C 7.
3. For all p > 1, show the existence of an injection j, : H? — NP?.
4. Show the existence of a bijection ¢o : N2 — N.
5. For p > 1, show the existence of an bijection ¢, : N” — N.
6. Show that H? is at most countable for all p > 1.
7. Show the existence of an injection j : H — IN2.
8. Show that H is a finite or countable set of open sets in (2.

9. Let U € T and « € U. Show that there is p > 1 and Uy, ..., U, open sets
in Qq,...,8, such that:

+oo
relU; x...xUp,x H Q, CU

n=p+1
10. Show the existence of some V, € H such that x € V, C U.

11. Show that H is a countable base of the topological space (2, 7).
12. Show that ®729B(Q,) C B(Q).
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13. Show that H C ®>B(,).
14. Show that B(Q) = @, B(Q,,)

Theorem 27 Let (2, 7,)n>1 be a sequence of topological spaces with countable
base. Then, the product space (IL} 5, ©F7T,,) has a countable base and:

—+00 +oo
B (H Qn> =) B(2)
n=1 n=1
EXERCISE 18.

1. Show that if (2, 7) has a countable base and n > 1:
B(Q")=B(Q)®...®B(Q)

n

2. Show that B(R") = B(R) ® ... ® B(R).
3. Show that B(C) = B(R) @ B(R).

Definition 58 We say that a metric space (E,d) is separable, if and only
if there exists a finite or countable dense subset of E, i.e. a finite or countable

subset A of E such that E = A, where A is the closure of A in E.

EXERCISE 19. Let (F,d) be a metric space.

1. Suppose that (E,d) is separable. Let H = {B(x, %) :m,p > 1}, where
{zy, : n > 1} is a countable dense subset in E. Show that H is a countable
base of the metric topological space (E, 74).

2. Suppose conversely that (E,74) has a countable base H. For all V € H
such that V # (), take zy € V. Show that the set {zy : Ve H, V # 0}
is at most countable and dense in E.

3. For all z,y,2',y" € E, show that:
|d((E, y) - d(xlv y,)| < d(i[,', LC/) + d(ya y/)

4. Let Tpxg be the product topology on E x E. Show that the map d :
(E x E,Tgxg) — (RT,Tg+) is continuous.

5. Show that d: (E x E,B(E x E)) — (R, B(R)) is measurable.

6. Show that d : (Ex E,B(E)®B(E)) — (R, B(R)) is measurable, whenever
(E,d) is a separable metric space.
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7. Let (Q,F) be a measurable space and f,g : (Q,F) — (E,B(E)) be
measurable maps. Show that ® : (Q,F) — E x E defined by ®(w) =
(f(w),g(w)) is measurable with respect to the product o-algebra B(F) ®
B(E).

8. Show that if (E,d) is separable, then ¥ : (Q, F) — (R, B(R)) defined by
U(w) =d(f(w),g(w)) is measurable.

9. Show that if (F,d) is separable then {f = g} € F.

10. Let (Ey,dy)n>1 be a sequence of separable metric spaces. Show that the
product space HIgEn is metrizable and separable.

EXERCISE 20. Prove the following theorem.

Theorem 28 Let (24, F;)icr be a family of measurable spaces and (Q, F) be
a measurable space. For all i € I, let f; : Q — Q; be a map, and define
[ Q=1L by f(w) = (filw))ier. Then, the map:

f:(QF) — <H9i,®ﬂ>
iel i€l
is measurable, if and only if each f; : (Q,F) — (Q, Fi) is measurable.
EXERCISE 21.

1. Let ¢,7 : R?> — R with ¢(z,y) = # +y and ¥(x,y) = z.y. Show that
both ¢ and 1 are continuous.

2. Show that ¢, : (R?, B(R) ® B(R))—(R, B(R)) are measurable.

3. Let (92, F) be a measurable space, and f,g : (Q,F) — (R,B(R)) be
measurable maps. Using the previous results, show that f+ g and f.g are
measurable with respect to F and B(R).
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Solutions to Exercises

Exercise 1.

1. If Q; = Q for all i € I, then Ui = Q. For any map f : I — Q, the
condition f(i) € Q; for all i € I, is automatically satisfied. Hence, Q' is
the set of all maps f: 1 — Q.

2. RR" is the set of all maps f : RT — R. The set RN is that of all maps
f:N — R, or in other words, the set of all sequences (uy, ), >0 with values
in R. As for [0,1]N, it is the set of all sequences (uy)n>0 with values in
[0,1]. Finally, R® etc. ..

3. Yes. Maps defined on N* or sequences are the same thing.
4. For any set F, E™ is the set of all maps f: N,, — F.

5. E x F x G is the set of all maps w : N3 — FU F'UG such that wy, € E,
we € F and w3 € G.

Exercise 1
Exercise 2.

1. ey, €2 is the set of all maps f defined on I, with f(i) € Q; for all i € Iy.

2. Mxea(Iier, €;) is the set of all maps x defined on A, such that z(\) €
Iier, Qi, for all XA € A.

3. Given w € Ilie72; and A € A, let w;, be the restriction of w to Iy C I.
Since w(i) € Q; for all ¢ € I, in particular w(i) € €Q; for all 7 € I. Hence,
wir, € Hier, Q. This being true for all A € A, the map ®(w) = (w7, )rea
defined on A by ®(w)(\) = wyy,, is an element of TTxea (Iier, €2;). Hence,
we have defined amap ® : ;18 — xea (Tlier, ;). Let y € Txea (Tier, ;).
Since (Ix)xea is a partition of I, for all ¢ € I, there exists a unique A € A
such that ¢ € I. Define w(i) = y(A\)(¢). Then, w(i) € Q; for all i € I, i.e.
w € ILiesQ;. Moreover, by construction, ®(w)(\) = wi;, = y(A), for all
A € A. We have found a map w € Tl;¢;€;, such that ®(w) =y. So P is a
surjective map. Suppose that ®(w) = ®(w’) for some w,w’ € ;1. Let
i €1, and X € A be such that i € I. Then, we have:

(i) = (@i1,)(0) = 2)NV(E) = BN = /()
So w =W, and @ is an injective map. We have found a natural bijection
from IT;c;8; to HAEA(HiEIAQi)-
Given a map w € Il;er8;, it is customary to regard w as the family
(wi)ier where w; = w(i) for all ¢ € I. (A map defined on I is nothing
but a family indexed by I). Hence, the restriction w);, is nothing but the
family (w;)ier,, and the map ®(w) can be written as:

P((wi)ier) = ((wi)ier, )rea

The mapping ® looks like a pretty natural mapping, given the partition
(I))xen of the set I.
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4. RP x R"™ is the set of all maps w : No — RP UR" such that w; € RP and
ws € R™. Each w; € RP is a map w; : N, - R, and each wy € R" is a
map ws : N,, — R. Given w € R? x R", define ¢(w) € RP*™ as:

N wi(d) if1<i<p
Yw)(i) = { wali—p) ifp+1<i<p+n
ie. Y(w) = (wi(1),...,wi1(p),w2(1),...,w2(n)). The mapping w — P (w)
from R? x R™ to RPT" is a bijection, which may be regarded as natural. . .

Exercise 2

Exercise 3.

1. Let A=Ay x...x A, besuch that A; € & foralli=1,...,n. Then A is
of the form A = T;en, A; with 4; € & U{Q;}, and the condition A; # Q;
for finitely many i € N,,, is obviously satisfied. So A is a rectangle of the
family (&;)ien,,, that is A€ & 11...11&,. Conversely, Let A = [;en, A4;
be a rectangle of the family (&;)ien,. Then, each A; is an element of
EU{Q;}. Since Q; € &, for all i € N,,, each A; is in fact an element of
E;. So Ais of the form A= A; x ... x A, with A; € &. We have proved
that the set of rectangles of (&;);en,, is given by:

€1H...H£n:{A1X...XAnIAi€€Z‘,VZ'€Nn}

2. Let A be a rectangle of the family (&;)ier. Then A = Tl;c;A4;, where
A; € & U{Q;}, and A; # Q; for finitely many ¢ € I. Let J be the set
J={iel: A # Q}. Then Jis a finite subset of I. Moreover, for all
7 EJ, Aj #+ Qj, yet A]‘ € Ej U {Q]} So A]‘ € gj. Let w € A =1L/ A;.
Then w is a map defined on I such that w(i) € A; C Q; foralli € I. In
particular, w € L8, and w(j) € A; for all j € J. Conversely, suppose
w € I8 is such that w(j) € A; for all j € J. Then w is a map defined
on I such that w(i) € Q; for all ¢ € I, and furthermore, w(j) € A; for all
j € J. However, for all i € '\ J, we have A; = ;. It follows that w is a
map defined on I such that w(i) € A; for all i € I. So w € I;c;A; = A.
We have proved that there exists a finite subset J of I, and a family
(Aj)jes with A; € &, such that A = {w € I, s w(j) € 4;,Vj € J}.

Exercise 3

Exercise 4.

1. By definition, 71 ®...®F, is generated by the set of measurable rectangles
Fr ... 11 F,. Since Q; € F; for all i € N,,, and since N, is finite, these
rectangles are of the form A; x ... x A,, where A; € F;, for all i € N,,.

2. B(R) ® B(R) ® B(R) is generated by the set of measurable rectangles
B(R)IIB(R)IIB(R). These rectangles are of the form A x B x C, where
A, B,C € B(R).

3We view ordered pairs as maps defined on No. ..
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3. Since RT € B(R") and Q2 € F, the set of measurable rectangles B(R™)ILF
is the set of all B x F, where B € B(R™) and F € F. Such sets generate
the o-algebra B(RT) ® F on R x Q.

Exercise 4

Exercise 5.

1. By definition, a generator of ®;c70(E;) is the set of measurable rectangles
of the family (U(gi))iela ie. Hie]g(gi).

2. Let A =1I,c;A; be a rectangle in I1;c;&;. Then, each A; is an element of
EU{Q;}, and A; # Q; for finitely many ¢ € I. In particular, A is also a
rectangle in IT;e;0(&;). Hence, we have:

[T& <o) co (Ha(&)> £ ®ic10(&)

iel iel iel
and consequently, o(Il;c;&;) C ®icr0(E;).

3. Let A # () be a rectangle of the family (c(&;))icr. Suppose that A =
;e A; = Il B; are two representations of A. Since A is non-empty,
there exists f € A. The mapping f defined on I, is such that f(i) € A;NB;
for all i € I. Let j € I be given. Suppose © € A;. Define g on I, by
g(i) = f(i) if i # j, and g(j) = =. Then, g(i) € A; for all ¢ € I. So
g € IlierA; = A = Ilie1 By, and in particular, = g(j) € B;. Hence, we
see that A; C Bj, and similarly B; C A;. j € I being arbitrary, we have
proved that A; = B; for all i € I. Theset J4 = {i € I : A; # Q;} is
therefore well-defined, as the A;’s are uniquely determined. Furthermore,
A being a rectangle, the set J4 is finite.

4. Let A € Wier0(&;). If A = 0, then A is an element of the o-algebra
o(Ier&). A # 0 but Jo = 0, then A; = Q, for all ¢ € I, and
A =1LicsA; = TLe1Q; is also an element of the o-algebra o(I1;¢/E;).

Exercise 5

Exercise 6.

1. By assumption, A # (). There exists a map f defined on I, such that
f(i) € A;, for all i € I. Since A;; C €, f is also an element of A%,
So A%1 £ (). By definition, Jyoi, ={i€1: A; # Q;}, where each 4;
is equal to A;, except A;, = Q;,. It follows that Jyo,, = {i€ I\ {ir}:
A; #Qi} = Ja\ {i1}. Since by assumption, iy € Ja, and cardJ4 = n+1,
cardJ o, = n. Finally, A being a rectangle of the family (o(&;))ier, each
A; is an element of o(&) U {4} = o(&). It follows that A; € o(&;)
for all i € I. Since A; # Q; for finitely many i € I, we conclude that
Ay = Hie]Ai € Hieja(gi).
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2. Our induction hypothesis is that if A is a non-empty rectangle of the
family (0(&;))ier with cardJa = n, then A € o(Il;¢;&;). Since from 1.,
A% satisfies such properties, A% € o(IL;e;&;). Tt follows that €;, € T.

3. Let B C Q;,. Let f € A%1\B. Then, f is a map defined on I, such
that f(i) € A; for all i € T\ {i1}, and f(i1) € Q;;, \ B. In particular,
fe A% and f & AP, So f € A% \ AP, and A% \B C A% \ AP,
Conversely, suppose f € A%1\ AP, f being an element of A%1, f(i) € A;
for all i € I\ {i1}. Since f ¢ AB, f(i1) cannot be an element of B.
It follows that f(i;) € €, \ B, and f € A%1\B. We have proved that
AR \B = A%\ AB,

4. Let B € T. Then, AP € o(Il;c;&;). All o-algebras being closed under
complementation, we have (AP)¢ € o(IL;c1&;). Moreover, from 2., A%1 €
o(Ier&;). Tt follows that:

ARNB = A%\ AP = A% 0 (AB)C € o(Ties &)
We conclude that €;, \ B €T

5. Let (Bn)n>1 be a sequence of subsets of Q;,. If f € AYB» then f is a
map defined on I, such that f(i) € A; for all i # i1, and f(i1) € Uy>1B,.
There exists n > 1 such that f(iy) € B, which implies that f € AP». So
fe UnzlAB", and we see that AYB» C UnzlAB". Conversely, suppose
that f € U,>1AP». There exists n > 1, such that f € AB». In particular,
f(i) € A; for all i € T\ {41}, and f(i1) € B, C Up>1B,. So f € AYBn.
We have proved that AYP» = U,,5 AP,

6. From 2., Q,;, € I'. From 4., I" is closed under complementation. To show
that I' is a o-algebra on ;,, it remains to show that I' is closed under
countable union. Let (B,)n>1 be a sequence of elements of I. Then, for
alln > 1, ABr € o(IL;¢/&;). Tt follows that:

AYBn = Ut ABn € (I 1&))

So Up>1B,, € I', and T' is indeed closed under countable union. We have
proved that T' is a o-algebra on €.

7. Let B€ &, B; =, for all i # iy, and B;, = B. Let f € AB. Then, f is
a map defined on I, such that f(i) € A4; for alli € I'\{i1}, and f(i1) € B.
In particular, f € A%1 and f(i) € B; foralli € I,i.e. f € II;c;B;. Hence,
AB C A% N (Il;er B;). Conversely, suppose that f € A% N (IerB;).
Then, f(i) € A; for all i € I\ {i1} and f(i) € B; for all i € I. In
particular, f(i1) € B;, = B. It follows that f € A®. We have proved that
AB = AQil N (Hzeléz)

8. Let B € &, and B; = €, for alli € I'\{i1}, and B;, = B. Then, Il;¢;B; €
;e rE;, and in particular, IL;c ;1 B; € o(Il;er&;). From 2., Q;, € T, ie. A%
is also an element of o(IT;c;&;). Tt follows from 7. that:

AB = A% n (HiEIBi) S U(Hie]&)
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We conclude that B € I'. This being true for all B € &;,, we have &, C I
However, since I' is a o-algebra on €;,, we finally see that o(&;,) C T

9. Let f € A=Tlic;A;. Then, f(i) € A; foralli € I'\ {i1}, and f(i1) € A;,.
So f € A%, Conversely, if f € A%4i1, then f € A. So A = A%, Since A
is a rectangle of the family (0(&;))icr, 4i, € 0(&;y). From 8., o(&;,) CT.
it follows that A4;, € T, and consequently A = A4t € o(Il;c7&;). This
proves our induction hypothesis for cardJ4 = n + 1.

10. Let A € I;cro(&;). If A = (), then A is an element of o(IT;c7&;). Let
A #£ (. If cardJy = 0, then A = 1;¢1Q; € o(I;¢1E;). Using an induction
argument on card.J 4, we have proved that for all n > 0:

cardJqp =n = A € o(Il;e/E))

Since A is a rectangle of the family (c(&;))ier, Ja is a finite set. It follows
that A € o(Il;¢;E&;). Finally, We conclude that I;cro(&;) C o(Ie1Es).

11. From 10., we have ®;c;0(&;) = o(llicro(&;)) € o(1lerE;). However,
from exercise (5), o(I;er&;) C Riero(&;). It follows that ®cr0(&;) =
o(IL;er&;). The purpose of this difficult exercise is to prove theorem (26).
Congratulations !

Exercise 6

Exercise 7.

1. Since R € 7g and N,, is finite, from definition (52), the set of rectangles
Tr 1I...1I7g reduces to all sets of the form Il;en,, A;, where A; € Tg for
all i € N,,. In other words:

TRH...HTR:{Alx...XAnZAiETR,ViENn}

2. By definition of the Borel o-algebra, B(R) is generated by the topology
TR, i.e. B(R) = o(7r). From theorem (26), we have:

3. Let Co = {]a1,b1] x ... X]an, by : a;,b; € R}, and let S be the semi-ring
on R, S ={la,b] : a,b € R}. Since N, is finite, from definition (52), the
set of rectangles SII...I1S is made of all sets of the form Il;en, A;, where
A; € SU{R}. Hence, each element of C; is an element of SIT...IIS, i.e.
Co CSII...IIS. However, R™ is an element of SII...II S, but do not
belong to Cy. So the inclusion Co C STI...II S is strict.

4. Let Ae SII...1IS. Then A is of the form A = Ay x...x A,, where each
A; is an element of S, or A4; = R.. If all A;’s lie in S, then A € C2 C o(Cs).
Let J3 = {k € N,, : A, = R}. We have just seen that if J} = 0, or
equivalently if card.J} = 0, then A € o(C3). Suppose we have proved the
induction hypothesis, for £ =0,...,n — 1:

AeST... IS, cardJ; =k = A€ o(C)
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and let A € SII.. .IIS be such that cardJ} = k+1. Let i1 be an arbitrary
element of J}. Then, 4;, =R = U;f‘f] —p,p]. Hence, A can be written

as:
+oo

A:Alx...xAn:UAlx...x]—p,p]x...xAn (1)
p=1
where Ay X ... x]=p,p] X ... x A, = B, is a notation for Il;en, A; where
A; = A; for all i # iy, and A;, =]—p,p]. Since for all p > 1, ]—p,p] € S,
By, is an element of SII...II.S, and more importantly cardJ]*gp = k. From
our induction hypothesis, it follows that B,, € 0(C2). Hence, we see from
equation (1) that A € o(C2), and we have proved our induction hypothesis
for cardJ} = k + 1. We conclude that for all A € SII...II S, we have
Ae€o(Ca),ie. ST...IIS C o(Ca).

5. From theorem (6)%,we know that the semi-ring S generates the Borel
o-algebra B(R) on R, ie. B(R) = o(S). Applying theorem (26), we
have:

BR)®...BR)=0c(SII...1IS) (2)
However, from 3., Co C STI...I1S, hence 0(C2) C o(SII...I1S). Moreover,
from 4., STI...1IS C 0(C3), and consequently, we have o(SII...1IS) C
o(Cy). It follows that o(SII...IIS) = 0(Cz). Finally, from equation (2),
BR)® ... B(R) =0(Ca).

Exercise 7

Exercise 8.

1. Let ¥ = o(€) be the o-algebra generated by € = {A}. Let F be the set of
subsets of Q defined by F = {0, A, A¢,Q}. Note that Q € F, F is closed
under complementation and countable union, so F is a o-algebra on (2.
Since £ C F, we have ¥ = ¢(£) C F. However, since £ C 0(€), A € X.
So A® € ¥. Furthermore, Q € ¥ and ) € ¥. Finally, 7 C ¥. We have
proved that F = X.

2. Since {0,Q'} is a o-algebra on Q" with & C {0,Q'}, we have (&) C
{0,9Q'}. However, o(£’) being a o-algebra on ', we have Q' € o(€’) and
0 € o(&). Finally, o(&) = {0,Q'}.

3. Since &' =0,C={ExF:Fe&Fel}=0.

4. The rectangles in £ II £ are the sets of the form A; x As, where A; €
EU{Q} and Ay € & U{Q'}. Since & = 0, the only possible value for
Ay is Q. Since £ = {A}, Ay can be equal to A or Q. It follows that
ENE ={AxQ QxQ.

5. From theorem (26), o(€) ® 0(&') = o(E L E'). Let F be defined by
F={0,Ax Q' Acx Q' QxQ'}. Note that the complement of A x " in

4Beware of external links!
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Ox Q' is (Ax Q)¢ = A°x Q. So F is closed under complementation, and in
fact, F is a o-algebra on Qx Q. However, from 4., E11E" = {AxQ', QxQ'}.
So ETTE" C F, and consequently o(£ 1T E') C F. Since all elements of F
have to be in o(EITE’), we also have F C o(£11E"). We have proved that
F=0(ENE). We conclude that o(€) ® o(&£') = F.

6. Since C = 0, we have o(C) = {0, x Q'}. Tt follows from 5. that o(C) #
(&)@ (&’). The purpose of this exercise is to emphasize an easy mistake
to make, when applying theorem (26). This theorem states that o(&) ®
o(&) =o(ETE). Tt is very tempting to conclude that:

o) ©a()=c({ExF:Ec&Fef'l)

But this is wrong ! The reason being that the set of rectangles £ I1 £’ is
larger than the set of all E x F', where E € £ and F € £'. The elements of
ENE" are indeed of the form Ex F, but with E € £U{Q} and F € &'U{Q'}.
(Do not forget the 'U’). So o(€) ® 0(&') =c({E X F: E e EU{Q}F €
E' U{Q'}}). You have been warned. . .

Exercise 8
Exercise 9.

1. Strictly speaking, F ® G is a o-algebra on R"™ x RP. However, R™ x RP
and R™"P can be identified, through the bijection 1 : R x R? — R"'P,
defined by ¥(x,y) = (1,...,Tn,Y1,-..,Yp). Hence, F ® G can be viewed
as a o-algebra on R"P.

2. By definition, F = o(Cy), where C; is the set of measurable rectangles
Ci = {Al X...xXA,: A € B(R),VZ S Nn} Similarly, if Cy = {AnJrl X
oo X Apyp t Angi € B(R),Vi € Np}, then G = 0(Cs). From theorem (26),
we have F®G = o(C111Cy). Furthermore, since R™ € C; and R? € Cy, the
set of rectangles C; 11 Cy is given by C; ITCo = {A x A" : A € Cq, A’ € Ca}.
If we identify sets of the form (A; x ... x Ap) X (Apt1 X ... X Apgp) with
Ay x ... X Apyp, then C LI Cy can be written as:

CLIICy = {A; x ... x Apyp: A € B(R),Vie N, ,}

We conclude that F®G is generated by the sets of the form Ay x...x Ay,
where A; € B(R) for all i € N,,4p.

3. Let C = {A1x...xAp1p: A € BR),Vi € Npyp}. From2.,, F®G =0(C).
However, C is the set of measurable rectangles in R"*?. Consequently,
o(C)=BR)®...@ B(R) (n+ p terms). We conclude that B(R)®...®
B(R)=F®4g,ie.

BR)®...®BR)=(BR)®...9BR))2(B(R)®...@B(R))

n+p n P

Exercise 9

Exercise 10.
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1. In exercise (2), we defined a natural bijection ® : Q — Q' by:

A
P((wi)ier) = ((wi)ier, )rea
This allows us to define ® : P(Q) — P(Q), by:

B(A) 2 B(A) 2 {D(w) :w e A}

for all A C Q. In other words, ® maps every subset A of 2, with its
direct image ®(A) by the bijection ® : Q — Q'. Let A’ C Q. Since
® is a bijection, we have A’ = ®(®~1(A4’)), i.e. the direct image of the
inverse image of A’ by ® is equal to A’. So A’ = ®(®~1(A’)), and ® is
a surjective map. If A, B C Q are such that ®(A) = ®(B), taking the
inverse images of both sides, we have A = B. So ® is an injective map.
We have proved that @ is a bijection from P() to P(€Y'). Informally, ® is
a bijection allowing us to identify an element of I1;c;€2; with an element of
Maen(Thier, €2;). The bijection @ allows us to identify a subset of I;e;€;
with a subset of TIxea (TTier, £24). ..

2. Let A be a subset of Q of the form A = Il;c;A;. Let A’ be the corre-
sponding set A" = Ilxea(ILier, A;). Saying that A and A’ are identified
through the bijection @, is just another way of saying that A’ = ®(A).
Suppose y € ®(A). There exists z € A such that y = ®(z). For all
A € A, we have y(\) = ®(x)(\) = z7,. Since x € A, each z|;, is an
element of Iler, A;. So y(A) € e, A; for all A € A. Tt follows that
y € Mea(Tier, A;) = A’. So ®(A) C A’. Conversely, suppose y € A'.
y is a map defined on A, such that y(\) € Iler, A; for all A € A. Each
y(A) is a map defined on Iy, such that y(\)(i) € A; for all i € Iy. Let
2 be the map defined on I by z(i) = y(A)(i), where given i € I, X is the
unique element of A such that ¢ € I. Then, « is such that z(i) € A; for
all i € I, so x € ;e A; = A. Moreover, by construction, for all A € A,
77, = y(A). So y(A) = &(x)()) for all A € A, ie. y = @(z). We have
found x € A, such that y = ®(z). Soy € P(A) = P(A). We have proved
that A’ C ®(A). Finally, A’ = ®(A). We have proved that the sets IT;c 7 A;
and Myea (Ier, A;) are indeed identified through the bijection ®.

3. Let ;e A; € e F;. Then, foralli € I, A; € F;, and A; # €; for finitely
many ¢ € I. For each A\ € A, Il;c;, A; is therefore such that A; € F; for
all i € I, and A; # Q; for finitely many ¢ € Ix. So Ilicr, A; € Wicr, Fi.
It follows that II;c;A; can be written as (through identification):

WierA; = Maea(Wier, A;) = Ixea Ba

where By € Ilier, F; for all A € A. Moreover, the set of all A € A
for which By # Ilicr, §2;, is necessarily finite. It follows that Il;c;A; €
HAEA(HiEL\}—i)' So Hie]fi Q HAEA(HiEL\}—i)' Conversely, let H)\GAB)\ S
HAEA(HiEL\}—i)' For all \ € A, we have B) € Hie]xfi, and B) 75 Hie[,\Qi
for finitely many A € A. Hence, each B) is of the form II;c;, A;, where

www.probability.net


http://www.probability.net

Solutions to Exercises 19

A; € F; for all i € Iy, and A; # €, for finitely many ¢ € Iy. It follows
that ITyep By can be written (with identification) as:

MyeaBy = Maea (ier, Ai) = ier A;

where A; € F; for all i € I, and A; # §; for finitely many i € I. So
H)\GAB)\ € Hiel}—ia and H)\EA(HiEIxfi) Q Hie[fi. We have pI‘OVGd that
WierFi = Uyen(Wier, ).

4. From definition (54), for all A € A, ®ier, Fi = o(Ilier, Fi). Using the-
orem (26), @xea(®ier, Fi) = 0(Ilxea(Mer, Fi)). Using 3., we conclude
that ®/\6A(®ieb\fi) = U(Hielfi) = RjierFi.

Exercise 10

Exercise 11.

1. Let T(A) be the set of all topologies 7 on €2, which contain A, i.e. such
that A C 7. Note that T'(A) is not the empty set, as the power set P(12)
is clearly a topology on Q (called the discrete topology) which satisfies
A C P(2). By definition (55), the topology 7 (A) generated by A, is
equal to Nyep(ayZ. In order to show that 7 (A) is indeed a topology on
Q, it is sufficient to prove that an arbitrary intersection of topologies on
Q, is also a topology on Q. Let (7;),cr be an arbitrary family of topologies
on £, and let 7 = N;er7Z;. Since ) and Q belong to 7; for alli € I, ) and Q
are elements of 7. If A, B € T, then A, B € 7, for all i € I, and therefore
ANB € T, for all i € I. It follows that AN B € 7, and 7 is closed
under finite intersection. If (A;),cs is an arbitrary family of elements of
T, then for all i € I, (A;),es is an arbitrary family of elements of 7;, and
consequently Uje yA; € 7;. This being true for all i € I, UjesA; € T, and
T is closed under arbitrary union. We have proved that 7 is a topology
on §. An arbitrary intersection of topologies on €2, is a topology on 2. In
particular, the topology 7 (A) is a topology on €.

2. Given T(A) = {7 : 7 topology on Q , A C T}, the topology 7 (A) gen-
erated by A is given by 7(A) = Nzepa)7. Hence, we have A C T(A).
Suppose 7 is another topology on 2, such that A C 7. Then, 7 € T(A).
It follows that 7(A) C 7. We have proved that 7(A) is the smallest
topology on Q, such that A C 7 (A).

3. Let (E,d) be a metric space, and A be the set of all open balls:
A={B(z,¢) :x € E,e >0}

Let 72 be the metric topology on E. Since any open ball in E is open
with respect to the metric topology, i.e. belongs to 72, we have A C T2
and therefore 7(A) C 72. Conversely, let U € 7¢. Define I' = {B(z,¢) :
x € E,e > 0,B(z,e) C U}, ie. let T be the set of all open balls in E
which are contained in U. Since U is open for the metric topology, from
definition (30), for all x € U, there exists ¢ > 0 such that B(z,e) C U.

www.probability.net


http://www.probability.net

Solutions to Exercises 20

In particular, there exists B € I' such that x € B. Hence, U C UperB.
Conversely, for all € Uger B, there exists B € I' such that x € B. But
B CU. Soxz € U. Hence, we see that U = UgerB. However, I is a
subset of A C T (A). It follows that UgerB is an element of 7 (A). We
have proved that U € 7 (A). Hence 7¢ C T(A). Finally, 72 = T(A), i.e.
the metric topology on F is generated by the set of all open balls in E.

Exercise 11

Exercise 12.

1. Let U be a subset of I1;c;€); with the property:
VeeU, Vellieg,T, : z€VCU (3)

Define I' = {V € I;e;7; : V C U}. Given x € U, since property (3)
holds, there exists V' € I' such that x € V. So U C UycrV. Conversely,
if x € UyerV, there exists V' € T such that x € V. But V. C U. So
x € U. Hence, we see that U = UyerV. Since I' C ;7 C ©4er 7,
each V' € T' is an element of the product topology ®;c;7Z;. So UyerV
is also an element of ®;c;7;. We have proved that U € ®;c;7;, and
therefore, any subset of I1;¢;€2; with property (3), belongs to the product
topology ®;cr7;. Let T be the set of all U subset of I1;c7€2; which satisfy
property (3). We claim that in fact, 7 is a topology on II;c;€;. Indeed,
() satisfies property (3) vacuously. So ) € 7. The set of all rectangles
I;e17; is a subset of 7. In particular, IT;c;; € 7. Suppose A, B € 7.
Let z € ANB. Since A satisfies property (3), there exists V' € I;¢;7; such
that x € V' C A. Similarly, there exists W € Il;c;7; such that x € W C B.
It follows that x € VN W C AN B. However, V and W being rectangles
of (7;)ier, they can be written as V = I;c;A; and W = Il;¢; B;, where
A, B € TU{Q;} =T; and A; # Q; or B; # Q; for finitely many i € I. Tt
follows that V. N W = IL;c;(A; N B;), where each 4; N B; lie in 7; (it is a
topology), and A;NB; # Q; for finitely many ¢ € I. So VNW is a rectangle
of (T;)ier, ie. VNW € e 7;, and x € VNW C AN B. We have proved
that A N B satisfies property (3), i.e. ANB € 7. So T is closed under
finite intersection. Finally, let (A4;)jes be a family of elements of 7. Let
x € UjesA;. There exists j € J such that x € A;. Since A; € 7, there
exists V' € I;er7; such that € V' C A;. In particular, x € V C Ujej A;.
Hence, we see that UjcsA; satisfies property (3), i.e. UjesA; € 7. So T
is closed under arbitrary union. We have proved that 7 is a topology on
;e Since ;e 7; € T, we conclude that ©;c;7; = T(I;e;7;) C 7.
It follows that any element of the product topology satisfies property (3).
We have proved that a subset U of I1;c;€2; is an element of ®;<;7;, if and
only if it satisfies property (3).

2. W1 T; € T(Wie1Ti) = Oicr T
3. From theorem (26), ®;c;B() = Qicio(7;) = o(WieT;).
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4. From 2., we have o(I;e;7;) C 0(®ierT;) = B(ILies8;). Using 3., we
obtain ®;c7B(£2;) C B(IL;e8;).

Exercise 12
Exercise 13.

1. The scalar product (x,y) being semi-linear and commutative:

lz+tyl? = (z+ty,z+ty)
(z,2) + t(y, ) + t(z,y) + *(y,y)
= |z|® + |ylI* + 2t(z, )

2. When y # 0, the polynomial t — p(t) = #2||ly||* + 2t(z,y) + ||z||*> has
a minimum attained at t = —(x,%)/||y||>. The value of this minimum
is —(x,y)/|lyl|* + ||=||*. Since p(t) = ||z + ty||*> > 0 for all t € R, in
particular, we have —(z,v)?/[|y||* +||z||> > 0, i.e. |(z,y)] < ||z||.]|y||- This
inequality still holds if y = 0.

3. We have:

lz+3l* = llal® +2(z, ) + Iy
)1 + 2l |-yl + 11 = =] + ly1)*

IN

Exercise 13

Exercise 14.

1. Each metric d; has values in R*. So d(z,y) < +oo for all x,y, i.e. d
also has values in R*. It is clear that d(x,y) = d(y,z) for all z,y € Q.
Suppose that d(z,y) = 0. Then, for all : € N,,, we have d;(x;,y;) = 0 and
consequently x; = y;. So x = y. Conversely, it is clear that d(z,z) = 0.
Let z,y,z € Q. For all i € N,,, we have:

di(zi,y;) < di(xi, z3) + di(2i,yi)

and therefore:

d(r,y) < | D (dilwi, z2) + di(2i,9:))2

i=1

Using exercise (13), we conclude that:

n n

d(z,y) < | Y (dimi, 20))2 + | Y (dizi,:))2

i=1 i=1

ie. d(z,y) <d(z,2) + d(z,y). It follows from definition (28)° that d is
indeed a metric on 2.

5Beware of external links!
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2. The set of rectangles Il;en, 7; is given by:
HiENn,Ti = {Ul X...xU,:U; € Z,VZ S Nn}

It follows from exercise (12) that U C Q is open in 2, i.e. belongs to the
product topology 7, if and only if for all x € U, there exist Uy,...,U,
open in €, ...,8, respectively, such that:

relU; x...xU, CU

3. Let U € 7. From 2., for all z € U, there exist Uy,...,U, open in
Q1,...,Q, respectively, such that x € Uy x ... x U, C U. By assumption,
each topology 7; is induced by the metric d;, i.e. 7; = Tg For all: € N,
x; € U;. Hence, there exists ¢; > 0, such that B(x;,¢;) C U;, where
B(zi,€;) denotes the open ball in Q;. Let € = min(ey,...,€,). Suppose
y € Q is such that d;(z;,y;) < e, for all © € N,,. Then, y; € B(z;,¢;) C U;
for all i« € N,,, and consequently y € U; x ... x U,, C U. We have found
€ > 0 such that:

(Vi € Ny, di(zi,y:) <€) = yeU

4. Let U € T,and x € U. Let ¢ > 0 be as in 3. Let y € B(x, ¢), where B(x,¢)
denotes the open ball in 2 = Q; x ... x €,,, with respect to the metric
d. Then, d(z,y) < e. Since for all i € N,,, d;(z;,y;) < d(z,y), we have
d;(x;,y;) < € for all i € N,,. From 3., we see that y € U. So B(z,e) CU.
For all z € U, we have found € > 0 such that B(z,¢) C U. It follows that
U belongs to the metric topology 7¢. We have proved that 7 C 7¢.

5. Let U € 7§ and # € U. From definition (30) of the metric topology,
there exists € > 0 such that B(x,€¢’) C U. Define ¢ = €//y/n, and let
y € B(x1,€) X ... X B(xy,e€). Then, for all i € N,,, d;(x;,y;) < e. Hence,
d(z,y) < Vne2 = \/ne = €. So y € U. We have found € > 0 such that:

x € B(x1,€) X ... X B(xn,e) CU

6. Let U € 7§ and * € U. Let € > 0 be as in 5. Then, we have x €
B(z1,€) X ... X B(zp,e) C U. Each B(z;,¢€) being open in €;, we have
found Uy, ...,U, open in q, ..., <), respectively, such that z € Uy x ... X
U, CU. From 2., we conclude that U € 7. So Tg CcT.

7. From 4. and 6., we have 7 = 7¢. In other words, the product topology
T =T 0...0T, is equal to the metric topology 7¢ on €, induced by
the metric d. In particular, the topological space (£2,7) is metrizable.

8. Both d’ and d” have values in R*. For all z,y € €, we have d'(z,y) =
d'(y,z) and d"(z,y) = d’'(y,x). Moreover, it is clear that d'(z,y) = 0 is
equivalent to each d;(z;,y;) being equal to 0, hence equivalent to x; = y;

SBeware of external links!
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10.

for all ¢’s, i.e. equivalent to x = y. Similarly, d”(z,y) = 0 is equivalent to
x =1y. Given z,y, z € Q, for all i € N,,, we have:
di(@i, yi) < di(@i, zi) + di(2i, i)
It follows immediately that d'(z,y) < d'(z, z) + d'(z,y), and furthermore,
foralli=1,...,n:
d’i(xia yz) < d”(l‘, Z) + d”('zv y)

From which we conclude that d”(z,y) < d”(z,z) + d"(z,y). We have
proved that d’ and d” are metrics on €.

Let x,y € Q. For all i € N, define a; = d;(x;,y;). Let a,b € R™ be
given a = (ai,...,a,) and b = (1,...,1). From exercise (13), we have
|(a,b)| < |lal|-||b]|, and consequently:

d'(z,y) < v/nd(z,y)
From (3°1 , a;)* > > | a?, we obtain:
d(z,y) < d'(z,y)
Hence, o’d’ < d < f'd’, where o/ =1/y/n and ' = 1.
From Y"1 | a? < n(max; a;)?, we obtain:
d(z,y) < v/nd"(z,y)
From (max; a;)* < Y7 | a? we obtain:
d’(z,y) < d(z,y)
Hence, o”’d” < d < 3"d"”, where @’ =1 and 3" = \/n.

From 9., there exist 3’ > 0 such that d < 8'd’. Let U € 7, and = € U.
There exists € > 0 such that Bg(xz,e) C U, where By(z,€) denotes the
open ball in Q, relative to the metric d. Suppose y € Q is such that
d'(z,y) < €/B. Then, we have d(z,y) < 3'd' (z,y) < ¢, and it follows that
y € U. So By (z,e/B") CU. For all z € U, we have found ¢ =¢/3 > 0
such that By (z,€') C U. Tt follows that U € T¢. We have proved
that 7¢ C T4 Using 9., from d’ < (1/a’)d, we conclude similarly that
T4 C 19, Hence, 7§ = T¢. Similarly, from o”d” < d < "d", we have
T8 = T4. We have proved that 7§ = 7§ = T§". Since 7§ = T is
the product topology on 2, we conclude that d’ and d’ also induce the
product topology 7 =71 ® ... ® 7, on .

Exercise 14

Exercise 15.

1.

For all a € R, 1 Aa = min(1,a). Let a,b € RT. Suppose a +b < 1.
Then, both a <1 and b < 1, and we have:

IN(a+b)=a+b=1ANa+1Ab
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Suppose a +b > 1. If both a <1 and b < 1, we have:
IN(a+b)=1<a+b=1ANa+1AD
if @ > 1, we have:
IN(a+b)=1=1ANa<1Aa+1ADb
In any case, we see that:

IN(a+b)<1Aa+1ADb

2. For all z,y € €, we have:
+o0 too

d(z,y) = Z 2%(1 A dn(Tp,Yn)) < Z zin < 400

n=1 n=1

So d has values in RT. Tt is clear that d(x,y) = d(y,z). Moreover,
d(z,y) = 0 is equivalent to d,,(zn,yn) = 0 for all n > 1, which is in turn
equivalent to z = y. For all z,y, 2z € Q, and n > 1, we have:

dn(Tns Yn) < dn(Tn; 2n) + dn(2n, Yn)
and consequently, using 1.:
INdy (Tn,yn) < LAd (T, 20) + LA dn(2n, Yn)

It follows that d(z,y) < d(x,z) + d(z,y). We have proved that d is a
metric on ).

3. Let V = HIEOIU,Z be a rectangle of the family (7,,)p>1. The set {n >1:
U, # ,} being finite, it is either empty or has a maximal element N > 1.
it follows that V' can be written as:

“+oo
V=Urx..xUyx [[ (4)
n=N+1
where U, ..., Uy are open in Qq,...,Qn respectively. If the set {n >

1: U, # Q} is empty, then V is also of the form (4), for any N > 1.
Conversely, any set V of the form (4) is a rectangle in II/>7,. From
exercise (12), U € T = © T, if and only if, for all x € U, there exists
Ve H:i‘i’];l such that x € V. C U. It follows that U C € is open in €,

i.e. belongs to the product topology 7, if and only if for all € U, there

exists N > 1 and open sets Uy,..., Uy in Q4,...,QyN respectively, such
that:
+oo
zelyx..xUxvx [[ @ucU
n=N+1

4. Suppose that d(z,y) < 1/2", for some n > 1. Then, d,, (2, y,) has to be
less than 1. Specifically:

1
_dn(xna yn)

1
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So d(z,y) < 1/2"™ = dy(zn, yn) < 2"d(z,y)

5. Let U € T and x € U. From 3., there exist N > 1 and Uy, ...,Uy open
in Q1,...,QpN respectively, such that:
+oo
zelhx..xUxvx [[ QucU
n=N+1

Let i € {1,...,N}. Then z; € U; € 7;. The topology 7; being the metric
topology ’Té{?, there exists ¢; > 0 such that we have B(xz;,¢;) C U;. Let
e = min(1/2V,e1/2,...,en/2V) and y € Q be such that d(z,y) < e. In
particular, we have d(z,y) < 1/2%, for all i = 1,..., N. Hence, from 4.,
we see that d;(z;,y;) < 2'd(x,y) < 2% < ¢;. It follows that y; € U; for all
i =1,...,N and consequently y € U} X ... x Uy X H:SNHQn CU. We
have found € > 0 such that d(z,y) <e=y € U.

6. From 5. for all U € 7 and « € U, there exists € > 0 such that B(z,¢) C U.
It follows that U € Tg. So T C 'Té’l.

7. Let U € 7¢ and = € U. By definition (30) of the metric topology, there
exists € > 0 such that B(x,€¢’) C U. In other words, there exists ¢ > 0
such that for all y €

d(z,y) <€ = yeU
Let e = ¢/ /2 and N > 1 be such that:

400 1
— < €
=
n=N+1

Suppose y € € is such that:

N

22_ 1/\d xmyn)) <€

n=1

Then, we have:

d(z,y) < e+ Z —(I N dp(2n,yn)) < 26 =¢
n= N+1
It follows that y € U. We have found € > 0 and N > 1 such that:
N

1
22— (IANdp(Tn,yn)) <€ = yelU

8. LetUETéiandeU. Let e >0an N > 1beasin 7. Let y € Q be such
that:

y € B(z1,€) X ... x B(zn, ¢ H Q,
n=N+1
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Foralln e {1,...,N}, dy(2n,yn) < €. Hence:

N
ZQL IAdp(zn, yn) <eZ—<e

From 7., we conclude that y € U. We have found € > 0 and N > 1 such
that:
z € B(x1,€) X ... x By, €) x ILI>,1Q, CU

9. Let U € Té’l and x € U. Let N > 1 and € > 0 be as in 8. Each open ball
B(zp,€) for n = 1,..., N being open in Q,, we have found Uy,...,Un

open in €y, ..., Qy respectively, such that:
“+o0
zelUyp x...x Uy x H 0, CU
n=N+1

From 3., it follows that U € T = ®,>7,,. We have proved that 7§ C 7.

10. From 6. and 9., 7¢ = 7. In other words, the product topology 7 =
@ﬁi‘j’fn is induced by the metric d on €. In particular, the topological
space (€2, 7)) is metrizable. The purpose of this exercise, is to show that a
countable product of metrizable topological spaces, is itself a metrizable
topological space.

Exercise 15

Exercise 16.

1. H = {]r,q[: r,q € Q} is a countable subset of Tr. Let U € Tr. Define
={V e H:V C U} Forall z €U, there exists ¢ > 0 such that
Jt — e,z + ¢[C U. In fact, the set of rational numbers Q being dense in
R, there exist r,¢ € Q such that « €]r,¢[C U. In other words, there
exists V € H' such that x € V. Hence, we see that U C Uy e V. The
reverse inclusion being clearly satisfied, we have U = Uy ¢/ V, i.e. U can
be expressed as a union of elements of 7. This being true for all open sets

U € Tr, we have proved that H is a countable base of (R, 7Rr).

2. Let H be a countable base of (2, 7). Let H|q be the trace of H on ' ie.
Hio ={Q' NV :V € H}. Since H is a countable or finite subset of the
topology 7', H|q: is a countable or finite subset of the induced topology
Tiv. Let U € Tjr be an open subset in '. Then U’ is of the form
U = Q' NU where U € T. H being a countable base of (Q,7), there
exists a family (V;);es of elements of H such that U = U;¢;V;. Tt follows
that (Q'NV;)er is a family of elements of H)q such that U’ = Uier ('NV;).
We conclude that H g/ is a countable base of the induced topological space

Q' Tjoy).

3. From 1., R has a countable base. It follows from 2. that the induced
topological space [—1, 1] also has a countable base.
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4. Let h: (,7) — (S,7s) be a homeomorphism, i.e. a continuous bijection
such that h~! is also continuous. Suppose (€2, 7) has a countable base H.
Define h(H) = {h(V) : V € H}. Since H is a countable or finite subset of
T, h™! being continuous, h(H) is a countable or finite subset of 7s. (Note
that each direct image h(V) of V by h can be viewed the inverse image
(h=1)~1(V) of V by h™1). Let U’ € Ts. h being continuous, h=1(U’) €
7. H being a countable base of (2,7), there exists a family (V;);es of
elements of H, such that h=*(U’) = U;e;V;. However, h(h=1(U")) = U,

and moreover:
h(Uier Vi) = (1) (Uier Vi) = Uier (1)1 (Vi)

So U’ = Uierh(V;). We conclude that U’ can be expressed as a union of
elements of h(H). So h(H) is a countable base of (S, 7g). We have proved
that if (£2,7) has a countable base, then (S,7g) also has a countable
base. Using the same argument, switching the roles of h and h~!, we see
that conversely, if (S5, 7g) has a countable base, then so does (£2,7). We
have proved that given two homeomorphic topological spaces, one has a
countable base, if and only if the other also has a countable base.

5. The topological spaces (R, Tg) and ([—1,1], 7{_1 1j) being homeomorphic,
we conclude from 3. and 4. that (R, 7g) has a countable base.

Exercise 16

Exercise 17.

1. Let p > 1 and A € H? of the form:
A=V x . x VE xIIF> Q,

n=p+1

For all n > 1, the set {V.* : k € I,,} being a countable base of 7,,, it is a
subset of 7,,. Hence, for all i € {1,...,p}, we have Vf € 7;. It follows
that A is a rectangle of the family (7,),>1, i.e. A € H:S’Tn From
definition (56), the product topology 7 on II>9(, being generated by
H+°°T we have 17 tXT,CT. In part1cular A € 7. We have proved
that Hp cT.

2. Using 1., H =Up>1HP C 7.

3. By assumption, for all n > 1, the index set I, is finite or countable. There
exists an injective map i, : I, — N. Given p > 1, consider the map
Jp : H? — NP, defined in the following way: for A = Vlk1 X ... X Vpk” X
;> 1 Q, € HP, we put:

jp(A) = (il(kl) s 7ip(kp))

Suppose B = Vlkl1 X ..o X V P x I1}>° 1, is another element of H? such
that j,(A) = jp(B). Then

(il(kl)v s ’ip(kp)) = (Zl(ki)v s ’Zp(k;;))
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Hence, for all m € Ny, iy (kp) = im(k],), and i,, being injective, we have
km = kl,. So A = B. We have proved the existence of an injective map
Jp : HP — NP.

4. The existence of a bijection ¢y : N? — N is a standard result, which we
may have used in these tutorials before. Now is a good opportunity to give
a formal proof of it. Informally, ¢ is defined as ¢2(0,0) =0, ¢2(1,0) =1,
?2(0,1) =2, $2(2,0) = 3, ¢2(1,1) =4, ¢2(0,2) = 5, etc. .. As you can see,
going through each diagonal one after the other, we are able to count the
elements of N2, thus defining the bijection ¢o. Formally, we define the
map ¢g : N? — N as follows:

¥(n,p) €N?, ¢a(n.p) =p+[0+1+...+ (n+p)
or equivalently, ¢2(n,p) = p+ h(n + p) where:
h(m)=0+1+...4+m

Let N € N. Since h(m) ] +o00, the set {m € N : h(m) < N} is finite and
it is also non-empty. Hence, it has a maximal element m, and we have
h(m) < N < h(m+1). Let p = N — h(m). Then p € N, and we have
0<p<h(im+1)—h(m)=m+1. Sop <m. If we define n = m — p,
then n is also an element of N. So (n,p) is an element of N2, such that
m=n+p, and N = p+ h(m). It follows that:

¢2(n,p) =p+ h(n+p) =p+h(m) =N

We have proved that ¢ is a surjective map. Suppose (n,p) and (n’,p’) are
elements of N2, with ¢2(n,p) = ¢a2(n’,p’). Since ¢2(n, p) = p+h(n+p), in
particular h(n+p) < ¢2(n,p). However, h(n+p+1) = p+h(n+p)+n+1 >
$a(n,p). Tt follows that for all (n,p) € N2, we have:

h(n+p) < ¢a(n,p) < h(n+p+1) (5)

Since given N € N, any m € N such that h(m) < N < h(m+1) is unique,
it follows from ¢2(n,p) = ¢2(n’,p’) and equation (5) that n+p =n'+p’.
Hence:

p=¢2(n,p) — h(n+p) = ¢2(n’,p') — h(n' +p') = p/
and finally n = (n+p) —p = (n +p') —p’ =n’. We have proved that ¢,

is an injective map. We conclude that ¢y : N?> — N is a bijection

5. Let p > 1. The existence of a bijection ¢, : N¥ — N is true for p = 1 and
p = 2. Suppose the existence of ¢, has been proved, and let ¢o : N> — N
be as in 4. Let ¢, 41 : NP1 — N be defined by:

Gpr1(nas - npp1) = G2[dp(na, ..o np), Npr]

for all (n1,...,npr1) € NPT Let N € N. ¢9 being a surjection, there
exists (n,np4+1) € N? with ¢o(n,np+1) = N. From our induction hypothe-
sis, ¢, : NP — N is also a surjective map. There exists (n1,...,n,) € N7,
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such that ¢, (n1,...,npy) =n. It follows that (n1,...,np4+1) is an element
of NP+ such that ¢pi1(n1,...,npr1) = N. So ¢,y is itself a surjective
map. Suppose (ni,...,np41) and (nf,...,n/ ;) are elements of N#*+!
such that:
Gpr1(n1, .-y Npt1) = Gppa(ny, .. ,n;,+1)
Then, ¢o being injective, n,41 = nj,, 4, and:
dp(n1,...,np) = gp(ni,. .. ,n;)

¢p being itself injective, (n1,...,n,) = (nf,...,n;,), and we conclude that
(n1,...,npy1) = (n7,...,np11). SO ¢py1 is an injective map, and finally

a bijection. This induction argument proves the existence of a bijection
¢p : NP — N, for all p > 1.

Let p > 1. From 3., there exists an injective map j, : H¥ — N?. From 5.,
there exists a bijection ¢, : N” — IN. It follows that ¢, o j, : H? — N is
an injective map. This proves that HP is finite or countable, i.e. HP is at
most countable.

From 6., for all p > 1, there exists an injection %, : H” — IN. Let
j : H — N2 be defined by j(A) = (p,v,(A)), where p > 1 is chosen such
that A € HP, (there is at least one such p for any A € H). Suppose
j(A) = j(B) for some A,B € H. Then, there exists p > 1 such that
A,B € H? and ¢,(A) = ¢,(B), and consequently A = B. So j is an
injection. We have proved the existence of an injective map j : H — N2

Let ¢o : N2 — N be a bijection. From 7., there exists an injection
j:H — N2 It follows that ¢5 0 j : H — N is an injection. This proves
that H is finite or countable, i.e. it is at most countable. From 2., H C 7.
Hence, all elements of H are open sets in ), (with respect to the product
topology). We conclude that H is a finite or countable set of open sets in

Q.

From exercise (12), U € T = 0127, if and only if for all x € U, there
exists V € II/°97,, such that € V C U. Since all elements of 117>7,
can be written as Uy x ... x U, x H::;,HQn for somep > 1and Uy,...,U,
open in )y, ..., ), respectively, it follows in particular that if U € 7 and

x € U, there exist p > 1 and Uy, ..., U, open in Qy, ..., 2, such that:
+oo
relU; x...xUp,x H Q, CU

n=p+1

Let U € T and z € U. Let p > 1 and Uy, ...,U, open Q,...,Q, respec-
tively, such that € Uy x ... x U, x H::;HQ,Z C U. By assumption,
for all n > 1, the set {V¥ : k € I,} is a countable base of the topol-
ogy 7,. Hence, for all n € N, there exists a subset I}, of I,,, such that
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12.

13.

14.

Up = Uger, V,f“. In particular, since x,, € U,, there exists k, € I, C I,
such that z,, € V,f" C U,,. We have found k1, ..., k, such that:

+oo
JAN
erw”mm&xr[mzmgU
n=p+1

There exists V,, € HP C H such that x € V, C U.

From 8., H is a finite or countable subset of the topology 7. From 10., for
allU € 7, U can be written as U = U,y Vi, where V,, € H for all z € U.
In other words, any open set U of 7 can be written as a union of elements
of H. Tt follows from definition (57) that H is a countable base of (2, 7).

From theorem (26), since B(Qy,) = o(7,,) for all n > 1:
Da23B(Q) = o(U;5T,) € o(T) = B(Q)

Let p > 1 and A € HP. Then A is a rectangle of the family (7,,)n>1.
Hence A € IT}>7, C II;2B(Q,) € @,25B(2,). So HP C @, B(Q,).
We conclude that:

H=JH" C®/2BQQ)

p>1

Since H is a countable base of (2, 7), any open set U of 7 can be expressed
as a union of elements of H. Furthermore, H being at most countable,
such union is at most countable. It follows that any open set U in 7 is an
element of o(H), i.e. T C o(H). From 13., we have H C ®/°5B(,)
and consequently, we have o(H) C ®,;°B(f,). Hence, we see that
T C ®/>B(,), and finally B(Q) = ¢(7) C ®>98(Q,). Using 12.,
we conclude that:

+oo
B(Q) = K) B()
n=1
The purpose of this exercise is to prove theorem (27).

Exercise 17

Exercise 18.

1.

Since (£, 7) has a countable base, a finite version of theorem (27) would
allow us to conclude immediately that:

B(Q")=B(Q)®...0B(Q)
Since B(2) = o(7), from theorem (26), we have:
B)®..@B(Q)=c(TU...IUT)Co(Ton) = B(Q")

Let U be open in Q", and x € U. From exercise (12), there exist V4,...,V,
open in €2, such that:

zeVix...xV,CU
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Since 2 has a countable base, say H, each V; can be written as a union of
elements of H. In particular, there exist Wy,...,W,, in H, such that:

zeWy x...xW, CU

Defining A, = Wy x...xW,,, we have U = U,cpy A,. Since H is a subset of
T, each A, is an element of 711...117 C Zg~». Although the set U may not
be countable, the set I defined by I = {4, : x € U} is at most countable,
H being at most countable. So U = Uzecpy A, is in fact a countable (or
finite) union of elements of 7II...II7. SoU € (7T II...11 7). We have
proved that:

Ton Co(TIH...IIT)CB(OQ)®...0B(NQ)

We conclude that:
B(Q") =0(Tan) CB(Q)®...2 B(Q)

We have proved that B(Q") = B(Q) ®

2. This is an immediate consequence of 1. and exercise (16).

3. From 1., B(R?) = B(R) ® B(R). C and R? being identified, the usual
topology on C is induced by the metric:

d(z,2") = /(& —a')2 + (y —y')?
with obvious notations. From exercise (14), such metric induces the prod-
uct topology on R2. It follows that the usual topology on C and the

product topology on R? coincide. So 7c = 7Tgr:, and finally B(C) =
B(R?) = B(R) ® B(R).

Exercise 18

Exercise 19.

1. H = {B(zn,1/p) : n,p > 1} is a finite or countable subset of 74. Let
U € 7¢ and z € U. There exists ¢ > 0, such that B(z,e) C U. By
assumption, the set {x,, : n > 1} is dense in E. p > 1 being such that
1/p < €/2, there exists n > 1 such that z,, € B(z,1/p). In particular,
x € B(zy,1/p). Moreover, for all y € B(x,,1/p), we have:

2
d(l’,y) < d(xaxn) + d((En,y) <-<e
p

So y € B(x,e) C U. Hence, we see that x € B(zy,1/p) C U. For all
x € U, we have found V, € H such that x € V, C U. It follows that
U = UzecyVz. So U is a union of elements of H. We have proved that H
is a countable base of (E,T2).

2. Let A= {xy : V € H,V # 0}. H being a countable base of (E, 72), it is at
most countable. There exists an injective map j: H — N. Let i : A — H
be defined by i(zy) = V. Then i is clearly an injection, and joi: A — N
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is therefore an injective map. So A is a finite or countable subset of E. Let
x € E. Let U € T such that z € U. Since U can be written as a union
of elements of H, there exists V' € H, such that z € V' C U. In particular,
V # 0 and zy is well-defined, with zv € V C U. Soay € ANU # 0.
We have proved that for all U € T2 such that z € U, UN A # (). From
definition (37)7, z is an element of A, the closure of A. We have proved

that E C A. So E = A, and A is dense in E. Finally, A is at most
countable and dense in E. So (E,d) is a separable metric space. The
purpose of 1. and 2. is to show that for metric spaces, being separable, or
having a countable base, are equivalent.

3. Let z,y,2',y € E. We have:
d(z,y) < d(z,2") +d(z',y') +d(y', y)
and therefore:
d(z,y) —d(z',y") < d(z,2") + d(y,y)
Similarly:
d({E,, y/) - d(i[,', y) < d(xa (E,) + d(yv y,)
It follows that:
|d((E, y) - d(xlv y,)| < d(i[,', x/) + d(ya y/)
4. Let § : (E x E)?> — R be the metric on E x E defined by:
ol(z,y), ()] = d(x,2") + d(y,y")
From 3., we have:
|d(z,y) —d(2',y")| < d[(z,y), (2", y)] (6)

From exercise (14), the product topology 7« g on E x E is induced by the
metric . Using exercise (4) of Tutorial 4, we conclude from equation (6)
that d: (K x E,Tgxg) — (RT,Tr+) is a continuous map.

5. From exercise (13) of Tutorial 4, and the continuity of the mapd : EXE —
R proved in 4., we conclude that:

d:(Ex E,B(ExE))— (RT,BR"))
is a measurable map. It follows that:
d:(Ex E,B(E x E)) — (R,B(R))
is a also a measurable map.

6. If (E,d) is a separable metric space, from 1., it has a countable base.
From exercise (18), B(E x E) = B(E) ® B(E). We conclude from 5. that
d:(Ex E,B(E)®B(E)) — (R,B(R)) is a measurable map.

"Beware of external links!
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7.

10.

By definition (54), the product o-algebra B(E) ® B(E) is generated by the
set of measurable rectangles B(E) II B(E). From theorem (14), in order
to prove the measurability of:

d:(0,F)— (Ex E,B(F)®B(E))

it is sufficient to prove that ®~1(B) € F for all B € B(E)IIB(E). However,
any measurable rectangle B of B(E) IT B(E) is of the form B = A; x As,
where Ay, A2 € B(E). It follows that:

eH(B) =N (A)Ng T (A) € F

since by assumption, both f, g : (2, F) — (E,B(F)) are measurable maps.
We have proved that ® : ) — E x E is measurable with respect to F and
B(E) ® B(E).

Suppose (E,d) is a separable metric space. From 6., the map:
d:(Ex E,B(E)®B(E)) — (R,B(R))
is measurable. However, from 7., the map:
d: (0, F)— (Ex E,B(F)®B(E))

is also measurable. It follows that ¥ = d(f, g) = d o ® is measurable with
respect to F and B(R).

From 8., when (F,d) is separable, the map ¥ = d(f,g) is measurable.
Hence:

{f=gt=v""({0y)eF

Let (Ey,dn)n>1 be a sequence of separable metric spaces. From exer-
cise (15), the product topological space I/ E,, is metrizable. From 1.,
each FE, has a countable base. From theorem (27), II7>] F,, also has a
countable base. Being metrizable, it follows from 2., that it is in fact
separable. We have proved that HIgEn is metrizable and separable.

Exercise 19

Exercise 20. Suppose each f; : (Q,F) — (€, F;) is measurable. From theo-
rem (14), in order to prove the measurability of:

J (O F) — (ier€, @icrFi)

It is sufficient to show that f~(B) € F, for all B € ;e F;. Let B = I;c 1 A;
be a measurable rectangle of the family (F;);er. For all i € I, A; € F;, and
J={iel:A; #Q,;} is a finite set. Hence:

By =({ficA}=({ficA}erF

el i€J

since each f; is measurable. So f is indeed measurable. Conversely, suppose
f = (fi)ier is measurable. Let j € I and A; € F;. We have:

[ (A) = FHA) x Wiy ) € F
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since B = A; x 1I;+;€; is a measurable rectangle, and lies in ®;erF;. So
fi+ (Q,F) — (95, F;) is a measurable map.
Exercise 20

Exercise 21.
1. Let (z,y) and (2’,y') be elements of R%. We have:

lp(x,y) — (2", y)| < |z — 2|+ |y — 9| (7)

By definition (17), the usual topology on R is the metric topology induced
by d(x,y) = |r — y|. From exercise (14), the product topology on R? is
induced by:

dl(z,y), @y = |z — 2’| + |y — ¥/
It follows from equation (7), and exercise (4) of Tutorial 4 that:

¢: (R* Tr2) — (R, TR)

is a continuous map.
Let (z0,10) € R? and € > 0. For all (z,y) € R?, we have:

(2, 9) = (@0, yo)| < [yl-l& = ol + |zol-ly — ol
Suppose 1 > 0 is such that:
[z — 2ol + [y —yo| <m <1
Then in particular, |y| < 1+ |yo|, and consequently:
(@, y) — ¥(zo,y0)| < M.(lz — zo| + [y — vol)
where M = max(|zo|, 1 + |yo|). Hence, we see that:

5[($,y), (x07y0)] <n = W)(x?y) - w(x07y0)| <e€

where 7 has been chosen as 7 = min(e/M,1). We conclude from exer-
cise (4) of Tutorial 4 that 1 : (R?, Tgz) — (R, 7r) is a continuous map.

2. ¢ and 1 being continuous, from exercise (13) of Tutorial 4:
¢,v : (R*, B(R?)) — (R, B(R))

are measurable maps. Since (R,7r) has a countable base, from exer-
cise (18), we have B(R?) = B(R) ® B(R). We conclude that:

¢,v: (R*, B(R) @ B(R)) — (R, B(R))
are measurable maps.

3. Given f,g : (2,F) — (R,B(R)) measurable, the fact that f + ¢ and
f.g are measurable was already proved in Tutorial 4. The purpose of this
exercise is to emphasize a more direct proof. From theorem (28), the map:

h=(f,9):(,F) — RxR,BR)®BR))
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is measurable, since both f and ¢ are measurable. From 2:
¢,v: (R xR,B(R)® B(R)) — (R,B(R))

are also measurable. It follows that f + g = ¢oh and f.g = ¢ oh are
measurable with respect to F and B(R). Being real-valued, they are also
measurable with respect to F and B(R).

Exercise 21
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