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6. Product Spaces
In the following, I is a non-empty set.

Definition 50 Let (Ωi)i∈I be a family of sets, indexed by a non-empty set I.
We call Cartesian product of the family (Ωi)i∈I the set, denoted Πi∈IΩi, and
defined by: ∏

i∈I
Ωi
4
= {ω : I → ∪i∈IΩi , ω(i) ∈ Ωi , ∀i ∈ I}

In other words, Πi∈IΩi is the set of all maps ω defined on I, with values in
∪i∈IΩi, such that ω(i) ∈ Ωi for all i ∈ I.

Theorem 25 (Axiom of choice) Let (Ωi)i∈I be a family of sets, indexed by
a non-empty set I. Then, Πi∈IΩi is non-empty, if and only if Ωi is non-empty
for all i ∈ I1.

Exercise 1.

1. Let Ω be a set and suppose that Ωi = Ω, ∀i ∈ I. We use the notation ΩI

instead of Πi∈IΩi. Show that ΩI is the set of all maps ω : I → Ω.

2. What are the sets RR+
, RN , [0, 1]N , R̄R?

3. Suppose I = N∗. We sometimes use the notation Π+∞
n=1Ωn instead of

Πn∈N∗Ωn. Let S be the set of all sequences (xn)n≥1 such that xn ∈ Ωn
for all n ≥ 1. Is S the same thing as the product Π+∞

n=1Ωn?

4. Suppose I = Nn = {1, . . . , n}, n ≥ 1. We use the notation Ω1 × . . .× Ωn
instead of Πi∈{1,...,n}Ωi. For ω ∈ Ω1 × . . .× Ωn, it is customary to write
(ω1, . . . , ωn) instead of ω, where we have ωi = ω(i). What is your guess
for the definition of sets such as Rn, R̄n,Qn,Cn.

5. Let E,F,G be three sets. Define E × F ×G.

Definition 51 Let I be a non-empty set. We say that a family of sets (Iλ)λ∈Λ,
where Λ 6= ∅, is a partition of I, if and only if:

(i) ∀λ ∈ Λ , Iλ 6= ∅
(ii) ∀λ, λ′ ∈ Λ , λ 6= λ′ ⇒ Iλ ∩ Iλ′ = ∅

(iii) I = ∪λ∈ΛIλ

Exercise 2. Let (Ωi)i∈I be a family of sets indexed by I, and (Iλ)λ∈Λ be a
partition of the set I.

1. For each λ ∈ Λ, recall the definition of Πi∈IλΩi.

1When I is finite, this theorem is traditionally derived from other axioms.
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2. Recall the definition of Πλ∈Λ(Πi∈IλΩi).

3. Define a natural bijection Φ : Πi∈IΩi → Πλ∈Λ(Πi∈IλΩi).

4. Define a natural bijection ψ : Rp ×Rn → Rp+n, for all n, p ≥ 1.

Definition 52 Let (Ωi)i∈I be a family of sets, indexed by a non-empty set I.
For all i ∈ I, let Ei be a set of subsets of Ωi. We define a rectangle of the family
(Ei)i∈I , as any subset A of Πi∈IΩi, of the form A = Πi∈IAi where Ai ∈ Ei∪{Ωi}
for all i ∈ I, and such that Ai = Ωi except for a finite number of indices i ∈ I.
Consequently, the set of all rectangles, denoted qi∈IEi, is defined as:∐

i∈I
Ei
4
=

{∏
i∈I

Ai : Ai ∈ Ei ∪ {Ωi} , Ai 6= Ωi for finitely many i ∈ I
}

Exercise 3. (Ωi)i∈I and (Ei)i∈I being as above:

1. Show that if I = Nn and Ωi ∈ Ei for all i = 1, . . . , n, then E1 q . . .qEn =
{A1 × . . .×An : Ai ∈ Ei , ∀i ∈ I}.

2. Let A be a rectangle. Show that there exists a finite subset J of I such
that: A = {ω ∈ Πi∈IΩi : ω(j) ∈ Aj , ∀j ∈ J} for some Aj ’s such that
Aj ∈ Ej , for all j ∈ J .

Definition 53 Let (Ωi,Fi)i∈I be a family of measurable spaces, indexed by a
non-empty set I. We call measurable rectangle , any rectangle of the family
(Fi)i∈I . The set of all measurable rectangles is given by 2:∐

i∈I
Fi
4
=

{∏
i∈I

Ai : Ai ∈ Fi , Ai 6= Ωi for finitely many i ∈ I
}

Definition 54 Let (Ωi,Fi)i∈I be a family of measurable spaces, indexed by a
non-empty set I. We define the product σ-algebra of (Fi)i∈I , as the σ-algebra
on Πi∈IΩi, denoted ⊗i∈IFi, and generated by all measurable rectangles, i.e.⊗

i∈I
Fi
4
= σ

(∐
i∈I
Fi

)

Exercise 4.

1. Suppose I = Nn. Show that F1 ⊗ . . .⊗Fn is generated by all sets of the
form A1 × . . .×An, where Ai ∈ Fi for all i = 1, . . . , n.

2. Show that B(R)⊗B(R)⊗B(R) is generated by sets of the form A×B×C
where A,B,C ∈ B(R).

2Note that Ωi ∈ Fi for all i ∈ I.
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3. Show that if (Ω,F) is a measurable space, B(R+) ⊗ F is the σ-algebra
on R+ × Ω generated by sets of the form B × F where B ∈ B(R+) and
F ∈ F .

Exercise 5. Let (Ωi)i∈I be a family of non-empty sets and Ei be a subset of
the power set P(Ωi) for all i ∈ I.

1. Give a generator of the σ-algebra ⊗i∈Iσ(Ei) on Πi∈IΩi.

2. Show that:

σ

(∐
i∈I
Ei

)
⊆
⊗
i∈I

σ(Ei)

3. Let A be a rectangle of the family (σ(Ei))i∈I . Show that if A is not empty,
then the representation A = Πi∈IAi with Ai ∈ σ(Ei) is unique. Define
JA = {i ∈ I : Ai 6= Ωi}. Explain why JA is a well-defined finite subset of
I.

4. If A ∈ qi∈Iσ(Ei), Show that if A = ∅, or A 6= ∅ and JA = ∅, then
A ∈ σ(qi∈IEi).

Exercise 6. Everything being as before, Let n ≥ 0. We assume that the
following induction hypothesis has been proved:

A ∈
∐
i∈I

σ(Ei), A 6= ∅, cardJA = n ⇒ A ∈ σ
(∐
i∈I
Ei

)
We assume that A is a non empty measurable rectangle of (σ(Ei))i∈I with
cardJA = n + 1. Let JA = {i1, . . . , in+1} be an extension of JA. For all
B ⊆ Ωi1 , we define:

AB
4
=
∏
i∈I

Āi

where each Āi is equal to Ai except Āi1 = B. We define the set:

Γ
4
=

{
B ⊆ Ωi1 : AB ∈ σ

(∐
i∈I
Ei

)}

1. Show that AΩi1 6= ∅, cardJ
A

Ωi1 = n and that AΩi1 ∈ qi∈Iσ(Ei).

2. Show that Ωi1 ∈ Γ.

3. Show that for all B ⊆ Ωi1 , we have AΩi1\B = AΩi1 \AB.

4. Show that B ∈ Γ⇒ Ωi1 \B ∈ Γ.

5. Let Bn ⊆ Ωi1 , n ≥ 1. Show that A∪Bn = ∪n≥1A
Bn .

6. Show that Γ is a σ-algebra on Ωi1 .
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7. Let B ∈ Ei1 , and for i ∈ I define B̄i = Ωi for all i’s except B̄i1 = B. Show
that AB = AΩi1 ∩ (Πi∈I B̄i).

8. Show that σ(Ei1 ) ⊆ Γ.

9. Show that A = AAi1 and A ∈ σ(qi∈IEi).

10. Show that qi∈Iσ(Ei) ⊆ σ(qi∈IEi).

11. Show that σ(qi∈IEi) = ⊗i∈Iσ(Ei).

Theorem 26 Let (Ωi)i∈I be a family of non-empty sets indexed by a non-empty
set I. For all i ∈ I, let Ei be a set of subsets of Ωi. Then, the product σ-algebra
⊗i∈Iσ(Ei) on the Cartesian product Πi∈IΩi is generated by the rectangles of
(Ei)i∈I , i.e. : ⊗

i∈I
σ(Ei) = σ

(∐
i∈I
Ei

)

Exercise 7. Let TR denote the usual topology in R. Let n ≥ 1.

1. Show that TR q . . .q TR = {A1 × . . .×An : Ai ∈ TR}.

2. Show that B(R)⊗ . . .⊗ B(R) = σ(TR q . . . q TR).

3. Define C2 = {]a1, b1] × . . .×]an, bn] : ai, bi ∈ R}. Show that C2 ⊆
S q . . .qS, where S = {]a, b] : a, b ∈ R}, but that the inclusion is strict.

4. Show that S q . . .q S ⊆ σ(C2).

5. Show that B(R)⊗ . . .⊗ B(R) = σ(C2).

Exercise 8. Let Ω and Ω′ be two non-empty sets. Let A be a subset of Ω such
that ∅ 6= A 6= Ω. Let E = {A} ⊆ P(Ω) and E ′ = ∅ ⊆ P(Ω′).

1. Show that σ(E) = {∅, A,Ac,Ω}.

2. Show that σ(E ′) = {∅,Ω′}.

3. Define C = {E × F , E ∈ E , F ∈ E ′} and show that C = ∅.

4. Show that E q E ′ = {A× Ω′,Ω× Ω′}.

5. Show that σ(E) ⊗ σ(E ′) = {∅, A× Ω′, Ac × Ω′,Ω× Ω′}.

6. Conclude that σ(E)⊗ σ(E ′) 6= σ(C) = {∅,Ω× Ω′}.

Exercise 9. Let n ≥ 1 and p ≥ 1 be two positive integers.

1. Define F = B(R)⊗ . . .⊗ B(R)︸ ︷︷ ︸
n

, and G = B(R)⊗ . . .⊗ B(R)︸ ︷︷ ︸
p

. Explain

why F ⊗ G can be viewed as a σ-algebra on Rn+p.
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2. Show that F ⊗ G is generated by sets of the form A1 × . . .×An+p where
Ai ∈ B(R), i = 1, . . . , n+ p.

3. Show that:

B(R)⊗. . .⊗B(R)︸ ︷︷ ︸
n+p

= (B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
n

⊗(B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
p

Exercise 10. Let (Ωi,Fi)i∈I be a family of measurable spaces. Let (Iλ)λ∈Λ,
where Λ 6= ∅, be a partition of I. Let Ω = Πi∈IΩi and Ω′ = Πλ∈Λ(Πi∈IλΩi).

1. Define a natural bijection between P(Ω) and P(Ω′).

2. Show that through such bijection, A = Πi∈IAi ⊆ Ω, where Ai ⊆ Ωi, is
identified with A′ = Πλ∈Λ(Πi∈IλAi) ⊆ Ω′.

3. Show that qi∈IFi = qλ∈Λ(qi∈IλFi).

4. Show that ⊗i∈IFi = ⊗λ∈Λ(⊗i∈IλFi).

Definition 55 Let Ω be set and A be a set of subsets of Ω. We call topology
generated by A, the topology on Ω, denoted T (A), equal to the intersection of
all topologies on Ω, which contain A.

Exercise 11. Let Ω be a set and A ⊆ P(Ω).

1. Explain why T (A) is indeed a topology on Ω.

2. Show that T (A) is the smallest topology T such that A ⊆ T .

3. Show that the metric topology on a metric space (E, d) is generated by
the open balls A = {B(x, ε) : x ∈ E, ε > 0}.

Definition 56 Let (Ωi, Ti)i∈I be a family of topological spaces, indexed by a
non-empty set I. We define the product topology of (Ti)i∈I , as the topology
on Πi∈IΩi, denoted �i∈ITi, and generated by all rectangles of (Ti)i∈I , i.e.⊙

i∈I
Ti
4
= T

(∐
i∈I
Ti

)

Exercise 12. Let (Ωi, Ti)i∈I be a family of topological spaces.

1. Show that U ∈ �i∈ITi, if and only if:

∀x ∈ U , ∃V ∈ qi∈ITi , x ∈ V ⊆ U

2. Show that qi∈ITi ⊆ �i∈ITi.

3. Show that ⊗i∈IB(Ωi) = σ(qi∈ITi).
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4. Show that ⊗i∈IB(Ωi) ⊆ B(Πi∈IΩi).

Exercise 13. Let n ≥ 1 be a positive integer. For all x, y ∈ Rn, let:

(x, y)
4
=

n∑
i=1

xiyi

and we put ‖x‖ =
√

(x, x).

1. Show that for all t ∈ R, ‖x+ ty‖2 = ‖x‖2 + t2‖y‖2 + 2t(x, y).

2. From ‖x+ ty‖2 ≥ 0 for all t, deduce that |(x, y)| ≤ ‖x‖.‖y‖.

3. Conclude that ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Exercise 14. Let (Ω1, T1), . . . , (Ωn, Tn), n ≥ 1, be metrizable topological spaces.
Let d1, . . . , dn be metrics on Ω1, . . . ,Ωn, inducing the topologies T1, . . . , Tn re-
spectively. Let Ω = Ω1× . . .×Ωn and T be the product topology on Ω. For all
x, y ∈ Ω, we define:

d(x, y)
4
=

√√√√ n∑
i=1

(di(xi, yi))2

1. Show that d : Ω× Ω→ R+ is a metric on Ω.

2. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U there are open
sets U1, . . . , Un in Ω1, . . . ,Ωn respectively, such that:

x ∈ U1 × . . .× Un ⊆ U

3. Let U ∈ T and x ∈ U . Show the existence of ε > 0 such that:

(∀i = 1, . . . , n di(xi, yi) < ε) ⇒ y ∈ U

4. Show that T ⊆ T dΩ .

5. Let U ∈ T dΩ and x ∈ U . Show the existence of ε > 0 such that:

x ∈ B(x1, ε)× . . .×B(xn, ε) ⊆ U

6. Show that T dΩ ⊆ T .

7. Show that the product topological space (Ω, T ) is metrizable.

8. For all x, y ∈ Ω, define:

d′(x, y)
4
=

n∑
i=1

di(xi, yi)

d′′(x, y)
4
= max

i=1,...,n
di(xi, yi)

Show that d′, d′′ are metrics on Ω.
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9. Show the existence of α′, β′, α′′ and β′′ > 0, such that we have α′d′ ≤
d ≤ β′d′ and α′′d′′ ≤ d ≤ β′′d′′.

10. Show that d′ and d′′ also induce the product topology on Ω.

Exercise 15. Let (Ωn, Tn)n≥1 be a sequence of metrizable topological spaces.
For all n ≥ 1, let dn be a metric on Ωn inducing the topology Tn. Let Ω =
Π+∞
n=1Ωn be the Cartesian product and T be the product topology on Ω. For all

x, y ∈ Ω, we define:

d(x, y)
4
=

+∞∑
n=1

1
2n

(1 ∧ dn(xn, yn))

1. Show that for all a, b ∈ R+, we have 1 ∧ (a+ b) ≤ 1 ∧ a+ 1 ∧ b.

2. Show that d is a metric on Ω.

3. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U , there is an
integer N ≥ 1 and open sets U1, . . . , UN in Ω1, . . . ,ΩN respectively, such
that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

4. Show that d(x, y) < 1/2n ⇒ dn(xn, yn) ≤ 2nd(x, y).

5. Show that for all U ∈ T and x ∈ U , there exists ε > 0 such that d(x, y) <
ε ⇒ y ∈ U .

6. Show that T ⊆ T dΩ .

7. Let U ∈ T dΩ and x ∈ U . Show the existence of ε > 0 and N ≥ 1, such
that:

N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) < ε ⇒ y ∈ U

8. Show that for all U ∈ T dΩ and x ∈ U , there is ε > 0 and N ≥ 1 such that:

x ∈ B(x1, ε)× . . .×B(xN , ε)×
+∞∏

n=N+1

Ωn ⊆ U

9. Show that T dΩ ⊆ T .

10. Show that the product topological space (Ω, T ) is metrizable.

Definition 57 Let (Ω, T ) be a topological space. A subset H of T is called a
countable base of (Ω, T ), if and only if H is at most countable, and has the
property:

∀U ∈ T , ∃H′ ⊆ H , U =
⋃
V ∈H′

V
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Exercise 16.

1. Show that H = {]r, q[ : r, q ∈ Q} is a countable base of (R, TR).

2. Show that if (Ω, T ) is a topological space with countable base, and Ω′ ⊆ Ω,
then the induced topological space (Ω′, T|Ω′) also has a countable base.

3. Show that [−1, 1] has a countable base.

4. Show that if (Ω, T ) and (S, TS) are homeomorphic, then (Ω, T ) has a
countable base if and only if (S, TS) has a countable base.

5. Show that (R̄, TR̄) has a countable base.

Exercise 17. Let (Ωn, Tn)n≥1 be a sequence of topological spaces with count-
able base. For n ≥ 1, Let {V kn : k ∈ In} be a countable base of (Ωn, Tn) where
In is a finite or countable set. Let Ω = Π∞n=1Ωn be the Cartesian product and
T be the product topology on Ω. For all p ≥ 1, we define:

Hp 4=
{
V k1

1 × . . .× V kpp ×
+∞∏

n=p+1

Ωn : (k1, . . . , kp) ∈ I1 × . . .× Ip

}
and we put H = ∪p≥1Hp.

1. Show that for all p ≥ 1, Hp ⊆ T .

2. Show that H ⊆ T .

3. For all p ≥ 1, show the existence of an injection jp : Hp → Np.

4. Show the existence of a bijection φ2 : N2 → N.

5. For p ≥ 1, show the existence of an bijection φp : Np → N.

6. Show that Hp is at most countable for all p ≥ 1.

7. Show the existence of an injection j : H → N2.

8. Show that H is a finite or countable set of open sets in Ω.

9. Let U ∈ T and x ∈ U . Show that there is p ≥ 1 and U1, . . . , Up open sets
in Ω1, . . . ,Ωp such that:

x ∈ U1 × . . .× Up ×
+∞∏

n=p+1

Ωn ⊆ U

10. Show the existence of some Vx ∈ H such that x ∈ Vx ⊆ U .

11. Show that H is a countable base of the topological space (Ω, T ).

12. Show that ⊗+∞
n=1B(Ωn) ⊆ B(Ω).
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13. Show that H ⊆ ⊗+∞
n=1B(Ωn).

14. Show that B(Ω) = ⊗+∞
n=1B(Ωn)

Theorem 27 Let (Ωn, Tn)n≥1 be a sequence of topological spaces with countable
base. Then, the product space (Π+∞

n=1Ωn,�+∞
n=1Tn) has a countable base and:

B
(

+∞∏
n=1

Ωn

)
=

+∞⊗
n=1

B(Ωn)

Exercise 18.

1. Show that if (Ω, T ) has a countable base and n ≥ 1:

B(Ωn) = B(Ω)⊗ . . .⊗ B(Ω)︸ ︷︷ ︸
n

2. Show that B(R̄n) = B(R̄)⊗ . . .⊗ B(R̄).

3. Show that B(C) = B(R)⊗ B(R).

Definition 58 We say that a metric space (E, d) is separable, if and only
if there exists a finite or countable dense subset of E, i.e. a finite or countable
subset A of E such that E = Ā, where Ā is the closure of A in E.

Exercise 19. Let (E, d) be a metric space.

1. Suppose that (E, d) is separable. Let H = {B(xn, 1
p ) : n, p ≥ 1}, where

{xn : n ≥ 1} is a countable dense subset in E. Show that H is a countable
base of the metric topological space (E, T dE ).

2. Suppose conversely that (E, T dE ) has a countable base H. For all V ∈ H
such that V 6= ∅, take xV ∈ V . Show that the set {xV : V ∈ H , V 6= ∅}
is at most countable and dense in E.

3. For all x, y, x′, y′ ∈ E, show that:

|d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′)

4. Let TE×E be the product topology on E × E. Show that the map d :
(E × E, TE×E)→ (R+, TR+) is continuous.

5. Show that d : (E × E,B(E × E))→ (R̄,B(R̄)) is measurable.

6. Show that d : (E×E,B(E)⊗B(E))→ (R̄,B(R̄)) is measurable, whenever
(E, d) is a separable metric space.
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7. Let (Ω,F) be a measurable space and f, g : (Ω,F) → (E,B(E)) be
measurable maps. Show that Φ : (Ω,F) → E × E defined by Φ(ω) =
(f(ω), g(ω)) is measurable with respect to the product σ-algebra B(E)⊗
B(E).

8. Show that if (E, d) is separable, then Ψ : (Ω,F)→ (R̄,B(R̄)) defined by
Ψ(ω) = d(f(ω), g(ω)) is measurable.

9. Show that if (E, d) is separable then {f = g} ∈ F .

10. Let (En, dn)n≥1 be a sequence of separable metric spaces. Show that the
product space Π+∞

n=1En is metrizable and separable.

Exercise 20. Prove the following theorem.

Theorem 28 Let (Ωi,Fi)i∈I be a family of measurable spaces and (Ω,F) be
a measurable space. For all i ∈ I, let fi : Ω → Ωi be a map, and define
f : Ω→ Πi∈IΩi by f(ω) = (fi(ω))i∈I . Then, the map:

f : (Ω,F)→
(∏
i∈I

Ωi,
⊗
i∈I
Fi

)
is measurable, if and only if each fi : (Ω,F)→ (Ωi,Fi) is measurable.

Exercise 21.

1. Let φ, ψ : R2 → R with φ(x, y) = x + y and ψ(x, y) = x.y. Show that
both φ and ψ are continuous.

2. Show that φ, ψ : (R2,B(R)⊗ B(R))→(R̄,B(R̄)) are measurable.

3. Let (Ω,F) be a measurable space, and f, g : (Ω,F) → (R,B(R)) be
measurable maps. Using the previous results, show that f + g and f.g are
measurable with respect to F and B(R).
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Solutions to Exercises
Exercise 1.

1. If Ωi = Ω for all i ∈ I, then ∪i∈IΩi = Ω. For any map f : I → Ω, the
condition f(i) ∈ Ωi for all i ∈ I, is automatically satisfied. Hence, ΩI is
the set of all maps f : I → Ω.

2. RR+
is the set of all maps f : R+ → R. The set RN is that of all maps

f : N→ R, or in other words, the set of all sequences (un)n≥0 with values
in R. As for [0, 1]N, it is the set of all sequences (un)n≥0 with values in
[0, 1]. Finally, R̄R etc. . .

3. Yes. Maps defined on N∗ or sequences are the same thing.

4. For any set E, En is the set of all maps f : Nn → E.

5. E × F ×G is the set of all maps ω : N3 → E ∪ F ∪G such that ω1 ∈ E,
ω2 ∈ F and ω3 ∈ G.

Exercise 1

Exercise 2.

1. Πi∈IλΩi is the set of all maps f defined on Iλ, with f(i) ∈ Ωi for all i ∈ Iλ.

2. Πλ∈Λ(Πi∈IλΩi) is the set of all maps x defined on Λ, such that x(λ) ∈
Πi∈IλΩi, for all λ ∈ Λ.

3. Given ω ∈ Πi∈IΩi and λ ∈ Λ, let ω|Iλ be the restriction of ω to Iλ ⊆ I.
Since ω(i) ∈ Ωi for all i ∈ I, in particular ω(i) ∈ Ωi for all i ∈ Iλ. Hence,
ω|Iλ ∈ Πi∈IλΩi. This being true for all λ ∈ Λ, the map Φ(ω) = (ω|Iλ)λ∈Λ

defined on Λ by Φ(ω)(λ) = ω|Iλ , is an element of Πλ∈Λ(Πi∈IλΩi). Hence,
we have defined a map Φ : Πi∈IΩi → Πλ∈Λ(Πi∈IλΩi). Let y ∈ Πλ∈Λ(Πi∈IλΩi).
Since (Iλ)λ∈Λ is a partition of I, for all i ∈ I, there exists a unique λ ∈ Λ
such that i ∈ Iλ. Define ω(i) = y(λ)(i). Then, ω(i) ∈ Ωi for all i ∈ I, i.e.
ω ∈ Πi∈IΩi. Moreover, by construction, Φ(ω)(λ) = ω|Iλ = y(λ), for all
λ ∈ Λ. We have found a map ω ∈ Πi∈IΩi, such that Φ(ω) = y. So Φ is a
surjective map. Suppose that Φ(ω) = Φ(ω′) for some ω, ω′ ∈ Πi∈IΩi. Let
i ∈ I, and λ ∈ Λ be such that i ∈ Iλ. Then, we have:

ω(i) = (ω|Iλ)(i) = Φ(ω)(λ)(i) = Φ(ω′)(λ)(i) = ω′(i)

So ω = ω′, and Φ is an injective map. We have found a natural bijection
from Πi∈IΩi to Πλ∈Λ(Πi∈IλΩi).
Given a map ω ∈ Πi∈IΩi, it is customary to regard ω as the family
(ωi)i∈I where ωi = ω(i) for all i ∈ I. (A map defined on I is nothing
but a family indexed by I). Hence, the restriction ω|Iλ is nothing but the
family (ωi)i∈Iλ , and the map Φ(ω) can be written as:

Φ((ωi)i∈I) = ((ωi)i∈Iλ)λ∈Λ

The mapping Φ looks like a pretty natural mapping, given the partition
(Iλ)λ∈Λ of the set I.
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4. Rp ×Rn is the set of all maps ω : N2 → Rp ∪Rn such that ω1 ∈ Rp and
ω2 ∈ Rn3. Each ω1 ∈ Rp is a map ω1 : Np → R, and each ω2 ∈ Rn is a
map ω2 : Nn → R. Given ω ∈ Rp ×Rn, define ψ(ω) ∈ Rp+n as:

ψ(ω)(i) =
{
ω1(i) if 1 ≤ i ≤ p
ω2(i− p) if p+ 1 ≤ i ≤ p+ n

i.e. ψ(ω) = (ω1(1), . . . , ω1(p), ω2(1), . . . , ω2(n)). The mapping ω → ψ(ω)
from Rp×Rn to Rp+n is a bijection, which may be regarded as natural. . .

Exercise 2

Exercise 3.

1. Let A = A1× . . .×An be such that Ai ∈ Ei for all i = 1, . . . , n. Then A is
of the form A = Πi∈NnAi with Ai ∈ Ei ∪ {Ωi}, and the condition Ai 6= Ωi
for finitely many i ∈ Nn, is obviously satisfied. So A is a rectangle of the
family (Ei)i∈Nn , that is A ∈ E1 q . . .q En. Conversely, Let A = Πi∈NnAi
be a rectangle of the family (Ei)i∈Nn . Then, each Ai is an element of
Ei ∪ {Ωi}. Since Ωi ∈ Ei for all i ∈ Nn, each Ai is in fact an element of
Ei. So A is of the form A = A1 × . . .×An, with Ai ∈ Ei. We have proved
that the set of rectangles of (Ei)i∈Nn is given by:

E1 q . . . q En = {A1 × . . .×An : Ai ∈ Ei, ∀i ∈ Nn}

2. Let A be a rectangle of the family (Ei)i∈I . Then A = Πi∈IAi, where
Ai ∈ Ei ∪ {Ωi}, and Ai 6= Ωi for finitely many i ∈ I. Let J be the set
J = {i ∈ I : Ai 6= Ωi}. Then J is a finite subset of I. Moreover, for all
j ∈ J , Aj 6= Ωj , yet Aj ∈ Ej ∪ {Ωj}. So Aj ∈ Ej . Let ω ∈ A = Πi∈IAi.
Then ω is a map defined on I such that ω(i) ∈ Ai ⊆ Ωi for all i ∈ I. In
particular, ω ∈ Πi∈IΩi, and ω(j) ∈ Aj for all j ∈ J . Conversely, suppose
ω ∈ Πi∈IΩi is such that ω(j) ∈ Aj for all j ∈ J . Then ω is a map defined
on I such that ω(i) ∈ Ωi for all i ∈ I, and furthermore, ω(j) ∈ Aj for all
j ∈ J . However, for all i ∈ I \ J , we have Ai = Ωi. It follows that ω is a
map defined on I such that ω(i) ∈ Ai for all i ∈ I. So ω ∈ Πi∈IAi = A.
We have proved that there exists a finite subset J of I, and a family
(Aj)j∈J with Aj ∈ Ej, such that A = {ω ∈ Πi∈IΩi : ω(j) ∈ Aj , ∀j ∈ J}.

Exercise 3

Exercise 4.

1. By definition, F1⊗. . .⊗Fn is generated by the set of measurable rectangles
F1 q . . . q Fn. Since Ωi ∈ Fi for all i ∈ Nn, and since Nn is finite, these
rectangles are of the form A1 × . . .×An where Ai ∈ Fi, for all i ∈ Nn.

2. B(R) ⊗ B(R) ⊗ B(R) is generated by the set of measurable rectangles
B(R)qB(R)qB(R). These rectangles are of the form A×B×C, where
A,B,C ∈ B(R).

3We view ordered pairs as maps defined on N2. . .
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3. Since R+ ∈ B(R+) and Ω ∈ F , the set of measurable rectangles B(R+)qF
is the set of all B × F , where B ∈ B(R+) and F ∈ F . Such sets generate
the σ-algebra B(R+)⊗F on R+ × Ω.

Exercise 4

Exercise 5.

1. By definition, a generator of ⊗i∈Iσ(Ei) is the set of measurable rectangles
of the family (σ(Ei))i∈I , i.e. qi∈Iσ(Ei).

2. Let A = Πi∈IAi be a rectangle in qi∈IEi. Then, each Ai is an element of
Ei ∪ {Ωi}, and Ai 6= Ωi for finitely many i ∈ I. In particular, A is also a
rectangle in qi∈Iσ(Ei). Hence, we have:∐

i∈I
Ei ⊆

∐
i∈I

σ(Ei) ⊆ σ
(∐
i∈I

σ(Ei)
)
4
= ⊗i∈Iσ(Ei)

and consequently, σ(qi∈IEi) ⊆ ⊗i∈Iσ(Ei).

3. Let A 6= ∅ be a rectangle of the family (σ(Ei))i∈I . Suppose that A =
Πi∈IAi = Πi∈IBi are two representations of A. Since A is non-empty,
there exists f ∈ A. The mapping f defined on I, is such that f(i) ∈ Ai∩Bi
for all i ∈ I. Let j ∈ I be given. Suppose x ∈ Aj . Define g on I, by
g(i) = f(i) if i 6= j, and g(j) = x. Then, g(i) ∈ Ai for all i ∈ I. So
g ∈ Πi∈IAi = A = Πi∈IBi, and in particular, x = g(j) ∈ Bj . Hence, we
see that Aj ⊆ Bj , and similarly Bj ⊆ Aj . j ∈ I being arbitrary, we have
proved that Ai = Bi for all i ∈ I. The set JA = {i ∈ I : Ai 6= Ωi} is
therefore well-defined, as the Ai’s are uniquely determined. Furthermore,
A being a rectangle, the set JA is finite.

4. Let A ∈ qi∈Iσ(Ei). If A = ∅, then A is an element of the σ-algebra
σ(qi∈IEi). If A 6= ∅ but JA = ∅, then Ai = Ωi for all i ∈ I, and
A = Πi∈IAi = Πi∈IΩi is also an element of the σ-algebra σ(qi∈IEi).

Exercise 5

Exercise 6.

1. By assumption, A 6= ∅. There exists a map f defined on I, such that
f(i) ∈ Ai, for all i ∈ I. Since Ai1 ⊆ Ωi1 , f is also an element of AΩi1 .
So AΩi1 6= ∅. By definition, J

A
Ωi1 = {i ∈ I : Āi 6= Ωi}, where each Āi

is equal to Ai, except Āi1 = Ωi1 . It follows that J
A

Ωi1 = {i ∈ I \ {i1} :
Ai 6= Ωi} = JA \ {i1}. Since by assumption, i1 ∈ JA, and cardJA = n+ 1,
cardJ

A
Ωi1 = n. Finally, A being a rectangle of the family (σ(Ei))i∈I , each

Ai is an element of σ(Ei) ∪ {Ωi} = σ(Ei). It follows that Āi ∈ σ(Ei)
for all i ∈ I. Since Āi 6= Ωi for finitely many i ∈ I, we conclude that
AΩi1 = Πi∈I Āi ∈ qi∈Iσ(Ei).
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2. Our induction hypothesis is that if A is a non-empty rectangle of the
family (σ(Ei))i∈I with cardJA = n, then A ∈ σ(qi∈IEi). Since from 1.,
AΩi1 satisfies such properties, AΩi1 ∈ σ(qi∈IEi). It follows that Ωi1 ∈ Γ.

3. Let B ⊆ Ωi1 . Let f ∈ AΩi1\B. Then, f is a map defined on I, such
that f(i) ∈ Ai for all i ∈ I \ {i1}, and f(i1) ∈ Ωi1 \ B. In particular,
f ∈ AΩi1 and f 6∈ AB. So f ∈ AΩi1 \ AB , and AΩi1\B ⊆ AΩi1 \ AB.
Conversely, suppose f ∈ AΩi1 \AB. f being an element of AΩi1 , f(i) ∈ Ai
for all i ∈ I \ {i1}. Since f 6∈ AB , f(i1) cannot be an element of B.
It follows that f(i1) ∈ Ωi1 \ B, and f ∈ AΩi1\B . We have proved that
AΩi1\B = AΩi1 \AB .

4. Let B ∈ Γ. Then, AB ∈ σ(qi∈IEi). All σ-algebras being closed under
complementation, we have (AB)c ∈ σ(qi∈IEi). Moreover, from 2., AΩi1 ∈
σ(qi∈IEi). It follows that:

AΩi1\B = AΩi1 \AB = AΩi1 ∩ (AB)c ∈ σ(qi∈IEi)
We conclude that Ωi1 \B ∈ Γ.

5. Let (Bn)n≥1 be a sequence of subsets of Ωi1 . If f ∈ A∪Bn , then f is a
map defined on I, such that f(i) ∈ Ai for all i 6= i1, and f(i1) ∈ ∪n≥1Bn.
There exists n ≥ 1 such that f(i1) ∈ Bn, which implies that f ∈ ABn . So
f ∈ ∪n≥1A

Bn , and we see that A∪Bn ⊆ ∪n≥1A
Bn . Conversely, suppose

that f ∈ ∪n≥1A
Bn . There exists n ≥ 1, such that f ∈ ABn . In particular,

f(i) ∈ Ai for all i ∈ I \ {i1}, and f(i1) ∈ Bn ⊆ ∪n≥1Bn. So f ∈ A∪Bn .
We have proved that A∪Bn = ∪n≥1A

Bn .

6. From 2., Ωi1 ∈ Γ. From 4., Γ is closed under complementation. To show
that Γ is a σ-algebra on Ωi1 , it remains to show that Γ is closed under
countable union. Let (Bn)n≥1 be a sequence of elements of Γ. Then, for
all n ≥ 1, ABn ∈ σ(qi∈IEi). It follows that:

A∪Bn = ∪+∞
n=1A

Bn ∈ σ(qi∈IEi)
So ∪n≥1Bn ∈ Γ, and Γ is indeed closed under countable union. We have
proved that Γ is a σ-algebra on Ωi1 .

7. Let B ∈ Ei1 , B̄i = Ωi for all i 6= i1, and B̄i1 = B. Let f ∈ AB. Then, f is
a map defined on I, such that f(i) ∈ Ai for all i ∈ I \ {i1}, and f(i1) ∈ B.
In particular, f ∈ AΩi1 and f(i) ∈ B̄i for all i ∈ I, i.e. f ∈ Πi∈IB̄i. Hence,
AB ⊆ AΩi1 ∩ (Πi∈I B̄i). Conversely, suppose that f ∈ AΩi1 ∩ (Πi∈I B̄i).
Then, f(i) ∈ Ai for all i ∈ I \ {i1} and f(i) ∈ B̄i for all i ∈ I. In
particular, f(i1) ∈ B̄i1 = B. It follows that f ∈ AB. We have proved that
AB = AΩi1 ∩ (Πi∈I B̄i).

8. Let B ∈ Ei1 and B̄i = Ωi for all i ∈ I \{i1}, and B̄i1 = B. Then, Πi∈I B̄i ∈
qi∈IEi, and in particular, Πi∈IB̄i ∈ σ(qi∈IEi). From 2., Ωi1 ∈ Γ, i.e. AΩi1

is also an element of σ(qi∈IEi). It follows from 7. that:

AB = AΩi1 ∩ (Πi∈I B̄i) ∈ σ(qi∈IEi)
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We conclude that B ∈ Γ. This being true for all B ∈ Ei1 , we have Ei1 ⊆ Γ.
However, since Γ is a σ-algebra on Ωi1 , we finally see that σ(Ei1 ) ⊆ Γ.

9. Let f ∈ A = Πi∈IAi. Then, f(i) ∈ Ai for all i ∈ I \ {i1}, and f(i1) ∈ Ai1 .
So f ∈ AAi1 . Conversely, if f ∈ AAi1 , then f ∈ A. So A = AAi1 . Since A
is a rectangle of the family (σ(Ei))i∈I , Ai1 ∈ σ(Ei1 ). From 8., σ(Ei1 ) ⊆ Γ.
it follows that Ai1 ∈ Γ, and consequently A = AAi1 ∈ σ(qi∈IEi). This
proves our induction hypothesis for cardJA = n+ 1.

10. Let A ∈ qi∈Iσ(Ei). If A = ∅, then A is an element of σ(qi∈IEi). Let
A 6= ∅. If cardJA = 0, then A = Πi∈IΩi ∈ σ(qi∈IEi). Using an induction
argument on cardJA, we have proved that for all n ≥ 0:

cardJA = n⇒ A ∈ σ(qi∈IEi)
Since A is a rectangle of the family (σ(Ei))i∈I , JA is a finite set. It follows
that A ∈ σ(qi∈IEi). Finally, We conclude that qi∈Iσ(Ei) ⊆ σ(qi∈IEi).

11. From 10., we have ⊗i∈Iσ(Ei) = σ(qi∈Iσ(Ei)) ⊆ σ(qi∈IEi). However,
from exercise (5), σ(qi∈IEi) ⊆ ⊗i∈Iσ(Ei). It follows that ⊗i∈Iσ(Ei) =
σ(qi∈IEi). The purpose of this difficult exercise is to prove theorem (26).
Congratulations !

Exercise 6

Exercise 7.

1. Since R ∈ TR and Nn is finite, from definition (52), the set of rectangles
TR q . . .qTR reduces to all sets of the form Πi∈NnAi, where Ai ∈ TR for
all i ∈ Nn. In other words:

TR q . . .q TR = {A1 × . . .×An : Ai ∈ TR, ∀i ∈ Nn}

2. By definition of the Borel σ-algebra, B(R) is generated by the topology
TR, i.e. B(R) = σ(TR). From theorem (26), we have:

B(R)⊗ . . .⊗ B(R) = σ(TR q . . .q TR)

3. Let C2 = {]a1, b1] × . . .×]an, bn] : ai, bi ∈ R}, and let S be the semi-ring
on R, S = {]a, b] : a, b ∈ R}. Since Nn is finite, from definition (52), the
set of rectangles Sq . . .qS is made of all sets of the form Πi∈NnAi, where
Ai ∈ S ∪ {R}. Hence, each element of C2 is an element of S q . . .qS, i.e.
C2 ⊆ S q . . . q S. However, Rn is an element of S q . . . q S, but do not
belong to C2. So the inclusion C2 ⊆ S q . . .q S is strict.

4. Let A ∈ S q . . .qS. Then A is of the form A = A1× . . .×An, where each
Ai is an element of S, or Ai = R. If all Ai’s lie in S, then A ∈ C2 ⊆ σ(C2).
Let J∗A = {k ∈ Nn : Ak = R}. We have just seen that if J∗A = ∅, or
equivalently if cardJ∗A = 0, then A ∈ σ(C2). Suppose we have proved the
induction hypothesis, for k = 0, . . . , n− 1:

A ∈ S q . . .q S , cardJ∗A = k ⇒ A ∈ σ(C2)

www.probability.net

http://www.probability.net


Solutions to Exercises 16

and let A ∈ Sq . . .qS be such that cardJ∗A = k+1. Let i1 be an arbitrary
element of J∗A. Then, Ai1 = R = ∪+∞

p=1]−p, p]. Hence, A can be written
as:

A = A1 × . . .×An =
+∞⋃
p=1

A1 × . . .×]−p, p]× . . .×An (1)

where A1 × . . .×]−p, p]× . . .×An = Bp is a notation for Πi∈Nn Āi where
Āi = Ai for all i 6= i1, and Āi1 =]−p, p]. Since for all p ≥ 1, ]−p, p] ∈ S,
Bp is an element of S q . . .qS, and more importantly cardJ∗Bp = k. From
our induction hypothesis, it follows that Bp ∈ σ(C2). Hence, we see from
equation (1) that A ∈ σ(C2), and we have proved our induction hypothesis
for cardJ∗A = k + 1. We conclude that for all A ∈ S q . . . q S, we have
A ∈ σ(C2), i.e. S q . . . q S ⊆ σ(C2).

5. From theorem (6)4,we know that the semi-ring S generates the Borel
σ-algebra B(R) on R, i.e. B(R) = σ(S). Applying theorem (26), we
have:

B(R)⊗ . . .⊗ B(R) = σ(S q . . .q S) (2)
However, from 3., C2 ⊆ Sq. . .qS, hence σ(C2) ⊆ σ(Sq. . .qS). Moreover,
from 4., S q . . .qS ⊆ σ(C2), and consequently, we have σ(S q . . .q S) ⊆
σ(C2). It follows that σ(S q . . . q S) = σ(C2). Finally, from equation (2),
B(R)⊗ . . .⊗ B(R) = σ(C2).

Exercise 7

Exercise 8.

1. Let Σ = σ(E) be the σ-algebra generated by E = {A}. Let F be the set of
subsets of Ω defined by F = {∅, A,Ac,Ω}. Note that Ω ∈ F , F is closed
under complementation and countable union, so F is a σ-algebra on Ω.
Since E ⊆ F , we have Σ = σ(E) ⊆ F . However, since E ⊆ σ(E), A ∈ Σ.
So Ac ∈ Σ. Furthermore, Ω ∈ Σ and ∅ ∈ Σ. Finally, F ⊆ Σ. We have
proved that F = Σ.

2. Since {∅,Ω′} is a σ-algebra on Ω′ with E ′ ⊆ {∅,Ω′}, we have σ(E ′) ⊆
{∅,Ω′}. However, σ(E ′) being a σ-algebra on Ω′, we have Ω′ ∈ σ(E ′) and
∅ ∈ σ(E ′). Finally, σ(E ′) = {∅,Ω′}.

3. Since E ′ = ∅, C = {E × F : E ∈ E , F ∈ E ′} = ∅.

4. The rectangles in E q E ′ are the sets of the form A1 × A2, where A1 ∈
E ∪ {Ω} and A2 ∈ E ′ ∪ {Ω′}. Since E ′ = ∅, the only possible value for
A2 is Ω′. Since E = {A}, A1 can be equal to A or Ω. It follows that
E q E ′ = {A× Ω′,Ω× Ω′}.

5. From theorem (26), σ(E) ⊗ σ(E ′) = σ(E q E ′). Let F be defined by
F = {∅, A×Ω′, Ac ×Ω′,Ω×Ω′}. Note that the complement of A×Ω′ in

4Beware of external links!
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Ω×Ω′ is (A×Ω′)c = Ac×Ω′. So F is closed under complementation, and in
fact, F is a σ-algebra on Ω×Ω′. However, from 4., EqE ′ = {A×Ω′,Ω×Ω′}.
So E q E ′ ⊆ F , and consequently σ(E q E ′) ⊆ F . Since all elements of F
have to be in σ(E qE ′), we also have F ⊆ σ(E qE ′). We have proved that
F = σ(E q E ′). We conclude that σ(E) ⊗ σ(E ′) = F .

6. Since C = ∅, we have σ(C) = {∅,Ω× Ω′}. It follows from 5. that σ(C) 6=
σ(E)⊗σ(E ′). The purpose of this exercise is to emphasize an easy mistake
to make, when applying theorem (26). This theorem states that σ(E) ⊗
σ(E ′) = σ(E q E ′). It is very tempting to conclude that:

σ(E)⊗ σ(E ′) = σ({E × F : E ∈ E , F ∈ E ′})
But this is wrong ! The reason being that the set of rectangles E q E ′ is
larger than the set of all E×F , where E ∈ E and F ∈ E ′. The elements of
EqE ′ are indeed of the form E×F , but with E ∈ E∪{Ω} and F ∈ E ′∪{Ω′}.
(Do not forget the ’∪’). So σ(E) ⊗ σ(E ′) = σ({E × F : E ∈ E ∪ {Ω}, F ∈
E ′ ∪ {Ω′}}). You have been warned. . .

Exercise 8

Exercise 9.

1. Strictly speaking, F ⊗ G is a σ-algebra on Rn ×Rp. However, Rn ×Rp

and Rn+p can be identified, through the bijection ψ : Rn ×Rp → Rn+p,
defined by ψ(x, y) = (x1, . . . , xn, y1, . . . , yp). Hence, F ⊗ G can be viewed
as a σ-algebra on Rn+p.

2. By definition, F = σ(C1), where C1 is the set of measurable rectangles
C1 = {A1 × . . . × An : Ai ∈ B(R), ∀i ∈ Nn}. Similarly, if C2 = {An+1 ×
. . .×An+p : An+i ∈ B(R), ∀i ∈ Np}, then G = σ(C2). From theorem (26),
we have F⊗G = σ(C1qC2). Furthermore, since Rn ∈ C1 and Rp ∈ C2, the
set of rectangles C1 q C2 is given by C1 q C2 = {A×A′ : A ∈ C1, A′ ∈ C2}.
If we identify sets of the form (A1 × . . .×An)× (An+1× . . .×An+p) with
A1 × . . .×An+p, then C1 q C2 can be written as:

C1 q C2 = {A1 × . . .×An+p : Ai ∈ B(R), ∀i ∈ Nn+p}
We conclude that F⊗G is generated by the sets of the form A1×. . .×An+p,
where Ai ∈ B(R) for all i ∈ Nn+p.

3. Let C = {A1×. . .×An+p : Ai ∈ B(R), ∀i ∈ Nn+p}. From 2., F⊗G = σ(C).
However, C is the set of measurable rectangles in Rn+p. Consequently,
σ(C) = B(R)⊗ . . .⊗B(R) (n+ p terms). We conclude that B(R)⊗ . . .⊗
B(R) = F ⊗ G, i.e.

B(R)⊗. . .⊗B(R)︸ ︷︷ ︸
n+p

= (B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
n

⊗(B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
p

Exercise 9

Exercise 10.
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1. In exercise (2), we defined a natural bijection Φ : Ω→ Ω′, by:

Φ((ωi)i∈I)
4
= ((ωi)i∈Iλ)λ∈Λ

This allows us to define Φ̄ : P(Ω)→ P(Ω′), by:

Φ̄(A)
4
= Φ(A)

4
= {Φ(ω) : ω ∈ A}

for all A ⊆ Ω. In other words, Φ̄ maps every subset A of Ω, with its
direct image Φ(A) by the bijection Φ : Ω → Ω′. Let A′ ⊆ Ω′. Since
Φ is a bijection, we have A′ = Φ(Φ−1(A′)), i.e. the direct image of the
inverse image of A′ by Φ is equal to A′. So A′ = Φ̄(Φ−1(A′)), and Φ̄ is
a surjective map. If A,B ⊆ Ω are such that Φ̄(A) = Φ̄(B), taking the
inverse images of both sides, we have A = B. So Φ̄ is an injective map.
We have proved that Φ̄ is a bijection from P(Ω) to P(Ω′). Informally, Φ is
a bijection allowing us to identify an element of Πi∈IΩi with an element of
Πλ∈Λ(Πi∈IλΩi). The bijection Φ̄ allows us to identify a subset of Πi∈IΩi
with a subset of Πλ∈Λ(Πi∈IλΩi). . .

2. Let A be a subset of Ω of the form A = Πi∈IAi. Let A′ be the corre-
sponding set A′ = Πλ∈Λ(Πi∈IλAi). Saying that A and A′ are identified
through the bijection Φ̄, is just another way of saying that A′ = Φ̄(A).
Suppose y ∈ Φ̄(A). There exists x ∈ A such that y = Φ(x). For all
λ ∈ Λ, we have y(λ) = Φ(x)(λ) = x|Iλ . Since x ∈ A, each x|Iλ is an
element of Πi∈IλAi. So y(λ) ∈ Πi∈IλAi for all λ ∈ Λ. It follows that
y ∈ Πλ∈Λ(Πi∈IλAi) = A′. So Φ̄(A) ⊆ A′. Conversely, suppose y ∈ A′.
y is a map defined on Λ, such that y(λ) ∈ Πi∈IλAi for all λ ∈ Λ. Each
y(λ) is a map defined on Iλ, such that y(λ)(i) ∈ Ai for all i ∈ Iλ. Let
x be the map defined on I by x(i) = y(λ)(i), where given i ∈ I, λ is the
unique element of Λ such that i ∈ Iλ. Then, x is such that x(i) ∈ Ai for
all i ∈ I, so x ∈ Πi∈IAi = A. Moreover, by construction, for all λ ∈ Λ,
x|Iλ = y(λ). So y(λ) = Φ(x)(λ) for all λ ∈ Λ, i.e. y = Φ(x). We have
found x ∈ A, such that y = Φ(x). So y ∈ Φ(A) = Φ̄(A). We have proved
that A′ ⊆ Φ̄(A). Finally, A′ = Φ̄(A). We have proved that the sets Πi∈IAi
and Πλ∈Λ(Πi∈IλAi) are indeed identified through the bijection Φ̄.

3. Let Πi∈IAi ∈ qi∈IFi. Then, for all i ∈ I, Ai ∈ Fi, and Ai 6= Ωi for finitely
many i ∈ I. For each λ ∈ Λ, Πi∈IλAi is therefore such that Ai ∈ Fi for
all i ∈ Iλ, and Ai 6= Ωi for finitely many i ∈ Iλ. So Πi∈IλAi ∈ qi∈IλFi.
It follows that Πi∈IAi can be written as (through identification):

Πi∈IAi = Πλ∈Λ(Πi∈IλAi) = Πλ∈ΛBλ

where Bλ ∈ qi∈IλFi for all λ ∈ Λ. Moreover, the set of all λ ∈ Λ
for which Bλ 6= Πi∈IλΩi, is necessarily finite. It follows that Πi∈IAi ∈
qλ∈Λ(qi∈IλFi). So qi∈IFi ⊆ qλ∈λ(qi∈IλFi). Conversely, let Πλ∈ΛBλ ∈
qλ∈Λ(qi∈IλFi). For all λ ∈ Λ, we have Bλ ∈ qi∈IλFi, and Bλ 6= Πi∈IλΩi
for finitely many λ ∈ Λ. Hence, each Bλ is of the form Πi∈IλAi, where
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Ai ∈ Fi for all i ∈ Iλ, and Ai 6= Ωi for finitely many i ∈ Iλ. It follows
that Πλ∈ΛBλ can be written (with identification) as:

Πλ∈ΛBλ = Πλ∈Λ(Πi∈IλAi) = Πi∈IAi

where Ai ∈ Fi for all i ∈ I, and Ai 6= Ωi for finitely many i ∈ I. So
Πλ∈ΛBλ ∈ qi∈IFi, and qλ∈Λ(qi∈IλFi) ⊆ qi∈IFi. We have proved that
qi∈IFi = qλ∈Λ(qi∈IλFi).

4. From definition (54), for all λ ∈ Λ, ⊗i∈IλFi = σ(qi∈IλFi). Using the-
orem (26), ⊗λ∈Λ(⊗i∈IλFi) = σ(qλ∈Λ(qi∈IλFi)). Using 3., we conclude
that ⊗λ∈Λ(⊗i∈IλFi) = σ(qi∈IFi) = ⊗i∈IFi.

Exercise 10

Exercise 11.

1. Let T (A) be the set of all topologies T on Ω, which contain A, i.e. such
that A ⊆ T . Note that T (A) is not the empty set, as the power set P(Ω)
is clearly a topology on Ω (called the discrete topology) which satisfies
A ⊆ P(Ω). By definition (55), the topology T (A) generated by A, is
equal to ∩T ∈T (A)T . In order to show that T (A) is indeed a topology on
Ω, it is sufficient to prove that an arbitrary intersection of topologies on
Ω, is also a topology on Ω. Let (Ti)i∈I be an arbitrary family of topologies
on Ω, and let T = ∩i∈ITi. Since ∅ and Ω belong to Ti for all i ∈ I, ∅ and Ω
are elements of T . If A,B ∈ T , then A,B ∈ Ti for all i ∈ I, and therefore
A ∩ B ∈ Ti for all i ∈ I. It follows that A ∩ B ∈ T , and T is closed
under finite intersection. If (Aj)j∈J is an arbitrary family of elements of
T , then for all i ∈ I, (Aj)j∈J is an arbitrary family of elements of Ti, and
consequently ∪j∈JAj ∈ Ti. This being true for all i ∈ I, ∪j∈JAj ∈ T , and
T is closed under arbitrary union. We have proved that T is a topology
on Ω. An arbitrary intersection of topologies on Ω, is a topology on Ω. In
particular, the topology T (A) is a topology on Ω.

2. Given T (A) = {T : T topology on Ω ,A ⊆ T }, the topology T (A) gen-
erated by A is given by T (A) = ∩T ∈T (A)T . Hence, we have A ⊆ T (A).
Suppose T is another topology on Ω, such that A ⊆ T . Then, T ∈ T (A).
It follows that T (A) ⊆ T . We have proved that T (A) is the smallest
topology on Ω, such that A ⊆ T (A).

3. Let (E, d) be a metric space, and A be the set of all open balls:

A = {B(x, ε) : x ∈ E, ε > 0}
Let T dE be the metric topology on E. Since any open ball in E is open
with respect to the metric topology, i.e. belongs to T dE , we have A ⊆ T dE
and therefore T (A) ⊆ T dE . Conversely, let U ∈ T dE . Define Γ = {B(x, ε) :
x ∈ E, ε > 0, B(x, ε) ⊆ U}, i.e. let Γ be the set of all open balls in E
which are contained in U . Since U is open for the metric topology, from
definition (30), for all x ∈ U , there exists ε > 0 such that B(x, ε) ⊆ U .
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In particular, there exists B ∈ Γ such that x ∈ B. Hence, U ⊆ ∪B∈ΓB.
Conversely, for all x ∈ ∪B∈ΓB, there exists B ∈ Γ such that x ∈ B. But
B ⊆ U . So x ∈ U . Hence, we see that U = ∪B∈ΓB. However, Γ is a
subset of A ⊆ T (A). It follows that ∪B∈ΓB is an element of T (A). We
have proved that U ∈ T (A). Hence T dE ⊆ T (A). Finally, T dE = T (A), i.e.
the metric topology on E is generated by the set of all open balls in E.

Exercise 11

Exercise 12.

1. Let U be a subset of Πi∈IΩi with the property:

∀x ∈ U , ∃V ∈ qi∈ITi : x ∈ V ⊆ U (3)

Define Γ = {V ∈ qi∈ITi : V ⊆ U}. Given x ∈ U , since property (3)
holds, there exists V ∈ Γ such that x ∈ V . So U ⊆ ∪V ∈ΓV . Conversely,
if x ∈ ∪V ∈ΓV , there exists V ∈ Γ such that x ∈ V . But V ⊆ U . So
x ∈ U . Hence, we see that U = ∪V ∈ΓV . Since Γ ⊆ qi∈ITi ⊆ �i∈ITi,
each V ∈ Γ is an element of the product topology �i∈ITi. So ∪V ∈ΓV
is also an element of �i∈ITi. We have proved that U ∈ �i∈ITi, and
therefore, any subset of Πi∈IΩi with property (3), belongs to the product
topology �i∈ITi. Let T be the set of all U subset of Πi∈IΩi which satisfy
property (3). We claim that in fact, T is a topology on Πi∈IΩi. Indeed,
∅ satisfies property (3) vacuously. So ∅ ∈ T . The set of all rectangles
qi∈ITi is a subset of T . In particular, Πi∈IΩi ∈ T . Suppose A,B ∈ T .
Let x ∈ A∩B. Since A satisfies property (3), there exists V ∈ qi∈ITi such
that x ∈ V ⊆ A. Similarly, there exists W ∈ qi∈ITi such that x ∈W ⊆ B.
It follows that x ∈ V ∩W ⊆ A ∩B. However, V and W being rectangles
of (Ti)i∈I , they can be written as V = Πi∈IAi and W = Πi∈IBi, where
Ai, Bi ∈ Ti ∪{Ωi} = Ti and Ai 6= Ωi or Bi 6= Ωi for finitely many i ∈ I. It
follows that V ∩W = Πi∈I(Ai ∩Bi), where each Ai ∩Bi lie in Ti (it is a
topology), and Ai∩Bi 6= Ωi for finitely many i ∈ I. So V ∩W is a rectangle
of (Ti)i∈I , i.e. V ∩W ∈ qi∈ITi, and x ∈ V ∩W ⊆ A∩B. We have proved
that A ∩ B satisfies property (3), i.e. A ∩ B ∈ T . So T is closed under
finite intersection. Finally, let (Aj)j∈J be a family of elements of T . Let
x ∈ ∪j∈JAj . There exists j ∈ J such that x ∈ Aj . Since Aj ∈ T , there
exists V ∈ qi∈ITi such that x ∈ V ⊆ Aj . In particular, x ∈ V ⊆ ∪j∈JAj .
Hence, we see that ∪j∈JAj satisfies property (3), i.e. ∪j∈JAj ∈ T . So T
is closed under arbitrary union. We have proved that T is a topology on
Πi∈IΩi. Since qi∈ITi ⊆ T , we conclude that �i∈ITi = T (qi∈ITi) ⊆ T .
It follows that any element of the product topology satisfies property (3).
We have proved that a subset U of Πi∈IΩi is an element of �i∈ITi, if and
only if it satisfies property (3).

2. qi∈ITi ⊆ T (qi∈ITi) = �i∈ITi.

3. From theorem (26), ⊗i∈IB(Ωi) = ⊗i∈Iσ(Ti) = σ(qi∈ITi).
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4. From 2., we have σ(qi∈ITi) ⊆ σ(�i∈ITi) = B(Πi∈IΩi). Using 3., we
obtain ⊗i∈IB(Ωi) ⊆ B(Πi∈IΩi).

Exercise 12

Exercise 13.

1. The scalar product (x, y) being semi-linear and commutative:

‖x+ ty‖2 = (x + ty, x+ ty)
= (x, x) + t(y, x) + t(x, y) + t2(y, y)
= ‖x‖2 + t2‖y‖2 + 2t(x, y)

2. When y 6= 0, the polynomial t → p(t) = t2‖y‖2 + 2t(x, y) + ‖x‖2 has
a minimum attained at t = −(x, y)/‖y‖2. The value of this minimum
is −(x, y)2/‖y‖2 + ‖x‖2. Since p(t) = ‖x + ty‖2 ≥ 0 for all t ∈ R, in
particular, we have −(x, y)2/‖y‖2 +‖x‖2 ≥ 0, i.e. |(x, y)| ≤ ‖x‖.‖y‖. This
inequality still holds if y = 0.

3. We have:

‖x+ y‖2 = ‖x‖2 + 2(x, y) + ‖y‖2

≤ ‖x‖2 + 2‖x‖.‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

Exercise 13

Exercise 14.

1. Each metric di has values in R+. So d(x, y) < +∞ for all x, y, i.e. d
also has values in R+. It is clear that d(x, y) = d(y, x) for all x, y ∈ Ω.
Suppose that d(x, y) = 0. Then, for all i ∈ Nn, we have di(xi, yi) = 0 and
consequently xi = yi. So x = y. Conversely, it is clear that d(x, x) = 0.
Let x, y, z ∈ Ω. For all i ∈ Nn, we have:

di(xi, yi) ≤ di(xi, zi) + di(zi, yi)

and therefore:

d(x, y) ≤

√√√√ n∑
i=1

(di(xi, zi) + di(zi, yi))2

Using exercise (13), we conclude that:

d(x, y) ≤

√√√√ n∑
i=1

(di(xi, zi))2 +

√√√√ n∑
i=1

(di(zi, yi))2

i.e. d(x, y) ≤ d(x, z) + d(z, y). It follows from definition (28)5 that d is
indeed a metric on Ω.

5Beware of external links!
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2. The set of rectangles qi∈NnTi is given by:

qi∈NnTi = {U1 × . . .× Un : Ui ∈ Ti, ∀i ∈ Nn}

It follows from exercise (12) that U ⊆ Ω is open in Ω, i.e. belongs to the
product topology T , if and only if for all x ∈ U , there exist U1, . . . , Un
open in Ω1, . . . ,Ωn respectively, such that:

x ∈ U1 × . . .× Un ⊆ U

3. Let U ∈ T . From 2., for all x ∈ U , there exist U1, . . . , Un open in
Ω1, . . . ,Ωn respectively, such that x ∈ U1× . . .×Un ⊆ U . By assumption,
each topology Ti is induced by the metric di, i.e. Ti = T diΩi

. For all i ∈ Nn,
xi ∈ Ui. Hence, there exists εi > 0, such that B(xi, εi) ⊆ Ui, where
B(xi, εi) denotes the open ball in Ωi. Let ε = min(ε1, . . . , εn). Suppose
y ∈ Ω is such that di(xi, yi) < ε, for all i ∈ Nn. Then, yi ∈ B(xi, εi) ⊆ Ui
for all i ∈ Nn, and consequently y ∈ U1 × . . . × Un ⊆ U . We have found
ε > 0 such that:

(∀i ∈ Nn, di(xi, yi) < ε) ⇒ y ∈ U

4. Let U ∈ T , and x ∈ U . Let ε > 0 be as in 3. Let y ∈ B(x, ε), where B(x, ε)
denotes the open ball in Ω = Ω1 × . . . × Ωn, with respect to the metric
d. Then, d(x, y) < ε. Since for all i ∈ Nn, di(xi, yi) ≤ d(x, y), we have
di(xi, yi) < ε for all i ∈ Nn. From 3., we see that y ∈ U . So B(x, ε) ⊆ U .
For all x ∈ U , we have found ε > 0 such that B(x, ε) ⊆ U . It follows that
U belongs to the metric topology T dΩ . We have proved that T ⊆ T dΩ .

5. Let U ∈ T dΩ and x ∈ U . From definition (30)6 of the metric topology,
there exists ε′ > 0 such that B(x, ε′) ⊆ U . Define ε = ε′/

√
n, and let

y ∈ B(x1, ε)× . . .× B(xn, ε). Then, for all i ∈ Nn, di(xi, yi) < ε. Hence,
d(x, y) <

√
nε2 =

√
nε = ε′. So y ∈ U . We have found ε > 0 such that:

x ∈ B(x1, ε)× . . .×B(xn, ε) ⊆ U

6. Let U ∈ T dΩ and x ∈ U . Let ε > 0 be as in 5. Then, we have x ∈
B(x1, ε) × . . . × B(xn, ε) ⊆ U . Each B(xi, ε) being open in Ωi, we have
found U1, . . . , Un open in Ω1, . . . ,Ωn respectively, such that x ∈ U1× . . .×
Un ⊆ U . From 2., we conclude that U ∈ T . So T dΩ ⊆ T .

7. From 4. and 6., we have T = T dΩ . In other words, the product topology
T = T1 � . . . � Tn is equal to the metric topology T dΩ on Ω, induced by
the metric d. In particular, the topological space (Ω, T ) is metrizable.

8. Both d′ and d′′ have values in R+. For all x, y ∈ Ω, we have d′(x, y) =
d′(y, x) and d′′(x, y) = d′′(y, x). Moreover, it is clear that d′(x, y) = 0 is
equivalent to each di(xi, yi) being equal to 0, hence equivalent to xi = yi

6Beware of external links!
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for all i’s, i.e. equivalent to x = y. Similarly, d′′(x, y) = 0 is equivalent to
x = y. Given x, y, z ∈ Ω, for all i ∈ Nn, we have:

di(xi, yi) ≤ di(xi, zi) + di(zi, yi)

It follows immediately that d′(x, y) ≤ d′(x, z) + d′(z, y), and furthermore,
for all i = 1, . . . , n:

di(xi, yi) ≤ d′′(x, z) + d′′(z, y)

From which we conclude that d′′(x, y) ≤ d′′(x, z) + d′′(z, y). We have
proved that d′ and d′′ are metrics on Ω.

9. Let x, y ∈ Ω. For all i ∈ Nn, define ai = di(xi, yi). Let a, b ∈ Rn be
given a = (a1, . . . , an) and b = (1, . . . , 1). From exercise (13), we have
|(a, b)| ≤ ‖a‖.‖b‖, and consequently:

d′(x, y) ≤
√
nd(x, y)

From (
∑n

i=1 ai)
2 ≥

∑n
i=1 a

2
i , we obtain:

d(x, y) ≤ d′(x, y)

Hence, α′d′ ≤ d ≤ β′d′, where α′ = 1/
√
n and β′ = 1.

From
∑n

i=1 a
2
i ≤ n(maxi ai)2, we obtain:

d(x, y) ≤
√
nd′′(x, y)

From (maxi ai)2 ≤
∑n

i=1 a
2
i we obtain:

d′′(x, y) ≤ d(x, y)

Hence, α′′d′′ ≤ d ≤ β′′d′′, where α′′ = 1 and β′′ =
√
n.

10. From 9., there exist β′ > 0 such that d ≤ β′d′. Let U ∈ T dΩ , and x ∈ U .
There exists ε > 0 such that Bd(x, ε) ⊆ U , where Bd(x, ε) denotes the
open ball in Ω, relative to the metric d. Suppose y ∈ Ω is such that
d′(x, y) < ε/β′. Then, we have d(x, y) ≤ β′d′(x, y) < ε, and it follows that
y ∈ U . So Bd′(x, ε/β′) ⊆ U . For all x ∈ U , we have found ε′ = ε/β′ > 0
such that Bd′(x, ε′) ⊆ U . It follows that U ∈ T d′Ω . We have proved
that T dΩ ⊆ T d

′

Ω . Using 9., from d′ ≤ (1/α′)d, we conclude similarly that
T d′Ω ⊆ T dΩ . Hence, T d′Ω = T dΩ . Similarly, from α′′d′′ ≤ d ≤ β′′d′′, we have
T d′′Ω = T dΩ . We have proved that T d′Ω = T dΩ = T d′′Ω . Since T dΩ = T is
the product topology on Ω, we conclude that d′ and d′′ also induce the
product topology T = T1 � . . .� Tn on Ω.

Exercise 14

Exercise 15.

1. For all a ∈ R+, 1 ∧ a = min(1, a). Let a, b ∈ R+. Suppose a + b ≤ 1.
Then, both a ≤ 1 and b ≤ 1, and we have:

1 ∧ (a+ b) = a+ b = 1 ∧ a+ 1 ∧ b
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Suppose a+ b ≥ 1. If both a ≤ 1 and b ≤ 1, we have:

1 ∧ (a+ b) = 1 ≤ a+ b = 1 ∧ a+ 1 ∧ b
if a ≥ 1, we have:

1 ∧ (a+ b) = 1 = 1 ∧ a ≤ 1 ∧ a+ 1 ∧ b
In any case, we see that:

1 ∧ (a+ b) ≤ 1 ∧ a+ 1 ∧ b

2. For all x, y ∈ Ω, we have:

d(x, y) =
+∞∑
n=1

1
2n

(1 ∧ dn(xn, yn)) ≤
+∞∑
n=1

1
2n

< +∞

So d has values in R+. It is clear that d(x, y) = d(y, x). Moreover,
d(x, y) = 0 is equivalent to dn(xn, yn) = 0 for all n ≥ 1, which is in turn
equivalent to x = y. For all x, y, z ∈ Ω, and n ≥ 1, we have:

dn(xn, yn) ≤ dn(xn, zn) + dn(zn, yn)

and consequently, using 1.:

1 ∧ dn(xn, yn) ≤ 1 ∧ dn(xn, zn) + 1 ∧ dn(zn, yn)

It follows that d(x, y) ≤ d(x, z) + d(z, y). We have proved that d is a
metric on Ω.

3. Let V = Π+∞
n=1Un be a rectangle of the family (Tn)n≥1. The set {n ≥ 1 :

Un 6= Ωn} being finite, it is either empty or has a maximal element N ≥ 1.
it follows that V can be written as:

V = U1 × . . .× UN ×
+∞∏

n=N+1

Ωn (4)

where U1, . . . , UN are open in Ω1, . . . ,ΩN respectively. If the set {n ≥
1 : Un 6= Ωn} is empty, then V is also of the form (4), for any N ≥ 1.
Conversely, any set V of the form (4) is a rectangle in q+∞

n=1Tn. From
exercise (12), U ∈ T = �+∞

n=1Tn, if and only if, for all x ∈ U , there exists
V ∈ q+∞

n=1Tn such that x ∈ V ⊆ U . It follows that U ⊆ Ω is open in Ω,
i.e. belongs to the product topology T , if and only if for all x ∈ U , there
exists N ≥ 1 and open sets U1, . . . , UN in Ω1, . . . ,ΩN respectively, such
that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

4. Suppose that d(x, y) < 1/2n, for some n ≥ 1. Then, dn(xn, yn) has to be
less than 1. Specifically:

d(x, y) ≥ 1
2n

(1 ∧ dn(xn, yn)) =
1
2n
dn(xn, yn)
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So d(x, y) < 1/2n ⇒ dn(xn, yn) ≤ 2nd(x, y)

5. Let U ∈ T and x ∈ U . From 3., there exist N ≥ 1 and U1, . . . , UN open
in Ω1, . . . ,ΩN respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

Let i ∈ {1, . . . , N}. Then xi ∈ Ui ∈ Ti. The topology Ti being the metric
topology T diΩi

, there exists εi > 0 such that we have B(xi, εi) ⊆ Ui. Let
ε = min(1/2N , ε1/2, . . . , εN/2N) and y ∈ Ω be such that d(x, y) < ε. In
particular, we have d(x, y) < 1/2i, for all i = 1, . . . , N . Hence, from 4.,
we see that di(xi, yi) ≤ 2id(x, y) < 2iε ≤ εi. It follows that yi ∈ Ui for all
i = 1, . . . , N and consequently y ∈ U1 × . . .× UN × Π+∞

n=N+1Ωn ⊆ U . We
have found ε > 0 such that d(x, y) < ε⇒ y ∈ U .

6. From 5. for all U ∈ T and x ∈ U , there exists ε > 0 such that B(x, ε) ⊆ U .
It follows that U ∈ T dΩ . So T ⊆ T dΩ .

7. Let U ∈ T dΩ and x ∈ U . By definition (30) of the metric topology, there
exists ε′ > 0 such that B(x, ε′) ⊆ U . In other words, there exists ε′ > 0
such that for all y ∈ Ω:

d(x, y) < ε′ ⇒ y ∈ U

Let ε = ε′/2 and N ≥ 1 be such that:
+∞∑

n=N+1

1
2n
≤ ε

Suppose y ∈ Ω is such that:
N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) < ε

Then, we have:

d(x, y) < ε+
+∞∑

n=N+1

1
2n

(1 ∧ dn(xn, yn)) ≤ 2ε = ε′

It follows that y ∈ U . We have found ε > 0 and N ≥ 1 such that:
N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) < ε ⇒ y ∈ U

8. Let U ∈ T dΩ and x ∈ U . Let ε > 0 an N ≥ 1 be as in 7. Let y ∈ Ω be such
that:

y ∈ B(x1, ε)× . . .×B(xN , ε)×
+∞∏

n=N+1

Ωn
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For all n ∈ {1, . . . , N}, dn(xn, yn) < ε. Hence:

N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) ≤ ε
N∑
n=1

1
2n

< ε

From 7., we conclude that y ∈ U . We have found ε > 0 and N ≥ 1 such
that:

x ∈ B(x1, ε)× . . .×B(xN , ε)×Π+∞
n=N+1Ωn ⊆ U

9. Let U ∈ T dΩ and x ∈ U . Let N ≥ 1 and ε > 0 be as in 8. Each open ball
B(xn, ε) for n = 1, . . . , N being open in Ωn, we have found U1, . . . , UN
open in Ω1, . . . ,ΩN respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

From 3., it follows that U ∈ T = �+∞
n=1Tn. We have proved that T dΩ ⊆ T .

10. From 6. and 9., T dΩ = T . In other words, the product topology T =
�+∞
n=1Tn is induced by the metric d on Ω. In particular, the topological

space (Ω, T ) is metrizable. The purpose of this exercise, is to show that a
countable product of metrizable topological spaces, is itself a metrizable
topological space.

Exercise 15

Exercise 16.

1. H = {]r, q[: r, q ∈ Q} is a countable subset of TR. Let U ∈ TR. Define
H′ = {V ∈ H : V ⊆ U}. For all x ∈ U , there exists ε > 0 such that
]x − ε, x + ε[⊆ U . In fact, the set of rational numbers Q being dense in
R, there exist r, q ∈ Q such that x ∈]r, q[⊆ U . In other words, there
exists V ∈ H′ such that x ∈ V . Hence, we see that U ⊆ ∪V ∈H′V . The
reverse inclusion being clearly satisfied, we have U = ∪V ∈H′V , i.e. U can
be expressed as a union of elements of H. This being true for all open sets
U ∈ TR, we have proved that H is a countable base of (R, TR).

2. Let H be a countable base of (Ω, T ). Let H|Ω′ be the trace of H on Ω′, i.e.
H|Ω′ = {Ω′ ∩ V : V ∈ H}. Since H is a countable or finite subset of the
topology T , H|Ω′ is a countable or finite subset of the induced topology
T|Ω′ . Let U ′ ∈ T|Ω′ be an open subset in Ω′. Then U ′ is of the form
U ′ = Ω′ ∩ U where U ∈ T . H being a countable base of (Ω, T ), there
exists a family (Vi)i∈I of elements of H such that U = ∪i∈IVi. It follows
that (Ω′∩Vi)i∈I is a family of elements ofH|Ω′ such that U ′ = ∪i∈I(Ω′∩Vi).
We conclude that H|Ω′ is a countable base of the induced topological space
(Ω′, T|Ω′).

3. From 1., R has a countable base. It follows from 2. that the induced
topological space [−1, 1] also has a countable base.
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4. Let h : (Ω, T )→ (S, TS) be a homeomorphism, i.e. a continuous bijection
such that h−1 is also continuous. Suppose (Ω, T ) has a countable base H.
Define h(H) = {h(V ) : V ∈ H}. Since H is a countable or finite subset of
T , h−1 being continuous, h(H) is a countable or finite subset of TS . (Note
that each direct image h(V ) of V by h can be viewed the inverse image
(h−1)−1(V ) of V by h−1). Let U ′ ∈ TS . h being continuous, h−1(U ′) ∈
T . H being a countable base of (Ω, T ), there exists a family (Vi)i∈I of
elements of H, such that h−1(U ′) = ∪i∈IVi. However, h(h−1(U ′)) = U ′,
and moreover:

h(∪i∈IVi) = (h−1)−1(∪i∈IVi) = ∪i∈I(h−1)−1(Vi)

So U ′ = ∪i∈Ih(Vi). We conclude that U ′ can be expressed as a union of
elements of h(H). So h(H) is a countable base of (S, TS). We have proved
that if (Ω, T ) has a countable base, then (S, TS) also has a countable
base. Using the same argument, switching the roles of h and h−1, we see
that conversely, if (S, TS) has a countable base, then so does (Ω, T ). We
have proved that given two homeomorphic topological spaces, one has a
countable base, if and only if the other also has a countable base.

5. The topological spaces (R̄, TR̄) and ([−1, 1], T[−1,1]) being homeomorphic,
we conclude from 3. and 4. that (R̄, TR̄) has a countable base.

Exercise 16

Exercise 17.

1. Let p ≥ 1 and A ∈ Hp of the form:

A = V k1
1 × . . .× V kpp ×Π+∞

n=p+1Ωn

For all n ≥ 1, the set {V kn : k ∈ In} being a countable base of Tn, it is a
subset of Tn. Hence, for all i ∈ {1, . . . , p}, we have V kii ∈ Ti. It follows
that A is a rectangle of the family (Tn)n≥1, i.e. A ∈ q+∞

n=1Tn. From
definition (56), the product topology T on Π+∞

n=1Ωn being generated by
q+∞
n=1Tn, we have q+∞

n=1Tn ⊆ T . In particular, A ∈ T . We have proved
that Hp ⊆ T .

2. Using 1., H = ∪p≥1Hp ⊆ T .

3. By assumption, for all n ≥ 1, the index set In is finite or countable. There
exists an injective map in : In → N. Given p ≥ 1, consider the map
jp : Hp → Np, defined in the following way: for A = V k1

1 × . . . × V kpp ×
Π+∞
n=p+1Ωn ∈ Hp, we put:

jp(A) = (i1(k1), . . . , ip(kp))

Suppose B = V
k′1
1 × . . .× V

k′p
p ×Π+∞

n=p+1Ωn is another element of Hp such
that jp(A) = jp(B). Then:

(i1(k1), . . . , ip(kp)) = (i1(k′1), . . . , ip(k′p))
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Hence, for all m ∈ Np, im(km) = im(k′m), and im being injective, we have
km = k′m. So A = B. We have proved the existence of an injective map
jp : Hp → Np.

4. The existence of a bijection φ2 : N2 → N is a standard result, which we
may have used in these tutorials before. Now is a good opportunity to give
a formal proof of it. Informally, φ2 is defined as φ2(0, 0) = 0, φ2(1, 0) = 1,
φ2(0, 1) = 2, φ2(2, 0) = 3, φ2(1, 1) = 4, φ2(0, 2) = 5, etc. . . As you can see,
going through each diagonal one after the other, we are able to count the
elements of N2, thus defining the bijection φ2. Formally, we define the
map φ2 : N2 → N as follows:

∀(n, p) ∈ N2 , φ2(n, p) = p+ [0 + 1 + . . .+ (n+ p)]

or equivalently, φ2(n, p) = p+ h(n+ p) where:

h(m) = 0 + 1 + . . .+m

Let N ∈ N. Since h(m) ↑ +∞, the set {m ∈ N : h(m) ≤ N} is finite and
it is also non-empty. Hence, it has a maximal element m, and we have
h(m) ≤ N < h(m + 1). Let p = N − h(m). Then p ∈ N, and we have
0 ≤ p < h(m + 1) − h(m) = m + 1. So p ≤ m. If we define n = m − p,
then n is also an element of N. So (n, p) is an element of N2, such that
m = n+ p, and N = p+ h(m). It follows that:

φ2(n, p) = p+ h(n+ p) = p+ h(m) = N

We have proved that φ2 is a surjective map. Suppose (n, p) and (n′, p′) are
elements of N2, with φ2(n, p) = φ2(n′, p′). Since φ2(n, p) = p+h(n+p), in
particular h(n+p) ≤ φ2(n, p). However, h(n+p+1) = p+h(n+p)+n+1 >
φ2(n, p). It follows that for all (n, p) ∈ N2, we have:

h(n+ p) ≤ φ2(n, p) < h(n+ p+ 1) (5)

Since given N ∈ N, any m ∈ N such that h(m) ≤ N < h(m+1) is unique,
it follows from φ2(n, p) = φ2(n′, p′) and equation (5) that n+ p = n′ + p′.
Hence:

p = φ2(n, p)− h(n+ p) = φ2(n′, p′)− h(n′ + p′) = p′

and finally n = (n+ p)− p = (n′ + p′)− p′ = n′. We have proved that φ2

is an injective map. We conclude that φ2 : N2 → N is a bijection

5. Let p ≥ 1. The existence of a bijection φp : Np → N is true for p = 1 and
p = 2. Suppose the existence of φp has been proved, and let φ2 : N2 → N
be as in 4. Let φp+1 : Np+1 → N be defined by:

φp+1(n1, . . . , np+1) = φ2[φp(n1, . . . , np), np+1]

for all (n1, . . . , np+1) ∈ Np+1. Let N ∈ N. φ2 being a surjection, there
exists (n, np+1) ∈ N2 with φ2(n, np+1) = N . From our induction hypothe-
sis, φp : Np → N is also a surjective map. There exists (n1, . . . , np) ∈ Np,
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such that φp(n1, . . . , np) = n. It follows that (n1, . . . , np+1) is an element
of Np+1 such that φp+1(n1, . . . , np+1) = N . So φp+1 is itself a surjective
map. Suppose (n1, . . . , np+1) and (n′1, . . . , n

′
p+1) are elements of Np+1

such that:
φp+1(n1, . . . , np+1) = φp+1(n′1, . . . , n

′
p+1)

Then, φ2 being injective, np+1 = n′p+1, and:

φp(n1, . . . , np) = φp(n′1, . . . , n
′
p)

φp being itself injective, (n1, . . . , np) = (n′1, . . . , n
′
p), and we conclude that

(n1, . . . , np+1) = (n′1, . . . , n
′
p+1). So φp+1 is an injective map, and finally

a bijection. This induction argument proves the existence of a bijection
φp : Np → N, for all p ≥ 1.

6. Let p ≥ 1. From 3., there exists an injective map jp : Hp → Np. From 5.,
there exists a bijection φp : Np → N. It follows that φp ◦ jp : Hp → N is
an injective map. This proves that Hp is finite or countable, i.e. Hp is at
most countable.

7. From 6., for all p ≥ 1, there exists an injection ψp : Hp → N. Let
j : H → N2 be defined by j(A) = (p, ψp(A)), where p ≥ 1 is chosen such
that A ∈ Hp, (there is at least one such p for any A ∈ H). Suppose
j(A) = j(B) for some A,B ∈ H. Then, there exists p ≥ 1 such that
A,B ∈ Hp and ψp(A) = ψp(B), and consequently A = B. So j is an
injection. We have proved the existence of an injective map j : H → N2.

8. Let φ2 : N2 → N be a bijection. From 7., there exists an injection
j : H → N2. It follows that φ2 ◦ j : H → N is an injection. This proves
that H is finite or countable, i.e. it is at most countable. From 2., H ⊆ T .
Hence, all elements of H are open sets in Ω, (with respect to the product
topology). We conclude that H is a finite or countable set of open sets in
Ω.

9. From exercise (12), U ∈ T = �+∞
n=1Tn, if and only if for all x ∈ U , there

exists V ∈ q+∞
n=1Tn such that x ∈ V ⊆ U . Since all elements of q+∞

n=1Tn
can be written as U1× . . .×Up×Π+∞

n=p+1Ωn for some p ≥ 1 and U1, . . . , Up
open in Ω1, . . . ,Ωp respectively, it follows in particular that if U ∈ T and
x ∈ U , there exist p ≥ 1 and U1, . . . , Up open in Ω1, . . . ,Ωp such that:

x ∈ U1 × . . .× Up ×
+∞∏

n=p+1

Ωn ⊆ U

10. Let U ∈ T and x ∈ U . Let p ≥ 1 and U1, . . . , Up open Ω1, . . . ,Ωp respec-
tively, such that x ∈ U1 × . . . × Up × Π+∞

n=p+1Ωn ⊆ U . By assumption,
for all n ≥ 1, the set {V kn : k ∈ In} is a countable base of the topol-
ogy Tn. Hence, for all n ∈ Np, there exists a subset I ′n of In, such that

www.probability.net

http://www.probability.net


Solutions to Exercises 30

Un = ∪k∈I′nV kn . In particular, since xn ∈ Un, there exists kn ∈ I ′n ⊆ In
such that xn ∈ V knn ⊆ Un. We have found k1, . . . , kp such that:

x ∈ V k1
1 × . . .× V kpp ×

+∞∏
n=p+1

Ωn
4
= Vx ⊆ U

There exists Vx ∈ Hp ⊆ H such that x ∈ Vx ⊆ U .

11. From 8., H is a finite or countable subset of the topology T . From 10., for
all U ∈ T , U can be written as U = ∪x∈UVx, where Vx ∈ H for all x ∈ U .
In other words, any open set U of T can be written as a union of elements
of H. It follows from definition (57) that H is a countable base of (Ω, T ).

12. From theorem (26), since B(Ωn) = σ(Tn) for all n ≥ 1:

⊗+∞
n=1B(Ωn) = σ(q+∞

n=1Tn) ⊆ σ(T ) = B(Ω)

13. Let p ≥ 1 and A ∈ Hp. Then A is a rectangle of the family (Tn)n≥1.
Hence A ∈ q+∞

n=1Tn ⊆ q+∞
n=1B(Ωn) ⊆ ⊗+∞

n=1B(Ωn). So Hp ⊆ ⊗+∞
n=1B(Ωn).

We conclude that:
H =

⋃
p≥1

Hp ⊆ ⊗+∞
n=1B(Ωn)

14. SinceH is a countable base of (Ω, T ), any open set U of T can be expressed
as a union of elements of H. Furthermore, H being at most countable,
such union is at most countable. It follows that any open set U in T is an
element of σ(H), i.e. T ⊆ σ(H). From 13., we have H ⊆ ⊗+∞

n=1B(Ωn)
and consequently, we have σ(H) ⊆ ⊗+∞

n=1B(Ωn). Hence, we see that
T ⊆ ⊗+∞

n=1B(Ωn), and finally B(Ω) = σ(T ) ⊆ ⊗+∞
n=1B(Ωn). Using 12.,

we conclude that:

B(Ω) =
+∞⊗
n=1

B(Ωn)

The purpose of this exercise is to prove theorem (27).

Exercise 17

Exercise 18.

1. Since (Ω, T ) has a countable base, a finite version of theorem (27) would
allow us to conclude immediately that:

B(Ωn) = B(Ω)⊗ . . .⊗ B(Ω)

Since B(Ω) = σ(T ), from theorem (26), we have:

B(Ω)⊗ . . .⊗ B(Ω) = σ(T q . . .q T ) ⊆ σ(TΩn) = B(Ωn)

Let U be open in Ωn, and x ∈ U . From exercise (12), there exist V1, . . . , Vn
open in Ω, such that:

x ∈ V1 × . . .× Vn ⊆ U
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Since Ω has a countable base, say H, each Vi can be written as a union of
elements of H. In particular, there exist W1, . . . ,Wn in H, such that:

x ∈W1 × . . .×Wn ⊆ U

Defining Ax = W1×. . .×Wn, we have U = ∪x∈UAx. Since H is a subset of
T , each Ax is an element of T q. . .qT ⊆ TΩn . Although the set U may not
be countable, the set I defined by I = {Ax : x ∈ U} is at most countable,
H being at most countable. So U = ∪x∈UAx is in fact a countable (or
finite) union of elements of T q . . .q T . So U ∈ σ(T q . . .qT ). We have
proved that:

TΩn ⊆ σ(T q . . .q T ) ⊆ B(Ω)⊗ . . .⊗ B(Ω)

We conclude that:

B(Ωn) = σ(TΩn ) ⊆ B(Ω)⊗ . . .⊗ B(Ω)

We have proved that B(Ωn) = B(Ω)⊗ . . .⊗ B(Ω).

2. This is an immediate consequence of 1. and exercise (16).

3. From 1., B(R2) = B(R) ⊗ B(R). C and R2 being identified, the usual
topology on C is induced by the metric:

d(z, z′) =
√

(x− x′)2 + (y − y′)2

with obvious notations. From exercise (14), such metric induces the prod-
uct topology on R2. It follows that the usual topology on C and the
product topology on R2 coincide. So TC = TR2 , and finally B(C) =
B(R2) = B(R)⊗ B(R).

Exercise 18

Exercise 19.

1. H = {B(xn, 1/p) : n, p ≥ 1} is a finite or countable subset of T dE . Let
U ∈ T dE and x ∈ U . There exists ε > 0, such that B(x, ε) ⊆ U . By
assumption, the set {xn : n ≥ 1} is dense in E. p ≥ 1 being such that
1/p ≤ ε/2, there exists n ≥ 1 such that xn ∈ B(x, 1/p). In particular,
x ∈ B(xn, 1/p). Moreover, for all y ∈ B(xn, 1/p), we have:

d(x, y) ≤ d(x, xn) + d(xn, y) <
2
p
≤ ε

So y ∈ B(x, ε) ⊆ U . Hence, we see that x ∈ B(xn, 1/p) ⊆ U . For all
x ∈ U , we have found Vx ∈ H such that x ∈ Vx ⊆ U . It follows that
U = ∪x∈UVx. So U is a union of elements of H. We have proved that H
is a countable base of (E, T dE ).

2. LetA = {xV : V ∈ H, V 6= ∅}. H being a countable base of (E, T dE ), it is at
most countable. There exists an injective map j : H → N. Let i : A→ H
be defined by i(xV ) = V . Then i is clearly an injection, and j ◦ i : A→ N
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is therefore an injective map. So A is a finite or countable subset of E. Let
x ∈ E. Let U ∈ T dE such that x ∈ U . Since U can be written as a union
of elements of H, there exists V ∈ H, such that x ∈ V ⊆ U . In particular,
V 6= ∅ and xV is well-defined, with xV ∈ V ⊆ U . So xV ∈ A ∩ U 6= ∅.
We have proved that for all U ∈ T dE such that x ∈ U , U ∩ A 6= ∅. From
definition (37)7, x is an element of Ā, the closure of A. We have proved
that E ⊆ Ā. So E = Ā, and A is dense in E. Finally, A is at most
countable and dense in E. So (E, d) is a separable metric space. The
purpose of 1. and 2. is to show that for metric spaces, being separable, or
having a countable base, are equivalent.

3. Let x, y, x′, y′ ∈ E. We have:

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

and therefore:

d(x, y)− d(x′, y′) ≤ d(x, x′) + d(y, y′)

Similarly:
d(x′, y′)− d(x, y) ≤ d(x, x′) + d(y, y′)

It follows that:

|d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′)

4. Let δ : (E × E)2 → R+ be the metric on E × E defined by:

δ[(x, y), (x′, y′)] = d(x, x′) + d(y, y′)

From 3., we have:

|d(x, y)− d(x′, y′)| ≤ δ[(x, y), (x′, y′)] (6)

From exercise (14), the product topology TE×E on E×E is induced by the
metric δ. Using exercise (4) of Tutorial 4, we conclude from equation (6)
that d : (E × E, TE×E)→ (R+, TR+) is a continuous map.

5. From exercise (13) of Tutorial 4, and the continuity of the map d : E×E →
R+ proved in 4., we conclude that:

d : (E × E,B(E × E))→ (R+,B(R+))

is a measurable map. It follows that:

d : (E × E,B(E × E))→ (R̄,B(R̄))

is a also a measurable map.

6. If (E, d) is a separable metric space, from 1. , it has a countable base.
From exercise (18), B(E × E) = B(E)⊗ B(E). We conclude from 5. that
d : (E × E,B(E)⊗ B(E))→ (R̄,B(R̄)) is a measurable map.

7Beware of external links!
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7. By definition (54), the product σ-algebra B(E)⊗B(E) is generated by the
set of measurable rectangles B(E) q B(E). From theorem (14), in order
to prove the measurability of:

Φ : (Ω,F)→ (E × E,B(E)⊗ B(E))

it is sufficient to prove that Φ−1(B) ∈ F for allB ∈ B(E)qB(E). However,
any measurable rectangle B of B(E)q B(E) is of the form B = A1 ×A2,
where A1, A2 ∈ B(E). It follows that:

Φ−1(B) = f−1(A1) ∩ g−1(A2) ∈ F
since by assumption, both f, g : (Ω,F)→ (E,B(E)) are measurable maps.
We have proved that Φ : Ω→ E ×E is measurable with respect to F and
B(E)⊗ B(E).

8. Suppose (E, d) is a separable metric space. From 6., the map:

d : (E × E,B(E)⊗ B(E))→ (R̄,B(R̄))

is measurable. However, from 7., the map:

Φ : (Ω,F)→ (E × E,B(E)⊗ B(E))

is also measurable. It follows that Ψ = d(f, g) = d ◦Φ is measurable with
respect to F and B(R̄).

9. From 8., when (E, d) is separable, the map Ψ = d(f, g) is measurable.
Hence:

{f = g} = Ψ−1({0}) ∈ F

10. Let (En, dn)n≥1 be a sequence of separable metric spaces. From exer-
cise (15), the product topological space Π+∞

n=1En is metrizable. From 1.,
each En has a countable base. From theorem (27), Π+∞

n=1En also has a
countable base. Being metrizable, it follows from 2., that it is in fact
separable. We have proved that Π+∞

n=1En is metrizable and separable.

Exercise 19

Exercise 20. Suppose each fi : (Ω,F) → (Ωi,Fi) is measurable. From theo-
rem (14), in order to prove the measurability of:

f : (Ω,F)→ (Πi∈IΩi,⊗i∈IFi)
It is sufficient to show that f−1(B) ∈ F , for all B ∈ qi∈IFi. Let B = Πi∈IAi
be a measurable rectangle of the family (Fi)i∈I . For all i ∈ I, Ai ∈ Fi, and
J = {i ∈ I : Ai 6= Ωi} is a finite set. Hence:

f−1(B) =
⋂
i∈I
{fi ∈ Ai} =

⋂
i∈J
{fi ∈ Ai} ∈ F

since each fi is measurable. So f is indeed measurable. Conversely, suppose
f = (fi)i∈I is measurable. Let j ∈ I and Aj ∈ Fj . We have:

f−1
j (Aj) = f−1(Aj ×Πi6=jΩi) ∈ F

www.probability.net

http://www.probability.net


Solutions to Exercises 34

since B = Aj × Πi6=jΩi is a measurable rectangle, and lies in ⊗i∈IFi. So
fj : (Ω,F)→ (Ωj ,Fj) is a measurable map.

Exercise 20

Exercise 21.

1. Let (x, y) and (x′, y′) be elements of R2. We have:

|φ(x, y) − φ(x′, y′)| ≤ |x− x′|+ |y − y′| (7)

By definition (17), the usual topology on R is the metric topology induced
by d(x, y) = |x − y|. From exercise (14), the product topology on R2 is
induced by:

δ[(x, y), (x′, y′)] = |x− x′|+ |y − y′|
It follows from equation (7), and exercise (4) of Tutorial 4 that:

φ : (R2, TR2)→ (R, TR)

is a continuous map.
Let (x0, y0) ∈ R2 and ε > 0. For all (x, y) ∈ R2, we have:

|ψ(x, y) − ψ(x0, y0)| ≤ |y|.|x− x0|+ |x0|.|y − y0|
Suppose η > 0 is such that:

|x− x0|+ |y − y0| < η ≤ 1

Then in particular, |y| ≤ 1 + |y0|, and consequently:

|ψ(x, y)− ψ(x0, y0)| ≤M.(|x− x0|+ |y − y0|)
where M = max(|x0|, 1 + |y0|). Hence, we see that:

δ[(x, y), (x0, y0)] < η ⇒ |ψ(x, y)− ψ(x0, y0)| < ε

where η has been chosen as η = min(ε/M, 1). We conclude from exer-
cise (4) of Tutorial 4 that ψ : (R2, TR2)→ (R, TR) is a continuous map.

2. φ and ψ being continuous, from exercise (13) of Tutorial 4:

φ, ψ : (R2,B(R2))→ (R̄,B(R̄))

are measurable maps. Since (R, TR) has a countable base, from exer-
cise (18), we have B(R2) = B(R)⊗ B(R). We conclude that:

φ, ψ : (R2,B(R)⊗ B(R))→ (R̄,B(R̄))

are measurable maps.

3. Given f, g : (Ω,F) → (R,B(R)) measurable, the fact that f + g and
f.g are measurable was already proved in Tutorial 4. The purpose of this
exercise is to emphasize a more direct proof. From theorem (28), the map:

h = (f, g) : (Ω,F)→ (R×R,B(R)⊗ B(R))
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is measurable, since both f and g are measurable. From 2:

φ, ψ : (R×R,B(R)⊗ B(R))→ (R̄,B(R̄))

are also measurable. It follows that f + g = φ ◦ h and f.g = ψ ◦ h are
measurable with respect to F and B(R̄). Being real-valued, they are also
measurable with respect to F and B(R).

Exercise 21
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