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3. Stieltjes-Lebesgue Measure
Definition 12 Let A ⊆ P(Ω) and µ : A → [0,+∞] be a map. We say that µ
is finitely additive if and only if, given n ≥ 1:

A ∈ A, Ai ∈ A, A =
n⊎
i=1

Ai ⇒ µ(A) =
n∑
i=1

µ(Ai)

We say that µ is finitely sub-additive if and only if, given n ≥ 1 :

A ∈ A, Ai ∈ A, A ⊆
n⋃
i=1

Ai ⇒ µ(A) ≤
n∑
i=1

µ(Ai)

Exercise 1. Let S 4= {]a, b] , a, b ∈ R} be the set of all intervals ]a, b], defined
as ]a, b] = {x ∈ R, a < x ≤ b}.

1. Show that ]a, b]∩]c, d] =]a ∨ c, b ∧ d]

2. Show that ]a, b]\]c, d] =]a, b ∧ c]∪]a ∨ d, b]

3. Show that c ≤ d ⇒ b ∧ c ≤ a ∨ d.

4. Show that S is a semi-ring on R.

Exercise 2. Suppose S is a semi-ring in Ω and µ : S → [0,+∞] is finitely
additive. Show that µ can be extended to a finitely additive map µ̄ : R(S) →
[0,+∞], with µ̄|S = µ.

Exercise 3. Everything being as before, Let A ∈ R(S), Ai ∈ R(S), A ⊆
∪ni=1Ai where n ≥ 1. Define B1 = A1 ∩A and for i = 1, . . . , n− 1:

Bi+1
4
= (Ai+1 ∩A) \ ((A1 ∩A) ∪ . . . ∪ (Ai ∩A))

1. Show that B1, . . . , Bn are pairwise disjoint elements of R(S) such that
A = ]ni=1Bi.

2. Show that for all i = 1, . . . , n, we have µ̄(Bi) ≤ µ̄(Ai).

3. Show that µ̄ is finitely sub-additive.

4. Show that µ is finitely sub-additive.

Exercise 4. Let F : R→ R be a right-continuous, non-decreasing map. Let S
be the semi-ring on R, S = {]a, b] , a, b ∈ R}. Define the map µ : S → [0,+∞]
by µ(∅) = 0, and:

∀a ≤ b , µ(]a, b])
4
= F (b)− F (a) (1)

Let a < b and ai < bi for i = 1, . . . , n and n ≥ 1, with :

]a, b] =
n⊎
i=1

]ai, bi]

www.probability.net

http://www.probability.net


Tutorial 3: Stieltjes-Lebesgue Measure 2

1. Show that there is i1 ∈ {1, . . . , n} such that ai1 = a.

2. Show that ]bi1 , b] = ]i∈{1,...,n}\{i1}]ai, bi]

3. Show the existence of a permutation (i1, . . . , in) of {1, . . . , n} such that
a = ai1 < bi1 = ai2 < . . . < bin = b.

4. Show that µ is finitely additive and finitely sub-additive.

Exercise 5. µ being defined as before, suppose a < b and an < bn for n ≥ 1
with:

]a, b] =
+∞⊎
n=1

]an, bn]

Given N ≥ 1, let (i1, . . . , iN) be a permutation of {1, . . . , N} with:

a ≤ ai1 < bi1 ≤ ai2 < . . . < biN ≤ b

1. Show that
∑N

k=1 F (bik)− F (aik) ≤ F (b)− F (a).

2. Show that
∑+∞

n=1 µ(]an, bn]) ≤ µ(]a, b])

3. Given ε > 0, show that there is η ∈]0, b− a[ such that:

0 ≤ F (a+ η)− F (a) ≤ ε

4. For n ≥ 1, show that there is ηn > 0 such that:

0 ≤ F (bn + ηn)− F (bn) ≤ ε

2n

5. Show that [a+ η, b] ⊆ ∪+∞
n=1]an, bn + ηn[.

6. Explain why there exist p ≥ 1 and integers n1, . . . , np such that:

]a+ η, b] ⊆ ∪pk=1]ank , bnk + ηnk ]

7. Show that F (b)− F (a) ≤ 2ε+
∑+∞
n=1 F (bn)− F (an)

8. Show that µ : S → [0,+∞] is a measure.

Definition 13 A topology on Ω is a subset T of the power set P(Ω), with
the following properties:

(i) Ω, ∅ ∈ T
(ii) A,B ∈ T ⇒ A ∩B ∈ T

(iii) Ai ∈ T , ∀i ∈ I ⇒
⋃
i∈I

Ai ∈ T

Property (iii) of definition (13) can be translated as: for any family (Ai)i∈I of
elements of T , the union ∪i∈IAi is still an element of T . Hence, a topology
on Ω, is a set of subsets of Ω containing Ω and the empty set, which is closed
under finite intersection and arbitrary union.
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Definition 14 A topological space is an ordered pair (Ω, T ), where Ω is a
set and T is a topology on Ω.

Definition 15 Let (Ω, T ) be a topological space. We say that A ⊆ Ω is an
open set in Ω, if and only if it is an element of the topology T . We say that
A ⊆ Ω is a closed set in Ω, if and only if its complement Ac is an open set in
Ω.

Definition 16 Let (Ω, T ) be a topological space. We define the Borel σ-
algebra on Ω, denoted B(Ω), as the σ-algebra on Ω, generated by the topology
T . In other words, B(Ω) = σ(T )

Definition 17 We define the usual topology on R, denoted TR, as the set
of all U ⊆ R such that:

∀x ∈ U , ∃ε > 0 , ]x− ε, x+ ε[⊆ U

Exercise 6.Show that TR is indeed a topology on R.

Exercise 7. Consider the semi-ring S 4= {]a, b] , a, b ∈ R}. Let TR be the
usual topology on R, and B(R) be the Borel σ-algebra on R.

1. Let a ≤ b. Show that ]a, b] = ∩+∞
n=1]a, b+ 1/n[.

2. Show that σ(S) ⊆ B(R).

3. Let U be an open subset of R. Show that for all x ∈ U , there exist
ax, bx ∈ Q such that x ∈]ax, bx] ⊆ U .

4. Show that U = ∪x∈U ]ax, bx].

5. Show that the set I
4
= {]ax, bx] , x ∈ U} is countable.

6. Show that U can be written U = ∪i∈IAi with Ai ∈ S.

7. Show that σ(S) = B(R).

Theorem 6 Let S be the semi-ring S = {]a, b] , a, b ∈ R}. Then, the Borel
σ-algebra B(R) on R, is generated by S, i.e. B(R) = σ(S).

Definition 18 A measurable space is an ordered pair (Ω,F) where Ω is a
set and F is a σ-algebra on Ω.

Definition 19 A measure space is a triple (Ω,F , µ) where (Ω,F) is a mea-
surable space and µ : F → [0,+∞] is a measure on F .
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Exercise 8.Let (Ω,F , µ) be a measure space. Let (An)n≥1 be a sequence of
elements of F such that An ⊆ An+1 for all n ≥ 1, and let A = ∪+∞

n=1An (we
write An ↑ A). Define B1 = A1 and for all n ≥ 1, Bn+1 = An+1 \An.

1. Show that (Bn) is a sequence of pairwise disjoint elements of F such that
A = ]+∞

n=1Bn.

2. Given N ≥ 1 show that AN = ]Nn=1Bn.

3. Show that µ(AN )→ µ(A) as N → +∞

4. Show that µ(An) ≤ µ(An+1) for all n ≥ 1.

Theorem 7 Let (Ω,F , µ) be a measure space. Then if (An)n≥1 is a sequence
of elements of F , such that An ↑ A, we have µ(An) ↑ µ(A)1.

Exercise 9.Let (Ω,F , µ) be a measure space. Let (An)n≥1 be a sequence of
elements of F such that An+1 ⊆ An for all n ≥ 1, and let A = ∩+∞

n=1An (we
write An ↓ A). We assume that µ(A1) < +∞.

1. Define Bn
4
= A1 \An and show that Bn ∈ F , Bn ↑ A1 \A.

2. Show that µ(Bn) ↑ µ(A1 \A)

3. Show that µ(An) = µ(A1)− µ(A1 \An)

4. Show that µ(A) = µ(A1)− µ(A1 \A)

5. Why is µ(A1) < +∞ important in deriving those equalities.

6. Show that µ(An)→ µ(A) as n→ +∞

7. Show that µ(An+1) ≤ µ(An) for all n ≥ 1.

Theorem 8 Let (Ω,F , µ) be a measure space. Then if (An)n≥1 is a sequence
of elements of F , such that An ↓ A and µ(A1) < +∞, we have µ(An) ↓ µ(A).

Exercise 10.Take Ω = R and F = B(R). Suppose µ is a measure on B(R)
such that µ(]a, b]) = b− a, for a < b. Take An =]n,+∞[.

1. Show that An ↓ ∅.

2. Show that µ(An) = +∞, for all n ≥ 1.

3. Conclude that µ(An) ↓ µ(∅) fails to be true.

1i.e. the sequence (µ(An))n≥1 is non-decreasing and converges to µ(A).
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Exercise 11. Let F : R→ R be a right-continuous, non-decreasing map. Show
the existence of a measure µ : B(R)→ [0,+∞] such that:

∀a, b ∈ R , a ≤ b , µ(]a, b]) = F (b)− F (a) (2)

Exercise 12.Let µ1, µ2 be two measures on B(R) with property (2). For n ≥ 1,
we define:

Dn
4
= {B ∈ B(R) , µ1(B∩] − n, n]) = µ2(B∩] − n, n])}

1. Show that Dn is a Dynkin system on R.

2. Explain why µ1(] − n, n]) < +∞ and µ2(] − n, n]) < +∞ is needed when
proving 1.

3. Show that S 4= {]a, b] , a, b ∈ R} ⊆ Dn.

4. Show that B(R) ⊆ Dn.

5. Show that µ1 = µ2.

6. Prove the following theorem.

Theorem 9 Let F : R→ R be a right-continuous, non-decreasing map. There
exists a unique measure µ : B(R)→ [0,+∞] such that:

∀a, b ∈ R , a ≤ b , µ(]a, b]) = F (b)− F (a)

Definition 20 Let F : R→ R be a right-continuous, non-decreasing map. We
call Stieltjes measure on R associated with F , the unique measure on B(R),
denoted dF , such that:

∀a, b ∈ R , a ≤ b , dF (]a, b]) = F (b)− F (a)

Definition 21 We call Lebesgue measure on R, the unique measure on
B(R), denoted dx, such that:

∀a, b ∈ R , a ≤ b , dx(]a, b]) = b− a

Exercise 13. Let F : R → R be a right-continuous, non-decreasing map. Let
x0 ∈ R.

1. Show that the limit F (x0−) = limx<x0,x→x0 F (x) exists and is an element
of R.

2. Show that {x0} = ∩+∞
n=1]x0 − 1/n, x0].

3. Show that {x0} ∈ B(R)

4. Show that dF ({x0}) = F (x0)− F (x0−)
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Exercise 14.Let F : R → R be a right-continuous, non-decreasing map. Let
a ≤ b.

1. Show that ]a, b] ∈ B(R) and dF (]a, b]) = F (b)− F (a)

2. Show that [a, b] ∈ B(R) and dF ([a, b]) = F (b)− F (a−)

3. Show that ]a, b[∈ B(R) and dF (]a, b[) = F (b−)− F (a)

4. Show that [a, b[∈ B(R) and dF ([a, b[) = F (b−)− F (a−)

Exercise 15. Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω. Define:

A|Ω′
4
= {A ∩ Ω′ , A ∈ A}

1. Show that if A is a topology on Ω, A|Ω′ is a topology on Ω′.

2. Show that if A is a σ-algebra on Ω, A|Ω′ is a σ-algebra on Ω′.

Definition 22 Let Ω be a set, and Ω′ ⊆ Ω. Let A be a subset of the power set
P(Ω). We call trace of A on Ω′, the subset A|Ω′ of the power set P(Ω′) defined
by:

A|Ω′
4
= {A ∩ Ω′ , A ∈ A}

Definition 23 Let (Ω, T ) be a topological space and Ω′ ⊆ Ω. We call induced
topology on Ω′, denoted T|Ω′ , the topology on Ω′ defined by:

T|Ω′
4
= {A ∩ Ω′ , A ∈ T }

In other words, the induced topology T|Ω′ is the trace of T on Ω′.

Exercise 16.Let A be a subset of the power set P(Ω). Let Ω′ ⊆ Ω, and A|Ω′
be the trace of A on Ω′. Define:

Γ
4
= {A ∈ σ(A) , A ∩ Ω′ ∈ σ(A|Ω′ )}

where σ(A|Ω′ ) refers to the σ-algebra generated by A|Ω′ on Ω′.

1. Explain why the notation σ(A|Ω′) by itself is ambiguous.

2. Show that A ⊆ Γ.

3. Show that Γ is a σ-algebra on Ω.

4. Show that σ(A|Ω′ ) = σ(A)|Ω′

Theorem 10 Let Ω′ ⊆ Ω and A be a subset of the power set P(Ω). Then, the
trace on Ω′ of the σ-algebra σ(A) generated by A, is equal to the σ-algebra on
Ω′ generated by the trace of A on Ω′. In other words, σ(A)|Ω′ = σ(A|Ω′ ).
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Exercise 17.Let (Ω, T ) be a topological space and Ω′ ⊆ Ω with its induced
topology T|Ω′ .

1. Show that B(Ω)|Ω′ = B(Ω′).

2. Show that if Ω′ ∈ B(Ω) then B(Ω′) ⊆ B(Ω).

3. Show that B(R+) = {A ∩R+ , A ∈ B(R)}.

4. Show that B(R+) ⊆ B(R).

Exercise 18.Let (Ω,F , µ) be a measure space and Ω′ ⊆ Ω

1. Show that (Ω′,F|Ω′) is a measurable space.

2. If Ω′ ∈ F , show that F|Ω′ ⊆ F .

3. If Ω′ ∈ F , show that (Ω′,F|Ω′ , µ|Ω′) is a measure space, where µ|Ω′ is
defined as µ|Ω′ = µ|(F|Ω′).

Exercise 19. Let F : R+ → R be a right-continuous, non-decreasing map with
F (0) ≥ 0. Define:

F̄ (x)
4
=
{

0 if x < 0
F (x) if x ≥ 0

1. Show that F̄ : R→ R is right-continuous and non-decreasing.

2. Show that µ : B(R+) → [0,+∞] defined by µ = dF̄|B(R+), is a measure
on B(R+) with the properties:

(i) µ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , µ(]a, b]) = F (b)− F (a)

Exercise 20. Define: C = {{0}} ∪ {]a, b] , 0 ≤ a ≤ b}

1. Show that C ⊆ B(R+)

2. Let U be open in R+. Show that U is of the form:

U =
⋃
i∈I

(R+∩]ai, bi])

where I is a countable set and ai, bi ∈ R with ai ≤ bi.

3. For all i ∈ I, show that R+∩]ai, bi] ∈ σ(C).

4. Show that σ(C) = B(R+)
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Exercise 21.Let µ1 and µ2 be two measures on B(R+) with:

(i) µ1({0}) = µ2({0}) = F (0)
(ii) µ1(]a, b]) = µ2(]a, b]) = F (b)− F (a)

for all 0 ≤ a ≤ b. For n ≥ 1, we define:

Dn = {B ∈ B(R+) , µ1(B ∩ [0, n]) = µ2(B ∩ [0, n])}

1. Show that Dn is a Dynkin system on R+ with C ⊆ Dn, where the set C is
defined as in exercise (20).

2. Explain why µ1([0, n]) < +∞ and µ2([0, n]) < +∞ is important when
proving 1.

3. Show that µ1 = µ2.

4. Prove the following theorem.

Theorem 11 Let F : R+→ R be a right-continuous, non-decreasing map with
F (0) ≥ 0. There exists a unique µ : B(R+)→ [0,+∞] measure on B(R+) such
that:

(i) µ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , µ(]a, b]) = F (b)− F (a)

Definition 24 Let F : R+→R be a right-continuous, non-decreasing map with
F (0) ≥ 0. We call Stieltjes measure on R+ associated with F , the unique
measure on B(R+), denoted dF , such that:

(i) dF ({0}) = F (0)
(ii) ∀0 ≤ a ≤ b , dF (]a, b]) = F (b)− F (a)
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Solutions to Exercises
Exercise 1.

1. x ∈]a, b]∩]c, d] is equivalent to a < x ≤ b and c < x ≤ d. This is in turn
equivalent to:

a ∨ c 4= max(a, c) < x ≤ min(b, d)
4
= b ∧ d

We have proved that:

]a, b]∩]c, d] =]a ∨ c, b ∧ d]

2. Suppose x ∈]a, b]\]c, d]. Then, either x ≤ c or d < x. In the first case,
x ∈]a, b∧c]. In the second, x ∈]a∨d, b]. Conversely, if x ∈]a, b∧c]∪]a∨d, b],
then a < x ≤ b is true. Moreover, x ≤ c or d < x. In any case, x 6∈]c, d].
So x ∈]a, b]\]c, d]. We have proved that:

]a, b]\]c, d] =]a, b ∧ c]∪]a ∨ d, b]

3. If c ≤ d, then in particular:

b ∧ c ≤ c ≤ d ≤ a ∨ d

4. S is a set of subsets of R which obviously contains the empty set. From
1., it is also closed under finite intersection. Let ]a, b] and ]c, d] be two
elements of S. If c > d, then ]c, d] = ∅ and we have ]a, b]\]c, d] =]a, b]. If
c ≤ d, then it follows from 3. that b∧ c ≤ a∨d. We conclude from 2. that:

]a, b]\]c, d] =]a, b ∧ c]]]a ∨ d, b]
In any case, ]a, b]\]c, d] can be written as a finite union of pairwise disjoint
elements of S. We have proved that S is indeed a semi-ring on R, as
defined in definition (6).

Exercise 1

Exercise 2. The solution to this exercise is very similar to the proof of the-
orem (2) : a measure defined on a semi-ring can be extended to a measure
defined on the ring generated by this semi-ring. In this case, we are dealing
with a finitely additive map which is not exactly a measure, but the techniques
involved are almost the same. We know from the previous tutorial that the ring
R(S) generated by the semi-ring S, is the set of all finite unions of pairwise
disjoint elements of S. It is tempting to define µ̄ : R(S)→ [0,+∞], by:

∀A = ]ni=1Ai ∈ R(S) , µ̄(A)
4
=

n∑
i=1

µ(Ai) (3)

However, such definition may not be valid, unless the sum involved in equa-
tion (3), is independent of the particular representation of A ∈ R(S) as a finite
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union of pairwise disjoint elements of S. Suppose that A = ]pj=1Bj is another
such representation of A. Then, for all i = 1, . . . , n, we have:

Ai = Ai ∩A = ]pj=1Ai ∩Bj
Since each Ai ∩ Bj is an element of S, and µ is finitely additive, for all i =
1, . . . , n, we have:

µ(Ai) =
p∑
j=1

µ(Ai ∩Bj)

and similarly for all j = 1, . . . , p:

µ(Bj) =
n∑
i=1

µ(Ai ∩Bj)

from which we conclude that:
n∑
i=1

µ(Ai) =
n∑
i=1

p∑
j=1

µ(Ai ∩Bj) =
p∑
j=1

µ(Bj)

It follows that the map µ̄ as defined by equation (3), is perfectly well defined.
Let A1, . . . , An be n pairwise disjoint elements of R(S), n ≥ 1, each Ai having
the representation:

Ai = ]pik=1A
k
i , i = 1, . . . , n

as a finite union of pairwise disjoint elements of S. Suppose moreover that
A = ]ni=1Ai (which is an element of R(S) since a ring is closed under finite
union). Then A has a representation:

A =
n⋃
i=1

pi⋃
k=1

Aki

where the Aki ’s are pairwise disjoint. From the very definition of µ̄:

µ̄(A) =
n∑
i=1

pi∑
k=1

µ(Aki )

and furthermore for all i = 1, . . . , n:

µ̄(Ai) =
pi∑
k=1

µ(Aki )

So we conclude that:

µ̄(A) =
n∑
i=1

µ̄(Ai)

We have proved that µ̄ : R(S) → [0,+∞] is a finitely additive map. Finally,
if A ∈ S, taking n = 1 and A1 = A, A = ]ni=1Ai is a representation of A as
a finite union of pairwise disjoint elements of S. By definition of µ̄, µ̄(A) =∑n
i=1 µ(Ai) = µ(A). Hence, we see that µ̄|S = µ. We have proved the existence

of a finitely additive map µ̄ : R(S)→ [0,+∞], such that µ̄|S = µ.
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Exercise 2

Exercise 3.

1. A ring being closed under finite union, intersection and difference, each
Bi is an element of R(S). Suppose Bi ∩ Bj 6= ∅ for some i, j = 1, . . . , n.
Without loss of generality we can assume that i ≤ j. Suppose that i < j
and let x ∈ Bi ∩Bj . From x ∈ Bi we have x ∈ Ai ∩A. From x ∈ Bj , we
have x 6∈ (A1 ∩ A) ∪ . . . ∪ (Aj−1 ∩ A). In particular x 6∈ Ai ∩ A. This is
a contradiction, and it follows that i = j. The Bi’s are therefore pairwise
disjoint. For all i = 1, . . . , n we have Bi ⊆ Ai∩A ⊆ A. hence ]ni=1Bi ⊆ A.
Conversely, suppose x ∈ A ⊆ ∪ni=1Ai. There exists i ∈ {1, . . . , n} such
that x ∈ Ai. Let i be the smallest of such integer. If i = 1, then x ∈
A1 ∩ A = B1. If i > 1, then x ∈ Ai ∩ A and x 6∈ Aj ∩ A for all j < i. So
x ∈ Bi. In any case, x ∈ Bi. It follows that A ⊆ ]ni=1Bi. We have proved
that B1, . . . , Bn are pairwise disjoint elements of R(S) with A = ]ni=1Bi.

2. µ̄ : R(S)→ [0,+∞] being defined as in exercise (2), it is a finitely additive
map. We have Bi ⊆ Ai ∩ A ⊆ Ai, for all i = 1, . . . , n. It follows that
Ai = Bi ] (Ai \Bi), from which we conclude that :

µ̄(Ai) = µ̄(Bi) + µ̄(Ai \Bi) ≥ µ̄(Bi)

3. From A = ]ni=1Bi and µ̄ being finitely additive, we have:

µ̄(A) =
n∑
i=1

µ̄(Bi)

Using 2., we obtain:

µ̄(A) ≤
n∑
i=1

µ̄(Ai)

This is true for all A ∈ R(S) and A1, . . . , An in R(S) such that A ⊆
∪ni=1Ai. It follows from definition (12) that µ̄ is indeed a finitely sub-
additive map.

4. Suppose A ∈ S and A1, . . . , An ∈ S, (n ≥ 1), with A ⊆ ∪ni=1Ai. Since
µ̄|S = µ, and µ̄ is finitely sub-additive (from 3.), we have:

µ(A) = µ̄(A) ≤
n∑
i=1

µ̄(Ai) =
n∑
i=1

µ(Ai)

It follows from definition (12) that µ is indeed finitely sub-additive. The
purpose of this exercise is to show that any finitely additive map defined
on a semi-ring S, is in fact also finitely sub-additive. Note that proving
that µ̄ is finitely sub-additive is pretty straightforward. This is because µ̄
is defined on a ring, which is closed under various finite operations (union,
intersection, difference). However, µ being defined on a semi-ring only,
it is impossible to apply the same line of argument as the one used for
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µ̄. It is in fact necessary for us to initially extend µ from S to R(S),
then prove the finite sub-additivity on R(S), and conclude with the finite
sub-additivity of µ on S.

Exercise 3

Exercise 4.

1. Take i1 such that ai1 = min(a1, . . . , an). From ]ai1 , bi1 ] ⊆]a, b] and ai1 <
bi1 , we see that a ≤ ai1 < bi1 ≤ b. Suppose that a < ai1 , and let x be
such that a < x < ai1 ≤ b. Since x ∈]a, b], there is j ∈ {1, . . . , n} such
that x ∈]aj , bj]. By definition of i1, we have ai1 ≤ aj < x. This is a
contradiction, and it follows that ai1 = a. We have proved the existence
of i1 ∈ {1, . . . , n} such that ai1 = a.

2. Suppose x ∈]ai, bi] for some i ∈ {1, . . . , n}, i 6= i1. Since ]ai, bi] ⊆]a, b],
x ∈]a, b] and x ≤ b. Also, a ≤ ai. From 1., ai1 = a. It follows that
ai1 ≤ ai < x. However, the ]ai, bi]’s being pairwise disjoint and i 6= i1,
x 6∈]ai1 , bi1 ]. Therefore x > bi1 . We have proved that x ∈]bi1 , b] and
consequently:

n⊎
i=1,i6=i1

]ai, bi] ⊆]bi1 , b]

Conversely, let x ∈]bi1 , b] ⊆]a, b]. There exists i ∈ {1, . . . , n} such that
x ∈]ai, bi]. If i = i1, then x ∈]ai1 , bi1 ] which contradicts bi1 < x. It follows
that i 6= i1 and:

]bi1 , b] ⊆
⊎

i=1,i6=i1

]ai, bi]

3. Using 1. and 2., starting from:

]a, b] =
n⊎
i=1

]ai, bi]

we have i1 ∈ {1, . . . , n} such that a = ai1 < bi1 and:

]bi1 , b] =
n⊎

i=1,i6=i1

]ai, bi]

Going one step further, there exists i2 ∈ {1, . . . , n} \ {i1} such that bi1 =
ai2 < bi2 and:

]bi2 , b] =
n⊎

i=1,i6=i1,i2

]ai, bi]

By induction, we define i1 . . . , in distinct integers in {1, . . . , n}, (hence a
permutation on {1, . . . , n}), such that:

a = ai1 < bi1 = ai2 < . . . < bin

and ]bin , b] = ∅. Since ]ain , bin ] ⊆]a, b] and ain < bin , we have bin ≤ b.
From ]bin , b] = ∅, we conclude that bin = b.
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4. Let (i1, . . . , in) be a permutation of {1, . . . , n}, such that:

a = ai1 < bi1 = ai2 < . . . < bin = b

We have:

F (b)− F (a) =
n∑
k=1

F (bik)− F (aik)

from which we see that:

µ(]a, b]) =
n∑
k=1

µ(]aik , bik ]) =
n∑
i=1

µ(]ai, bi])

This is true for all a < b, n ≥ 1 and ai < bi for i = 1, . . . , n, such that:

]a, b] =
n⊎
i=1

]ai, bi]

Suppose A ∈ S, n ≥ 1 and A1, . . . , An ∈ S, with A = ]ni=1Ai. If A = ∅,
then for all i = 1, . . . , n, we haveAi = ∅. In particular, µ(A) =

∑n
i=1 µ(Ai)

is obviously satisfied. If A 6= ∅, then A is of the form A =]a, b] for some
a < b in R. If we consider J = {i = 1, . . . , n, Ai 6= ∅}, then J 6= ∅, and for
all i ∈ J , Ai is of the form Ai =]ai, bi] with ai < bi. Moreover, A = ]i∈JAi
and it follows from our previous developments that µ(A) =

∑
i∈J µ(Ai).

However, for all i = 1, . . . , n, if i 6∈ J , then Ai = ∅ and µ(Ai) = 0.
Consequently:

µ(A) =
∑
i∈J

µ(Ai) +
∑
i6∈J

µ(Ai) =
n∑
i=1

µ(Ai)

We have proved that µ : S → [0,+∞] as defined by (1) is finitely additive.
From exercise (3), it is also finitely sub-additive.

Exercise 4

Exercise 5.

1. The sum
∑N
k=1 F (bik)− F (aik) can be written as:

F (biN )− F (ai1) +
N−1∑
k=1

F (bik)− F (aik+1)

F being non-decreasing, with biN ≤ b and a ≤ ai1 , we have F (biN ) ≤ F (b)
and F (a) ≤ F (ai1). Moreover, since bik ≤ aik+1 for all k = 1, . . . , N − 1,
we have F (bik) ≤ F (aik+1). It follows that:

N∑
k=1

F (bik)− F (aik) ≤ F (b)− F (a)
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2. Let N ≥ 1, and (i1, . . . , iN) be a permutation of {1, . . . , N} such that
ai1 ≤ ai2 ≤ . . . ≤ aiN . Since ]ai1 , bi1 ] ⊆]a, b] (and the fact that ai1 < bi1),
we have a ≤ ai1 < bi1 . We also have ]aiN , biN ] ⊆]a, b] with aiN < biN .
Hence, aiN < biN ≤ b. Let k ∈ {1, . . . , N − 1}. Since the ]an, bn]’s are
pairwise disjoint, in particular, ]aik , bik ]∩]aik+1 , bik+1 ] = ∅. Let ε > 0 be
such that aik+1 + ε ∈]aik+1 , bik+1 ]. Then aik ≤ aik+1 < aik+1 + ε, and
aik+1 + ε cannot be an element of ]aik , bik ]. Hence, bik < aik+1 + ε. Taking
the limit as ε → 0, we have bik ≤ aik+1 . It follows that the permutation
(i1, . . . , iN) of {1, . . . , N} is such that:

a ≤ ai1 < bi1 ≤ ai2 < . . . < biN ≤ b

From 1., we obtain:
N∑
k=1

F (bik)− F (aik) ≤ F (b)− F (a)

and consequently:
N∑
n=1

µ(]an, bn]) =
N∑
k=1

µ(]aik , bik ]) ≤ µ(]a, b]) (4)

Taking the supremum over all N ≥ 1 (or the limit as N → +∞) in the
left-hand side of (4), we obtain:

+∞∑
n=1

µ(]an, bn]) ≤ µ(]a, b])

3. F being right-continuous, it is right-continuous in a ∈ R. Given ε > 0,
there exists η′ > 0 such that:

∀x ∈ [a, a+ η′[ , |F (x) − F (a)| ≤ ε

Take η = min(b−a, η′)/2. Then η ∈]0, b−a[, and we have a+η ∈ [a, a+η′[.
Therefore, |F (a+ η)− F (a)| ≤ ε, and F being non-decreasing, we finally
have:

0 ≤ F (a+ η)− F (a) ≤ ε

4. Given n ≥ 1, F is right-continuous in bn ∈ R. Given ε > 0 and ε′ = ε/2n,
there exists η′n > 0 such that:

∀x ∈ [bn, bn + η′n[ , |F (x)− F (bn)| ≤ ε′

Take ηn = η′n/2. Then bn + ηn ∈ [bn, bn + η′n[, and we have |F (bn + ηn)−
F (bn)| ≤ ε/2n. F being non-decreasing, we finally have:

0 ≤ F (bn + ηn)− F (bn) ≤ ε

2n
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5. Let x ∈ [a + η, b]. Then x ∈]a, b], and there exists n ≥ 1 such that
x ∈]an, bn]. In particular, x ∈]an, bn + ηn[. It follows that:

[a+ η, b] ⊆
+∞⋃
n=1

]an, bn + ηn[ (5)

6. We see from (5) that the closed interval [a+ η, b] of R, is covered by the
family of open sets (]an, bn + ηn[)n≥1 in R. Since [a + η, b] is a compact
subset of R2, we can extract a finite sub-covering of [a + η, b]. In other
words, there exist p ≥ 1, and integers n1, . . . , np such that:

[a+ η, b] ⊆
p⋃
k=1

]ank , bnk + ηnk [

In particular:

]a+ η, b] ⊆
p⋃
k=1

]ank , bnk + ηnk ] (6)

7. From exercise (4), we know that µ as defined in (1), is finitely sub-additive.
It follows from (6):

µ(]a+ η, b]) ≤
p∑
k=1

µ(]ank , bnk + ηnk ]) (7)

Since a+ η < b and an < bn < bn + ηn for all n ≥ 1, inequality (7) can be
written as:

F (b)− F (a+ η) ≤
p∑
k=1

F (bnk + ηnk)− F (ank)

Using 3. and 4., we obtain:

F (b)− F (a) ≤ ε+
p∑
k=1

(F (bnk)− F (ank) +
ε

2nk
)

and since F is non-decreasing, we finally have:

F (b)− F (a) ≤ 2ε+
+∞∑
n=1

F (bn)− F (an) (8)

8. Taking the limit as ε→ 0 in (8), we obtain:

F (b)− F (a) ≤
+∞∑
n=1

F (bn)− F (an)

2Note that the notion of compact subsets and the fact that any closed interval [a, b] in R is
indeed a compact subset of R, has not been approached so far in these tutorials. This seems
to contradict our promise that no results in these tutorials should be used without proof. In
fact, Tutorial 8 will give you ample reminders on compactness. Just be a little patient.
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Since a < b and an < bn for all n ≥ 1, we have:

µ(]a, b]) ≤
+∞∑
n=1

µ(]an, bn])

From 2., we conclude that:

µ(]a, b]) =
+∞∑
n=1

µ(]an, bn]) (9)

It follows that if A ∈ S and (An)n≥1 is a sequence of pairwise disjoint
elements of S, such that A = ]+∞

n=1An, we have:

µ(A) =
+∞∑
n=1

µ(An) (10)

Indeed, if A = ∅, then all An’s are empty and (10) is obviously satisfied.
If A 6= ∅, then A =]a, b] for some a < b. Moreover, if we define J = {n ≥
1, An 6= ∅}, then A = ]n∈JAn, and the following holds,

µ(A) =
∑
n∈J

µ(An) (11)

either as a consequence of (9), in the case when J is infinite, or as a
consequence of µ being finitely additive (exercise (4)), in the case when
J is finite. In any case, (10) follows immediately from (11) and the fact
that µ(∅) = 0. Having proved (10), we conclude that µ : S → [0,+∞] as
defined in (1) is indeed a measure on the semi-ring S.

Exercise 5

Exercise 6. Any statement of the form ∀x ∈ ∅ . . .3 is true. So ∅ ∈ TR, and it is
clear that R ∈ TR. So (i) of definition (13) is satisfied for TR. Let A,B ∈ TR.
Let x ∈ A ∩B. Since x ∈ A, from definition (17), there exists ε1 > 0 such that
]x−ε1, x+ε1[⊆ A. Since x ∈ B, there exists ε2 > 0 such that ]x−ε2, x+ε2[⊆ B.
It follows that if ε is defined as ε = min(ε1, ε2), then ]x− ε, x+ ε[⊆ A∩B. Hence
A ∩ B ∈ TR, and (ii) of definition (13) is satisfied for TR. Let (Ai)i∈I be a
family of elements of TR. Let x ∈ ∪i∈IAi. There exists i ∈ I such that x ∈ Ai.
Since by assumption Ai ∈ TR, there exists ε > 0 such that ]x − ε, x + ε[⊆ Ai.
In particular, ]x − ε, x + ε[⊆ ∪i∈IAi. It follows that ∪i∈IAi ∈ TR, and (iii) of
definition (13) is satisfied for TR. We have proved that TR is indeed a topology
on R.

Exercise 6

Exercise 7.
3 Recall that ∀x ∈ ∅, H is equivalent to x ∈ ∅ ⇒ H, and G ⇒ H is equivalent to (G is

false) or (both G and H are true).
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1. For all n ≥ 1, we have ]a, b] ⊆]a, b + 1/n[. Hence, we have ]a, b] ⊆
∩+∞
n=1]a, b + 1/n[. Conversely, if x ∈ ∩+∞

n=1]a, b + 1/n[, then for all n ≥ 1,
we have a < x < b + 1/n. Taking the limit as n → +∞, we obtain
a < x ≤ b. It follows that x ∈]a, b] and ∩+∞

n=1]a, b + 1/n[⊆]a, b]. Finally,
]a, b] = ∩+∞

n=1]a, b+ 1/n[.

2. Let a, b ∈ R, a ≤ b. For all n ≥ 1, the interval ]a, b+ 1/n[ is an open set
in R, (i.e. an element of TR). Indeed, if x ∈]a, b+ 1/n[, take ε = min(b+
1/n−x, x−a), then ]x− ε, x+ ε[⊆]a, b+ 1/n[. Since TR ⊆ σ(TR) = B(R),
]a, b + 1/n[ is also a Borel set in R, (i.e. an element of B(R)). From 1.,
we have:

]a, b] =
+∞⋂
n=1

]a, b+ 1/n[=

(
+∞⋃
n=1

]a, b+ 1/n[c
)c

B(R) being a σ-algebra, it is closed under complementation and countable
union. It follows that ]a, b] ∈ B(R). This being true for all a ≤ b, we have
proved that S ⊆ B(R). The σ-algebra σ(S) generated by S being the
smallest σ-algebra on R containing S, we finally have σ(S) ⊆ B(R).

3. Let U ∈ TR and x ∈ U . From definition (17), there exists ε > 0 such
that ]x− ε, x+ ε[⊆ U . Q being the set of all rational numbers, it is dense
in R: in other words, for all a < b, Q∩]a, b[ is a non-empty set4. In
particular, there exist ax ∈ Q∩]x − ε, x[ and bx ∈ Q∩]x, x + ε[. We have
x ∈]ax, bx] ⊆ U .

4. Since for all x ∈ U , ]ax, bx] ⊆ U , we have ∪x∈U ]ax, bx] ⊆ U . If x ∈ U , then
x ∈]ax, bx]. So U ⊆ ∪x∈U ]ax, bx]. We have proved that U = ∪x∈U ]ax, bx].

5. Let I = {]ax, bx], x ∈ U}. Since Q is a countable set, the product
Q2 = Q × Q is also countable. There exists a one-to-one map φ :
Q2 → N. Consider ψ : I → N defined by ψ(]ax, bx]) = φ(ax, bx). Then
if ψ(]ax′ , bx′ ]) = ψ(]ax, bx]), we have φ(ax′ , bx′) = φ(ax, bx), and thus,
(ax′ , bx′) = (ax, bx). Hence, ]ax′ , bx′ ] =]ax, bx]. It follows that the map
ψ : I → N is an injective map. We have proved that I is a countable set.

6. For all i ∈ I, i =]ax, bx] for some x ∈ U . So i ∈ S. Define Ai = i. Then
Ai ∈ S for all i ∈ I, and we have:

U =
⋃
x∈U

]ax, bx] =
⋃
i∈I

Ai

7. Since I is a countable set, and Ai ∈ S for all i ∈ I, we have U = ∪i∈IAi ∈
σ(S). This being true for all U ∈ TR, we have proved that TR ⊆ σ(S).
The Borel σ-algebra B(R) generated by TR being the smallest σ-algebra
on R containing TR, we have B(R) ⊆ σ(S). From 2., we conclude that
B(R) = σ(S). The purpose of this exercise is to show theorem (6).

4This density property of Q in R is not proved anywhere in these tutorials. Please refer
to any textbook containing a formal construction of the field R.
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Exercise 7

Exercise 8.

1. A σ-algebra being closed under difference, (Bn)n≥1 is indeed a sequence
of elements of F . Suppose Bn ∩ Bp 6= ∅. Without loss of generality, we
can assume that n ≤ p. Suppose n < p and let x ∈ Bn ∩ Bp. From
x ∈ Bn, we have x ∈ An. From x ∈ Bp, we have x 6∈ Ap−1. However,
An ⊆ Ap−1. This is a contradiction, and it follows that n = p. We have
proved that the Bn’s are pairwise disjoint. Since Bn ⊆ An for all n ≥ 1,
we have ]+∞

n=1Bn ⊆ A. Conversely, let x ∈ A. There exists n ≥ 1 such
that x ∈ An. Let n be the smallest integer such that x ∈ An. Then if
n = 1, x ∈ B1. If n > 1, then x ∈ An \ An−1 = Bn. In any case x ∈ Bn
and A ⊆ ]+∞

n=1Bn. We have proved that (Bn)n≥1 is a sequence of pairwise
disjoint elements of F , such that A = ]+∞

n=1Bn.

2. Let N ≥ 1. For all n = 1, . . . , N , we have Bn ⊆ An ⊆ AN . So ]Nn=1Bn ⊆
AN . Conversely, let x ∈ AN . Let n be the smallest integer such that
x ∈ An. Then 1 ≤ n ≤ N . If n = 1, then x ∈ B1. If n > 1, then
x ∈ An \ An−1 = Bn. In any case, x ∈ Bn and AN ⊆ ]Nn=1Bn. We have
proved that AN = ]Nn=1Bn.

3. µ being a measure on F , from 1. we obtain:

lim
N→+∞

N∑
n=1

µ(Bn)
4
=

+∞∑
n=1

µ(Bn) = µ(A)

However, it follows from 2.
N∑
n=1

µ(Bn) = µ(AN )

Hence:
lim

N→+∞
µ(AN ) = µ(A)

4. Since An ⊆ An+1, we have µ(An) ≤ µ(An+1) for all n ≥ 1. The purpose
of this exercise is to prove theorem (7).

Exercise 8

Exercise 9.

1. A σ-algebra being closed under difference, each Bn is an element of F .
For all n ≥ 1, we have:

Bn = A1 ∩Acn ⊆ A1 ∩Acn+1 = Bn+1

Moreover:
+∞⋃
n=1

Bn = A1 ∩
(

+∞⋃
n=1

Acn

)
= A1 ∩

(
+∞⋂
n=1

An

)c
= A1 \A

We have proved that Bn ↑ A1 \A.
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2. µ(Bn) ↑ µ(A1 \A) is a direct application of theorem (7).

3. Since An ⊆ A1, we have A1 = An ] (A1 \ An). µ being a measure on F ,
we obtain µ(A1) = µ(An) +µ(A1 \An). Since µ(A1) < +∞, all the terms
involved in this equality are finite. Hence, it is legitimate to write:

µ(An) = µ(A1)− µ(A1 \An)

4. Since A ⊆ A1, we have A1 = A ] (A1 \ A). µ being a measure on F ,
we obtain µ(A1) = µ(A) + µ(A1 \ A). Since µ(A1) < +∞, all the terms
involved in this equality are finite. Hence, it is legitimate to write:

µ(A) = µ(A1)− µ(A1 \A)

5. Since for all n ≥ 1, A ⊆ An ⊆ A1, µ being a measure on F , µ(A) ≤
µ(An) ≤ µ(A1). Similarly, A1 \ A ⊆ A1 implies that µ(A1 \ A) ≤ µ(A1).
Having µ(A1) < +∞ ensures that all the terms involved in say µ(A1) =
µ(A) +µ(A1 \A) are finite, allowing to subtract µ(A1 \A) on both side of
such equality. One common mistake to make is to get involved in algebra
with non-finite terms, ending up with meaningless expressions of the form
+∞− (+∞). . .

6. Using 2., 3., 4. and the fact that µ(A1) < +∞5:

lim
n→+∞

µ(An) = µ(A1)− lim
n→+∞

µ(Bn) = µ(A1)− µ(A1 \A) = µ(A)

7. For all n ≥ 1, An+1 ⊆ An, and therefore µ(An+1) ≤ µ(An). The purpose
of this exercise is to prove theorem (8).

Exercise 9

Exercise 10.

1. For all n ≥ 1, we have An+1 ⊆ An, and:
+∞⋂
n=1

An =
+∞⋂
n=1

]n,+∞[= ∅

It follows that An ↓ ∅.

2. Let n ≥ 1. Given p ≥ n, define Apn =]n, p]. Then Apn ↑ An as p → +∞,
and from theorem (7), we have:

µ(An) = lim
p→+∞

µ(Apn) = lim
p→+∞

p− n = +∞

3. Since µ(An) = +∞ for all n ≥ 1, µ(An)→ +∞ as n→ +∞. Since µ(∅) =
0, µ(An) ↓ µ(∅) fails to be true. The purpose of this exercise is to serve as
counter example to theorem (8), if the condition µ(A1) < +∞ is relaxed.
Indeed, An ↓ ∅, yet we do not have µ(An) ↓ µ(∅). Note however that to

5 limn→+∞(+∞− n) = +∞, whereas +∞− limn→+∞ n is meaningless. . .
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apply theorem (8), µ(A1) < +∞ is not strictly speaking necessary: if a
slightly weaker assumption is made that µ(Ap) < +∞ for some p ≥ 1, one
can always apply theorem (8) to the sequence (A′n)n≥1 = (An+p−1)n≥1. . .

Exercise 10

Exercise 11. Let S be the semi-ring S = {]a, b], a, b ∈ R}, and µ : S → [0,+∞]
be the map defined by equation (2). We know from exercise (5) that µ is in fact
a measure on S. From theorem (5) , µ can be extended to a measure defined
on the σ-algebra σ(S) generated by S. In other words, there exists a measure
µ̄ : σ(S) → [0,+∞], such that µ̄|S = µ. From theorem (6), we know that the
σ-algebra σ(S) is in fact equal to the Borel σ-algebra B(R) on R. Hence, we
have found a measure µ̄ : B(R)→ [0,+∞] such that µ̄|S = µ. In particular, we
have:

∀a, b ∈ R , a ≤ b , µ̄(]a, b]) = F (b)− F (a)
The purpose of this exercise is to prove the existence of the so called Stieltjes
measure on R, stated in theorem (9). This is a vitally important result, as
most other measures ever encountered, are derived one way or another from the
Stieltjes measure on R.

Exercise 11

Exercise 12.

1. Since µ1(]−n, n]) = F (n)−F (−n) = µ2(]−n, n]), Ω ∈ Dn. Suppose
A,B ∈ Dn, with A ⊆ B. We have:

µ1(B∩]−n, n]) = µ2(B∩]−n, n]) (12)

µ1(A∩]−n, n]) = µ2(A∩]−n, n]) (13)
Moreover, since B = A ] (B \A), for i = 1, 2, we have:

µi(B∩]−n, n]) = µi(A∩]−n, n]) + µi((B \A)∩]−n, n]) (14)

All terms involved in (12), (13) and (14) being finite, subtracting (13)
from (12), and using (14), we obtain:

µ1((B \A)∩]−n, n]) = µ2((B \A)∩]−n, n])

This shows that B \A ∈ Dn. Let (Ap)p≥1 be a sequence of elements of Dn
such that Ap ↑ A. Then Ap∩]− n, n] ↑ A∩]− n, n], and from theorem (7),
µi(Ap∩]−n, n]) ↑ µi(A∩]−n, n]) for all i = 1, 2. However, since Ap ∈ Dn
for all p ≥ 1, we have:

µ1(Ap∩]−n, n]) = µ2(Ap∩]−n, n])

Taking the limit as p→ +∞, we obtain:

µ1(A∩]−n, n]) = µ2(A∩]−n, n])

So A ∈ Dn. Having checked (i), (ii) and (iii) of definition (1), we have
proved that Dn is indeed a Dynkin system on R.
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2. A crucial step in proving that Dn is a Dynkin system on R, consists
in subtracting (13) from (12). One has to be very careful in avoiding
meaningless expressions of the form +∞− (+∞). Having µ1(]−n, n]) <
+∞ and µ2(]−n, n]) < +∞ ensures that all terms involved be finite.

3. Since µ1(∅∩]−n, n]) = 0 = µ2(∅∩]−n, n]), we have ∅ ∈ Dn. Let a < b.
From exercise (1), ]a, b]∩]−n, n] is an interval of the form ]a′, b′]. If a′ < b′,
then:

µ1(]a′, b′]) = F (b′)− F (a′) = µ2(]a′, b′])
Otherwise, µ1(]a′, b′]) = 0 = µ2(]a′, b′]). In any case, we have µ1(]a′, b′]) =
µ2(]a′, b′]), and ]a, b] ∈ Dn. We have proved that S ⊆ Dn.

4. S being a semi-ring on R, from definition (6), it is closed under finite
intersection. Since S ⊆ Dn, Dn is a Dynkin system containing a set
of subsets of R, which is closed under finite intersection. According to
theorem (1), Dn also contains the σ-algebra generated by S. In other
words, σ(S) ⊆ Dn. However, from theorem (6), the σ-algebra generated
by S, coincide with the Borel σ-algebra on R, i.e. σ(S) = B(R). It follows
that B(R) ⊆ Dn.

5. Let A ∈ B(R). from 4., we have A ∈ Dn. In other words:

µ1(A∩]−n, n]) = µ2(A∩]−n, n])

This being true for all n ≥ 1, using theorem (7) and taking the limit as
n → +∞, we obtain: µ1(A) = µ2(A). This being true for all A ∈ B(R),
µ1 = µ2.

6. Uniqueness follows from 5. Existence is proved in exercise (11).

Exercise 12

Exercise 13.

1. F being non-decreasing, for all x < x0, F (x) ≤ F (x0). Define:

α
4
= sup

x<x0

F (x)

Then α ≤ F (x0) and in particular α < +∞. It follows that given ε > 0,
α− ε < α. Being a supremum, α is the smallest upper-bound of all F (x)’s
for x < x0. Hence, we see that α− ε cannot be such upper-bound. There
exists x1 < x0 such that α − ε < F (x1). Since F is non-decreasing, for
all x ∈]x1, x0[, we have α − ε < F (x1) ≤ F (x) ≤ α ≤ α + ε. We conclude
that for all ε > 0, there exists x1 < x0 such that:

∀x ∈]x1, x0[ , |F (x) − α| ≤ ε
We have proved the existence of the left limit:

F (x0−)
4
= lim
x<x0,x→x0

F (x) = α ∈ R
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2. It is clear that {x0} ⊆ ∩+∞
n=1]x0 − 1/n, x0]. Conversely, suppose that x ∈

∩+∞
n=1]x0 − 1/n, x0]. Then for all n ≥ 1, we have x0 − 1/n < x ≤ x0.

Taking the limit as n → +∞, we obtain x0 ≤ x ≤ x0, i.e. x = x0. So
∩+∞
n=1]x0−1/n, x0] ⊆ {x0}. We have proved that {x0} = ∩+∞

n=1]x0−1/n, x0].

3. We have {x0} = (]−∞, x0[∪]x0,+∞[)c. Open intervals being open sets for
the usual topology on R, they are also Borel sets. A σ-algebra being closed
under finite union and complementation, we conclude that {x0} ∈ B(R).

4. Given n ≥ 1, let An =]x0 − 1/n, x0]. Since An+1 ⊆ An, from 2., we
have An ↓ {x0}. Also, dF (A1) = F (x0) − F (x0 − 1) ∈ R. In particular,
dF (A1) < +∞. Applying theorem (8), we obtain:

dF ({x0}) = lim
n→+∞

dF (An) = F (x0)− F (x0−)

Exercise 13

Exercise 14.

1. ]a, b] =]a,+∞[∩(]b,+∞[)c. Open intervals being Borel sets, and a σ-algebra
being closed under finite intersection and complementation, we have ]a, b] ∈
B(R). In virtue of definition (20), dF (]a, b]) = F (b)− F (a).

2. [a, b] = (]−∞, a[∪]b,+∞[)c and is therefore a Borel set. Moreover, using
exercise (13):

dF ([a, b]) = dF ({a}) + dF (]a, b]) = F (b)− F (a−)

3. ]a, b[ being open is a Borel set. Moreover, using exercise (13):

dF (]a, b[) = dF (]a, b])− dF ({b}) = F (b−)− F (a)

4. [a, b[=]−∞, b[∩(]−∞, a[)c and is therefore a Borel set. Moreover, using
exercise (13):

dF ([a, b[) = dF ({a}) + dF (]a, b])− dF ({b}) = F (b−)− F (a−)

Exercise 14

Exercise 15.

1. Suppose A is a topology on Ω. Then ∅ and Ω are elements of A. It follows
that that ∅ ∩Ω′ = ∅ and Ω ∩Ω′ = Ω′ are both elements of A|Ω′ . So (i) of
definition (13) is satisfied for A|Ω′ . Let A′, B′ ∈ A|Ω′ . There exist A,B ∈
A such that A′ = A∩Ω′ and B′ = B ∩Ω′. Hence, A′ ∩B′ = (A∩B)∩Ω′.
Since A is a topology, A ∩ B ∈ A. It follows that A′ ∩ B′ ∈ A|Ω′ , and
(ii) of definition (13) is satisfied for A|Ω′ . Let (A′i)i∈I be a family of
elements of A|Ω′ . There exists a family (Ai)i∈I of elements of A, such
that A′i = Ai ∩ Ω′, for all i ∈ I. In particular, ∪i∈IA′i = (∪i∈IAi) ∩ Ω′.
Since A is a topology, ∪i∈IAi ∈ A. It follows that ∪i∈IA′i ∈ A|Ω′ and (iii)
of definition (13) is satisfied for A|Ω′ . We have proved that A|Ω′ is indeed
a topology on Ω′.
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2. Suppose A is a σ-algebra on Ω. Then Ω ∈ A, and we have Ω′ = Ω ∩ Ω′ ∈
A|Ω′ . Let A′ ∈ A|Ω′ . There exists A ∈ A such that A′ = A ∩ Ω′. Hence6,
Ω′ \ A′ = Ω′ ∩ (A′)c = Ω′ ∩ Ac. Since A is a σ-algebra, Ac ∈ A. It
follows that Ω′ \ A′ ∈ A|Ω′ , and A|Ω′ is closed under complementation
in Ω′. let (A′n)n≥1 be a sequence of elements of A|Ω′ . There exists a
sequence (An)n≥1 of elements of A, such that A′n = An ∩ Ω′, for all
n ≥ 1. In particular, ∪+∞

n=1A
′
n = (∪+∞

n=1An) ∩ Ω′. Since A is a σ-algebra,
∪+∞
n=1An ∈ A. It follows that ∪+∞

n=1A
′
n ∈ A|Ω′ , and A|Ω′ is closed under

countable union. We have proved that A|Ω′ is indeed a σ-algebra on Ω′.

Exercise 15

Exercise 16.

1. When working in the context of two reference sets Ω′ and Ω where Ω′ ⊆ Ω,
given A ⊆ Ω′, the notation Ac and the notion of complementation can be
confusing: does it refer to the complement of A in Ω, or the complement of
A in Ω′. . . Unless otherwise specified, it is customary to keep the notation
Ac for the complement of A relative to the large set (Ac = Ω \ A). The
complement of A relative to the smaller set Ω′ can still be denoted Ω′ \A.
Similarly, whenever A′ is a set of subsets of Ω′ (like A|Ω′), then it is also a
set of subsets of Ω. Hence, a notation such as σ(A′) can be ambiguous and
confusing. One the one hand, σ(A′) could be referring to the σ-algebra
generated by A′ on Ω. One the other hand, σ(A′) could be referring
to the σ-algebra generated by A′ on Ω′. Hence, it is very important to
specify clearly what is meant, when using a notation such as σ(A′). In
this exercise, σ(A) is a σ-algebra on Ω, whereas σ(A|Ω′ ) is a σ-algebra on
Ω′.

2. Let A ∈ A. Then A ∈ σ(A) and A ∩ Ω′ ∈ A|Ω′ ⊆ σ(A|Ω′ ). It follows that
A ∈ Γ, and A ⊆ Γ.

3. σ(A) being a σ-algebra on Ω, Ω ∈ σ(A). σ(A|Ω′) being a σ-algebra on
Ω′, Ω ∩ Ω′ = Ω′ ∈ σ(A|Ω′ ). It follows that Ω ∈ Γ. Let A ∈ Γ. Then
A ∈ σ(A) and A ∩ Ω′ ∈ σ(A|Ω′ ). Hence, Ac ∈ σ(A) and Ac ∩ Ω′ =
Ω′ \ (A ∩ Ω′) ∈ σ(A|Ω′ ). So Ac ∈ Γ. It follows that Γ is closed under
complementation. Let (An)n≥1 be a sequence of elements of Γ. Then for
all n ≥ 1, An ∈ σ(A) and An ∩ Ω′ ∈ σ(A|Ω′). It follows that ∪+∞

n=1An ∈
σ(A), and (∪+∞

n=1An) ∩ Ω′ = ∪+∞
n=1(An ∩ Ω′) ∈ σ(A|Ω′ ). So ∪+∞

n=1An ∈ Γ.
It follows that Γ is closed under countable union. We have proved that Γ
is indeed a σ-algebra on Ω.

4. The σ-algebra σ(A) on Ω generated by A, being the smallest σ-algebra on
Ω containing A, from A ⊆ Γ, and the fact that Γ is σ-algebra on Ω, we
have σ(A) ⊆ Γ. In particular, for all A ∈ σ(A), we have A∩Ω′ ∈ σ(A|Ω′ ).
Hence, we see that σ(A)|Ω′ ⊆ σ(A|Ω′). However, for all A ∈ A, since

6The notation (A′)c refers to the complement of A′ in Ω, i.e. (A′)c = Ω \ A′. The
complement of A′ in Ω′ is denoted Ω′ \A′.
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A ∈ σ(A), we have A∩Ω′ ∈ σ(A)|Ω′ . It follows that A|Ω′ ⊆ σ(A)|Ω′ . From
exercise (15), σ(A)|Ω′ is a σ-algebra on Ω′. The σ-algebra σ(A|Ω′ ) being
the smallest σ-algebra on Ω′ containing A|Ω′ , we conclude that σ(A|Ω′ ) ⊆
σ(A)|Ω′ . We have proved that σ(A|Ω′) = σ(A)|Ω′ . The purpose of this
exercise is to prove theorem (10).

Exercise 16

Exercise 17.

1. From theorem (10), B(Ω)|Ω′ = σ(T )|Ω′ = σ(T|Ω′) = B(Ω′).

2. Suppose Ω′ ∈ B(Ω). Let A′ ∈ B(Ω′). Since B(Ω′) = B(Ω)|Ω′ , there exists
A ∈ B(Ω) such that A′ = A ∩ Ω′. A σ-algebra being closed under finite
intersection, it follows that A′ ∈ B(Ω). We have proved that B(Ω′) ⊆
B(Ω).

3. From 1., we have B(R+) = B(R)|R+ = {A ∩R+ , A ∈ B(R)}

4. Since R+ =]−∞, 0[c∈ B(R), from 2. we have B(R+) ⊆ B(R).

Exercise 17

Exercise 18.

1. From exercise (15), F being a σ-algebra on Ω, F|Ω′ is a σ-algebra on Ω′.
from definition (18), it follows that (Ω′,F|Ω′) is a measurable space.

2. Suppose Ω′ ∈ F . A σ-algebra being closed under finite intersection, F|Ω′ =
{A ∩Ω′, A ∈ F} ⊆ F .

3. If Ω′ ∈ F , from 2., F|Ω′ ⊆ F . Hence, it is legitimate to consider the
restriction µ|(F|Ω′) of the map µ : F → [0,+∞] to the smaller domain
F|Ω′ . Denoting such restriction by µ|Ω′ , it is clearly a measure on F|Ω′
(definition (9)). From definition (19), it follows that (Ω′,F|Ω′ , µ|Ω′) is a
measure space.

Exercise 18

Exercise 19.

1. Let x0 ∈ R. If x0 < 0, then F̄ (x) → 0 = F̄ (x0) as x → x0. If x0 ≥ 0,
since F is right-continuous, we have:

lim
x0<x,x→x0

F̄ (x) = lim
x0<x,x→x0

F (x) = F (x0) = F̄ (x0)

Hence we see that F̄ is itself right-continuous. Let a ≤ b. If 0 ≤ a ≤ b,
then F̄ (a) = F (a) ≤ F (b) = F̄ (b). If a < 0 ≤ b, then F̄ (a) = 0 ≤
F (0) ≤ F (b) = F̄ (b). If a ≤ b < 0, then F̄ (a) = 0 = F̄ (b). In any case,
F̄ (a) ≤ F̄ (b) and F̄ is non-decreasing.
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2. B(R+) ⊆ B(R) and µ is well-defined. Using exercise (13):

µ({0}) = dF̄ ({0}) = F̄ (0)− F̄ (0−) = F (0)

Moreover, for all 0 ≤ a ≤ b:
µ(]a, b]) = dF̄ (]a, b]) = F̄ (b)− F̄ (a) = F (b)− F (a)

Exercise 19

Exercise 20.

1. For all 0 ≤ a ≤ b, ]a, b] =]a, b] ∩ R+ ∈ B(R)|R+= B(R+). Moreover, we
have {0} =]−1, 0]∩R+ ∈ B(R+). we have proved that C ⊆ B(R+).

2. Let U be open in R+. By definition (23), there exists V open in R,
such that U = V ∩ R+. For all x ∈ V , there exists εx > 0 such that
]x − εx, x + εx[⊆ V . The set of rational numbers Q being dense in R,
we can choose px ∈ Q∩]x − εx, x[ and qx ∈ Q∩]x, x + εx[. We have
x ∈]px, qx] ⊆ V . If we define I = {]px, qx], x ∈ V }, then I is a countable
set (see exercise (7) for more details). For all i ∈ I, let ai = px and bi = qx,
where x ∈ V is such that i =]px, qx]. From V = ∪x∈V ]px, qx], we obtain
V = ∪i∈I ]ai, bi], and finally U = ∪i∈I(R+∩]ai, bi]).

3. If 0 ≤ ai ≤ bi, then R+∩]ai, bi] =]ai, bi] ∈ C. If ai < 0 ≤ bi, then
R+∩]ai, bi] = [0, bi] = {0}∪]0, bi] ∈ σ(C). If ai ≤ bi < 0, then R+∩]ai, bi] =
∅ =]1, 1] ∈ C. In any case, R+∩]ai, bi] ∈ σ(C).

4. From 2. and 3., the set I being countable, we have:

U = ∪i∈I(R+∩]ai, bi]) ∈ σ(C)

This being true for all U open in R+, we have TR+ ⊆ σ(C). B(R+) being
the smallest σ-algebra on R+ containing TR+ , we obtain that B(R+) ⊆
σ(C). However from 1., C ⊆ B(R+). σ(C) being the smallest σ-algebra on
R+ containing C, we have σ(C) ⊆ B(R+). We have proved that σ(C) =
B(R+).

Exercise 20

Exercise 21.

1. µ1({0} ∩ [0, n]) = µ1({0}) = µ2({0}) = µ2({0} ∩ [0, n]). So {0} ∈ Dn. For
all 0 ≤ a ≤ b, ]a, b] ∩ [0, n] is either empty, or is an interval of the form
]a′, b′] with 0 ≤ a′ ≤ b′. In any case, µ1(]a, b] ∩ [0, n]) = µ2(]a, b] ∩ [0, n]).
It follows that C ⊆ Dn. Since µ1([0, n]) = µ1({0}) + µ1(]0, n]) = F (n) =
µ2([0, n]), we have R+ ∈ Dn and both µ1([0, n]) and µ2([0, n]) are finite.
Let A,B ∈ Dn with A ⊆ B. We have:

µ1(A ∩ [0, n]) = µ2(A ∩ [0, n])

µ1(B ∩ [0, n]) = µ2(B ∩ [0, n])
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and for i = 1, 2:

µi(B ∩ [0, n]) = µi(A ∩ [0, n]) + µi((B \A) ∩ [0, n])

All terms being finite, we obtain:

µ1((B \A) ∩ [0, n]) = µ2((B \A) ∩ [0, n])

and it follows that B \A ∈ Dn. Let (Ap)p≥1 be a sequence of elements of
Dn, with Ap ↑ A. Then Ap ∩ [0, n] ↑ A ∩ [0, n]. For all p ≥ 1, we have:

µ1(Ap ∩ [0, n]) = µ2(Ap ∩ [0, n])

Using theorem (7), taking the limit as p→ +∞, we obtain:

µ1(A ∩ [0, n]) = µ2(A ∩ [0, n])

and it follows that A ∈ Dn. We have proved that Dn is a Dynkin system
on R+ (definition (1)) with C ⊆ Dn.

2. µ1([0, n]) < +∞ and µ2([0, n]) < +∞ is important in ensuring that the
algebra required to prove that B \A ∈ Dn, is indeed meaningful.

3. Let 0 ≤ a ≤ b. Then {0}∩]a, b] = ∅ =]1, 1] ∈ C. If 0 ≤ c ≤ d, then
]a, b]∩]c, d] can still be written as ]a′, b′] with 0 ≤ a′ ≤ b′, and therefore
lies in C. It follows that C is closed under finite intersection. Since Dn
is a Dynkin system on R+ such that C ⊆ Dn, using theorem (1), we see
that σ(C) ⊆ Dn. However, from exercise (20), σ(C) = B(R+). It follows
that B(R+) ⊆ Dn. Hence, for all A ∈ B(R+), we have µ1(A ∩ [0, n]) =
µ2(A ∩ [0, n]). Since A ∩ [0, n] ↑ A as n → +∞, using theorem (7), we
obtain µ1(A) = µ2(A). This being true for all Borel set A ∈ B(R+), we
have proved that µ1 = µ2.

4. Existence follows from exercise (19). Uniqueness is a consequence of 3.

Exercise 21
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