9. L^{p}-spaces, $p \in[1,+\infty]$

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.
Exercise 1. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be non-negative and measurable maps.
Let $p, q \in \mathbf{R}^{+}$, such that $1 / p+1 / q=1$.

1. Show that $1<p<+\infty$ and $1<q<+\infty$.
2. For all $\alpha \in] 0,+\infty\left[\right.$, we define $\phi^{\alpha}:[0,+\infty] \rightarrow[0,+\infty]$ by:

$$
\phi^{\alpha}(x) \triangleq\left\{\begin{array}{rll}
x^{\alpha} & \text { if } & x \in \mathbf{R}^{+} \\
+\infty & \text { if } & x=+\infty
\end{array}\right.
$$

Show that ϕ^{α} is a continuous map.
3. Define $A=\left(\int f^{p} d \mu\right)^{1 / p}, B=\left(\int g^{q} d \mu\right)^{1 / q}$ and $C=\int f g d \mu$. Explain why A, B and C are well defined elements of $[0,+\infty]$.
4. Show that if $A=0$ or $B=0$ then $C \leq A B$.
5. Show that if $A=+\infty$ or $B=+\infty$ then $C \leq A B$.
6. We assume from now on that $0<A<+\infty$ and $0<B<+\infty$. Define $F=f / A$ and $G=g / B$. Show that:

$$
\int_{\Omega} F^{p} d \mu=\int_{\Omega} G^{p} d \mu=1
$$

7. Let $a, b \in] 0,+\infty[$. Show that:

$$
\ln (a)+\ln (b) \leq \ln \left(\frac{1}{p} a^{p}+\frac{1}{q} b^{q}\right)
$$

and:

$$
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}
$$

Prove this last inequality for all $a, b \in[0,+\infty]$.
8. Show that for all $\omega \in \Omega$, we have:

$$
F(\omega) G(\omega) \leq \frac{1}{p}(F(\omega))^{p}+\frac{1}{q}(G(\omega))^{q}
$$

9. Show that $C \leq A B$.

Theorem 41 (Holder inequality) $\operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space and f, g : $(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Let $p, q \in \mathbf{R}^{+}$be such that $1 / p+1 / q=1$. Then:

$$
\int_{\Omega} f g d \mu \leq\left(\int_{\Omega} f^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{\Omega} g^{q} d \mu\right)^{\frac{1}{q}}
$$

Theorem 42 (Cauchy-Schwarz inequality:first)

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Then:

$$
\int_{\Omega} f g d \mu \leq\left(\int_{\Omega} f^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega} g^{2} d \mu\right)^{\frac{1}{2}}
$$

Exercise 2. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Let $p \in] 1,+\infty\left[\right.$. Define $A=\left(\int f^{p} d \mu\right)^{1 / p}$ and $B=\left(\int g^{p} d \mu\right)^{1 / p}$ and $C=\left(\int(f+g)^{p} d \mu\right)^{1 / p}$.

1. Explain why A, B and C are well defined elements of $[0,+\infty]$.
2. Show that for all $a, b \in] 0,+\infty[$, we have:

$$
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)
$$

Prove this inequality for all $a, b \in[0,+\infty]$.
3. Show that if $A=+\infty$ or $B=+\infty$ or $C=0$ then $C \leq A+B$.
4. Show that if $A<+\infty$ and $B<+\infty$ then $C<+\infty$.
5. We assume from now that $A, B \in[0,+\infty[$ and $C \in] 0,+\infty[$. Show the existence of some $q \in \mathbf{R}^{+}$such that $1 / p+1 / q=1$.
6. Show that for all $a, b \in[0,+\infty]$, we have:

$$
(a+b)^{p}=(a+b) \cdot(a+b)^{p-1}
$$

7. Show that:

$$
\begin{aligned}
\int_{\Omega} f \cdot(f+g)^{p-1} d \mu & \leq A C^{\frac{p}{q}} \\
\int_{\Omega} g \cdot(f+g)^{p-1} d \mu & \leq B C^{\frac{p}{q}}
\end{aligned}
$$

8. Show that:

$$
\int_{\Omega}(f+g)^{p} d \mu \leq C^{\frac{p}{q}}(A+B)
$$

9. Show that $C \leq A+B$.
10. Show that the inequality still holds if we assume that $p=1$.

Theorem 43 (Minkowski inequality) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Let $p \in$ $[1,+\infty[$. Then:

$$
\left(\int_{\Omega}(f+g)^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int_{\Omega} f^{p} d \mu\right)^{\frac{1}{p}}+\left(\int_{\Omega} g^{p} d \mu\right)^{\frac{1}{p}}
$$

Definition 73 The L^{p}-spaces, $p \in[1,+\infty[$, on $(\Omega, \mathcal{F}, \mu)$, are:

$$
\begin{aligned}
& L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu) \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R})) \text { measurable, } \int_{\Omega}|f|^{p} d \mu<+\infty\right\} \\
& L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu) \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C})) \text { measurable, } \int_{\Omega}|f|^{p} d \mu<+\infty\right\}
\end{aligned}
$$

For all $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, we put:

$$
\|f\|_{p} \triangleq\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{1}{p}}
$$

Exercise 3. Let $p \in\left[1,+\infty\left[\right.\right.$. Let $f, g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.

1. Show that $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu), f(\Omega) \subseteq \mathbf{R}\right\}$.
2. Show that $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R}-linear combinations.
3. Show that $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{C}-linear combinations.
4. Show that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.
5. Show that $\|f\|_{p}=0 \Leftrightarrow f=0 \mu$-a.s.
6. Show that for all $\alpha \in \mathbf{C},\|\alpha f\|_{p}=|\alpha| \cdot\|f\|_{p}$.
7. Explain why $(f, g) \rightarrow\|f-g\|_{p}$ is not a metric on $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$

Definition 74 For all $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, Let:

$$
\|f\|_{\infty} \triangleq \inf \left\{M \in \mathbf{R}^{+},|f| \leq M \mu-a . s .\right\}
$$

The L^{∞}-spaces on a measure space $(\Omega, \mathcal{F}, \mu)$ are:

$$
\begin{aligned}
& L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu) \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R})) \text { measurable, }\|f\|_{\infty}<+\infty\right\} \\
& L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu) \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C})) \text { measurable, }\|f\|_{\infty}<+\infty\right\}
\end{aligned}
$$

Exercise 4. Let $f, g \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$.

1. Show that $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu), f(\Omega) \subseteq \mathbf{R}\right\}$.
2. Show that $|f| \leq\|f\|_{\infty} \mu$-a.s.
3. Show that $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.
4. Show that $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R}-linear combinations.
5. Show that $L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{C}-linear combinations.
6. Show that $\|f\|_{\infty}=0 \Leftrightarrow f=0 \mu$-a.s..
7. Show that for all $\alpha \in \mathbf{C},\|\alpha f\|_{\infty}=|\alpha| \cdot\|f\|_{\infty}$.
8. Explain why $(f, g) \rightarrow\|f-g\|_{\infty}$ is not a metric on $L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$

Definition 75 Let $p \in[1,+\infty]$. Let $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. For all $\epsilon>0$ and $f \in$ $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$, we define the so-called open ball in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$:

$$
B(f, \epsilon) \triangleq\left\{g: g \in L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu),\|f-g\|_{p}<\epsilon\right\}
$$

We call usual topology in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$, the set \mathcal{T} defined by:

$$
\mathcal{T} \triangleq\left\{U: U \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu), \forall f \in U, \exists \epsilon>0, B(f, \epsilon) \subseteq U\right\}
$$

Note that if $(f, g) \rightarrow\|f-g\|_{p}$ was a metric, the usual topology in $L_{\mathbf{K}}^{p}(\Omega, \mathcal{F}, \mu)$, would be nothing but the metric topology.
Exercise 5. Let $p \in[1,+\infty]$. Suppose there exists $N \in \mathcal{F}$ with $\mu(N)=0$ and $N \neq \emptyset$. Put $f=1_{N}$ and $g=0$

1. Show that $f, g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and $f \neq g$.
2. Show that any open set containing f also contains g.
3. Show that $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ are not Hausdorff.

Exercise 6. Show that the usual topology on $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ is induced by the usual topology on $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, where $p \in[1,+\infty]$.

Definition 76 Let (E, \mathcal{T}) be a topological space. A sequence $\left(x_{n}\right)_{n \geq 1}$ in E is said to converge to $x \in E$, and we write $x_{n} \xrightarrow{\mathcal{T}} x$, if and only if, for all $U \in \mathcal{T}$ such that $x \in U$, there exists $n_{0} \geq 1$ such that:

$$
n \geq n_{0} \Rightarrow x_{n} \in U
$$

When $E=L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ or $E=L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, we write $x_{n} \xrightarrow{L^{p}} x$.
Exercise 7. Let (E, \mathcal{T}) be a topological space and $E^{\prime} \subseteq E$. Let $\mathcal{T}^{\prime}=\mathcal{T}_{\mid E^{\prime}}$ be the induced topology on E^{\prime}. Show that if $\left(x_{n}\right)_{n \geq 1}$ is a sequence in E^{\prime} and $x \in E^{\prime}$, then $x_{n} \xrightarrow{\mathcal{T}} x$ is equivalent to $x_{n} \xrightarrow{\mathcal{T}^{\prime}} x$.
ExERCISE 8. Let $f, g,\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and $p \in[1,+\infty]$.

1. Recall what the notation $f_{n} \rightarrow f$ means.
2. Show that $f_{n} \xrightarrow{L^{p}} f$ is equivalent to $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.
3. Show that if $f_{n} \xrightarrow{L^{p}} f$ and $f_{n} \xrightarrow{L^{p}} g$ then $f=g \mu$-a.s.

Exercise 9. Let $p \in[1,+\infty]$. Suppose there exists some $N \in \mathcal{F}$ such that $\mu(N)=0$ and $N \neq \emptyset$. Find a sequence $\left(f_{n}\right)_{n \geq 1}$ in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and f, g in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu), f \neq g$ such that $f_{n} \xrightarrow{L^{p}} f$ and $f_{n} \xrightarrow{L^{p}} g$.

Definition 77 Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a measure space and $p \in[1,+\infty]$. We say that $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence, if and only if, for all $\epsilon>0$, there exists $n_{0} \geq 1$ such that:

$$
n, m \geq n_{0} \Rightarrow\left\|f_{n}-f_{m}\right\|_{p} \leq \epsilon
$$

Exercise 10. Let $f,\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and $p \in[1,+\infty]$. Show that if $f_{n} \xrightarrow{L^{p}} f$, then $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence.
ExERCISE 11. Let $\left(f_{n}\right)_{n \geq 1}$ be Cauchy in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu), p \in[1,+\infty]$.

1. Show the existence of $n_{1} \geq 1$ such that:

$$
n \geq n_{1} \Rightarrow\left\|f_{n}-f_{n_{1}}\right\|_{p} \leq \frac{1}{2}
$$

2. Suppose we have found $n_{1}<n_{2}<\ldots<n_{k}, k \geq 1$, such that:

$$
\forall j \in\{1, \ldots, k\}, n \geq n_{j} \Rightarrow\left\|f_{n}-f_{n_{j}}\right\|_{p} \leq \frac{1}{2^{j}}
$$

Show the existence of $n_{k+1}, n_{k}<n_{k+1}$ such that:

$$
n \geq n_{k+1} \Rightarrow\left\|f_{n}-f_{n_{k+1}}\right\|_{p} \leq \frac{1}{2^{k+1}}
$$

3. Show that there exists a subsequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$ with:

$$
\sum_{k=1}^{+\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<+\infty
$$

ExErcise 12. Let $p \in[1,+\infty]$, and $\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, with:

$$
\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}<+\infty
$$

We define:

$$
g \triangleq \sum_{n=1}^{+\infty}\left|f_{n+1}-f_{n}\right|
$$

1. Show that $g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is non-negative and measurable.
2. If $p=+\infty$, show that $g \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{\infty} \mu$-a.s.
3. If $p \in[1,+\infty[$, show that for all $N \geq 1$, we have:

$$
\left\|\sum_{n=1}^{N}\left|f_{n+1}-f_{n}\right|\right\|_{p} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}
$$

4. If $p \in[1,+\infty[$, show that:

$$
\left(\int_{\Omega} g^{p} d \mu\right)^{\frac{1}{p}} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}
$$

5. Show that for $p \in[1,+\infty]$, we have $g<+\infty \mu$-a.s.
6. Define $A=\{g<+\infty\}$. Show that for all $\omega \in A,\left(f_{n}(\omega)\right)_{n \geq 1}$ is a Cauchy sequence in \mathbf{C}. We denote $z(\omega)$ its limit.
7. Define $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$, by:

$$
f(\omega) \triangleq\left\{\begin{array}{rll}
z(\omega) & \text { if } & \omega \in A \\
0 & \text { if } & \omega \notin A
\end{array}\right.
$$

Show that f is measurable and $f_{n} \rightarrow f \mu$-a.s.
8. if $p=+\infty$, show that for all $n \geq 1,\left|f_{n}\right| \leq\left|f_{1}\right|+g$ and conclude that $f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$.
9. If $p \in\left[1,+\infty\left[\right.\right.$, show the existence of $n_{0} \geq 1$, such that:

$$
n \geq n_{0} \Rightarrow \int_{\Omega}\left|f_{n}-f_{n_{0}}\right|^{p} d \mu \leq 1
$$

Deduce from Fatou lemma that $f-f_{n_{0}} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
10. Show that for $p \in[1,+\infty], f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
11. Suppose that $f_{n} \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, for all $n \geq 1$. Show the existence of $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n} \rightarrow f \mu$-a.s.

EXERCISE 13. Let $p \in[1,+\infty]$, and $\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, with:

$$
\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}<+\infty
$$

1. Does there exist $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \rightarrow f \mu$-a.s.
2. Suppose $p=+\infty$. Show that for all $n<m$, we have:

$$
\left|f_{m+1}-f_{n}\right| \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{\infty} \mu \text {-a.s. }
$$

3. Suppose $p=+\infty$. Show that for all $n \geq 1$, we have:

$$
\left\|f-f_{n}\right\|_{\infty} \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{\infty}
$$

4. Suppose $p \in[1,+\infty[$. Show that for all $n<m$, we have:

$$
\left(\int_{\Omega}\left|f_{m+1}-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}} \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{p}
$$

5. Suppose $p \in[1,+\infty[$. Show that for all $n \geq 1$, we have:

$$
\left\|f-f_{n}\right\|_{p} \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}
$$

6. Show that for $p \in[1,+\infty]$, we also have $f_{n} \xrightarrow{L^{p}} f$.
7. Suppose conversely that $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is such that $f_{n} \xrightarrow{L^{p}} g$. Show that $f=g \mu$-a.s.. Conclude that $f_{n} \rightarrow g \mu$-a.s..

Theorem $44 \operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $p \in[1,+\infty]$, and $\left(f_{n}\right)_{n \geq 1}$ be a sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that:

$$
\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}<+\infty
$$

Then, there exists $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \rightarrow f \mu$-a.s. Moreover, for all $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, the convergence $f_{n} \rightarrow g \mu$-a.s. and $f_{n} \xrightarrow{L^{p}} g$ are equivalent.

ExERCISE 14. Let $f,\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \xrightarrow{L^{p}} f$, where $p \in$ $[1,+\infty]$.

1. Show that there exists a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, with:

$$
\sum_{k=1}^{+\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<+\infty
$$

2. Show that there exists $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n_{k}} \rightarrow g \mu$-a.s.
3. Show that $f_{n_{k}} \xrightarrow{L^{p}} g$ and $g=f \mu$-a.s.
4. Conclude with the following:

Theorem 45 Let $\left(f_{n}\right)_{n \geq 1}$ be in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ and $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \xrightarrow{L^{p}} f$, where $p \in[1,+\infty]$. Then, we can extract a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$ such that $f_{n_{k}} \rightarrow f \mu$-a.s.

Exercise 15. Prove the last theorem for $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$.
Exercise 16. Let $\left(f_{n}\right)_{n \geq 1}$ be Cauchy in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu), p \in[1,+\infty]$.

1. Show that there exists a subsequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$ and f belonging to $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n_{k}} \xrightarrow{L^{p}} f$.
2. Using the fact that $\left(f_{n}\right)_{n \geq 1}$ is Cauchy, show that $f_{n} \xrightarrow{L^{p}} f$.

Theorem 46 Let $p \in[1,+\infty]$. Let $\left(f_{n}\right)_{n \geq 1}$ be a Cauchy sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. Then, there exists $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \xrightarrow{L^{p}} f$.

Exercise 17. Prove the last theorem for $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$.

Solutions to Exercises

Exercise 1.

1. Since $p, q \in \mathbf{R}^{+}$, we have $p<+\infty$ and $q<+\infty$. From the inequality $1 / p \leq 1 / p+1 / q=1$, we obtain $p \geq 1$. If $p=1$, then $1 / q=0$, contradicting $q<+\infty$. So $p>1$, and similarly $q>1$. We have proved that $1<p<+\infty$ and $1<q<+\infty$.
2. Let $\alpha \in] 0,+\infty\left[\right.$ and $\phi=\phi^{\alpha}$. We want to prove that ϕ is continuous. For all $a \in \mathbf{R}^{+}$, it is clear that $\lim _{x \rightarrow a} \phi(x)=\phi(a)$. So ϕ is continuous at $x=a$. Furthermore, $\lim _{x \rightarrow+\infty} \phi(x)=\phi(+\infty)$. So ϕ is also continuous at $+\infty$. For many of us, this is sufficient proof of the fact that ϕ is a continuous map. However, for those who want to apply definition (27), the following can be said: let V be open in $[0,+\infty]$. We want to show that $\phi^{-1}(V)$ is open in $[0,+\infty]$. Let $a \in \phi^{-1}(V)$. Then $\phi(a) \in V$. Since ϕ is continuous at $x=a$, there exists U_{a} open in [$0,+\infty$], containing a, such that $\phi\left(U_{a}\right) \subseteq V$. So $a \in U_{a} \subseteq \phi^{-1}(V)$. It follows that $\phi^{-1}(V)$ can be written as $\phi^{-1}(V)=\cup_{a \in \phi^{-1}(V)} U_{a}$, and $\phi^{-1}(V)$ is therefore open in $[0,+\infty]$. From definition (27), we conclude that $\phi:[0,+\infty] \rightarrow[0,+\infty]$ is a continuous map.
3. f^{p} can be viewed as $f^{p}=\phi^{p} \circ f$, where ϕ^{p} is defined as in 2 . We proved that ϕ^{p} is a continuous map. It is therefore measurable with respect to the Borel σ-algebra $B([0,+\infty])$ on $[0,+\infty]$. It follows that $f^{p}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is a measurable map, which is also non-negative. Hence, the integral $\int f^{p} d \mu$ is a well-defined element of $[0,+\infty]$, and $A=\left(\int f^{p} d \mu\right)^{1 / p}$ is also well-defined, being understood that $(+\infty)^{1 / p}=+\infty$. Similarly, $B=\left(\int f^{q} d \mu\right)^{1 / q}$ is a well-defined element of $[0,+\infty]$. Finally, the map $f g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is non-negative and measurable, and $C=\int f g d \mu$ is a well-defined element of $[0+\infty]$.
4. Suppose $A=0$. Then $\int f^{p} d \mu=0$, and since f^{p} is non-negative, we see that $f^{p}=0 \mu$-a.s., and consequently $f=0 \mu$-a.s. So $f g=0 \mu$-a.s., and finally $C=\int f g d \mu=0$. So $C \leq A B$. Similarly, $B=0$ implies $C=0$, and therefore $C \leq A B$.
5. Suppose $A=+\infty$. Then, either $B=0$ or $B>0$. If $B=0$, then $C \leq A B$ is true from 4. If $B>0$, then $A B=+\infty$, and consequently $C \leq A B$. In any case, we see that $C \leq A B$. Similarly, $B=+\infty$ implies $C \leq A B$.
6. Suppose $A, B \in] 0,+\infty[$. Let $F=f / A$ and $G=g / B$. We have:

$$
\int F^{p} d \mu=\int(f / A)^{p} d \mu=\frac{1}{A^{p}} \int f^{p} d \mu=1
$$

and similarly, $\int G^{p} d \mu=1$.
7. Let $a, b \in] 0,+\infty[$. The map $x \rightarrow-\ln (x)$ being convex on $] 0,+\infty[$, since $1 / p+1 / q=1$, we have:

$$
-\ln \left(\frac{1}{p} a^{p}+\frac{1}{q} b^{q}\right) \leq-\frac{1}{p} \ln \left(a^{p}\right)-\frac{1}{q} \ln \left(b^{q}\right)=-\ln (a b)
$$

and consequently $\ln (a b) \leq \ln \left(a^{p} / p+b^{q} / q\right)$. The map $x \rightarrow e^{x}$ being nondecreasing, we conclude that:

$$
\begin{equation*}
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} \tag{1}
\end{equation*}
$$

It is easy to check that inequality (1) is in fact true for all $a, b \in[0,+\infty]$.
8. For all $\omega \in \Omega, F(\omega)$ and $G(\omega)$ are elements of $[0,+\infty]$. From 7.:

$$
F(\omega) G(\omega) \leq \frac{1}{p} F(\omega)^{p}+\frac{1}{q} G(\omega)^{q}
$$

9. Integrating on both side of 8., we obtain:

$$
\int F G d \mu \leq \frac{1}{p} \int F^{p} d \mu+\frac{1}{q} \int G^{q} d \mu=1
$$

where we have used the fact that $\int F^{p} d \mu=\int G^{q} d \mu=1$. Since $\int F G d \mu=$ $\left(\int f g d \mu\right) / A B=C / A B$, we conclude that $C \leq A B$.

Exercise 1

Exercise 2.

1. f^{p}, g^{p} and $(f+g)^{p}$ are all non-negative and measurable. All three integrals $\int f^{p} d \mu, \int g^{p} d \mu$ and $\int(f+g)^{p} d \mu$ are therefore well-defined. It follows that A, B and C are well-defined elements of $[0,+\infty]$.
2. Since $p>1$, the map $x \rightarrow x^{p}$ is convex on $] 0,+\infty[$. In particular, for all $a, b \in] 0,+\infty\left[\right.$, we have $((a+b) / 2)^{p} \leq\left(a^{p}+b^{p}\right) / 2$. We conclude that:

$$
\begin{equation*}
(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right) \tag{2}
\end{equation*}
$$

In fact, it is easy to check that (2) holds for all $a, b \in[0,+\infty]$.
3. If $A=+\infty$ or $B=+\infty$, then $A+B=+\infty$, and $C \leq A+B$. If $C=0$, then clearly $C \leq A+B$.
4. Using 2., for all $\omega \in \Omega$, we have:

$$
(f(\omega)+g(\omega))^{p} \leq 2^{p-1}\left(f(\omega)^{p}+g(\omega)^{p}\right)
$$

Integrating on both side of the inequality, we obtain:

$$
\begin{equation*}
\int(f+g)^{p} d \mu \leq 2^{p-1}\left(\int f^{p} d \mu+\int g^{p} d \mu\right) \tag{3}
\end{equation*}
$$

If $A<+\infty$ and $B<+\infty$, then both integrals $\int f^{p} d \mu$ and $\int g^{p} d \mu$ are finite, and we see from (3) that $\int(f+g)^{p} d \mu$ is itself finite. So $C<+\infty$.
5. Take $q=p /(p-1)$. Since $p \in] 1,+\infty\left[, q\right.$ is a well-defined element of \mathbf{R}^{+}, and $1 / p+1 / q=1$.
6. Let $a, b \in[0,+\infty]$. If $a, b \in \mathbf{R}^{+}$, then:

$$
\begin{equation*}
(a+b)^{p}=(a+b) \cdot(a+b)^{p-1} \tag{4}
\end{equation*}
$$

If $a=+\infty$ or $b=+\infty$, then $a+b=+\infty$ and both sides of (4) are equal to $+\infty$. So (4) is true for all $a, b \in[0,+\infty]$.
7. Using holder inequality (41), since $q(p-1)=p$, we have:

$$
\int f \cdot(f+g)^{p-1} d \mu \leq\left(\int f^{p} d \mu\right)^{\frac{1}{p}}\left(\int(f+g)^{q(p-1)} d \mu\right)^{\frac{1}{q}}=A C^{\frac{p}{q}}
$$

and:

$$
\int g \cdot(f+g)^{p-1} d \mu \leq\left(\int g^{p} d \mu\right)^{\frac{1}{p}}\left(\int(f+g)^{q(p-1)} d \mu\right)^{\frac{1}{q}}=B C^{\frac{p}{q}}
$$

8. From 6., we have:

$$
\int(f+g)^{p} d \mu=\int f \cdot(f+g)^{p-1} d \mu+\int g \cdot(f+g)^{p-1} d \mu
$$

and using 7., we obtain:

$$
\int(f+g)^{p} d \mu \leq C^{\frac{p}{q}}(A+B)
$$

9. From 8., we have $C^{p} \leq C^{\frac{p}{q}}(A+B)$. Having assumed in 5 . that $\left.C \in\right] 0,+\infty[$, we can divide both side of this inequality by $C^{\frac{p}{q}}$, to obtain $C^{p-\frac{p}{q}} \leq A+B$. Since $p-p / q=1$, we conclude that $C \leq A+B$.
10. If $p=1$, then $C=A+B$ is equivalent to:

$$
\int(f+g) d \mu=\int f d \mu+\int g d \mu
$$

which is true by linearity. In particular, $C \leq A+B$. The purpose of this exercise is to prove minkowski inequality (43).

Exercise 2

Exercise 3.

1. Let $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a map. Then, if f has values in \mathbf{R}, i.e. $f(\Omega) \subseteq \mathbf{R}$, then the measurability of f with respect to ($\mathbf{C}, \mathcal{B}(\mathbf{C})$) is equivalent to its measurability with respect to $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$. Hence:

$$
L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu), f(\Omega) \subseteq \mathbf{R}\right\}
$$

The equivalence of measurability with respect to $\mathcal{B}(\mathbf{C})$ and $\mathcal{B}(\mathbf{R})$ may be taken for granted by many. It is easily proved from the fact that $\mathcal{B}(\mathbf{R})=\mathcal{B}(\mathbf{C})_{\mid \mathbf{R}}$, i.e. the Borel σ-algebra on \mathbf{R} is the trace on \mathbf{R}, of the

Borel σ-algebra on \mathbf{C}. This fact can be seen from the trace theorem (10), and the fact that the usual topology on \mathbf{R} is induced on \mathbf{R}, by the usual topology on \mathbf{C}.
2. Let $f, g \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ and $\alpha \in \mathbf{R}$. The map $f+\alpha g$ is \mathbf{R}-valued and measurable. Moreover, we have $|f+\alpha g| \leq|f|+|\alpha| \cdot|g|$. Since $p \geq 1$, (and in particular $p \geq 0$), the map $x \rightarrow x^{p}$ is non-decreasing on \mathbf{R}^{+}, so $|f+\alpha g|^{p} \leq$ $(|f|+|\alpha| \cdot|g|)^{p}$. Hence, we see that $\int|f+\alpha g|^{p} d \mu \leq \int(|f|+|\alpha| \cdot|g|)^{p} d \mu$. However, using minkowski inequality (43), we have:

$$
\left(\int(|f|+|\alpha| \cdot|g|)^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}+|\alpha| \cdot\left(\int|g|^{p} d \mu\right)^{\frac{1}{p}}
$$

We conclude that $\int|f+\alpha g|^{p} d \mu<+\infty$. So $f+\alpha g \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, and we have proved that $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R}-linear combinations.
3. The fact that $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{C}-linear combinations, is proved identically to 2 ., replacing \mathbf{R} by \mathbf{C}.
4. Using $|f+g|^{p} \leq(|f|+|g|)^{p}$ and minkowski inequality (43):

$$
\left(\int(|f|+|g|)^{p} d \mu\right)^{\frac{1}{p}} \leq\left(\int|f|^{p} d \mu\right)^{\frac{1}{p}}+\left(\int|g|^{p} d \mu\right)^{\frac{1}{p}}
$$

we see that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.
5. Suppose $\|f\|_{p}=0$. Then $\int|f|^{p} d \mu=0$. Since $|f|^{p}$ is non-negative, $|f|^{p}=0$ μ-a.s., and consequently $f=0 \mu$-a.s. Conversely, if $f=0 \mu$-a.s., then $|f|^{p}=0 \mu$-a.s., so $\int|f|^{p} d \mu=0$ and finally $\|f\|_{p}=0$.
6. Let $\alpha \in \mathbf{C}$. We have:

$$
\|\alpha f\|_{p}=\left(\int|\alpha f|^{p}\right)^{\frac{1}{p}}=|\alpha| \cdot\left(\int|f|^{p}\right)^{\frac{1}{p}}=|\alpha| \cdot\|f\|_{p}
$$

7. $\|f-g\|_{p}=0$ only implies $f=g \mu$-.a.s, and not necessarily $f=g$. So $(f, g) \rightarrow\|f-g\|_{p}$, may not be a metric on $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.

Exercise 3

Exercise 4.

1. For all $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ with values in \mathbf{R}, the measurability of f with respect to $\mathcal{B}(\mathbf{C})$ is equivalent to its measurability with respect to $\mathcal{B}(\mathbf{R})$. Hence:

$$
L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu), f(\Omega) \subseteq \mathbf{R}\right\}
$$

2. Since $\|f\|_{\infty}<+\infty$, for all $n \geq 1$, we have $\|f\|_{\infty}<\|f\|_{\infty}+1 / n$. $\|f\|_{\infty}$ being the greatest lower bound of all μ-almost sure upper bounds of $|f|$, $\|f\|_{\infty}+1 / n$ cannot be such lower bound. There exists $M \in \mathbf{R}^{+}$, such that
$|f| \leq M \mu$-a.s., and $M<\|f\|_{\infty}+1 / n$. In particular, $|f|<\|f\|_{\infty}+1 / n \mu-$ a.s. Let A_{n} be the set defined by $A_{n}=\left\{\|f\|_{\infty}+1 / n \leq|f|\right\}$. Then $A_{n} \in \mathcal{F}$ and $\mu\left(A_{n}\right)=0$. Moreover, $A_{n} \subseteq A_{n+1}$ and $\cup_{n=1}^{+\infty} A_{n}=\left\{\|f\|_{\infty}<|f|\right\}$. It follows that $A_{n} \uparrow\left\{\|f\|_{\infty}<|f|\right\}$, and from theorem (7), we see that:

$$
\mu\left(\left\{\|f\|_{\infty}<|f|\right\}\right)=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)=0
$$

We conclude that $|f| \leq\|f\|_{\infty} \mu$-a.s.
3. Since $|f+g| \leq|f|+|g|$, using 2., we have:

$$
|f+g| \leq\|f\|_{\infty}+\|g\|_{\infty} \mu \text {-a.s. }
$$

Hence, $\|f\|_{\infty}+\|g\|_{\infty}$ is a μ-almost sure upper bound of $|f+g|$. $\|f+g\|_{\infty}$ being a lower bound of all such upper bounds, we have $\|f+g\|_{\infty} \leq$ $\|f\|_{\infty}+\|g\|_{\infty}$.
4. Let $f, g \in L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$ and $\alpha \in \mathbf{R}$. Then $f+\alpha g$ is \mathbf{R}-valued and measurable. Furthermore, using 2., we have:

$$
|f+\alpha g| \leq|f|+|\alpha| \cdot|g| \leq\|f\|_{\infty}+|\alpha| \cdot\|g\|_{\infty} \mu \text {-a.s. }
$$

It follows that $\|f+\alpha g\|_{\infty} \leq\|f\|_{\infty}+|\alpha| \cdot\|g\|_{\infty}<+\infty$. We conclude that $f+\alpha g \in L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, and we have proved that $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R}-linear combinations.
5. The fact that $L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{C}-linear combinations can be proved identically, replacing \mathbf{R} by \mathbf{C}.
6. Suppose $\|f\|_{\infty}=0$. Then $|f| \leq 0 \mu$-a.s., and consequently $f=0 \mu$-a.s. Conversely, if $f=0 \mu$-a.s., then $|f| \leq 0 \mu$-a.s., and 0 is therefore a μ almost sure upper bound of $|f|$. So $\|f\|_{\infty} \leq 0$. Since $\|f\|_{\infty}$ is an infimum of a subset of \mathbf{R}^{+}, it is either $+\infty$ (when such subset is empty), or lies in \mathbf{R}^{+}. So $\|f\|_{\infty} \geq 0$ and finally $\|f\|_{\infty}=0$.
7. We have $|\alpha f| \leq|\alpha| .\|f\|_{\infty} \mu$-a.s., and hence $\|\alpha f\|_{\infty} \leq|\alpha| .\|f\|_{\infty}$. if $\alpha \neq 0$, we have:

$$
\|f\|_{\infty}=\left\|\frac{1}{\alpha} \cdot(\alpha f)\right\|_{\infty} \leq \frac{1}{|\alpha|}\|\alpha f\|_{\infty}
$$

It follows that $\|\alpha f\|_{\infty}=|\alpha| \cdot\|f\|_{\infty}$, (also true if $\alpha=0$).
8. $\|f-g\|_{\infty}=0$ implies $f=g \mu$-a.s., but not $f=g$. It follows that $(f, g) \rightarrow\|f-g\|_{\infty}$ may not be a metric on $L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$.

Exercise 4

Exercise 5.

1. Since $N \neq \emptyset, 1_{N} \neq 0$, so $f \neq g$. Since $N \in \mathcal{F}$, the map $f=1_{N}$ is measurable, and being \mathbf{R}-valued, it is also \mathbf{C}-valued. Moreover, since $\mu(N)=0,\|f\|_{p}=0<+\infty$ (whether $p=+\infty$ or lies in $[1,+\infty[$), and we see that $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. Since $g=0$, it is \mathbf{C}-valued, measurable and $\|g\|_{p}=0<+\infty$, so $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
2. Let U be open in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f \in U$. By definition (75), there exists $\epsilon>0$, such that $B(f, \epsilon) \subseteq U$. However, $\|f-g\|_{p}=\|f\|_{p}=0$ ($p=+\infty$ or $p \in\left[1,+\infty\left[\right.\right.$). So in particular $\|f-g\|_{p}<\epsilon$. So $g \in B(f, \epsilon)$ and finally $g \in U$.
3. If $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ was Hausdorff, since $f \neq g$, there would exist U, V open sets in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f \in U, g \in V$ and $U \cap V=\emptyset$. However from 2., this is impossible, as g would always be an element of U as well as V. We conclude similarly that $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ is not Hausdorff.

Exercise 6. Let $L_{\mathbf{R}}^{p}$ and $L_{\mathbf{C}}^{p}$ denote $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ and $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ respectively. Let \mathcal{T} be the usual topology on $L_{\mathbf{C}}^{p}$ and \mathcal{T}^{\prime} be the usual topology on $L_{\mathbf{R}}^{p}$. We want to prove that $\mathcal{T}^{\prime}=\mathcal{T}_{\mid L_{\mathbf{R}}^{p}}$, i.e. that \mathcal{T}^{\prime} is the topology on $L_{\mathbf{R}}^{p}$ induced by \mathcal{T}. Given $f \in L_{\mathbf{R}}^{p}$ and $\epsilon>0$, let $B(f, \epsilon)$ denote the open ball in $L_{\mathbf{C}}^{p}$ and $B^{\prime}(f, \epsilon)$ denote the open ball the $L_{\mathbf{R}}^{p}$. Then $B^{\prime}(f, \epsilon)=B(f, \epsilon) \cap L_{\mathbf{R}}^{p}$. It is a simple exercise to show that any open ball in $L_{\mathbf{R}}^{p}$ or $L_{\mathbf{C}}^{p}$, is in fact open with respect to their usual topology. Let $U^{\prime} \in \mathcal{T}^{\prime}$. For all $f \in U^{\prime}$, there exists $\epsilon_{f}>0$ such that $f \in B^{\prime}\left(f, \epsilon_{f}\right) \subseteq U^{\prime}$. It follows that:

$$
U^{\prime}=\cup_{f \in U^{\prime}} B^{\prime}\left(f, \epsilon_{f}\right)=\left(\cup_{f \in U^{\prime}} B\left(f, \epsilon_{f}\right)\right) \cap L_{\mathbf{R}}^{p}
$$

and we see that $U^{\prime} \in \mathcal{T}_{\mid L_{\mathbf{R}}^{p}}$. So $\mathcal{T}^{\prime} \subseteq \mathcal{T}_{\mid L_{\mathbf{R}}^{p}}$. Conversely, let $U^{\prime} \in \mathcal{T}_{\mid L_{\mathbf{R}}^{p}}$. There exists $U \in \mathcal{T}$ such that $U^{\prime}=U \cap L_{\mathbf{R}}^{p}$. Let $f \in U^{\prime}$. Then $f \in U$. There exists $\epsilon>0$ such that $B(f, \epsilon) \subseteq U$. It follows that $B^{\prime}(f, \epsilon)=B(f, \epsilon) \cap L_{\mathbf{R}}^{p} \subseteq U^{\prime}$. So U^{\prime} is open with respect to the usual topology in $L_{\mathbf{R}}^{p}$, i.e. $U^{\prime} \in \mathcal{T}^{\prime}$. We have proved that $\mathcal{T}_{\mid L_{\mathbf{R}}^{p}} \subseteq \mathcal{T}^{\prime}$, and finally $\mathcal{T}^{\prime}=\mathcal{T}_{\mid L_{\mathbf{R}}^{p}}$.

Exercise 6
Exercise 7. let (E, \mathcal{T}) be a topological space and $E^{\prime} \subseteq E$. Let $\mathcal{T}^{\prime}=\mathcal{T}_{\mid E^{\prime}}$ be the induced topology on E^{\prime}. We assume that $\left(x_{n}\right)_{n \geq 1}$ is a sequence in E^{\prime}, and that $x \in E^{\prime}$. Suppose that $x_{n} \xrightarrow{\mathcal{T}} x$. Let $U^{\prime} \in \mathcal{T}^{\prime}$ be such that $x \in U^{\prime}$. There exists $U \in \mathcal{T}$ such that $U^{\prime}=U \cap E^{\prime}$. Since $x \in U$ and $x_{n} \xrightarrow{\mathcal{T}} x$, there exists $n_{0} \geq 1$ such that $x_{n} \in U$ for all $n \geq n_{0}$. But $x_{n} \in E^{\prime}$ for all $n \geq 1$. So $x_{n} \in U \cap E^{\prime}=U^{\prime}$ for all $n \geq n_{0}$, and we see that $x_{n} \xrightarrow{\mathcal{T}^{\prime}} x$. Conversely, suppose that $x_{n} \xrightarrow{\mathcal{T}^{\prime}} x$. Let $U \in \mathcal{T}$ be such that $x \in U$. Then $U \cap E^{\prime} \in \mathcal{T}^{\prime}$ and $x \in U \cap E^{\prime}$. There exists $n_{0} \geq 1$, such that $x_{n} \in U \cap E^{\prime}$ for all $n \geq n_{0}$. In particular, $x_{n} \in U$ for all $n \geq n_{0}$, and we see that $x_{n} \xrightarrow{\mathcal{T}} x$. We have proved that $x_{n} \xrightarrow{\mathcal{T}^{\prime}} x$ and $x_{n} \xrightarrow{\mathcal{T}} x$ are equivalent.

Exercise 7

Exercise 8.

1. The notation $f_{n} \rightarrow f$ has been used throughout these tutorials, to refer to a simple convergence, i.e. $f_{n}(\omega) \rightarrow f(\omega)$ as $n \rightarrow+\infty$, for all $\omega \in \Omega$.
2. Suppose $f_{n} \xrightarrow{L^{p}} f$. Let $\epsilon>0$. The open ball $B(f, \epsilon)$ being open with respect to the usual topology in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, there exists $n_{0} \geq 1$, such that $f_{n} \in B(f, \epsilon)$ for all $n \geq n_{0}$, i.e.:

$$
n \geq n_{0} \Rightarrow\left\|f_{n}-f\right\|_{p}<\epsilon
$$

So $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Conversely, suppose $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Let U be open in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f \in U$. From definition (75), there exists $\epsilon>0$ such that $B(f, \epsilon) \subseteq U$. By assumption, there exists $n_{0} \geq 0$, such that $\left\|f_{n}-f\right\|_{p}<\epsilon$ for all $n \geq n_{0}$. So $f_{n} \in B(f, \epsilon)$ for all $n \geq n_{0}$. Hence, we see that $f_{n} \in U$ for all $n \geq n_{0}$, and we have proved that $f_{n} \xrightarrow{L^{p}} f$. We conclude that $f_{n} \xrightarrow{L^{p}} f$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ are equivalent.
3. Suppose $f_{n} \xrightarrow{L^{p}} f$ and $f_{n} \xrightarrow{L^{p}} g$. From 2., we have $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ and $\left\|f_{n}-g\right\|_{p} \rightarrow 0$. Using the triangle inequality (ex. (3) for $p \in[1,+\infty[$ and ex. (4) for $p=+\infty$):

$$
\|f-g\|_{p} \leq\left\|f_{n}-f\right\|_{p}+\left\|f_{n}-g\right\|_{p}
$$

for all $n \geq 1$. It follows that we have $\|f-g\|_{p}<\epsilon$ for all $\epsilon>0$, and consequently $\|f-g\|_{p}=0$. From ex. (3) and ex. (4) we conclude that $f=g \mu$-a.s.

Exercise 8
Exercise 9. Take $f_{n}=1_{N}=f$ for all $n \geq 1$. Take $g=0$. Then f_{n}, f and g are all elements of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, and $f \neq g$. Moreover, for all $n \geq 1$, we have $\left\|f_{n}-f\right\|_{p}=\left\|f_{n}-g\right\|_{p}=0$. So $f_{n} \xrightarrow{L^{p}} f$ and $f_{n} \xrightarrow{L^{p}} g$. The purpose of this exercise is to show that a limit in L^{p} may not be unique $(f \neq g)$. However, it is unique, up to μ-almost sure equality (See exercise (8)).

Exercise 9
Exercise 10. Suppose $f_{n} \xrightarrow{L^{p}} f$. Let $\epsilon>0$. There exists $n_{0} \geq 1$, with:

$$
n \geq n_{0} \Rightarrow\left\|f_{n}-f\right\|_{p} \leq \epsilon / 2
$$

From the triangle inequality, for all $n, m \geq 1$:

$$
\left\|f_{n}-f_{m}\right\|_{p} \leq\left\|f_{n}-f\right\|_{p}+\left\|f_{m}-f\right\|_{p}
$$

It follows that we have:

$$
n, m \geq n_{0} \Rightarrow\left\|f_{n}-f_{m}\right\|_{p} \leq \epsilon
$$

We conclude that $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
Exercise 10

Exercise 11.

1. Take $\epsilon=1 / 2$. There exists $n_{1} \geq 1$, such that:

$$
n, m \geq n_{1} \Rightarrow\left\|f_{n}-f_{m}\right\|_{p} \leq \frac{1}{2}
$$

In particular, we have:

$$
n \geq n_{1} \Rightarrow\left\|f_{n}-f_{n_{1}}\right\|_{p} \leq \frac{1}{2}
$$

2. Let $k \geq 1$. We have $n_{1}<\ldots<n_{k}$, such that for all $j=1, \ldots, k$:

$$
n \geq n_{j} \Rightarrow\left\|f_{n}-f_{n_{j}}\right\|_{p} \leq \frac{1}{2^{j}}
$$

Take $\epsilon=1 / 2^{k+1}$. There exists $n_{k+1}^{\prime} \geq 1$, such that:

$$
n, m \geq n_{k+1}^{\prime} \Rightarrow\left\|f_{n}-f_{m}\right\|_{p} \leq \frac{1}{2^{k+1}}
$$

Take $n_{k+1}=\max \left(n_{k}+1, n_{k+1}^{\prime}\right)$. Then $n_{k}<n_{k+1}$, and:

$$
n \geq n_{k+1} \Rightarrow\left\|f_{n}-f_{n_{k+1}}\right\|_{p} \leq \frac{1}{2^{k+1}}
$$

3. By induction from 2., we can construct a strictly increasing sequence of integers $\left(n_{k}\right)_{k \geq 1}$, such that for all $k \geq 1$:

$$
n \geq n_{k} \Rightarrow\left\|f_{n}-f_{n_{k}}\right\|_{p} \leq \frac{1}{2^{k}}
$$

In particular, $\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p} \leq 1 / 2^{k}$ for all $k \geq 1$. It follows that we have found a subsequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, such that:

$$
\sum_{k=1}^{+\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<+\infty
$$

Exercise 11

Exercise 12.

1. Each finite sum $g_{N}=\sum_{n=1}^{N}\left|f_{n+1}-f_{n}\right|$ is well-defined and measurable. It follows that $g=\sup _{N \geq 1} g_{N}$ is itself measurable. It is obviously nonnegative.
2. Suppose $p=+\infty$. From exercise (4), for all $n \geq 1$, we have:

$$
\left|f_{n+1}-f_{n}\right| \leq\left\|f_{n+1}-f_{n}\right\|_{\infty}, \mu \text {-a.s. }
$$

The set $N_{n}=\left\{\left|f_{n+1}-f_{n}\right|>\left\|f_{n+1}-f_{n}\right\|_{\infty}\right\}$ which lies in \mathcal{F}, is such that $\mu\left(N_{n}\right)=0$. It follows that if $N=\cup_{n \geq 1} N_{n}$, then $\mu(N)=0$. However, for all $\omega \in N^{c}$, we have:

$$
g(\omega)=\sum_{n=1}^{+\infty}\left|f_{n+1}(\omega)-f_{n}(\omega)\right| \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{\infty}
$$

We conclude that $g \leq \sum_{n=1}^{\infty}\left\|f_{n+1}-f_{n}\right\|_{\infty} \mu$-a.s.
3. Let $p \in[1,+\infty[$ and $N \geq 1$. By the triangle inequality (ex. (3)):

$$
\left\|\sum_{n=1}^{N}\left|f_{n+1}-f_{n}\right|\right\|_{p} \leq \sum_{n=1}^{N}\left\|f_{n+1}-f_{n}\right\|_{p} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}
$$

4. Let $p \in\left[1,+\infty\left[\right.\right.$. Given $N \geq 1$, let $g_{N}=\sum_{n=1}^{N}\left|f_{n+1}-f_{n}\right|$. Then $g_{N} \rightarrow g$ as $N \rightarrow+\infty$. The map $x \rightarrow x^{p}$ being continuous on $[0,+\infty]$, we have $g_{N}^{p} \rightarrow g^{p}$, and in particular $g^{p}=\liminf g_{N}^{p}$ as $N \rightarrow+\infty$. Using Fatou lemma (20), we see that:

$$
\begin{equation*}
\int g^{p} d \mu \leq \liminf _{N \geq 1} \int g_{N}^{p} d \mu \tag{5}
\end{equation*}
$$

However, from 3., we have $\left\|g_{N}\right\|_{p} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}$, for all $N \geq 1$. Since $p \geq 0$, the map $x \rightarrow x^{p}$ is non-decreasing on $[0,+\infty]$, and therefore:

$$
\begin{equation*}
\int g_{N}^{p} d \mu \leq\left(\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}\right)^{p} \tag{6}
\end{equation*}
$$

From inequalities (5) and (6), we conclude that:

$$
\int g^{p} d \mu \leq\left(\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}\right)^{p}
$$

and finally:

$$
\left(\int g^{p} d \mu\right)^{\frac{1}{p}} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}
$$

5. Let $p \in[1,+\infty]$. If $p=+\infty$, from 2 . we have:

$$
\begin{equation*}
g \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}, \mu \text {-a.s. } \tag{7}
\end{equation*}
$$

By assumption, the series in (7) is finite. So $g<+\infty \mu$-a.s. If $p \in[1,+\infty[$, from 4 . we have:

$$
\left(\int g^{p} d \mu\right)^{\frac{1}{p}} \leq \sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}
$$

So $\int g^{p} d \mu<+\infty$. Since $(+\infty) \mu\left(\left\{g^{p}=+\infty\right\}\right) \leq \int g^{p} d \mu$, we see that $\mu\left(\left\{g^{p}=+\infty\right\}\right)=0$ and finally $g<+\infty \mu$-a.s.
6. Let $A=\{g<+\infty\}$. Let $\omega \in A$. Then $g(\omega)<+\infty$. The series $\sum_{n=1}^{+\infty}\left|f_{n+1}(\omega)-f_{n}(\omega)\right|$ is therefore finite. Let $\epsilon>0$. There exists $n_{0} \geq 1$, such that:

$$
n \geq n_{0} \Rightarrow \sum_{k=n}^{+\infty}\left|f_{k+1}(\omega)-f_{k}(\omega)\right| \leq \epsilon
$$

Given $m>n \geq n_{0}$, we have:

$$
\left|f_{m}(\omega)-f_{n}(\omega)\right| \leq \sum_{k=n}^{m-1}\left|f_{k+1}(\omega)-f_{k}(\omega)\right| \leq \epsilon
$$

We conclude that the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ is Cauchy in \mathbf{C}. It therefore has a limit ${ }^{1}$, denoted $z(\omega)$.
7. From 6., $f_{n}(\omega) \rightarrow z(\omega)=f(\omega)$ for all $\omega \in A$. Since by definition, $f(\omega)=0$ for all $\omega \in A^{c}$, we see that $f_{n}(\omega) 1_{A}(\omega) \rightarrow f(\omega)$ for all $\omega \in \Omega$. Hence, we have $f_{n} 1_{A} \rightarrow f$, and since $f_{n} 1_{A}$ is measurable for all $n \geq 1$, we see from theorem (17) that $f=\lim f_{n} 1_{A}$ is itself measurable. Since $\mu\left(A^{c}\right)=0$ and $f_{n}(\omega) \rightarrow f(\omega)$ on A, we have $f_{n} \rightarrow f \mu$-a.s.
8. Suppose $p=+\infty$. For all $n \geq 1$, we have:

$$
\left|f_{n}-f_{1}\right| \leq \sum_{k=1}^{n-1}\left|f_{k+1}-f_{k}\right| \leq g
$$

So $\left|f_{n}\right| \leq\left|f_{1}\right|+g$. Taking the limit as $n \rightarrow+\infty$, we obtain $|f| \leq\left|f_{1}\right|+g$ μ-a.s. Let $M=\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{\infty}$. Then by assumption, $M<+\infty$ and from 2. we have $g \leq M \mu$-a.s. Moreover, since $f_{1} \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$, using exercise (4), we have $\left|f_{1}\right| \leq\left\|f_{1}\right\|_{\infty} \mu$-a.s. with $\left\|f_{1}\right\|_{\infty}<+\infty$. Hence, we see that $|f| \leq\left\|f_{1}\right\|_{\infty}+M \mu$-a.s., and consequently:

$$
\|f\|_{\infty} \leq\left\|f_{1}\right\|_{\infty}+\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{\infty}<+\infty
$$

f is therefore \mathbf{C}-valued, measurable and with $\|f\|_{\infty}<+\infty$. We have proved that $f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$.
9. Let $p \in\left[1,+\infty\left[\right.\right.$. The series $\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}$ being finite, there exists $n_{0} \geq 1$, such that:

$$
n \geq n_{0} \Rightarrow \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p} \leq 1
$$

Let $n \geq n_{0}$. By the triangle inequality:

$$
\left\|f_{n}-f_{n_{0}}\right\|_{p} \leq \sum_{k=n_{0}}^{n-1}\left\|f_{k+1}-f_{k}\right\|_{p} \leq 1
$$

Hence, we see that:

$$
\begin{equation*}
n \geq n_{0} \Rightarrow \int\left|f_{n}-f_{n_{0}}\right|^{p} d \mu \leq 1^{p}=1 \tag{8}
\end{equation*}
$$

[^0]From 6., $f_{n}(\omega) \rightarrow f(\omega)$ as $n \rightarrow+\infty$, for all $\omega \in A$, where $\mu\left(A^{c}\right)=0$. In particular:

$$
1_{A}\left|f-f_{n_{0}}\right|^{p}=\liminf _{n \geq 1} 1_{A}\left|f_{n}-f_{n_{0}}\right|^{p}
$$

Using inequality (8) and Fatou lemma (20), we obtain: ${ }^{2}$

$$
\int\left|f-f_{n_{0}}\right|^{p} d \mu \leq \liminf _{n \geq 1} \int\left|f_{n}-f_{n_{0}}\right|^{p} d \mu \leq 1
$$

In particular, $\int\left|f-f_{n_{0}}\right|^{p} d \mu<+\infty$. Since $f-f_{n_{0}}$ is \mathbf{C}-valued and measurable, we conclude that $f-f_{n_{0}} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
10. Let $p \in[1,+\infty]$. If $p=+\infty$, then $f \in L_{\mathbf{C}}^{\infty}(\Omega, \mathcal{F}, \mu)$ was proved in 8 . If $p \in\left[1,+\infty\left[\right.\right.$, we saw in 9 . that $f-f_{n_{0}} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ for some $n_{0} \geq 1$. Since $f_{n_{0}}$ is itself an element of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, we conclude from exercise (3) that $f=\left(f-f_{n_{0}}\right)+f_{n_{0}}$ is also an element of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
11. The purpose of this exercise is to prove that given a sequence $\left(f_{n}\right)_{n \geq 1}$ in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $\sum_{n=1}^{+\infty}\left\|f_{n+1}-f_{n}\right\|_{p}<+\infty$, there exists $f \in$ $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n} \rightarrow f \mu$-a.s. We now assume that all f_{n} 's are in fact \mathbf{R}-valued, i.e. $f_{n} \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. There exists $f^{*} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \rightarrow f^{*} \mu$-a.s. However, $f^{*}(\omega)$ may not be \mathbf{R}-valued for all $\omega \in \Omega$. Yet, if $N \in \mathcal{F}$ is such that $\mu(N)=0$ and $f_{n}(\omega) \rightarrow f^{*}(\omega)$ for all $\omega \in N^{c}$, then f^{*} is \mathbf{R}-valued on N^{c} (as a limit of an \mathbf{R}-valued sequence). If we define $f=f^{*} 1_{N^{c}}$, then f is \mathbf{R}-valued and measurable, with $\|f\|_{p}=\left\|f^{*}\right\|_{p}<+\infty$. So $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ and furthermore since $f=f^{*} \mu$-a.s., $f_{n} \rightarrow f \mu$-a.s.

Exercise 12

Exercise 13.

1. Yes, there does exist $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \rightarrow f \mu$-a.s. This was precisely the object of the previous exercise.
2. Suppose $p=+\infty$, and let $n<m$. From exercise (4), we have $\mid f_{m+1}-$ $f_{n} \mid \leq\left\|f_{m+1}-f_{n}\right\|_{\infty} \mu$-a.s. Furthermore, from the triangle inequality, $\left\|f_{m+1}-f_{n}\right\|_{\infty} \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{\infty}$. It follows that:

$$
\begin{equation*}
\left|f_{m+1}-f_{n}\right| \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{\infty}, \mu \text {-a.s. } \tag{9}
\end{equation*}
$$

3. Suppose $p=+\infty$ and let $n \geq 1$. For all $m>n$, let $N_{m} \in \mathcal{F}$ be such that $\mu\left(N_{m}\right)=0$, and inequality (9) holds for all $\omega \in N_{m}^{c}$. Furthermore, since $f_{m+1} \rightarrow f \mu$-a.s., let $M \in \mathcal{F}$ be such that $\mu(M)=0$, and $f_{m+1}(\omega) \rightarrow f(\omega)$ for all $\omega \in M^{c}$. Then, if $N=M \cup\left(\cup_{m>n} N_{m}\right)$, we have $N \in \mathcal{F}, \mu(N)=0$ and for all $\omega \in N^{c}, f_{m+1}(\omega) \rightarrow f(\omega)$, together with, for all $m>n$:

$$
\left|f_{m+1}(\omega)-f_{n}(\omega)\right| \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{\infty}
$$

[^1]Taking the limit as $m \rightarrow+\infty$, we obtain:

$$
\left|f(\omega)-f_{n}(\omega)\right| \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{\infty}
$$

This being true for all $\omega \in N^{c}$, we have proved that:

$$
\left|f-f_{n}\right| \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{\infty}, \mu \text {-a.s. }
$$

From definition (74), we conclude that:

$$
\left\|f-f_{n}\right\|_{\infty} \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{\infty}
$$

4. Let $p \in[1,+\infty[$ and $n<m$. From exercise (3), we have:

$$
\left(\int\left|f_{m+1}-f_{n}\right|^{p} d \mu\right)^{\frac{1}{p}}=\left\|f_{m+1}-f_{n}\right\|_{p} \leq \sum_{k=n}^{m}\left\|f_{k+1}-f_{k}\right\|_{p}
$$

5. Let $p \in[1,+\infty[$ and $n \geq 1$. Let $N \in \mathcal{F}$ be such that $\mu(N)=0$, and $f_{m+1}(\omega) \rightarrow f(\omega)$ for all $\omega \in N^{c}$. Then, we have:

$$
\left|f-f_{n}\right|^{p} 1_{N^{c}}=\liminf _{m>n}\left|f_{m+1}-f_{n}\right|^{p} 1_{N^{c}}
$$

Using Fatou lemma (20), we obtain:

$$
\int\left|f-f_{n}\right|^{p} d \mu \leq \liminf _{m>n} \int\left|f_{m+1}-f_{n}\right|^{p} d \mu
$$

Hence, from 4. we see that:

$$
\int\left|f-f_{n}\right|^{p} d \mu \leq\left(\sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}\right)^{p}
$$

and consequently:

$$
\left\|f-f_{n}\right\|_{p} \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}
$$

6. Let $p \in[1,+\infty]$. whether $p=+\infty$ or $p \in[1,+\infty[$, from 3. and 5 ., for all $n \geq 1$, we have $\left\|f-f_{n}\right\|_{p} \leq \sum_{k=n}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}$. Since by assumption, the series $\sum_{k=1}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}$ is finite, we conclude that $\left\|f-f_{n}\right\|_{p} \rightarrow 0$, as $n \rightarrow+\infty$. It follows that not only $f_{n} \rightarrow f \mu$-a.s., but also $f_{n} \xrightarrow{L^{p}} f$.
7. Suppose $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is such that $f_{n} \xrightarrow{L^{p}} g$. Then $f_{n} \xrightarrow{L^{p}} f$ together with $f_{n} \xrightarrow{L^{p}} g$. From ex. (8), $f=g \mu$-a.s. Furthermore, since $f_{n} \rightarrow f \mu$-a.s., we see that $f_{n} \rightarrow g \mu$-a.s. The purpose of this exercise (and the previous) is to prove theorem (44).

Exercise 14.

1. Since $f_{n} \xrightarrow{L^{p}} f$, from exercise $(10),\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. Using exercise (11), there exists a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, such that $\sum_{k=1}^{+\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<+\infty$.
2. Applying theorem (44) to the sequence $\left(f_{n_{k}}\right)_{k \geq 1}$, there exists $g \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n_{k}} \rightarrow g \mu$-a.s.
3. Also from theorem (44), the convergence $f_{n_{k}} \rightarrow g \mu$-a.s. and $f_{n_{k}} \xrightarrow{L^{p}} g$ are equivalent. Hence, we also have $f_{n_{k}} \xrightarrow{L^{p}} g$. However, since by assumption $f_{n} \xrightarrow{L^{p}} f$, we see that $f_{n_{k}} \xrightarrow{L^{p}} f$, and consequently from exercise (8), $f=g$ μ-a.s.
4. From 2., $f_{n_{k}} \rightarrow g \mu$-a.s., and from 3., $f=g \mu$-a.s. It follows that $f_{n_{k}} \rightarrow f$ μ-a.s. Given a sequence $\left(f_{n}\right)_{n \geq 1}$ and f in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n} \xrightarrow{L^{p}} f$, we have been able to extract a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ such that $f_{n_{k}} \rightarrow f$ μ-a.s. This proves theorem (45).

Exercise 14
Exercise 15. Suppose $\left(f_{n}\right)_{n \geq 1}$ is a sequence in $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$, and $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \xrightarrow{L^{p}} f$. Then in particular, all f_{n} 's and f are elements of $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ with $\left\|f-f_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow+\infty$. From theorem (45), we can extract a subsequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, such that $f_{n_{k}} \rightarrow f \mu$-a.s. This proves theorem (45), where $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is replaced by $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. Anyone who feels there was very little to prove in this exercise, could make a very good point.

Exercise 15

Exercise 16.

1. Since $\left(f_{n}\right)_{n \geq 1}$ is Cauchy in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, from exercise (11), we can extract a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, such that:

$$
\sum_{k=1}^{+\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<+\infty
$$

From theorem (44), there exists $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$, such that $f_{n_{k}} \rightarrow f$ μ-a.s., as well as $f_{n_{k}} \xrightarrow{L^{p}} f$.
2. Let $\epsilon>0 .\left(f_{n}\right)_{n \geq 1}$ being Cauchy, there exists $n_{0} \geq 1$, such that:

$$
n, m \geq n_{0} \Rightarrow\left\|f_{m}-f_{n}\right\|_{p} \leq \frac{\epsilon}{2}
$$

Furthermore, since $f_{n_{k}} \xrightarrow{L^{p}} f$, there exists $k_{0} \geq 1$, such that:

$$
k \geq k_{0} \Rightarrow\left\|f-f_{n_{k}}\right\|_{p} \leq \frac{\epsilon}{2}
$$

However, $n_{k} \uparrow+\infty$ as $k \rightarrow+\infty$. There exists $k_{0}^{\prime} \geq 1$, such that $k \geq k_{0}^{\prime} \Rightarrow$ $n_{k} \geq n_{0}$. Choose an arbitrary $k \geq \max \left(k_{0}, k_{0}^{\prime}\right)$. Then $\left\|f-f_{n_{k}}\right\|_{p} \leq \epsilon / 2$ together with $n_{k} \geq n_{0}$. Hence, for all $n \geq n_{0}$, we have:

$$
\left\|f-f_{n}\right\|_{p} \leq\left\|f-f_{n_{k}}\right\|_{p}+\left\|f_{n_{k}}-f_{n}\right\|_{p} \leq \epsilon
$$

We have found $n_{0} \geq 1$ such that:

$$
n \geq n_{0} \Rightarrow\left\|f-f_{n}\right\|_{p} \leq \epsilon
$$

This shows that $f_{n} \xrightarrow{L^{p}} f$. The purpose of this exercise, is to prove theorem (46). It is customary to say in light of this theorem, that $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is complete, even though as defined in these tutorials, $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not strictly speaking a metric space.

Exercise 16
Exercise 17. Let $\left(f_{n}\right)_{n \geq 1}$ be a Cauchy sequence in $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. Then in particular, it is a Cauchy sequence in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. From theorem (46), there exists $f^{*} \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that $f_{n} \xrightarrow{L^{p}} f^{*}$. Furthermore, from theorem (45), there exists a sub-sequence $\left(f_{n_{k}}\right)_{k \geq 1}$ of $\left(f_{n}\right)_{n \geq 1}$, such that $f_{n_{k}} \rightarrow f^{*} \mu$-a.s. It follows that f^{*} is in fact \mathbf{R}-valued μ-almost surely. There exists $N \in \mathcal{F}$, $\mu(N)=0$, such that $f^{*}(\omega) \in \mathbf{R}$ for all $\omega \in N^{c}$. Take $f=f^{*} 1_{N^{c}}$. Then f is \mathbf{R}-valued, measurable and $\|f\|_{p}=\left\|f^{*}\right\|_{p}<+\infty$. So $f \in L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$. Furthermore, $\left\|f-f_{n}\right\|_{p}=\left\|f^{*}-f_{n}\right\|_{p} \rightarrow 0$, which shows that $f_{n} \xrightarrow{L^{p}} f$. This proves theorem (46), where $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is replaced by $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$.

[^0]: ${ }^{1}$ The completeness of \mathbf{C} is proved in the next Tutorial.

[^1]: ${ }^{2}$ Note that $n \geq n_{0} \Rightarrow u_{n} \leq 1$ is enough to ensure $\liminf _{n \geq 1} u_{n} \leq 1$.

