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15. Stieltjes Integration
Definition 112 b : R+ → C is right-continuous of finite variation. The
Stieltjes L1-spaces associated with b are defined as:

L1
C(b)

�
=

{
f : R+ → C measurable,

∫
|f |d|b| < +∞

}

L1,loc
C (b)

�
=

{
f : R+ → C measurable,

∫ t

0

|f |d|b| < +∞, ∀t ∈ R+

}

where the notation |f | refers to the modulus map t → |f(t)|.
Warning : In these tutorials,

∫ t

0
. . . refers to

∫
[0,t]

. . ., i.e. the domain of integra-

tion is always [0, t], not ]0, t], [0, t[, or ]0, t[.

Exercise 1. b : R+ → C is right-continuous of finite variation.

1. Propose a definition for L1
R(b) and L1,loc

R (b).

2. Is L1
C(b) the same thing as L1

C(R
+,B(R+), d|b|)?

3. Is it meaningful to speak of L1
C(R

+,B(R+), |db|)?

4. Show that L1
C(b) = L1

C(|b|) and L1,loc
C (b) = L1,loc

C (|b|).

5. Show that L1
C(b) ⊆ L1,loc

C (b).

Exercise 2. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. For all f ∈ L1,loc

C (a), we define f.a : R+ → C as:

f.a(t)
�
=

∫ t

0

fda , ∀t ∈ R+

1. Explain why f.a : R+ → C is a well-defined map.

2. Let t ∈ R+, (tn)n≥1 be a sequence in R+ with tn ↓↓ t. Show:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t]da

3. Show that f.a is right-continuous.

4. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t]. Show:

n∑
i=1

|f.a(ti)− f.a(ti−1)| ≤
∫
]0,t]

|f |da

5. Show that f.a is a map of finite variation with:

|f.a|(t) ≤
∫ t

0

|f |da , ∀t ∈ R+
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Exercise 3. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let f ∈ L1

C(a).

1. Show that f.a is a right-continuous map of bounded variation.

2. Show d(f.a)([0, t]) = ν([0, t]), for all t ∈ R+, where ν =
∫
fda.

3. Prove the following:

Theorem 86 Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Let f ∈ L1

C(a). The map f.a : R+ → C defined by:

f.a(t)
�
=

∫ t

0

fda , ∀t ∈ R+

is a right-continuous map of bounded variation, and its associated complex Stielt-
jes measure is given by d(f.a) =

∫
fda, i.e.

d(f.a)(B) =

∫
B

fda , ∀B ∈ B(R+)

Exercise 4. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let f ∈ L1,loc

R (a), f ≥ 0.

1. Show f.a is right-continuous, non-decreasing with f.a(0) ≥ 0.

2. Show d(f.a)([0, t]) = μ([0, t]), for all t ∈ R+, where μ =
∫
fda.

3. Prove that d(f.a)([0, T ] ∩ · ) = μ([0, T ] ∩ · ), for all T ∈ R+.

4. Prove with the following:

Theorem 87 Let a : R+ → R+ be right-continuous, non-decreasing with

a(0) ≥ 0. Let f ∈ L1,loc
R (a), f ≥ 0. The map f.a : R+ → R+ defined by:

f.a(t)
�
=

∫ t

0

fda , ∀t ∈ R+

is right-continuous, non-decreasing with (f.a)(0) ≥ 0, and its associated Stieltjes
measure is given by d(f.a) =

∫
fda, i.e.

d(f.a)(B) =

∫
B

fda , ∀B ∈ B(R+)

Exercise 5. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let f ∈ L1,loc

C (a) and T ∈ R+.
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1. Show that
∫ |f |1[0,T ]da =

∫ |f |da[0,T ] =
∫ |f |daT .

2. Show that f1[0,T ] ∈ L1
C(a) and f ∈ L1

C(a
T ).

3. Show that (f.a)T = f.(aT ) = (f1[0,T ]).a.

4. Show that for all B ∈ B(R+):

d(f.a)T (B) =

∫
B

fdaT =

∫
B

f1[0,T ]da

5. Explain why it does not in general make sense to write:

d(f.a)T = d(f.a)([0, T ] ∩ · )
6. Show that for all B ∈ B(R+):

|d(f.a)T |(B) =

∫
B

|f |1[0,T ]da

7. Show that |d(f.a)T | = d|f.a|([0, T ] ∩ · )
8. Show that for all t ∈ R+

|f.a|(t) = (|f |.a)(t) =
∫ t

0

|f |da

9. Show that f.a is of bounded variation if and only if f ∈ L1
C(a).

10. Show that Δ(f.a)(0) = f(0)Δa(0).

11. Let t > 0, (tn)n≥1 be a sequence in R+ with tn ↑↑ t. Show:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t[da

12. Show that Δ(f.a)(t) = f(t)Δa(t) for all t ∈ R+.

13. Show that if a is continuous with a(0) = 0, then f.a is itself continuous
with (f.a)(0) = 0.

14. Prove with the following:

Theorem 88 Let a : R+ → R+ be right-continuous, non-decreasing with

a(0) ≥ 0. Let f ∈ L1,loc
C (a). The map f.a : R+ → C defined by:

f.a(t)
�
=

∫ t

0

fda , ∀t ∈ R+

is right-continuous of finite variation, and we have |f.a| = |f |.a, i.e.

|f.a|(t) =
∫ t

0

|f |da , ∀t ∈ R+
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In particular, f.a is of bounded variation if and only if f ∈ L1
C(a). Furthermore,

we have Δ(f.a) = fΔa.

Exercise 6. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let b : R+ → C be right-continuous of finite variation.

1. Prove the equivalence between the following:

(i) d|b| << da

(ii) |dbT | << da , ∀T ∈ R+

(iii) dbT << da , ∀T ∈ R+

2. Does it make sense in general to write db << da?

Definition 113 Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Let b : R+ → C be right-continuous of finite variation. We say that b
is absolutely continuous with respect to a, and we write b << a, if and only
if, one of the following holds:

(i) d|b| << da

(ii) |dbT | << da , ∀T ∈ R+

(iii) dbT << da , ∀T ∈ R+

In other words, b is absolutely continuous w.r. to a, if and only if the Stieltjes
measure associated with the total variation of b is absolutely continuous w.r. to
the Stieltjes measure associated with a.

Exercise 7. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let b : R+ → C be right-continuous of finite variation, absolutely continuous
w.r. to a, i.e. with b << a.

1. Show that for all T ∈ R+, there exits fT ∈ L1
C(a) such that:

dbT (B) =

∫
B

fTda , ∀B ∈ B(R+)

2. Suppose that T, T ′ ∈ R+ and T ≤ T ′. Show that:∫
B

fTda =

∫
B∩[0,T ]

fT ′da , ∀B ∈ B(R+)

3. Show that fT = fT ′1[0,T ] da-a.s.

4. Show the existence of a sequence (fn)n≥1 in L1
C(a), such that for all 1 ≤

n ≤ p, fn = fp1[0,n] and:

∀n ≥ 1 , dbn(B) =

∫
B

fnda , ∀B ∈ B(R+)
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5. We define f : (R+,B(R+)) → (C,B(C)) by:

∀t ∈ R+ , f(t)
�
= fn(t) for any n ≥ 1 : t ∈ [0, n]

Explain why f is unambiguously defined.

6. Show that for all B ∈ B(C), {f ∈ B} = ∪+∞
n=1[0, n] ∩ {fn ∈ B}.

7. Show that f : (R+,B(R+)) → (C,B(C)) is measurable.

8. Show that f ∈ L1,loc
C (a) and that we have:

b(t) =

∫ t

0

fda , ∀t ∈ R+

9. Prove the following:

Theorem 89 Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. Let b : R+ → C be a right-continuous map of finite variation. Then,
b is absolutely continuous w.r. to a, i.e. d|b| << da, if and only if there exists

f ∈ L1,loc
C (a) such that b = f.a, i.e.

b(t) =

∫ t

0

fda , ∀t ∈ R+

If b is R-valued, we can assume that f ∈ L1,loc
R (a).

If b is non-decreasing with b(0) ≥ 0, we can assume that f ≥ 0.

Exercise 8. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥
0. Let f, g ∈ L1,loc

C (a) be such that f.a = g.a, i.e.:∫ t

0

fda =

∫ t

0

gda , ∀t ∈ R+

1. Show that for all T ∈ R+ and B ∈ B(R+):

d(f.a)T (B) =

∫
B

f1[0,T ]da =

∫
B

g1[0,T ]da

2. Show that for all T ∈ R+, f1[0,T ] = g1[0,T ] da-a.s.

3. Show that f = g da-a.s.

Exercise 9. b : R+ → C is right-continuous of finite variation.

1. Show the existence of h ∈ L1,loc
C (|b|) such that b = h.|b|.
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2. Show that for all B ∈ B(R+) and T ∈ R+:

dbT (B) =

∫
B

hd|b|T =

∫
B

h|dbT |

3. Show that |h| = 1 |dbT |-a.s. for all T ∈ R+.

4. Show that for all T ∈ R+, d|b|([0, T ] ∩ {|h| 
= 1}) = 0.

5. Show that |h| = 1 d|b|-a.s.
6. Prove the following:

Theorem 90 Let b : R+ → C be right-continuous of finite variation. There

exists h ∈ L1,loc
C (|b|) such that |h| = 1 and b = h.|b|, i.e.

b(t) =

∫ t

0

hd|b| , ∀t ∈ R+

Definition 114 b : R+ → C is right-continuous of finite variation. For all
f ∈ L1

C(b), the Stieltjes integral of f with respect to b, is defined as:∫
fdb

�
=

∫
fhd|b|

where h ∈ L1,loc
C (|b|) is such that |h| = 1 and b = h.|b|.

Warning : the notation
∫
fdb of definition (114) is controversial and potentially

confusing: ’db’ is not in general a complex measure onR+, unless b is of bounded
variation.

Exercise 10. b : R+ → C is right-continuous of finite variation.

1. Show that if f ∈ L1
C(b), then

∫
fhd|b| is well-defined.

2. Explain why, given f ∈ L1
C(b),

∫
fdb is unambiguously defined.

3. Show that if b is right-continuous, non-decreasing with b(0) ≥ 0, defini-
tion (114) of

∫
fdb coincides with that of an integral w.r. to the Stieltjes

measure db.

4. Show that if b is a right-continuous map of bounded variation, defini-
tion (114) of

∫
fdb coincides with that of an integral w.r. to the complex

Stieltjes measure db.

Exercise 11. Let b : R+ → C be a right-continuous map of finite variation.

For all f ∈ L1,loc
C (b), we define f.b : R+ → C as:

f.b(t)
�
=

∫ t

0

fdb
�
=

∫
f1[0,t]db , ∀t ∈ R+
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1. Explain why f.b : R+ → C is a well-defined map.

2. If b is right-continuous, non-decreasing with b(0) ≥ 0, show this definition
of f.b coincides with that of theorem (88).

3. Show f.b = (fh).|b|, where h ∈ L1,loc
C (|b|), |h| = 1, b = h.|b|.

4. Show that f.b : R+ → C is right-continuous of finite variation, with
|f.b| = |f |.|b|, i.e.

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

5. Show that f.b is of bounded variation if and only if f ∈ L1
C(b).

6. Show that Δ(f.b) = fΔb.

7. Show that if b is continuous with b(0) = 0, then f.b is itself continuous
with (f.b)(0) = 0.

8. Prove the following:

Theorem 91 Let b : R+ → C be right-continuous of finite variation. For all

f ∈ L1,loc
C (b), the map f.b : R+ → C defined by:

f.b(t)
�
=

∫ t

0

fdb , ∀t ∈ R+

is right-continuous of finite variation, and we have |f.b| = |f |.|b|, i.e.

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

In particular, f.b is of bounded variation if and only if f ∈ L1
C(b). Furthermore,

we have Δ(f.b) = fΔb.

Exercise 12. Let b : R+ → C be right-continuous of finite variation. Let

f ∈ L1,loc
C (b) and T ∈ R+.

1. Show that
∫ |f |1[0,T ]d|b| =

∫ |f |d|b|[0,T ] =
∫ |f |d|bT |.

2. Show that f1[0,T ] ∈ L1
C(b) and f ∈ L1

C(b
T ).

3. Show bT = h.|bT |, where h ∈ L1,loc
C (|b|), |h| = 1, b = h.|b|.

4. Show that (f.b)T = f.(bT ) = (f1[0,T ]).b

5. Show that d|f.b|(B) =
∫
B |f |d|b| for all B ∈ B(R+).
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6. Let g : R+ → C be a measurable map. Show the equivalence:

g ∈ L1,loc
C (f.b) ⇔ gf ∈ L1,loc

C (b)

7. Show that d(f.b)T (B) =
∫
B fhd|bT | for all B ∈ B(R+).

8. Show that dbT =
∫
hd|bT | and conclude that:

d(f.b)T (B) =

∫
B

fdbT , ∀B ∈ B(R+)

9. Let g ∈ L1,loc
C (f.b). Show that g ∈ L1

C((f.b)
T ) and:∫

g1[0,t]d(f.b)
T =

∫
gf1[0,t]db

T , ∀t ∈ R+

10. Show that g.
(
(f.b)T

)
= (gf).(bT ).

11. Show that (g.(f.b))T = ((gf).b)T .

12. Show that g.(f.b) = (gf).b

13. Prove the following:

Theorem 92 Let b : R+ → C be right-continuous of finite variation. For all

f ∈ L1,loc
C (b) and g : (R+,B(R+)) → (C,B(C)) measurable map, we have the

equivalence:

g ∈ L1,loc
C (f.b) ⇔ gf ∈ L1,loc

C (b)

and when such condition is satisfied, g.(f.b) = (fg).b, i.e.∫ t

0

gd(f.b) =

∫ t

0

gfdb , ∀t ∈ R+

Exercise 13. Let b : R+ → C be right-continuous of finite variation. let

f, g ∈ L1,loc
C (b) and α ∈ C. Show that f + αg ∈ L1,loc

C (b), and:

(f + αg).b = f.b+ α(g.b)

Exercise 14. Let b, c : R+ → C be two right-continuous maps of finite varia-

tions. Let f ∈ L1,loc
C (b) ∩ L1,loc

C (c) and α ∈ C.

1. Show that for all T ∈ R+, d(b+ αc)T = dbT + αdcT .

2. Show that for all T ∈ R+, d|b+ αc|T ≤ d|b|T + |α|d|c|T .
3. Show that d|b + αc| ≤ d|b|+ |α|d|c|.

4. Show that f ∈ L1,loc
C (b+ αc).
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5. Show d(f.(b + αc))T (B) =
∫
B
fd(b+ αc)T for all B ∈ B(R+).

6. Show that d(f.(b + αc))T = d(f.b)T + αd(f.c)T .

7. Show that (f.(b + αc))T = (f.b)T + α(f.c)T

8. Show that f.(b + αc) = f.b+ α(f.c).

Exercise 15. Let b : R+ → C be right-continuous of finite variation.

1. Show that d|b| ≤ d|b1|+ d|b2|, where b1 = Re(b) and b2 = Im(b).

2. Show that d|b1| ≤ d|b| and d|b2| ≤ d|b|.

3. Show that f ∈ L1,loc
C (b), if and only if:

f ∈ L1,loc
C (|b1|+) ∩ L1,loc

C (|b1|−) ∩ L1,loc
C (|b2|+) ∩ L1,loc

C (|b2|−)

4. Show that if f ∈ L1,loc
C (b), for all t ∈ R+:∫ t

0

fdb =

∫ t

0

fd|b1|+ −
∫ t

0

fd|b1|− + i

(∫ t

0

fd|b2|+ −
∫ t

0

fd|b2|−
)

Exercise 16. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
�
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

where it is understood that inf ∅ = +∞. Let s, t ∈ R+.

1. Show that t < a(s) ⇒ c(t) ≤ s.

2. Show that c(t) < s ⇒ t < a(s).

3. Show that c(t) ≤ s ⇒ t < a(s+ ε) , ∀ε > 0.

4. Show that c(t) ≤ s ⇒ t ≤ a(s).

5. Show that c(t) < +∞ ⇔ t < a(∞).

6. Show that c is non-decreasing.

7. Show that if t0 ∈ [a(∞),+∞[, c is right-continuous at t0.

8. Suppose t0 ∈ [0, a(∞)[. Given ε > 0, show the existence of s ∈ R+, such
that c(t0) ≤ s < c(t0) + ε and t0 < a(s).

9. Show that t ∈ [t0, a(s)[ ⇒ c(t0) ≤ c(t) ≤ c(t0) + ε.

10. Show that c is right-continuous.
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11. Show that if a(∞) = +∞, then c is a map c : R+ → R+ which is right-
continuous, non-decreasing with c(0) ≥ 0.

12. We define ā(s) = inf{t ∈ R+ : s < c(t)} for all s ∈ R+. Show that for all
s, t ∈ R+, s < c(t) ⇒ a(s) ≤ t.

13. Show that a ≤ ā.

14. Show that for all s, t ∈ R+ and ε > 0:

a(s+ ε) ≤ t ⇒ s < s+ ε ≤ c(t)

15. Show that for all s, t ∈ R+ and ε > 0, a(s+ ε) ≤ t ⇒ ā(s) ≤ t.

16. Show that ā ≤ a and conclude that:

a(s) = inf{t ∈ R+ : s < c(t)} , ∀s ∈ R+

Exercise 17. Let f : R+ → R̄ be a non-decreasing map. Let α ∈ R. We
define:

x0
�
= sup{x ∈ R+ : f(x) ≤ α}

1. Explain why x0 = −∞ if and only if {f ≤ α} = ∅.
2. Show that x0 = +∞ if and only if {f ≤ α} = R+.

3. We assume from now on that x0 
= ±∞. Show that x0 ∈ R+.

4. Show that if f(x0) ≤ α then {f ≤ α} = [0, x0].

5. Show that if α < f(x0) then {f ≤ α} = [0, x0[.

6. Conclude that f : (R+,B(R+)) → (R̄,B(R̄)) is measurable.

Exercise 18. Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
�
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

1. Let f : R+ → [0,+∞] be non-negative and measurable. Show (f ◦
c)1{c<+∞} is well-defined, non-negative and measurable.

2. Let t, u ∈ R+, and ds be the Lebesgue measure on R+. Show:∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds ≤
∫

1[0,a(t∧u)]1{c<+∞}ds

3. Show that: ∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds ≤ a(t ∧ u)
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4. Show that:

a(t ∧ u) =

∫ a(t)

0

1[0,a(u)[ds =

∫ a(t)

0

1[0,a(u)[1{c<+∞}ds

5. Show that:

a(t ∧ u) ≤
∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

6. Show that: ∫ t

0

1[0,u]da =

∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

7. Define:

Dt
�
=

{
B ∈ B(R+) :

∫ t

0

1Bda =

∫ a(t)

0

(1B ◦ c)1{c<+∞}ds

}

Show that Dt is a Dynkin system on R+, and Dt = B(R+).

8. Show that if f : R+ → [0,+∞] is non-negative measurable:∫ t

0

fda =

∫ a(t)

0

(f ◦ c)1{c<+∞}ds , ∀t ∈ R+

9. Let f : R+ → C be measurable. Show that (f ◦ c)1{c<+∞} is itself well-
defined and measurable.

10. Show that if f ∈ L1,loc
C (a), then for all t ∈ R+, we have:

(f ◦ c)1{c<+∞}1[0,a(t)] ∈ L1
C(R

+,B(R+), ds)

and furthermore: ∫ t

0

fda =

∫ a(t)

0

(f ◦ c)1{c<+∞}ds

11. Show that we also have:∫ t

0

fda =

∫
(f ◦ c)1[0,a(t)[ds

12. Conclude with the following:

Theorem 93 Let a : R+ → R+ be right-continuous, non-decreasing with
a(0) ≥ 0. We define c : R+ → [0,+∞] as:

c(t)
�
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

Then, for all f ∈ L1,loc
C (a), we have:∫ t

0

fda =

∫ a(t)

0

((f ◦ c)1{c<+∞})(s)ds , ∀t ∈ R+
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Solutions to Exercises
Exercise 1.

1. Let b : R+ → C be right-continuous of finite variation. In line with
definition (112), it is natural to define:

L1
R(b)

�
=

{
f : R+→R measurable,

∫
|f |d|b|<+∞

}

L1,loc
R (b)

�
=

{
f : R+→R measurable,

∫ t

0

|f |d|b|<+∞, ∀t ∈ R+

}

2. Yes, L1
C(b) and L1

C(R
+,B(R+), d|b|) are the same thing.

3. No, L1
C(R

+,B(R+), |db|) may not be meaningful. The complex Stielt-
jes measure db is well-defined by definition (110), provided b is right-
continuous of bounded variation, not just right-continuous of finite varia-
tion.

4. Since |b| is non-decreasing with |b|(0) ≥ 0, the total variation of |b| is
itself, i.e. | |b| | = |b|. Looking back at definition (112), it follows that

L1
C(b) = L1

C(|b|) and L1,loc
C (b) = L1,loc

C (|b|).
5. Let f ∈ L1

C(b). Then f : (R+,B(R+)) → (C,B(C)) is measurable and
for all t ∈ R+, we have:∫ t

0

|f |d|b| �
=

∫
[0,t]

|f |d|b| =
∫

|f |1[0,t]d|b| ≤
∫

|f |d|b| < +∞

so f ∈ L1,loc
C (b) and we have proved that L1

C(b) ⊆ L1,loc
C (b).

Exercise 1

Exercise 2.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. In

particular, a is right-continuous of finite variation, and the space L1,loc
C (a)

is well-defined as per definition (112). Let f ∈ L1,loc
C (a). We define

f.a : R+ → C as:

f.a(t)
�
=

∫ t

0

fda , ∀t ∈ R+

Given t ∈ R+, the map f1[0,t] is measurable and since |a| = a with

f ∈ L1,loc
C (a), we have:∫

|f |1[0,t]da =

∫ t

0

|f |d|a| < +∞

So f1[0,t] is also integrable with respect to the Stieltjes measure da. It

follows that the integral
∫ t

0 fda is well-defined. This being true for all
t ∈ R+, the map f.a : R+ → C is well-defined.
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2. Let t ∈ R+ and (tn)n≥1 be a sequence in R+ such that tn ↓↓ t, i.e. tn → t
and t < tn+1 ≤ tn for all n ≥ 1. We have f1[0,tn] → f1[0,t] pointwise, and
furthermore |f |1[0,tn] ≤ |f |1[0,t1] with:∫

|f |1[0,t1]da =

∫ t1

0

|f |da < +∞

From the dominated convergence theorem (23), we obtain:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t]da

3. From 2. we see that f.a(tn) → f.a(t), for all t ∈ R+ and (tn)n≥1 sequence
in R+ with tn ↓↓ t. This shows that f.a is right-continuous. To those
who may not be convinced by this conclusion, we may offer the following
argument (we shall not repeat it very often): the fact that f.a is right-
continuous is equivalent to the fact that for all t ∈ R+ and for all U open
sets in C with f.a(t) ∈ U , there exists u ∈ R+, t < u, such that:

s ∈]t, u[ ⇒ f.a(s) ∈ U (1)

If this is not the case, then there exists some t ∈ R+ and U open set in C
with f.a(t) ∈ U , such that for all u ∈ R+, t < u, the implication (1) does
not hold. Take u = t + 1. Since the implication (1) does not hold, there
exists t1 ∈]t, u[ such that f.a(t1) 
∈ U . Take u = min(t+1/2, t1). Since the
implication (1) does not hold, there exists t2 ∈]t, u[ such that f.a(t2) 
∈ U .
Note in particular that t < t2 < t+ 1/2 and t < t2 ≤ t1 (even t2 < t1 but
we don’t really care). By induction, we may construct a sequence (tn)n≥1

such that t < tn < t + 1/n, t < tn+1 ≤ tn and f.a(tn) 
∈ U for all n ≥ 1.
In particular, we have tn ↓↓ t and consequently f.a(tn) → f.a(t). But this
contradicts the fact that U is open with f.a(t) ∈ U and f.a(tn) 
∈ U for
all n ≥ 1. This contradiction ensures that f.a is right-continuous.

4. Let t ∈ R+ and t0 ≤ . . . ≤ tn be a finite sequence in [0, t], n ≥ 1. For all
i ∈ {1, . . . , n}, we have:

|f.a(ti)− f.a(ti−1)| =

∣∣∣∣
∫

f1[0,ti]da−
∫

f1[0,ti−1]da

∣∣∣∣
=

∣∣∣∣
∫

f1]ti−1,ti]da

∣∣∣∣
≤

∫
|f |1]ti−1,ti]da

and consequently:

n∑
i=1

|f.a(ti)− f.a(ti−1)| ≤
n∑

i=1

∫
|f |1]ti−1,ti]da

=

∫
|f |1]t0,tn]da
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≤
∫

|f |1]0,t]da

5. It follows from 4. that
∫ |f |1]0,t]da is an upper-bound of all sums

∑n
i=1 |f.a(ti)−

f.a(ti−1)| as t0 ≤ . . . ≤ tn runs through the set of all finite sequences in
[0, t], n ≥ 1. Since |f.a|(t)− |f.a(0)| is the smallest of such upper-bounds,
we obtain:

|f.a|(t)− |f.a(0)| ≤
∫

|f |1]0,t]da (2)

Furthermore, we have:

|f.a(0)| =
∣∣∣∣
∫

f1{0}da
∣∣∣∣ ≤

∫
|f |1{0}da (3)

From (2), (3) and f ∈ L1,loc
C (a), we conclude that:

|f.a|(t) ≤
∫

|f |1[0,t]da =

∫ t

0

|f |da < +∞

So f.a is a map of finite variation.

Exercise 2

Exercise 3.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let

f ∈ L1
C(a). In particular, f ∈ L1,loc

C (a) and from exercise (2) we know
that f.a defined by:

f.a(t) =

∫ t

0

fda , ∀t ∈ R+

is well-defined, right-continuous and of finite variation, with:

|f.a|(t) ≤
∫ t

0

|f |da , ∀t ∈ R+

Since f ∈ L1
C(a), it follows that:

|f.a|(∞) = sup
t∈R+

|f.a|(t) ≤
∫

|f |da < +∞

So f.a is of bounded variation. We have proved that f.a is right-continuous
of bounded variation.

2. Let ν =
∫
fda. Since f ∈ L1

C(a) = L1
C(R

+,B(R+), da), from theo-
rem (63), ν is a complex measure on (R+,B(R+)). Since f.a is right-
continuous of bounded variation, its complex Stieltjes measure d(f.a) is
well-defined as per definition (110). For all t ∈ R+, we have:

d(f.a)([0, t]) = d(f.a)({0}) + d(f.a)(]0, t])

= f.a(0) + f.a(t)− f.a(0)

=

∫
[0,t]

fda = ν([0, t])
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3. In order to prove theorem (86), we need to show that d(f.a) = ν. Define
D = {B ∈ B(R+) : d(f.a)(B) = ν(B)} and C = {[0, t] : t ∈ R+}.
From 2. we have C ⊆ D. Since C is closed under finite intersection and D
is a Dynkin system on R+, from the Dynkin system theorem (1) we have
σ(C) ⊆ D, where σ(C) is the σ-algebra on R+ generated by C. However,
one can easily show that that σ(C) = B(R+). We conclude that B(R+) ⊆
D and finally d(f.a) = ν. This completes the proof of theorem (86). For
those who want to say more, here is the following: A,B ∈ C ⇒ A∩B ∈ C
is clear. d(f.a) and ν are two complex measures on R+, so D is shown to
be a Dynkin system as follows:

d(f.a)(R+) = lim
n→+∞ d(f.a)([0, n])

= lim
n→+∞ f.a(n)

= lim
n→+∞

∫
[0,n]

fda

= lim
n→+∞ ν([0, n]) = ν(R+)

where the first and last equality stem from exercise (13) of Tutorial 12.
So R+ ∈ D. If A,B ∈ D, A ⊆ B, then B \ A ∈ D is clear. If An ∈ D,
n ≥ 1 and An ↑ A, then from exercise (13) of Tutorial 12, we have:

d(f.a)(A) = lim
n→+∞ d(f.a)(An) = lim

n→+∞ ν(An) = ν(A)

So A ∈ D. Having proved that D is a Dynkin system, it remains to show
that σ(C) = B(R+). Since C ⊆ B(R+), it is clear that σ(C) ⊆ B(R+). To
show the reverse inclusion, we need to show that any open set in R+ is an
element of σ(C). However, any non-empty open set in R can be written as
a countable union of closed intervals [a, b] with a ≤ b. It follows that any
non-empty open set in R+ can be written as a countable union of closed
intervals [a, b] with a, b ∈ R+, a ≤ b. Since ∅ ∈ σ(C), all we need to do is
show that for all a, b ∈ R+, a ≤ b, we have [a, b] ∈ σ(C). However, if a = 0
then [a, b] ∈ C ⊆ σ(C). If a > 0, then [a, b] = ∩n≥1]tn, b] where (tn)n≥1 is
an arbitrary sequence in R+ with tn ↑↑ a. Since ]tn, b] = [0, b] \ [0, tn] ∈
σ(C), we conclude that [a, b] ∈ σ(C).

Exercise 3

Exercise 4.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let

f ∈ L1,loc
R (a), f ≥ 0. Let t ∈ R+ and (tn)n≥1 be an arbitrary sequence in

R+ such that tn ↓↓ t. Then f1[0,tn] → f1[0,t] pointwise, and for all n ≥ 1,
we have:

|f |1[0,tn] = f1[0,tn] ≤ f1[0,t1]
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while
∫
f1[0,t1]da < +∞ since f ∈ L1,loc

R (a), f ≥ 0. From the dominated
convergence theorem (23), we obtain:

lim
n→+∞

∫
f1[0,tn]da =

∫
f1[0,t]da

which shows that f.a(tn) → f.a(t). We have proved that f.a is right-
continuous. Let s, t ∈ R+, s ≤ t. Then, since f ≥ 0:

f.a(s) =

∫
f1[0,s]da ≤

∫
f1[0,t]da = f.a(t)

So f.a is non-decreasing. Finally, we have:

f.a(0) =

∫
f1{0}da = f(0)da({0}) = f(0)a(0) ≥ 0

We have proved that f.a is right-continuous, non-decreasing with f.a(0) ≥
0. In particular, the Stieltjes measure d(f.a) is well-defined, as per defini-
tion (24).

2. From theorem (21), μ =
∫
fda is a well defined measure on R+. For all

t ∈ R+, we have:

d(f.a)([0, t]) = d(f.a)({0}) + d(f.a)(]0, t])

= f.a(0) + f.a(t)− f.a(0)

=

∫
[0,t]

fda = μ([0, t])

3. We claim that d(f.a)([0, T ] ∩ ·) = μ([0, T ] ∩ ·) for all T ∈ R+. Define:

D = {B ∈ B(R+) : d(f.a)([0, T ] ∩B) = μ([0, T ] ∩B)} (4)

and furthermore:
C = {[0, t] : t ∈ R+}

Then C is closed under finite intersection and since [0, T ]∩ [0, t] = [0, T ∧ t]
for all t ∈ R+, it is clear from 2. that C ⊆ D. The two measures involved
in (4) being finite measures, D is easily seen to be a Dynkin system on R+.
From the Dynkin system theorem (1), it follows that σ(C) ⊆ D. Finally,
since σ(C) = B(R+) (see exercise (3)), we conclude that B(R+) ⊆ D,
which shows that d(f.a)([0, T ] ∩ ·) = μ([0, T ] ∩ ·). The proof that D is
indeed a Dynkin system goes as follows: the fact that R+ ∈ D follows

from 2. and since f ∈ L1,loc
R (a), f ≥ 0:

μ([0, T ] ∩R+) = d(f.a)([0, T ] ∩R+) =

∫ T

0

fda < +∞

which shows that μ([0, T ]∩ ·) and d(f.a)([0, T ] ∩ ·) are indeed finite mea-
sures. Hence, if A,B ∈ D with A ⊆ B we have:

d(f.a)([0, T ] ∩ (B \A)) = d(f.a)([0, T ] ∩B)−d(f.a)([0, T ] ∩A)
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= μ([0, T ] ∩B)−μ([0, T ]∩ A)

= μ([0, T ] ∩ (B \A))
So B \A ∈ D. Note that the finiteness of the two measures d(f.a)([0, T ]∩
·) and μ([0, T ] ∩ ·) is very important when writing the above equalities.
Finally, if An ∈ D, n ≥ 1 and An ↑ A, then [0, T ] ∩ An ↑ [0, T ] ∩ A, and
from theorem (7), we have:

d(f.a)([0, T ] ∩ A) = lim
n→+∞ d(f.a)([0, T ] ∩ An)

= lim
n→+∞μ([0, T ] ∩ An)

= μ([0, T ] ∩A)

So A ∈ D, and D is indeed a Dynkin system on R+.

4. It follows from 3. that d(f.a)([0, n] ∩B) = μ([0, n] ∩B) for all n ≥ 1 and
B ∈ B(R+). Hence, using theorem (7):

d(f.a)(B) = lim
n→+∞ d(f.a)([0, n] ∩B)

= lim
n→+∞μ([0, n] ∩B)

= μ(B)

=

∫
B

fda

This completes the proof of theorem (87).

Exercise 4

Exercise 5.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let

f ∈ L1,loc
C (a) and T ∈ R+. From exercise (24) (part 6) of Tutorial 14, we

have da[0,T ] = daT . Hence, using definition (45), we obtain:∫
|f |1[0,T ]da =

∫
|f |da[0,T ] =

∫
|f |daT

2. Since f ∈ L1,loc
C (a), we have:∫

|f |1[0,T ]da =

∫ T

0

|f |da < +∞

and furthermore, using 1.:∫
|f |daT =

∫
|f |1[0,T ]da < +∞

So f1[0,T ] ∈ L1
C(a) and f ∈ L1

C(a
T ).
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3. Let t ∈ R+. Using definition (49), and da[0,T ] = daT :

(f.a)T (t) = f.a(T ∧ t)

=

∫ T∧t

0

fda

=

∫
1[0,T∧t]fda

=

∫
1[0,t]1[0,T ]fda

=

∫
1[0,t]fda

[0,T ]

=

∫
1[0,t]fda

T

=

∫ t

0

fdaT = f.(aT )(t)

So (f.a)T = f.(aT ) and furthermore:

(f.a)T (t) =

∫
1[0,t]1[0,T ]fda

=

∫ t

0

1[0,T ]fda = (f1[0,T ]).a(t)

We have proved that (f.a)T = f.(aT ) = (f1[0,T ]).a.

4. Since a and aT are both right-continuous, non-decreasing with non-negative
initial values, since f ∈ L1

C(a
T ) and f1[0,T ] ∈ L1

C(a), from theorem (86),
both f.(aT ) and (f1[0,T ]).a (and therefore also (f.a)T from 3.) are right-
continuous of bounded variation. Furthermore, still from theorem (86),
the complex Stieltjes measures d(f.(aT )) and d((f1[0,T ]).a) are respec-
tively equal to

∫
fdaT and

∫
f1[0,T ]da. We conclude from 3. that for all

B ∈ B(R+):

d(f.a)T (B) =

∫
B

fdaT =

∫
B

f1[0,T ]da

5. In order to write d(f.a)T = d(f.a)([0, T ]∩·), the expression d(f.a) must be
meaningful. This is the case when f.a is right-continuous, non-decreasing
with f.a(0) ≥ 0 (definition (24)), or when f.a is right-continuous of
bounded variation (definition (110)). However, We have assumed f ∈
L1,loc
C (a) and not f ∈ L1

C(a). So we cannot apply theorem (86) to con-
clude that f.a is right-continuous of bounded variation. We only know
from exercise (2) that f.a is right-continuous of finite variation. Fur-

thermore, we have not assumed that f ∈ L1,loc
C (a) with f ≥ 0. So we

cannot apply theorem (87) to conclude that f.a is right-continuous, non-
decreasing with f.a(0) ≥ 0. We shall see in 9. that f.a is of bounded
variation, if and only if f ∈ L1

C(a). Short of this condition being satisfied
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(or f ≥ 0), it is not meaningful to write d(f.a). This explains that a lot
of care is being taken in this exercise to consider aT and (f.a)T .

6. Having proved in 4. that d(f.a)T =
∫
f1[0,T ]da, from theorem (63), we

have for all B ∈ B(R+):

|d(f.a)T |(B) =

∫
B

|f |1[0,T ]da

7. From exercise (2), f.a is right-continuous of finite variation. Applying
theorem (84), we obtain:

|d(f.a)T | = d|f.a|([0, T ] ∩ ·)
8. Let t ∈ R+. Applying 6. and 7. to T = t, we obtain:

|f.a|(t) = d|f.a|([0, t])
= |d(f.a)t|(R+)

=

∫
|f |1[0,t]da

=

∫ t

0

|f |da = (|f |.a)(t)

9. From 8. we have for all t ∈ R+:

|f.a|(t) =
∫ t

0

|f |da ≤
∫

|f |da

and consequently supt∈R+ |f.a|(t) ≤ ∫ |f |da. However, from the monotone
convergence theorem (19):∫

|f |da = lim
n→+∞

∫
|f |1[0,n]da

= lim
n→+∞ |f.a|(n)

≤ sup
t∈R+

|f.a|(t)

So
∫ |f |da = supt∈R+ |f.a|(t) and f.a is of bounded variation, if and only

if f ∈ L1
C(a).

10. Having proved in exercise (2) that f.a is right-continuous of finite varia-
tion, from exercise (29) (part 4) of Tutorial 14, f.a is cadlag, and conse-
quently it is meaningful to speak of Δ(f.a), as per definition (111). We
have:

Δ(f.a)(0) = f.a(0)

=

∫
f1{0}da

= f(0)da({0})
= f(0)a(0)
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= f(0)Δa(0)

11. Let t > 0 and (tn)n≥1 be a sequence in R+ such that tn ↑↑ t. Then,
f1[0,tn] → f1[0,t[ pointwise and |f |1[0,tn] ≤ |f |1[0,t[ for all n ≥ 1, with:∫

|f |1[0,t[da ≤
∫

|f |1[0,t]da =

∫ t

0

|f |da < +∞

From the dominated convergence theorem (23), we obtain:

lim
n→+∞ f1[0,tn]da =

∫
f1[0,t[da

12. Let t > 0 and (tn)n≥1 be a sequence in R+ such that tn ↑↑ t. Using 11.
we obtain:

Δ(f.a)(t) = f.a(t)− f.a(t−)

= f.a(t)− lim
n→+∞ f.a(tn)

= f.a(t)− lim
n→+∞

∫
f1[0,tn]da

=

∫
f1[0,t]da−

∫
f1[0,t[da

=

∫
f1{t}da

= f(t)da({t})
= f(t)Δa(t)

where the last equality stems from exercise (29) (part 5) of Tutorial 14.
Having proved in 10. that Δ(f.a)(0) = f(0)Δa(0) we conclude that Δ(f.a)(t) =
f(t)Δa(t) for all t ∈ R+.

13. Suppose that a is continuous with a(0) = 0. Since a is cadlag, from ex-
ercise (29) (part 1) of Tutorial 14, we have Δa(t) = 0 for all t ∈ R+. It
follows from 12. that Δ(f.a)(t) = 0 for all t ∈ R+. Since f.a is right-
continuous of finite variation (exercise (2)), in particular it is cadlag (ex-
ercise (29) part 4 of Tutorial 14) and consequently from Δ(f.a) = 0 we
conclude that f.a is continuous with f.a(0) = 0 (exercise (29) (part 1) of
Tutorial 14).

14. Given a : R+ → R+ right-continuous, non-decreasing with a(0) ≥ 0, and

f ∈ L1,loc
C (a), we proved in exercise (2) that f.a is right-continuous of

finite variation. We proved in 8. that |f.a| = |f |.a and in 9. that f.a is of
bounded variation if and only if f ∈ L1

C(a). Finally, we proved in 12. that
Δ(f.a) = fΔa. This completes the proof of theorem (88).

Exercise 5

Exercise 6.
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1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let
b : R+ → C be right-continuous of finite variation. We want to prove the
equivalence between:

(i) d|b| << da

(ii) |dbT | << da , ∀T ∈ R+

(iii) dbT << da , ∀T ∈ R+

Suppose (i) holds. Let T ∈ R+ and B ∈ B(R+) be such that da(B) = 0.
Since d|b| << da, from definition (96) we have d|b|(B) = 0. In particular
d|b|([0, T ] ∩ B) = 0. However, from theorem (84), d|b|([0, T ] ∩ ·) = |dbT |
and consequently |dbT |(B) = 0. This shows that |dbT | << da and we have
proved that (i) ⇒ (ii). Conversely, suppose (ii) holds, and let B ∈ B(R+)
be such that da(B) = 0. Then, for all T ∈ R+ we have |dbT |(B) = 0.
However from theorem (84), |dbT | = d|b|([0, T ] ∩ ·). Since [0, n] ∩ B ↑ B,
using theorem (7), we obtain:

d|b|(B) = lim
n→+∞ d|b|([0, n] ∩B)

= lim
n→+∞ |dbn|(B) = 0

This shows that d|b| << da and we have proved that (ii) ⇒ (i). So (i)
and (ii) are equivalent. From exercise (1) of Tutorial 12, |dbT | << da is
equivalent to dbT << da. We conclude that (ii) and (iii) are equivalent.
So (i), (ii) and (iii) are equivalent.

2. No, in general it does not make sense to write db << da, as b being
right-continuous of finite variation, it need not be right-continuous, non-
decreasing with b(0) ≥ 0, or right-continuous of bounded variation. So it
is not meaningful to speak of ’db’.

Exercise 6

Exercise 7.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let
b : R+ → C be right-continuous of finite variation. We assume that b is
absolutely continuous with respect to a, i.e. b << a. Let T ∈ R+. From
definition (113) we have dbT << da. Since [0, n] ↑ R+ with da([0, n]) =
a(n) < +∞ for all n ≥ 1, the Stieltjes measure da is σ-finite, while dbT

is a well-defined complex measure on (R+,B(R+)). Applying the Radon-
Nikodym theorem (60), there exists fT ∈ L1

C(R
+,B(R+), da) such that

dbT =
∫
fTda. However, from definition (112), L1

C(a) = L1
C(R

+,B(R+), da).
So there exists fT ∈ L1

C(a) such that dbT =
∫
fTda, i.e.:

dbT (B) =

∫
B

fTda , ∀B ∈ B(R+)
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2. Let T, T ′ ∈ R+, T ≤ T ′. From exercise (24) of Tutorial 14, dbT is the
unique complex measure on R+ such that:

(i) dbT ({0}) = b(0)

(ii) ∀s, t ∈ R+, s ≤ t , dbT (]s, t]) = b(T ∧ t)− b(T ∧ s)

However, we have:

dbT
′
([0, T ] ∩ {0}) = dbT

′
({0}) = b(0)

and furthermore, given s, t ∈ R+, s ≤ t:

dbT
′
([0, T ]∩]s, t]) = dbT

′
(]T ∧ s, T ∧ t])

= b(T ′ ∧ T ∧ t)− b(T ′ ∧ T ∧ s)

= b(T ∧ t)− b(T ∧ s)

It follows that the two complex measures dbT
′
([0, T ]∩·) and dbT coincide.

Hence, for all B ∈ B(R+):∫
B∩[0,T ]

fT ′da = dbT
′
([0, T ] ∩B)

= dbT (B)

=

∫
B

fTda

3. Let g = fT − fT ′1[0,T ] ∈ L1
C(R

+,B(R+), da). From 2. we have:∫
B

gda = 0 , ∀B ∈ B(R+)

Using exercise (7) of Tutorial 12, we conclude that g = 0 da-a.s. or
equivalently, fT = fT ′1[0,T ] da-a.s.

4. Let n, p ∈ N, 1 ≤ n ≤ p. From 3. we have fn = fp1[0,n] da-a.s. and
consequently there exists some Nn,p ∈ B(R+) with da(Nn,p) = 0 such
that fn(x) = fp(x)1[0,n](x) for all x ∈ N c

n,p. Define N = ∪1≤n≤pNn,p.
Then N ∈ B(R+) and da(N) = 0. Furthermore, for all 1 ≤ n ≤ p we
have:

∀x ∈ N c , fn(x) = fp(x)1[0,n](x)

For all n ≥ 1, define gn = fn1Nc . Then gn ∈ L1
C(a) and for all 1 ≤ n ≤ p

we have gn = gp1[0,n]. Furthermore since da(N) = 0, for all B ∈ B(R+),
using 1. we obtain:

dbn(B) =

∫
B

fnda

=

∫
B

fn1Ncda+

∫
B

fn1Nda

=

∫
B

fn1Ncda =

∫
B

gnda
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Renaming the gn’s as fn’s, we have found a sequence (fn)n≥1 in L1
C(a)

such that for all 1 ≤ n ≤ p, fn = fp1[0,n] and:

∀n ≥ 1 , dbn(B) =

∫
B

fnda , ∀B ∈ B(R+)

5. Let f : R+ → C be defined by f(t) = fn(t), where n ≥ 1 is any integer
such that t ∈ [0, n]. Suppose n, p ≥ 1 are two integers such that t ∈ [0, n]
and t ∈ [0, p]. Without loss of generality, we may assume that n ≤ p.
From 4. we have fn = fp1[0,n], and since t ∈ [0, n], we conclude that
fn(t) = fp(t). So f is unambiguously defined, i.e. f is well-defined.

6. Let B ∈ B(C). Suppose t ∈ {f ∈ B}. Then t ∈ R+ and f(t) ∈ B. Let n ≥
1 be such that t ∈ [0, n]. Then f(t) = fn(t) and consequently fn(t) ∈ B.
So t ∈ [0, n]∩{fn ∈ B}. This shows that {f ∈ B} ⊆ ∪n≥1[0, n]∩{fn ∈ B}.
To show the reverse inclusion, suppose that t ∈ [0, n]∩ {fn ∈ B} for some
n ≥ 1. Then t ∈ [0, n] and fn(t) ∈ B. But fn(t) = f(t). So f(t) ∈ B and
we have shown that ∪n≥1[0, n] ∩ {fn ∈ B} ⊆ {f ∈ B}. Finally, we have
proved that:

{f ∈ B} =

+∞⋃
n=1

[0, n] ∩ {fn ∈ B} (5)

7. Let B ∈ B(C). From 4. each fn is an element of L1
C(a), and in particular

fn : (R+,B(R+)) → (C,B(C)) is a measurable map. Hence, {fn ∈ B} ∈
B(R+). It follows from (5) that {f ∈ B} ∈ B(R+), which shows that
f : (R+,B(R+)) → (C,B(C)) is measurable.

8. Let t ∈ R+ and n ≥ 1 be such that t ∈ [0, n]. Then:∫ t

0

|f |da =

∫
|f |1[0,t]da

≤
∫

|f |1[0,n]da

=

∫
|fn|1[0,n]da

≤
∫

|fn|da < +∞

where we have used that fact that fn ∈ L1
C(a). Since f is measurable,

we conclude from definition (112) that f ∈ L1,loc
C (a). Furthermore, given

t ∈ R+ and n ≥ 1 such that t ∈ [0, n]:∫ t

0

fda =

∫
f1[0,t]da

=

∫
f1[0,t]1[0,n]da
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=

∫
fn1[0,t]1[0,n]da

=

∫
[0,t]

fnda

= dbn([0, t])

= bn(t)

= b(n ∧ t) = b(t)

which shows that b = f.a.

9. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0.
Let b : R+ → C be right-continuous of finite variation. If b is absolutely
continuous with respect to a, i.e. b << a, From 8. there exists f ∈
L1,loc
C (a) such that b = f.a, i.e.:

b(t) =

∫ t

0

fda , ∀t ∈ R+

Conversely, suppose there exists f ∈ L1,loc
C (a) such that b = f.a. Then,

from theorem (88), the total variation map of b is given by |b| = |f.a| =
|f |.a. It follows from theorem (87) that the Stieltjes measure d|b| is given
by:

d|b|(B) = d(|f |.a)(B) =

∫
B

|f |da , ∀B ∈ B(R+)

Hence, if da(B) = 0, it is clear that d|b|(B) = 0, which shows that d|b| <<
da, i.e. b is absolutely continuous with respect to a. We have proved
the equivalence stated in theorem (89). Going back to 5., f was defined
from the fn’s as f(t) = fn(t) for any n ≥ 1 with t ∈ [0, n]. Each fn
was fundamentally obtained in 1. (before some cleaning up in 4.) from an
application of the Radon-Nikodym theorem (60). Suppose now that b has
values in R. Given n ≥ 1, we claim that the complex measure dbn is in
fact a signed measure (i.e. a complex measure with values in R). Indeed
the complex measure Re(dbn) is such that:

Re(dbn)({0}) = Re(dbn({0})) = Re(b(0)) = b(0)

and furthermore, if s, t ∈ R+, s ≤ t:

Re(dbn)(]s, t]) = Re(b(n ∧ t)− b(n ∧ s)) = b(n ∧ t)− b(n ∧ s)

and from the uniqueness property proved in exercise (24) of Tutorial 14, we
conclude that Re(dbn) = dbn, and dbn is indeed a signed measure. From
theorem (60), it follows that each fn may be assumed to be R-valued, and

consequently f ∈ L1,loc
C (a) may be assumed to lie in L1,loc

R (a). Suppose
now that b is non-decreasing (so with values in R) with b(0) ≥ 0. Given
n ≥ 1, the complex Stieltjes measure dbn is in fact a finite measure on
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(R+,B(R+)), and from theorem (60), each fn may be assumed to be non-
negative. This shows that f may be assumed to be R-valued with f ≥ 0.
This completes the proof of theorem (89).

Exercise 7

Exercise 8.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let

f, g ∈ L1,loc
C (a) be such that f.a = g.a, i.e.:∫ t

0

fda =

∫ t

0

gda , ∀t ∈ R+

Let T ∈ R+ and B ∈ B(R+). Using 4. of exercise (5), we have:∫
B

f1[0,T ]da = d(f.a)T (B)

= d(g.a)T (B)

=

∫
B

g1[0,T ]da

2. Let h = (f − g)1[0,T ]. From 2. of exercise (5), h ∈ L1
C(a). So h is an

element of L1
C(R

+,B(R+), da) and furthermore from 1.:∫
B

hda = 0 , ∀B ∈ B(R+)

Using exercise (7) of Tutorial 12, we conclude that h = 0 da-a.s. or
equivalently f1[0,T ] = g1[0,T ] da-a.s.

3. Given n ≥ 1, from 2. we have f1[0,n] = g1[0,n] da-a.s.. There exists
Nn ∈ B(R+) with da(Nn) = 0 such that:

f(x)1[0,n](x) = g(x)1[0,n](x)

for all x ∈ N c
n. Let N = ∪n≥1Nn. Then N ∈ B(R+), da(N) = 0 and

furthermore for all x ∈ N c, we have f(x)1[0,n](x) = g(x)1[0,n](x) for all
n ≥ 1. So f(x) = g(x) for all x ∈ N c, and we have proved that f = g
da-a.s.

Exercise 8

Exercise 9.

1. Let b : R+ → C be right-continuous of finite variation. The total variation
map |b| is right-continuous, non-decreasing with |b|(0) ≥ 0. Applying

theorem (89) to b and |b|, there exists h ∈ L1,loc
C (|b|) such that b = h.|b|.

2. Let T ∈ R+ and B ∈ B(R+). From 4. of exercise (5), we have:

dbT (B) = d(h.|b|)T (B) =

∫
B

hd|b|T
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However, from theorem (84), we have d|b|T = |dbT |. Hence:

dbT (B) =

∫
B

hd|b|T =

∫
B

h|dbT |

3. Let T ∈ R+. From theorem (63), the total variation of the complex
measure

∫
h|dbT | is equal to ∫ |h||dbT |. Hence from 2., for all B ∈ B(R+)

we have: ∫
B

|h||dbT | = |dbT |(B) =

∫
B

1|dbT |
Using exercise (7) of Tutorial 12, |h| = 1 |dbT |-a.s.

4. Let T ∈ R+. We have proved in 3. that |h| = 1, |dbT |-a.s.. Hence, there
exists N ∈ B(R+) with |dbT |(N) = 0 such that |h|(x) = 1 for all x ∈ N c.
It follows that {|h| 
= 1} ⊆ N and consequently from theorem (84):

d|b|([0, T ] ∩ {h 
= 1}) = |dbT |({h 
= 1})
≤ |dbT |(N) = 0

5. From 4. we have d|b|([0, n] ∩ {|h| 
= 1}) = 0 for all n ≥ 1, and since
[0, n] ∩ {|h| 
= 1} ↑ {|h| 
= 1}, from theorem (7):

d|b|({|h| 
= 1}) = lim
n→+∞ d|b|([0, n] ∩ {|h| 
= 1}) = 0

Taking N = {|h| 
= 1} we have found N ∈ B(R+) such that d|b|(N) = 0
and |h|(x) = 1 for all x ∈ N c. This shows that |h| = 1, d|b|-a.s.

6. Let b : R+ → C be right-continuous of finite variation. From 1. there

exists h ∈ L1,loc
C (|b|) such that b = h.|b|. However from 5. we have |h| = 1,

d|b|-a.s.. Let N ∈ B(R+) be such that d|b|(N) = 0 and |h|(x) = 1 for all
x ∈ N c. Defining:

h∗ = h1Nc + 1N

Then h∗ is measurable, and is d|b|-almost surely equal to h. So h∗ ∈
L1,loc
C (|b|). Furthermore, |h∗| = 1 and for all t ∈ R+:

b(t) =

∫ t

0

hd|b|

=

∫
h1[0,t]d|b|

=

∫
h∗1[0,t]d|b|

=

∫ t

0

h∗d|b|

Renaming h∗ by h, we have found h ∈ L1,loc
C (|b|) with |h| = 1, such that

b = h.|b|. This completes the proof of theorem (90).
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Exercise 9

Exercise 10.

1. Let b : R+ → C be right-continuous of finite variation. Let f ∈ L1
C(b). Let

h ∈ L1,loc
C (|b|) be such that |h| = 1 and b = h.|b|. Then fh is measurable,

and since f ∈ L1
C(b): ∫

|fh|d|b| =
∫

|f |d|b| < +∞

Hence, the integral
∫
fhd|b| is well-defined.

2. Let f ∈ L1
C(b). Suppose h∗ is another element of L1,loc

C (|b|) with |h∗| = 1
and b = h∗.|b|. Then, for all t ∈ R+, we have:

b(t) =

∫ t

0

h∗d|b| =
∫ t

0

hd|b|

From exercise (8) it follows that h and h∗ are equal d|b|-almost surely.
Hence: ∫

fh∗d|b| =
∫

fhd|b|
which shows that the integral

∫
fhd|b| does not depend on the particular

choice of h ∈ L1,loc
C (|b|) with |h| = 1 and b = h.|b|. It follows that

∫
fdb

as defined in (114) is unambiguously defined.

3. Suppose b is in fact real-valued, right-continuous, non-decreasing with
b(0) ≥ 0. Then db is well-defined as a Stieltjes measure on R+, as per
definition (24). Since |b| = b, it is possible to choose h = 1 to obtain

h ∈ L1,loc
C (|b|) with |h| = 1 and b = h.|b|. Indeed for all t ∈ R+, we have:

h.|b|(t) =

∫ t

0

hd|b|

=

∫
h1[0,t]d|b|

=

∫
1[0,t]d|b|

= d|b|([0, t]) = |b|(t) = b(t)

Given f ∈ L1
C(b), the integral

∫
fdb as defined in (114) is equal to

∫
fhd|b|.

Since h = 1 and |b| = b, such integral is equal to
∫
fdb where db is

the Stieltjes measure as defined in (24). Hence, we see that the Stieltjes
integral

∫
fdb as defined in (114) coincides with the integral

∫
fdb with

respect to the Stieltjes measure db as defined in (24).

4. Suppose b is right-continuous of bounded variation. Then db is meaningful
as the complex Stieltjes measure, as defined in (110). Given f ∈ L1

C(b), the
integral

∫
fdb is meaningful, as per definition (97). However, the notation
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∫
fdb is also used to refer to the Stieltjes integral, as defined in (114).

Hence, we need to check that the two definitions do not conflict with one

another, i.e. that the two integrals do in fact coincide. Let h ∈ L1,loc
C (|b|)

be such that |h| = 1 with b = h.|b|. Since b is of bounded variation, h is
in fact an element of L1

C(b). Indeed:∫
|h|d|b| =

∫
d|b|

= d|b|(R+) = |b|(∞) < +∞
From theorem (86), db = d(h.|b|) is given by:

db(B) = d(h.|b|)(B) =

∫
B

hd|b| , ∀B ∈ B(R+)

Furthermore from theorem (84), d|b| = |db| and consequently:

db(B) =

∫
B

h|db| , ∀B ∈ B(R+)

It follows that h ∈ L1
C(R

+,B(R+), |db|) is such that |h| = 1 and db =∫
h|db|. From definition (97), the integral

∫
fdb with respect to the com-

plex measure db is equal to
∫
fh|db|, and since |db| = d|b|, such integral

is itself equal
∫
fhd|b|, which is exactly

∫
fdb as defined in (114). We

conclude that the two integrals
∫
fdb as defined in (97) and (114), do in

fact coincide.

Exercise 10

Exercise 11.

1. Let b : R+ → C be right-continuous of finite variation. Let f ∈ L1,loc
C (b).

Then, for all t ∈ R+:∫
|f |1[0,t]d|b| =

∫ t

0

|f |d|b| < +∞

So f1[0,t] is an element of L1
C(b). Hence, the integral:∫ t

0

fdb
�
=

∫
f1[0,t]db

is well-defined by virtue of definition (114). We conclude that the map
f.b : R+ → C is well-defined.

2. Suppose b is right-continuous, non-decreasing with b(0) ≥ 0. Then b = |b|
and we can choose h = 1 to obtain h ∈ L1,loc

C (|b|) with |h| = 1 and

b = h.|b|. Given f ∈ L1,loc
C (b) and t ∈ R+, from definition (114), we have:

f.b(t)
�
=

∫ t

0

fdb
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�
=

∫
f1[0,t]db

=

∫
fh1[0,t]d|b|

=

∫
f1[0,t]d|b|

=

∫
f1[0,t]db

=

∫ t

0

fdb

where this last integral is that of theorem (88). So f.b as defined in this
exercise, coincides with f.b as defined in theorem (88).

3. Let h ∈ L1,loc
C (|b|) with |h| = 1 and b = h.|b|. For all t ∈ R+:

f.b(t)
�
=

∫
f1[0,t]db

=

∫
fh1[0,t]d|b|

=

∫ t

0

fhd|b| = (fh).|b|(t)

It follows that f.b = (fh).|b|.
4. From f.b = (fh).|b| and theorem (88), f.b is right-continuous of finite

variation, and furthermore:

|f.b| = |(fh).|b|| = |fh|.|b| = |f |.|b|
or equivalently:

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

5. From 4. and the monotone convergence theorem (19), we have:

|f.b|(∞) = lim
n→+∞ |f.b|(n)

= lim
n→+∞

∫
|f |1[0,n]d|b|

=

∫
|f |d|b|

Hence, given f ∈ L1,loc
C (b), |f.b|(∞) < +∞ is equivalent to

∫ |f |d|b| < +∞
which is itself equivalent to f ∈ L1

C(b). So f.b is of bounded variation, if
and only if f ∈ L1

C(b).

6. From 4. the map f.b is right-continuous of finite variation. It follows
from exercise (29) (part 4) of Tutorial 14 that f.b is cadlag. From def-
inition (111), Δ(f.b) is therefore well-defined. From 3. we have f.b =
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(fh).|b|. Applying theorem (88) to |b| and fh ∈ L1,loc
C (|b|), we obtain

Δ(f.b) = (fh)Δ|b|. However, from b = h.|b| and theorem (88), we have
Δb = hΔ|b|. Hence, we conclude that Δ(f.b) = fΔb.

7. Since b and f.b are right-continuous of finite variation, they are both cadlag
maps. From exercise (29) (part 1) of Tutorial 14, if b is continuous with
b(0) = 0, then Δb = 0 and consequently:

Δ(f.b) = fΔb = 0

It follows from this same exercise (29) that f.b is continuous with f.b(0) =
0.

8. Let b : R+ → C be right-continuous of finite variation. Let f ∈ L1,loc
C (b).

We saw in 1. that f.b is well-defined, and in 4. that it is right-continuous
of finite variation with |f.b| = |f |.|b|. We saw in 5. that f.b is of bounded
variation, if and only if f ∈ L1

C(b). Finally, we say in 6. that Δ(f.b) = fΔb.
This completes the proof of theorem (91)

Exercise 11

Exercise 12.

1. Let b : R+ → C be right-continuous of finite variation. Let f ∈ L1,loc
C (b)

and T ∈ R+. From definition (45) we have:∫
|f |1[0,T ]d|b| =

∫
|f |d|b|[0,T ]

Furthermore, from exercise (24) of Tutorial 14:

d|b|[0,T ] �
= d|b|([0, T ] ∩ ·) = d|b|T = d|bT |

Hence, we conclude that:∫
|f |1[0,T ]d|b| =

∫
|f |d|b|[0,T ] =

∫
|f |d|bT |

2. Since f ∈ L1,loc
C (b), using 1. we obtain:∫

|f |d|bT | =
∫

|f |1[0,T ]d|b| =
∫ T

0

|f |d|b| < +∞

It follows that f ∈ L1
C(b

T ) and f1[0,T ] ∈ L1
C(b).

3. Let h ∈ L1,loc
C (|b|) with |h| = 1 and b = h.|b|. Let t ∈ R+:

bT (t) = b(T ∧ t)

= (h.|b|)(T ∧ t)

=

∫
h1[0,T∧t]d|b|
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=

∫
h1[0,t]1[0,T ]d|b|

=

∫
h1[0,t]d|b|[0,T ]

=

∫
h1[0,t]d|bT |

=

∫ t

0

hd|bT |

= h.|bT |(t)
where the fifth equality stems from definition (49) and the sixth from
d|b|[0,T ] = d|bT | (exercise (24) of Tutorial 14). We conclude that bT =
h.|bT |.

4. For all t ∈ R+, we have:

(f.b)T (t) = (f.b)(T ∧ t)

=

∫
f1[0,T∧t]db

=

∫
f1[0,T ]1[0,t]db

=

∫ t

0

f1[0,T ]db

= (f1[0,T ]).b(t)

It follows that (f.b)T = (f1[0,T ]).b. Furthermore, for all t ∈ R+:

(f.b)T (t) =

∫
f1[0,T ]1[0,t]db

=

∫
fh1[0,T ]1[0,t]d|b|

=

∫
fh1[0,t]d|b|[0,T ]

=

∫
fh1[0,t]d|bT |

=

∫
f1[0,t]db

T

=

∫ t

0

fdbT

= f.(bT )(t)

where the second equality stems from definition (114), the third from
definition (49), the fourth from d|b|[0,T ] = d|bT | and the fifth from defini-
tion (114) and the fact proved in 3. that |h| = 1 with bT = h.|bT |. It fol-
lows that (f.b)T = f.(bT ) and we have proved that (f.b)T = (f1[0,T ]).b =
f.(bT ).
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5. From theorem (91), the total variation map |f.b| is given by:

|f.b|(t) =
∫ t

0

|f |d|b| , ∀t ∈ R+

From theorem (87), the Stieltjes measure d|f.b| is given by:

d|f.b|(B) =

∫
B

|f |d|b| , ∀B ∈ B(R+)

6. Let g : R+ → C be Borel-measurable. For all t ∈ R+:∫ t

0

|g|d|f.b| =

∫
|g|1[0,t]d|f.b|

=

∫
|g| · |f |1[0,t]d|b|

=

∫ t

0

|gf |d|b|

where the second equality stems from theorem (21) and the fact proved
in 5. that d|f.b| = ∫ |f |d|b|. We conclude from definition (112) that g ∈
L1,loc
C (f.b) if and only if gf ∈ L1,loc

C (b).

7. Using 4. and exercise (11) (part 3) together with the fact that |h| = 1 with
bT = h.|bT |, we obtain:

(f.b)T = f.(bT ) = (fh).|bT |
Since f ∈ L1

C(b
T ), we have fh ∈ L1

C(|bT |), and applying theorem (86),
the complex Stieltjes measure d(f.b)T is given by:

d(f.b)T (B) =

∫
B

fhd|bT | , ∀B ∈ B(R+)

8. Since |h| = 1, we have h ∈ L1
C(|bT |). Indeed:∫

|h|d|bT | = d|bT |(R+)

= d|b|[0,T ](R+)

= d|b|([0, T ] ∩R+)

= d|b|([0, T ])
= |b|(T ) < +∞

From bT = h.|bT | and theorem (86), the complex Stieltjes measure dbT is
given by:

dbT (B) =

∫
B

hd|bT | , ∀B ∈ B(R+)

www.probability.net

http://www.probability.net


Solutions to Exercises 33

i.e. dbT =
∫
hd|bT |. However, from theorem (84), we have |dbT | = d|b|T =

d|bT |. It follows that dbT =
∫
h|dbT | and consequently for all B ∈ B(R+):∫

B

fdbT =

∫
f1Bdb

T

=

∫
fh1B|dbT |

=

∫
fh1Bd|bT |

=

∫
B

fhd|bT |

= d(f.b)T (B)

where the second equality stems from definition (97), the third from the-
orem (84) and the fact that |b|T = |bT |, and the fifth from the fact proved
in 7. that d(f.b)T =

∫
fhd|bT |. We conclude that d(f.b)T =

∫
fdbT .

9. Let g ∈ L1,loc
C (f.b). We have:∫

|g|d|(f.b)T | =

∫
|g|d|f.b|T

=

∫
|g|d|f.b|[0,T ]

=

∫
|g|1[0,T ]d|f.b|

=

∫ T

0

|g|d|f.b| < +∞

where the first and second equalities stem from exercise (24) of Tutorial 14,
and the third from definition (45). Hence, we see that g ∈ L1

C((f.b)
T ).

Let t ∈ R+. Then g1[0,t] is also an element of L1
C((f.b)

T ). From theo-
rem (84), we have d|(f.b)T | = |d(f.b)T | and g1[0,t] is therefore an element
of L1

C(R
+,B(R+), d(f.b)T ). Having proved in 8. that d(f.b)T =

∫
fdbT ,

from theorem (65): ∫
g1[0,t]d(f.b)

T =

∫
gf1[0,t]db

T (6)

10. The two integrals in (6) are integrals with respect to complex measures,
as defined in (97). However, since (f.b)T and bT are both right-continuous
of bounded variation, from exercise (10), these integrals coincide with the
Stieltjes integrals as defined in (114). Hence, for all t ∈ R+, we have:∫

g1[0,t]d(f.b)
T = g.((f.b)T )(t)

and: ∫
gf1[0,t]db

T = (gf).(bT )(t)
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We conclude from (6) that:

g.((f.b)T ) = (gf).(bT ) (7)

11. f.b being right-continuous of finite variation and g ∈ L1,loc
C (f.b), we can

apply 4. to g and f.b to obtain:

(g.(f.b))T = g.((f.b)T ) (8)

Furthermore, from 6. we have gf ∈ L1,loc
C (b), and from 4.:

((gf).b)T = (gf).(bT ) (9)

From (7), (8)and (9) we conclude that:

(g.(f.b))T = ((gf).b)T (10)

12. Let t ∈ R+. For all T ∈ R+ from (10) we have:

(g.(f.b))(T ∧ t) = ((gf).b)(T ∧ t)

In particular for T = t, g.(f.b)(t) = (gf).b(t). This being true for all
t ∈ R+, we have proved that g.(f.b) = (gf).b.

13. Let b : R+ → C be right-continuous of finite variation and f ∈ L1,loc
C (b).

Let g : R+ → C be Borel-measurable. The equivalence:

g ∈ L1,loc
C (f.b) ⇔ gf ∈ L1,loc

C (b)

was proved in 6, and given g ∈ L1,loc
C (f.b), we showed in 12. that g.(f.b) =

(gf).b. This completes the proof of theorem (92).

Exercise 12

Exercise 13. Let b : R+ → C be right-continuous of finite variation. Let

f, g ∈ L1,loc
C (b) and α ∈ C. For all t ∈ R+, we have:∫ t

0

|f + αg|d|b| =

∫
|f + αg|1[0,t]d|b|

≤
∫
(|f |+ |α| · |g|)1[0,t]d|b|

=

∫
|f |1[0,t]d|b|+ |α|

∫
|g|1[0,t]d|b|

=

∫ t

0

|f |d|b|+ |α|
∫ t

0

|g|d|b| < +∞

So f + αg ∈ L1,loc
C (b). Let h ∈ L1,loc

C (|b|) be such that |h| = 1 and b = h.|b|.
Then for all t ∈ R+:

(f + αg).b(t) =

∫ t

0

(f + αg)db
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=

∫
(f + αg)h1[0,t]d|b|

=

∫
fh1[0,t]d|b|+ α

∫
gh1[0,t]d|b|

=

∫ t

0

fdb+ α

∫ t

0

gdb

= f.b(t) + α(g.b)(t)

This being true for all t ∈ R+, (f + αg).b = f.b+ α(g.b).
Exercise 13

Exercise 14.

1. Let b, c : R+ → C be two right-continuous maps of finite variation. Let

f ∈ L1,loc
C (b) ∩ L1,loc

C (c) and α ∈ C. Let T ∈ R+. From exercise (6) of
Tutorial 14, b+ αc is a map of finite variation, and it is right-continuous.
From exercise (24) of Tutorial 14, d(b+αc)T is the unique complex measure
on R+ with:

d(b + αc)T ({0}) = b(0) + αc(0)

and for all s, t ∈ R+, s ≤ t:

d(b+ αc)T (]s, t]) = (b + αc)(T ∧ t)− (b+ αc)(T ∧ s)

However, dbT and dcT being two complex measures on R+, dbT +αdcT is
also a complex measure on R+, which furthermore, from exercise (24) of
Tutorial 14, satisfies:

(dbT + αdcT )({0}) = dbT ({0}) + αdcT ({0})
= b(0) + αc(0)

and for all s, t ∈ R+, s ≤ t:

(dbT + αdcT )(]s, t]) = dbT (]s, t]) + αdcT (]s, t])

= b(T ∧ t)− b(T ∧ s)

+ α(c(T ∧ t)− c(T ∧ s))

= (b + αc)(T ∧ t)− (b + αc)(T ∧ s)

Hence, from the uniqueness property stated above:

d(b + αc)T = dbT + αdcT

2. Using 1., exercise (17) of Tutorial 12 and theorem (84):

d|b + αc|T = |d(b + αc)T |
= |dbT + αdcT |
≤ |dbT |+ |αdcT |
= |dbT |+ |α| · |dcT |
= d|b|T + |α|d|c|T
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3. Let B ∈ B(R+). Since [0, n] ∩ B ↑ B, using 2. with theorem (7) and
exercise (24) of Tutorial 14, we obtain:

d|b + αc|(B) = lim
n→+∞ d|b+ αc|([0, n] ∩B)

= lim
n→+∞ d|b+ αc|n(B)

≤ lim
n→+∞(d|b|n + |α|d|c|n)(B)

= lim
n→+∞(d|b|([0, n] ∩B) + |α|d|c|([0, n] ∩B)

= d|b|(B) + |α|d|c|(B)

= (d|b|+ |α|d|c|)(B)

We conclude that d|b + αc| ≤ d|b|+ |α|d|c|.
4. Using 3. with exercise (18) of Tutorial 12, for all t ∈ R+:∫ t

0

|f |d|b+ αc| =

∫
|f |1[0,t]d|b + αc|

≤
∫

|f |1[0,t](d|b|+ |α|d|c|)

=

∫
|f |1[0,t]d|b|+ |α|

∫
|f |1[0,t]d|c|

=

∫ t

0

|f |d|b|+ |α|
∫ t

0

|f |d|c| < +∞

Hence, we conclude that f ∈ L1,loc
C (b+ αc).

5. We have proved in 8. of exercise (12) that given f ∈ L1,loc
C (b) where b is

right-continuous of finite variation, the complex Stieltjes measure d(f.b)T

is given by d(f.b)T =
∫
fdbT . Applying this result to b + αc (which is

indeed right-continuous of finite variation) and f ∈ L1,loc
C (b+ αc), for all

B ∈ B(R+):

d(f.(b + αc))T (B) =

∫
B

fd(b+ αc)T

6. From 8. of exercise (12) we have d(f.b)T =
∫
fdbT and similarly d(f.c)T =∫

fdcT . Hence, using 1. and 5. together with definition (98) and exer-
cise (17) of Tutorial 12, for all B ∈ B(R+):

d(f.(b + αc))T (B) =

∫
B

fd(b + αc)T

=

∫
f1Bd(b + αc)T

=

∫
f1B(db

T + αdcT )

=

∫
f1Bdb

T + α

∫
f1Bdc

T
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=

∫
B

fdbT + α

∫
B

fdcT

= d(f.b)T (B) + αd(f.c)T (B)

= (d(f.b)T + αd(f.c)T )(B)

7. Evaluating the equality obtained in 6. for B = [0, t]:

(f.(b+ αc))T (t) = d(f.(b + αc))T ([0, t])

= d(f.b)T ([0, t]) + αd(f.c)T ([0, t])

= (f.b)T (t) + α(f.c)T (t)

= ((f.b)T + α(f.c)T )(t)

8. Given t ∈ R+, it follows from 7.:

(f.(b + αc))(T ∧ t) = (f.b)(T ∧ t) + α(f.c)(T ∧ t)

This being true for all T ∈ R+, in particular for T = t:

(f.(b + αc))(t) = (f.b)(t) + α(f.c)(t)

We conclude that f.(b + αc) = f.b+ α(f.c).

Exercise 14

Exercise 15.

1. Let b : R+ → C be right-continuous of finite variation. Let b1 = Re(b) and
b2 = Im(b). Then b1 and b2 are both right-continuous of finite variation,
and b = b1 + ib2. From 3. of exercise (14), we obtain:

d|b| = d|b1 + ib2| ≤ d|b1|+ d|b2|

2. We want to show that d|b1| ≤ d|b|, and d|b2| ≤ d|b|. Like on many
occasions in this Tutorial and Tutorial 14, we shall resort some localization
technique, i.e. consider some T ∈ R+ together with the complex Stieltjes
measure dbT (remember that ’db’ does not in general make sense for b
right-continuous of finite variation). Since:

Re(dbT )({0}) = Re(dbT ({0})) = Re(b(0)) = b1(0)

and furthermore for all s, t ∈ R+, s ≤ t:

Re(dbT )(]s, t]) = Re(dbT (]s, t]))

= Re(b(T ∧ t)− b(T ∧ s))

= b1(T ∧ t)− b1(T ∧ s)

From the uniqueness property stated in exercise (24) (part 3) of Tuto-
rial 14, we conclude that Re(dbT ) = dbT1 . However, from exercise (19) of
Tutorial 12, we have |Re(dbT )| ≤ |dbT | and consequently |dbT1 | ≤ |dbT |.
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Applying theorem (84), we obtain d|b1|T ≤ d|b|T and finally, this being
true for all T ∈ R+, using theorem (7), for all B ∈ B(R+):

d|b1|(B) = lim
n→+∞ d|b1|([0, n] ∩B)

= lim
n→+∞ d|b1|n(B)

≤ lim
n→+∞ d|b|n(B)

= lim
n→+∞ d|b|([0, n] ∩B)

= d|b|(B)

So d|b1| ≤ d|b| and similarly d|b2| ≤ d|b|.
3. Since |b1| = |b1|+ + |b1|−, we have:

(d|b1|+ + d|b1|−)({0}) = d|b1|+({0}) + d|b1|−({0})
= |b1|+(0) + |b1|−(0) = |b1|(0)

and furthermore, for all s, t ∈ R+, s ≤ t:

(d|b1|++d|b1|−)(]s, t]) = d|b1|+(]s, t]) + d|b1|−(]s, t])
= |b1|+(t)−|b1|+(s)+|b1|−(t)−|b1|−(s)
= |b1|(t)− |b1|(s)

From the uniqueness property stated in definition (24), it follows that
d|b1|+ + d|b1|− = d|b1|. Hence, using 2. we obtain d|b1|+ ≤ d|b1| ≤ d|b|
and similarly, d|b1|− ≤ d|b|, d|b2|+ ≤ d|b| and d|b2|− ≤ d|b|. Now suppose

that f ∈ L1,loc
C (b). Then, from exercise (18) of Tutorial 12, for all t ∈ R+,

we have: ∫ t

0

|f |d|b1|+ =

∫
|f |1[0,t]d|b1|+

≤
∫

|f |1[0,t]d|b|

=

∫ t

0

|f |d|b| < +∞

with similar inequalities involving |b1|−, |b2|+ and |b2|−. Hence:
f ∈ L1,loc

C (|b1|+) ∩ L1,loc
C (|b1|−) ∩ L1,loc

C (|b2|+) ∩ L1,loc
C (|b2|−)

Conversely if f belongs to such intersection, using 1. together with exer-
cise (18) of Tutorial 12 we obtain for all t ∈ R+:∫ t

0

|f |d|b| =

∫
|f |1[0,t]d|b|

≤
∫

|f |1[0,t](d|b1|+ d|b2|)
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=

∫
|f |1[0,t]d|b1|+

∫
|f |1[0,t]d|b2|

=

∫
|f |1[0,t]d|b1|+ +

∫
|f |1[0,t]d|b1|−

+

∫
|f |1[0,t]d|b2|+ +

∫
|f |1[0,t]d|b2|−

=

∫ t

0

|f |d|b1|+ +

∫ t

0

|f |d|b1|−

+

∫ t

0

|f |d|b2|+ +

∫ t

0

|f |d|b2|− < +∞

and we conclude that f ∈ L1,loc
C (b).

4. Let f ∈ L1,loc
C (b). Then f is an element of all L1,loc

C (|bi|±), and further-
more b = |b1|+− |b1|−+ i(|b2|+− |b2|−) where |b1|+, |b1|−, |b2|+ and |b2|−
are all right-continuous of finite variation (they are in fact non-decreasing
with non-negative initial values). From exercise (14), we obtain:

f.b = f.|b1|+ − f.|b1|− + i(f.|b2|+ − f.|b2|−)
or equivalently, for all t ∈ R+:∫ t

0

fdb =

∫ t

0

fd|b1|+ −
∫ t

0

fd|b1|− + i

(∫ t

0

fd|b2|+ −
∫ t

0

fd|b2|−
)

Exercise 15

Exercise 16.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. We
define c : R+ → [0,+∞] as:

c(t)
�
= inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

with the convention inf ∅ = +∞. Let s, t ∈ R+, and suppose that t < a(s).
Then s is an element of {s ∈ R+ : t < a(s)}. Since c(t) is a lower bound
of this set, we obtain c(t) ≤ s. We have proved that:

t < a(s) ⇒ c(t) ≤ s

2. Suppose that c(t) < s. Since c(t) is the greatest lower-bound of the set
{u ∈ R+ : t < a(u)}, s cannot be such a lower-bound. Hence, there
exists u ∈ R+ such that t < a(u) and u < s. In particular, a being
non-decreasing, a(u) ≤ a(s). It follows that t < a(s) and we have proved
that:

c(t) < s ⇒ t < a(s)

3. Suppose c(t) ≤ s and let ε > 0. Then c(t) < s+ ε and consequently from
2. we obtain t < a(s+ ε). We have proved that:

c(t) ≤ s ⇒ t < a(s+ ε) , ∀ε > 0
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4. Suppose c(t) ≤ s. Using 3. for all n ≥ 1, we have t < a(s+ 1/n). Since a
is right-continuous, taking the limit as n → +∞, we obtain t ≤ a(s). We
have proved that:

c(t) ≤ s ⇒ t ≤ a(s)

5. Suppose c(t) < +∞. Then {s ∈ R+ : t < a(s)} is non-empty. Hence, there
exists s ∈ R+ such that t < a(s). Since a(s) ≤ a(∞) = supu∈R+ a(u),
in particular we obtain t < a(∞). Conversely, suppose that t < a(∞).
Since a(∞) is the lowest upper-bound of all a(u)’s as u ∈ R+, t cannot
be such an upper-bound. There exists u ∈ R+ such that t < a(u), and
consequently c(t) ≤ u. This shows in particular that c(t) < +∞. We have
proved the equivalence:

c(t) < +∞ ⇔ t < a(∞)

6. Let t, t′ ∈ R+, t ≤ t′. Suppose s ∈ R+ is such that t′ < a(s). In particular
t < a(s), and consequently c(t) ≤ s. It follows that c(t) is a lower-bound
of the set {s ∈ R+ : t′ < a(s)}. Since c(t′) is the greatest of such lower-
bounds, we obtain c(t) ≤ c(t′). This shows that c is non-decreasing.

7. Let t0 ∈ [a(∞),+∞[. Then in particular a(∞) ≤ t0 and from 5. we obtain
c(t0) = +∞. From 6. the map c : R+ → [0,+∞] is non-decreasing. Hence,
for all t ∈ R+, t0 ≤ t, we have c(t0) ≤ c(t). It follows that c(t) = +∞ for
all t ∈ R+, t0 ≤ t. In particular, limt↓t0 c(t) = +∞ = c(t0). This shows
that c is right-continuous at t0.

8. Let t0 ∈ [0, a(∞)[ and ε > 0. Since t0 < a(∞), from 5. we obtain c(t0) <
+∞. Hence, c(t0) < c(t0) + ε. Since c(t0) is the greatest lower-bound
of the set{s ∈ R+ : t0 < a(s)}, c(t0) + ε cannot be such a lower-bound.
There exists s ∈ R+ such that t0 < a(s) and s < c(t0)+ ε. From t0 < a(s)
we obtain c(t0) ≤ s. We have found s ∈ R+ such that c(t0) ≤ s < c(t0)+ε
and t0 < a(s).

9. Suppose t ∈ [t0, a(s)[. From 6. the map c is non-decreasing, and con-
sequently c(t0) ≤ c(t). From t < a(s) we have c(t) ≤ s, and since
s < c(t0) + ε, we obtain c(t) < c(t0) + ε. In particular, c(t) ≤ c(t0) + ε.
We have proved that:

t ∈ [t0, a(s)[ ⇒ c(t0) ≤ c(t) ≤ c(t0) + ε

10. For all t0 ∈ [a(∞),+∞[, we have seen in 7. that c is right-continuous at
t0. Suppose t0 ∈ [0, a(∞)[. Given ε > 0, we have shown the existence of
s ∈ R+ such that if u = a(s), then t0 < u and furthermore:

t ∈ [t0, u[ ⇒ c(t0) ≤ c(t) ≤ c(t0) + ε

This shows that limt↓t0 c(t) = c(t0), and c is right-continuous at t0. Fi-
nally, c is right-continuous at t0 for all t0 ∈ R+. So c is right-continuous.
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11. Suppose a(∞) = +∞. Then for all t ∈ R+, we have t < a(∞). From 5.
it follows that c(t) < +∞, and c : R+ → [0,+∞] is in fact a map with
values in R+. We have shown in 10. that c is right-continuous. We have
shown in 6. that c is non-decreasing. If one needs to prove that c(0) ≥ 0,
recall that 0 is a lower-bound of the set {s ∈ R+ : 0 < a(s)}, and that c(0)
is the greatest of such lower-bounds. We have proved that c : R+ → R+

is right-continuous, non-decreasing with c(0) ≥ 0.

12. We define ā : R+ → [0 +∞] as:

ā(s) = inf{t ∈ R+ : s < c(t)} , ∀s ∈ R+

Let s, t ∈ R+ and suppose that s < c(t). Then c(t) ≤ s is not true. From
1. it follows that t < a(s) is not true, i.e. a(s) ≤ t.

13. From 12. a(s) is a lower-bound of {t ∈ R+ : s < c(t)}. Since ā(s) is the
greatest of such lower-bounds, we obtain a(s) ≤ ā(s). This being true for
all s ∈ R+, we have a ≤ ā.

14. Let s, t ∈ R+ and ε > 0. Suppose that a(s+ ε) ≤ t. Then t < a(s+ ε) is
not true. From 2. it follows that c(t) < s + ε is not true or equivalently
s+ ε ≤ c(t). Since s ∈ R+, we have s < s+ ε ≤ c(t).

15. Let s, t ∈ R+ and ε > 0. Suppose a(s + ε) ≤ t. It follows from 14. that
s < c(t). So t is an element of {u ∈ R+ : s < c(u)}, and since ā(s) is a
lower-bound of this set, we obtain ā(s) ≤ t.

16. Let s ∈ R+ and suppose that a(s) < ā(s). Let t be an arbitrary element of
]a(s), ā(s)[. Then a(s) < t, and from the right-continuity of a, there exists
ε > 0 such that a(s+ ε) < t. In particular a(s+ ε) ≤ t and it follows from
15. that ā(s) ≤ t. This contradicts the fact that t < ā(s). We conclude
that ā(s) ≤ a(s). This being true for all s ∈ R+, ā ≤ a. Having proved in
13. that a ≤ ā, we obtain a = ā or equivalently:

a(s) = inf{t ∈ R+ : s < c(t)} , ∀s ∈ R+

Exercise 16

Exercise 17.

1. Let f : R+ → R̄ be a non-decreasing map. Let α ∈ R. We define:

x0
�
= sup{x ∈ R+ : f(x) ≤ α}

Suppose x0 = −∞. Then {f ≤ α} has to be the empty set. Otherwise,
there would exist x ∈ R+ with f(x) ≤ α, and we would have x ≤ x0,
contradicting x0 = −∞. Conversely, suppose {f ≤ α} is the empty set.
Then −∞ is an upper-bound of {f ≤ α} and it is clearly the lowest. So
x0 = −∞. We have proved that x0 = −∞ if and only if {f ≤ α} = ∅.
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2. Suppose x0 = +∞. Let x ∈ R+. Then x < x0 and therefore, x cannot be
an upper-bound of the set {u ∈ R+ : f(u) ≤ α}. There exits u ∈ R+ with
f(u) ≤ α and x < u. In particular, since f is non-decreasing, f(x) ≤ f(u).
So f(x) ≤ α. This being true for all x ∈ R+, we obtain {f ≤ α} = R+.
Conversely, suppose {f ≤ α} = R+. Then x0 = supR+ = +∞. We have
proved that x0 = +∞ if and only if {f ≤ α} = R+.

3. We assume that −∞ < x0 < +∞. So x0 ∈ R. However from 1., the set
{f ≤ α} is not empty. There exists x ∈ R+ such that f(x) ≤ α. Since x0

is an upper-bound of {f ≤ α}, we obtain x ≤ x0. In particular, x0 ≥ 0.
So x0 ∈ R+.

4. Suppose that f(x0) ≤ α. If x ∈ R+ and f(x) ≤ α, then x ≤ x0. So
{f ≤ α} ⊆ [0, x0]. To show the reverse inclusion, suppose that x ∈ [0, x0].
If x = x0, by assumption we have f(x) ≤ α. We assume that x ∈ [0, x0[.
Since x0 is the lowest of all upper-bounds of {f ≤ α}, x cannot be such
an upper-bound. There exists u ∈ R+ with f(u) ≤ α and x < u. In
particular, f being non-decreasing, f(x) ≤ f(u). So f(x) ≤ α. We have
proved that [0, x0] ⊆ {f ≤ α} and finally {f ≤ α} = [0, x0].

5. Suppose that α < f(x0). If x ∈ R+ and f(x) ≤ α, then x 
= x0. Further-
more, we have x ≤ x0 and consequently x ∈ [0, x0[. So {f ≤ α} ⊆ [0, x0[.
An identical reasoning as in 4. shows that [0, x0[⊆ {f ≤ α}. We conclude
that {f ≤ α} = [0, x0[.

6. From theorem (15), to show that f : R+ → R̄ is measurable, it is equiv-
alent to show that {f ≤ α} ∈ B(R+) for all α ∈ R. If x0 = −∞ or
x0 = +∞ then it is clear from 1. and 2. that {f ≤ α} ∈ B(R+). If
x0 ∈ R, then {f ≤ α} is equal [0, x0] or [0, x0[, depending on whether
f(x0) ≤ α or α < f(x0). In any case, we have {f ≤ α} ∈ B(R+). We
have proved that f is measurable. The purpose of this exercise is to show
that any non-decreasing map f : R+ → R̄ is Borel-measurable.

Exercise 17

Exercise 18.

1. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0. Let
c : R+ → [0,+∞] be defined as:

c(t) = inf{s ∈ R+ : t < a(s)} , ∀t ∈ R+

Let f : R+ → [0,+∞] be non-negative and measurable. The map f ◦ c
may not be well-defined, since it is possible that c(t) = +∞ for some
t ∈ R+. The notation (f ◦c)1{c<+∞} may therefore seem controversial, as
it formally looks like a product of two well-defined mappings with values
in [0,+∞], when in fact it isn’t. As one may have guessed, (f ◦ c)1{c<+∞}
refers to the mapping defined by:

∀t ∈ R+ , ((f ◦ c)1{c<+∞})(t) =
{

f(c(t)) , if c(t) < +∞
0 , if c(t) = +∞
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and this is certainly well-defined and non-negative. To show that this
mapping is also measurable, note that c : R+ → [0,+∞] is measurable,
as follows from exercise (17), and the fact that c is non-decreasing, which
we have proved in exercise (16). Now, it is impossible to argue that f ◦ c
(being the composition of two measurable maps) is measurable, and that
(f ◦ c)1{c<+∞} is therefore measurable as the product of two measurable
maps. As we have already indicated, f ◦ c is not even well-defined, so a
little more care is required: let B ∈ B(R̄). We have:

{(f ◦ c)1{c<+∞} ∈ B} = {t ∈ R+ : c(t) < +∞, f(c(t)) ∈ B}
� {c = +∞}∩ {0 ∈ B}
= {t ∈ R+ : c(t) < +∞, c(t) ∈ f−1(B)}
� {c = +∞}∩ {0 ∈ B}
= {c < +∞}∩ {c ∈ f−1(B)}
� {c = +∞}∩ {0 ∈ B}

where {0 ∈ B} is just a convenient notation to indicateR+ or ∅, depending
respectively on whether 0 ∈ B or 0 
∈ B. Since f is measurable and
B ∈ B(R̄), we have f−1(B) ∈ B(R+) ⊆ B(R̄). Since c is measurable,
{c ∈ f−1(B)}, {c < +∞} and {c = +∞} are all elements of B(R+). We
conclude that {(f ◦ c)1{c<+∞} ∈ B} ∈ B(R+), and we have proved that
(f ◦ c)1{c<+∞} is well-defined, non-negative and measurable.

2. Since [0, u] ∈ B(R+), the map 1[0,u] is non-negative and measurable. It
follows from 1. that (1[0,u]◦c)1{c<+∞} is also non-negative and measurable,
and consequently the integral:

I1 =

∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

is well-defined. Likewise, [0, a(t∧ u)] is a Borel set, and since c is measur-
able, {c < +∞} is also a Borel set of R+. Hence, the integral:

I2 =

∫
1[0,a(t∧u)]1{c<+∞}ds

is also well-defined. To show that I1 ≤ I2, let s ∈ R+. Then:

1[0,a(t)](s)1[0,u](c(s)) = 1[0,a(t)](s)1{c(s)≤u}
≤ 1[0,a(t)](s)1{s≤a(u)}
= 1[0,a(t)](s)1[0,a(u)](s)

= 1[0,a(t)∧a(u)](s)

= 1[0,a(t∧u)](s)

where the inequality stems from the fact proven in 4. of exercise (16) that
c(s) ≤ u ⇒ s ≤ a(u), and the last equality from the fact that a is non-
decreasing. We have proved that I1 =

∫
f(s)ds and I2 =

∫
g(s)ds where

f, g are non-negative and measurable with f ≤ g. This shows that I1 ≤ I2.
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3. From 2. and the fact that:∫
1[0,a(t∧u)]1{c<+∞}ds ≤

∫
1[0,a(t∧u)]ds = a(t ∧ u)

we conclude that: ∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds ≤ a(t ∧ u)

4. We have:

a(t ∧ u) = ds([0, a(t ∧ u)])

=

∫
1[0,a(t∧u)]ds

=

∫
1[0,a(t)∧a(u)]ds

=

∫
1[0,a(t)]1[0,a(u)]ds

=

∫
1[0,a(t)]1[0,a(u)[ds

=

∫ a(t)

0

1[0,a(u)[ds

=

∫ a(t)

0

1[0,a(u)[1{c<+∞}ds

where the fifth equality stems from the fact the Lebesgue measure has no
mass at a(u) (i.e. ds({a(u)}) = 0), and the last equality from the fact
proven in 1. of exercise (16) that:

s < a(u) ⇒ c(s) ≤ u < +∞ (11)

5. From (11) we obtain 1[0,a(u)[ ≤ 1[0,u] ◦ c. Hence, from 4.:

a(t ∧ u) =

∫ a(t)

0

1[0,a(u)[1{c<+∞}ds

≤
∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

6. It follows from 3. and 5. that:

a(t ∧ u) =

∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}ds

and consequently, we have:∫ t

0

1[0,u]da =

∫
1[0,t]1[0,u]da

=

∫
1[0,t∧u]da
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= a(t ∧ u)

=

∫ a(t)

0

(1[0,u] ◦ c)1{c<+∞}

7. Let Dt be the set of all B ∈ B(R+) with:∫ t

0

1Bda =

∫ a(t)

0

(1B ◦ c)1{c<+∞}ds

We shall first prove that Dt is a Dynkin system on R+. Suppose (Bn)n≥1

is a sequence of elements of Dt such that Bn ↑ B (i.e. Bn ⊆ Bn+1 for all
n ≥ 1, and B = ∪n≥1Bn). From the monotone convergence theorem (19),
we obtain: ∫ t

0

1Bda = lim
n→+∞

∫ t

0

1Bnda

= lim
n→+∞

∫
1[0,a(t)](1Bn ◦ c)1{c<+∞}ds

=

∫
1[0,a(t)](1B ◦ c)1{c<+∞}ds

=

∫ a(t)

0

(1B ◦ c)1{c<+∞}ds

and consequently B ∈ Dt. Having proved in 6. that [0, n] ∈ Dt for all
n ≥ 1, from [0, n] ↑ R+ we obtain R+ ∈ Dt. Suppose A,B ∈ Dt with
A ⊆ B. Then B = (B \A) � A and consequently:∫ t

0

1Bda =

∫ t

0

1B\Ada+
∫ t

0

1Ada

Each integral involved being finite, we have equivalently:∫ t

0

1B\Ada =

∫ t

0

1Bda−
∫ t

0

1Ada

Similarly:∫ a(t)

0

(1B\A ◦ c)1{c<+∞}ds =

∫ a(t)

0

(1B ◦ c)1{c<+∞}ds

−
∫ a(t)

0

(1A ◦ c)1{c<+∞}da

and from A,B ∈ Dt we conclude that:∫ t

0

1B\Ada =

∫ a(t)

0

(1B\A ◦ c)1{c<+∞}ds

i.e. B \ A ∈ Dt. We have proved that Dt is a Dynkin system on R+. To
show that Dt = B(R+), define C = {[0, u] : u ∈ R+}. Then C is a π-
system on R+ (i.e. it is closed under (non-empty) finite intersection), and
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we have proved in 6. that C ⊆ Dt. From the Dynkin system theorem (1),
we obtain B(R+) = σ(C) ⊆ Dt. So Dt = B(R+). If anyone still needs
a proof that σ(C) = B(R+), please note that any open set in R is a
countable union of intervals of the form ]a, b], and it is therefore sufficient
to show that ]a, b] ∩ R+ ∈ σ(C) for all a ≤ b. But this follows from
the fact that ]a, b] ∩ R+ is either of the form [0, b] ∈ C, or of the form
]a, b] = [0, b] \ [0, a] ∈ σ(C).

8. Given f : R+ → [0,+∞] non-negative and measurable and t ∈ R+, we
wish to establish the formula:∫ t

0

fda =

∫ a(t)

0

(f ◦ c)1{c<+∞}ds (12)

From 7. if f is of the form f = 1B with B ∈ B(R+), then (12) is true. By
linearity, if f is a simple function on (R+,B(R+)), then (12) is also true
for f . Suppose f is an arbitrary non-negative and measurable map. From
theorem (18) there exists a sequence (sn)n≥1 of simple functions such that
sn ↑ f . Having established (12) for each sn, n ≥ 1, we have:∫ t

0

snda =

∫ a(t)

0

(sn ◦ c)1{c<+∞}ds

From the monotone convergence theorem (19), taking the limit as n →
+∞, we conclude that equation (12) is true for f .

9. Let f : R+ → C be measurable. Let u = Re(f) and v = Im(f). Let
u1 = u+, u2 = u−, u3 = v+ and u4 = v−. Then each ui : R+ → R+

is non-negative and measurable, and from 1. each (ui ◦ c)1{c<+∞} is non-
negative and measurable. Furthermore, (f ◦ c)1{c<+∞} is clearly well-
defined, and we have:

(f ◦ c)1{c<+∞} = (u1 ◦ c)1{c<+∞}
− (u2 ◦ c)1{c<+∞}
+ i(u3 ◦ c)1{c<+∞}
− i(u4 ◦ c)1{c<+∞}

We conclude that (f ◦ c)1{c<+∞} is measurable.

10. Let f ∈ L1,loc
C (a) and t ∈ R+. Applying formula (12) to |f |:∫

|(f ◦ c)1{c<+∞}1[0,a(t)]|ds =

∫
(|f | ◦ c)1{c<+∞}1[0,a(t)]ds

=

∫ a(t)

0

(|f | ◦ c)1{c<+∞}ds

=

∫ t

0

|f |da < +∞
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It follows that (f ◦ c)1{c<+∞}1[0,a(t)] ∈ L1
C(R

+,B(R+), ds). Furthermore,
Since u1, u2 ≤ |u| ≤ |f | and u3, u4 ≤ |v| ≤ |f |, each (ui ◦ c)1{c<+∞}1[0,a(t)]
is itself and element of L1. From the linearity of the integral, we obtain:∫ a(t)

0

(f ◦ c)1{c<+∞}ds =

∫ a(t)

0

(u1 ◦ c)1{c<+∞}ds

−
∫ a(t)

0

(u2 ◦ c)1{c<+∞}ds

+ i

∫ a(t)

0

(u3 ◦ c)1{c<+∞}ds

− i

∫ a(t)

0

(u4 ◦ c)1{c<+∞}ds

However, applying 8. to each ui:∫ t

0

uida =

∫ a(t)

0

(ui ◦ c)1{c<+∞}ds

and consequently:∫ a(t)

0

(f ◦ c)1{c<+∞}ds =

∫ t

0

u1da−
∫ t

0

u2da

+ i

∫ t

0

u3da− i

∫ t

0

u4da

=

∫ t

0

fda

11. Similarly to the case of 1., the map (f ◦ c)1[0,a(t)[ is not strictly speaking
the product of f ◦ c with 1[0,a(t)[, for the simple reason that f ◦ c may not
be well-defined. However, it does not take much to guess that the notation
(f ◦ c)1[0,a(t)[ refers to the map defined by:

((f ◦ c)1[0,a(t)[)(s) =
{

f(c(s)) , if s < a(t)
0 , if a(t) ≤ s

Since s < a(t) ⇒ c(s) ≤ t < +∞, such a map is well-defined, and further-
more:

(f ◦ c)1[0,a(t)[ = ((f ◦ c)1{c<+∞})1[0,a(t)[
Hence, from 10. we have:∫ t

0

fda =

∫ a(t)

0

(f ◦ c)1{c<+∞}da

=

∫
(f ◦ c)1{c<+∞}1[0,a(t)]ds

=

∫
(f ◦ c)1{c<+∞}1[0,a(t)[ds

=

∫
(f ◦ c)1[0,a(t)[ds
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12. Let a : R+ → R+ be right-continuous, non-decreasing with a(0) ≥ 0.

Given f ∈ L1,loc
C (a), we have proved in 10. that:∫ t

0

fda =

∫ a(t)

0

(f ◦ c)1{c<+∞}ds

This completes the proof of theorem (93).

Exercise 18
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