10. Bounded Linear Functionals in L^2

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.

Definition 78 We call **subsequence** of a sequence $(x_n)_{n\geq 1}$, any sequence of the form $(x_{\phi(n)})_{n\geq 1}$ where $\phi: \mathbf{N}^* \to \mathbf{N}^*$ is a strictly increasing map.

EXERCISE 1. Let (E, d) be a metric space, with metric topology \mathcal{T} . Let $(x_n)_{n\geq 1}$ be a sequence in E. For all $n\geq 1$, let F_n be the closure of the set $\{x_k: k\geq n\}$.

1. Show that for all $x \in E$, $x_n \xrightarrow{\mathcal{T}} x$ is equivalent to:

$$\forall \epsilon > 0 , \exists n_0 \ge 1 , n \ge n_0 \Rightarrow d(x_n, x) \le \epsilon$$

- 2. Show that $(F_n)_{n\geq 1}$ is a decreasing sequence of closed sets in E.
- 3. Show that if $F_n \downarrow \emptyset$, then $(F_n^c)_{n\geq 1}$ is an open covering of E.

- 4. Show that if (E, \mathcal{T}) is compact then $\bigcap_{n=1}^{+\infty} F_n \neq \emptyset$.
- 5. Show that if (E, \mathcal{T}) is compact, there exists $x \in E$ such that for all $n \ge 1$ and $\epsilon > 0$, we have $B(x, \epsilon) \cap \{x_k, k \ge n\} \ne \emptyset$.
- 6. By induction, construct a subsequence $(x_{n_p})_{p\geq 1}$ of $(x_n)_{n\geq 1}$ such that $x_{n_p} \in B(x,1/p)$ for all $p\geq 1$.
- 7. Conclude that if (E, \mathcal{T}) is compact, any sequence $(x_n)_{n\geq 1}$ in E has a convergent subsequence.

EXERCISE 2. Let (E,d) be a metric space, with metric topology \mathcal{T} . We assume that any sequence $(x_n)_{n\geq 1}$ in E has a convergent subsequence. Let $(V_i)_{i\in I}$ be an open covering of E. For $x\in E$, let:

$$r(x) \stackrel{\triangle}{=} \sup\{r > 0 : B(x,r) \subseteq V_i, \text{ for some } i \in I\}$$

1. Show that $\forall x \in E, \exists i \in I, \exists r > 0$, such that $B(x,r) \subseteq V_i$.

2. Show that $\forall x \in E, r(x) > 0$.

EXERCISE 3. Further to ex. (2), suppose $\inf_{x \in E} r(x) = 0$.

- 1. Show that for all $n \ge 1$, there is $x_n \in E$ such that $r(x_n) < 1/n$.
- 2. Extract a subsequence $(x_{n_k})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ converging to some $x^*\in E$. Let $r^*>0$ and $i\in I$ be such that $B(x^*,r^*)\subseteq V_i$. Show that we can find some $k_0\geq 1$, such that $d(x^*,x_{n_{k_0}})< r^*/2$ and $r(x_{n_{k_0}})\leq r^*/4$.
- 3. Show that $d(x^*, x_{n_{k_0}}) < r^*/2$ implies that $B(x_{n_{k_0}}, r^*/2) \subseteq V_i$. Show that this contradicts $r(x_{n_{k_0}}) \le r^*/4$, and conclude that $\inf_{x \in E} r(x) > 0$.

EXERCISE 4. Further to ex. (3), Let r_0 with $0 < r_0 < \inf_{x \in E} r(x)$. Suppose that E cannot be covered by a finite number of open balls with radius r_0 .

- 1. Show the existence of a sequence $(x_n)_{n\geq 1}$ in E, such that for all $n\geq 1, x_{n+1}\notin B(x_1,r_0)\cup\ldots\cup B(x_n,r_0)$.
- 2. Show that for all n > m we have $d(x_n, x_m) \ge r_0$.
- 3. Show that $(x_n)_{n\geq 1}$ cannot have a convergent subsequence.
- 4. Conclude that there exists a finite subset $\{x_1, \ldots, x_n\}$ of E such that $E = B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)$.
- 5. Show that for all $x \in E$, we have $B(x, r_0) \subseteq V_i$ for some $i \in I$.
- 6. Conclude that (E, \mathcal{T}) is compact.
- 7. Prove the following:

Theorem 47 A metrizable topological space (E, \mathcal{T}) is compact, if and only if for every sequence $(x_n)_{n\geq 1}$ in E, there exists a subsequence $(x_{n_k})_{k\geq 1}$ of $(x_n)_{n\geq 1}$ and some $x\in E$, such that $x_{n_k}\stackrel{\mathcal{T}}{\to} x$.

EXERCISE 5. Let $a, b \in \mathbf{R}$, a < b and $(x_n)_{n \ge 1}$ be a sequence in]a, b[.

- 1. Show that $(x_n)_{n\geq 1}$ has a convergent subsequence.
- 2. Can we conclude that a, b is a compact subset of \mathbf{R} ?

EXERCISE 6. Let $E = [-M, M] \times ... \times [-M, M] \subseteq \mathbf{R}^n$, where $n \ge 1$ and $M \in \mathbf{R}^+$. Let $\mathcal{T}_{\mathbf{R}^n}$ be the usual product topology on \mathbf{R}^n , and $\mathcal{T}_E = (\mathcal{T}_{\mathbf{R}^n})_{|E}$ be the induced topology on E.

- 1. Let $(x_p)_{p\geq 1}$ be a sequence in E. Let $x\in E$. Show that $x_p\overset{T_E}{\to} x$ is equivalent to $x_p\overset{T_{\mathbf{R}^n}}{\to} x$.
- 2. Propose a metric on \mathbb{R}^n , inducing the topology $\mathcal{T}_{\mathbb{R}^n}$.
- 3. Let $(x_p)_{p\geq 1}$ be a sequence in \mathbf{R}^n . Let $x\in \mathbf{R}^n$. Show that $x_p \xrightarrow{T_{\mathbf{R}^n}} x$ if and only if, $x_p^i \xrightarrow{T_{\mathbf{R}}} x^i$ for all $i\in \mathbf{N}_n$.

EXERCISE 7. Further to ex. (6), suppose $(x_p)_{p\geq 1}$ is a sequence in E.

- 1. Show the existence of a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, such that $x_{\phi(p)}^1 \stackrel{\mathcal{T}_{[-M,M]}}{\to} x^1$ for some $x^1 \in [-M,M]$.
- 2. Explain why the above convergence is equivalent to $x_{\phi(p)}^1 \stackrel{T_{\mathbf{R}}}{\to} x^1$.
- 3. Suppose that $1 \le k \le n-1$ and $(y_p)_{p\ge 1} = (x_{\phi(p)})_{p\ge 1}$ is a subsequence of $(x_p)_{p\ge 1}$ such that:

$$\forall j = 1, \dots, k , \ x_{\phi(p)}^j \stackrel{T_{\mathbf{R}}}{\to} x^j \text{ for some } x^j \in [-M, M]$$

Show the existence of a subsequence $(y_{\psi(p)})_{p\geq 1}$ of $(y_p)_{p\geq 1}$ such that $y_{\psi(p)}^{k+1} \stackrel{T_{\mathbf{R}}}{\longrightarrow} x^{k+1}$ for some $x^{k+1} \in [-M, M]$.

4. Show that $\phi \circ \psi : \mathbf{N}^* \to \mathbf{N}^*$ is strictly increasing.

5. Show that $(x_{\phi \circ \psi(p)})_{p \geq 1}$ is a subsequence of $(x_p)_{p \geq 1}$ such that:

$$\forall j = 1, \dots, k+1 , x_{\phi \circ \psi(n)}^j \xrightarrow{T_{\mathbf{R}}} x^j \in [-M, M]$$

- 6. Show the existence of a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, and $x\in E$, such that $x_{\phi(p)}\stackrel{\mathcal{T}_E}{\to} x$
- 7. Show that (E, \mathcal{T}_E) is a compact topological space.

EXERCISE 8. Let A be a closed subset of \mathbb{R}^n , $n \geq 1$, which is bounded with respect to the usual metric of \mathbb{R}^n .

- 1. Show that $A\subseteq E=[-M,M]\times\ldots\times[-M,M],$ for some $M\in\mathbf{R}^+.$
- 2. Show from $E \setminus A = E \cap A^c$ that A is closed in E.
- 3. Show $(A, (\mathcal{T}_{\mathbf{R}^n})_{|A})$ is a compact topological space.

4. Conversely, let A is a compact subset of \mathbb{R}^n . Show that A is closed and bounded.

Theorem 48 A subset of \mathbb{R}^n is compact if and only if it is closed and bounded with respect to its usual metric.

EXERCISE 9. Let $n \geq 1$. Consider the map:

$$\phi: \left\{ \begin{array}{ccc} \mathbf{C}^n & \to & \mathbf{R}^{2n} \\ (a_1 + ib_1, \dots, a_n + ib_n) & \to & (a_1, b_1, \dots, a_n, b_n) \end{array} \right.$$

- 1. Recall the expressions of the usual metrics $d_{\mathbf{C}^n}$ and $d_{\mathbf{R}^{2n}}$ of \mathbf{C}^n and \mathbf{R}^{2n} respectively.
- 2. Show that for all $z, z' \in \mathbb{C}^n$, $d_{\mathbb{C}^n}(z, z') = d_{\mathbb{R}^{2n}}(\phi(z), \phi(z'))$.
- 3. Show that ϕ is a homeomorphism from \mathbb{C}^n to \mathbb{R}^{2n} .

- 4. Show that a subset K of \mathbb{C}^n is compact, if and only if $\phi(K)$ is a compact subset of \mathbb{R}^{2n} .
- 5. Show that K is closed, if and only if $\phi(K)$ is closed.
- 6. Show that K is bounded, if and only if $\phi(K)$ is bounded.
- 7. Show that a subset K of \mathbb{C}^n is compact, if and only if it is closed and bounded with respect to its usual metric.

Definition 79 Let (E,d) be a metric space. A sequence $(x_n)_{n\geq 1}$ in E is said to be a Cauchy sequence with respect to the metric d, if and only if for all $\epsilon > 0$, there exists $n_0 \geq 1$ such that:

$$n, m \ge n_0 \implies d(x_n, x_m) \le \epsilon$$

Definition 80 We say that a metric space (E,d) is **complete**, if and only if for any Cauchy sequence $(x_n)_{n\geq 1}$ in E, there exists $x\in E$ such that $(x_n)_{n\geq 1}$ converges to x.

Exercise 10.

- 1. Explain why strictly speaking, given $p \in [1, +\infty]$, definition (77) of Cauchy sequences in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not a covered by definition (79).
- 2. Explain why $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not a complete metric space, despite theorem (46) and definition (80).

EXERCISE 11. Let $(z_k)_{k\geq 1}$ be a Cauchy sequence in \mathbb{C}^n , $n\geq 1$, with respect to the usual metric $d(z,z')=\|z-z'\|$, where:

$$||z|| \stackrel{\triangle}{=} \sqrt{\sum_{i=1}^{n} |z_i|^2}$$

1. Show that the sequence $(z_k)_{k\geq 1}$ is bounded, i.e. that there exists $M\in \mathbf{R}^+$ such that $||z_k||\leq M$, for all $k\geq 1$.

- 2. Define $B = \{z \in \mathbb{C}^n , \|z\| \le M\}$. Show that $\delta(B) < +\infty$, and that B is closed in \mathbb{C}^n .
- 3. Show the existence of a subsequence $(z_{k_p})_{p\geq 1}$ of $(z_k)_{k\geq 1}$ such that $z_k \stackrel{T_{\mathbf{C}^n}}{\to} z$ for some $z \in B$.
- 4. Show that for all $\epsilon > 0$, there exists $p_0 \ge 1$ and $n_0 \ge 1$ such that $d(z, z_{k_{n_0}}) \le \epsilon/2$ and:

$$k \geq n_0 \Rightarrow d(z_k, z_{k_{n_0}}) \leq \epsilon/2$$

- 5. Show that $z_k \stackrel{\mathcal{T}_{\mathbf{C}^n}}{\to} z$.
- 6. Conclude that \mathbb{C}^n is complete with respect to its usual metric.
- 7. For which theorem of Tutorial 9 was the completeness of ${\bf C}$ used?

EXERCISE 12. Let $(x_k)_{k\geq 1}$ be a sequence in \mathbb{R}^n such that $x_k \stackrel{\mathcal{I}_{\mathbb{C}^n}}{\to} z$, for some $z \in \mathbb{C}^n$.

- 1. Show that $z \in \mathbf{R}^n$.
- 2. Show that \mathbf{R}^n is complete with respect to its usual metric.

Theorem 49 \mathbb{C}^n and \mathbb{R}^n are complete w.r. to their usual metrics.

EXERCISE 13. Let (E,d) be a metric space, with metric topology \mathcal{T} . Let $F\subseteq E,$ and \bar{F} denote the closure of F.

- 1. Explain why, for all $x \in \bar{F}$ and $n \ge 1$, we have $F \cap B(x, 1/n) \ne \emptyset$.
- 2. Show that for all $x \in \overline{F}$, there exists a sequence $(x_n)_{n \geq 1}$ in F, such that $x_n \stackrel{\mathcal{T}}{\to} x$.
- 3. Show conversely that if there is a sequence $(x_n)_{n\geq 1}$ in F with $x_n \stackrel{\mathcal{T}}{\to} x$, then $x \in \bar{F}$.

- 4. Show that F is closed if and only if for all sequence $(x_n)_{n\geq 1}$ in F such that $x_n \stackrel{\mathcal{T}}{\to} x$ for some $x \in E$, we have $x \in F$.
- 5. Explain why $(F, \mathcal{T}_{|F})$ is metrizable.
- 6. Show that if F is complete with respect to the metric $d_{|F \times F}$, then F is closed in E.
- 7. Let $d_{\bar{\mathbf{R}}}$ be a metric on $\bar{\mathbf{R}}$, inducing the usual topology $\mathcal{T}_{\bar{\mathbf{R}}}$. Show that $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R} \times \mathbf{R}}$ is a metric on \mathbf{R} , inducing the topology $\mathcal{T}_{\mathbf{R}}$.
- 8. Find a metric on [-1, 1] which induces its usual topology.
- 9. Show that $\{-1,1\}$ is not open in [-1,1].
- 10. Show that $\{-\infty, +\infty\}$ is not open in $\bar{\mathbf{R}}$.
- 11. Show that \mathbf{R} is not closed in \mathbf{R} .
- 12. Let $d_{\mathbf{R}}$ be the usual metric of \mathbf{R} . Show that $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R} \times \mathbf{R}}$ and $d_{\mathbf{R}}$ induce the same topology on \mathbf{R} , but that however, \mathbf{R}

is complete with respect to $d_{\mathbf{R}}$, whereas it cannot be complete with respect to d'.

Definition 81 Let \mathcal{H} be a **K**-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call **inner-product** on \mathcal{H} , any map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{K}$ with the following properties:

(i)
$$\forall x, y \in \mathcal{H} , \langle x, y \rangle = \overline{\langle y, x \rangle}$$

(ii)
$$\forall x, y, z \in \mathcal{H}$$
, $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$

(iii)
$$\forall x, y \in \mathcal{H}, \forall \alpha \in \mathbf{K}, \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

$$(iv)$$
 $\forall x \in \mathcal{H} , \langle x, x \rangle \geq 0$

(v)
$$\forall x \in \mathcal{H}, (\langle x, x \rangle = 0 \iff x = 0)$$

where for all $z \in \mathbb{C}$, \bar{z} denotes the complex conjugate of z. For all $x \in \mathcal{H}$, we call **norm** of x, denoted ||x||, the number defined by:

$$||x|| \stackrel{\triangle}{=} \sqrt{\langle x, x \rangle}$$

EXERCISE 14. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} .

- 1. Show that for all $y \in \mathcal{H}$, the map $x \to \langle x, y \rangle$ is linear.
- 2. Show that for all $x \in \mathcal{H}$, the map $y \to \langle x, y \rangle$ is linear if $\mathbf{K} = \mathbf{R}$, and conjugate-linear if $\mathbf{K} = \mathbf{C}$.

EXERCISE 15. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} . Let $x, y \in \mathcal{H}$. Let $A = ||x||^2$, $B = |\langle x, y \rangle|$ and $C = ||y||^2$. let $\alpha \in \mathbf{K}$ be such that $|\alpha| = 1$ and:

$$B = \alpha \overline{\langle x, y \rangle}$$

- 1. Show that $A, B, C \in \mathbf{R}^+$.
- 2. For all $t \in \mathbf{R}$, show that $\langle x t\alpha y, x t\alpha y \rangle = A 2tB + t^2C$.
- 3. Show that if C = 0 then $B^2 \leq AC$.

- 4. Suppose that $C \neq 0$. Show that $P(t) = A 2tB + t^2C$ has a minimal value which is in \mathbb{R}^+ , and conclude that $B^2 \leq AC$.
- 5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz's inequality:second) Let \mathcal{H} be a K-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} , and $\langle \cdot, \cdot \rangle$ be an inner-product on \mathcal{H} . Then, for all $x, y \in \mathcal{H}$, we have:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

EXERCISE 16. For all $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we define:

$$\langle f, g \rangle \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$$

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we have $f\bar{g} \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Conclude that $\langle f, g \rangle$ is a well-defined complex number.

- 2. Show that for all $f \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we have $||f||_2 = \sqrt{\langle f, f \rangle}$.
- 3. Make another use of the first Cauchy-Schwarz inequality to show that for all $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, we have:

$$|\langle f, g \rangle| \le ||f||_2 \cdot ||g||_2 \tag{1}$$

- 4. Go through definition (81), and indicate which of the properties (i) (v) fails to be satisfied by $\langle \cdot, \cdot \rangle$. Conclude that $\langle \cdot, \cdot \rangle$ is not an inner-product on $L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, and therefore that inequality (*) is not a particular case of the second Cauchy-Schwarz inequality (50).
- 5. Let $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. By considering $\int (|f| + t|g|)^2 d\mu$ for $t \in \mathbf{R}$, imitate the proof of the second Cauchy-Schwarz inequality to show that:

$$\int_{\Omega} |fg| d\mu \le \left(\int_{\Omega} |f|^2 d\mu \right)^{\frac{1}{2}} \left(\int_{\Omega} |g|^2 d\mu \right)^{\frac{1}{2}}$$

6. Let $f, g: (\Omega, \mathcal{F}) \to [0, +\infty]$ non-negative and measurable. Show that if $\int f^2 d\mu$ and $\int g^2 d\mu$ are finite, then f and g are μ -almost surely equal to elements of $L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Deduce from 5. a new proof of the first Cauchy-Schwarz inequality:

$$\int_{\Omega} fg d\mu \le \left(\int_{\Omega} f^2 d\mu\right)^{\frac{1}{2}} \left(\int_{\Omega} g^2 d\mu\right)^{\frac{1}{2}}$$

EXERCISE 17. Let $\langle \cdot, \cdot \rangle$ be an inner-product on a **K**-vector space \mathcal{H} .

1. Show that for all $x, y \in \mathcal{H}$, we have:

$$||x + y||^2 = ||x||^2 + ||y||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle}$$

2. Using the second Cauchy-Schwarz inequality (50), show that:

$$||x + y|| \le ||x|| + ||y||$$

3. Show that $d_{\langle ... \rangle}(x,y) = ||x-y||$ defines a metric on \mathcal{H} .

Definition 82 Let \mathcal{H} be a **K**-vector space, where **K** = **R** or **C**, and $\langle \cdot, \cdot \rangle$ be an inner-product on \mathcal{H} . We call **norm topology** on \mathcal{H} , denoted $\mathcal{T}_{\langle \cdot, \cdot \rangle}$, the metric topology associated with $d_{\langle \cdot, \cdot \rangle}(x, y) = ||x-y||$.

Definition 83 We call **Hilbert space** over **K** where **K** = **R** or **C**, any ordered pair $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ where $\langle \cdot, \cdot \rangle$ is an inner-product on a **K**-vector space \mathcal{H} , which is complete w.r. to $d_{\langle \cdot, \cdot \rangle}(x, y) = ||x - y||$.

EXERCISE 18. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} and let \mathcal{M} be a closed linear subspace of \mathcal{H} , (closed with respect to the norm topology $\mathcal{T}_{\langle \cdot, \cdot \rangle}$). Define $[\cdot, \cdot] = \langle \cdot, \cdot \rangle_{|\mathcal{M} \times \mathcal{M}}$.

- 1. Show that $[\cdot,\cdot]$ is an inner-product on the **K**-vector space \mathcal{M} .
- 2. With obvious notations, show that $d_{[\cdot,\cdot]} = (d_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}\times\mathcal{M}}$.
- 3. Deduce that $\mathcal{T}_{[\cdot,\cdot]} = (\mathcal{T}_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}}$.

EXERCISE 19. Further to ex. (18), Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in \mathcal{M} , with respect to the metric $d_{[\cdot,\cdot]}$.

- 1. Show that $(x_n)_{n\geq 1}$ is a Cauchy sequence in \mathcal{H} .
- 2. Explain why there exists $x \in \mathcal{H}$ such that $x_n \stackrel{\mathcal{T}_{\langle \cdot, \cdot \rangle}}{\longrightarrow} x$.
- 3. Explain why $x \in \mathcal{M}$.
- 4. Explain why we also have $x_n \stackrel{\mathcal{T}_{[\cdot,\cdot]}}{\to} x$.
- 5. Explain why $(\mathcal{M}, \langle \cdot, \cdot \rangle_{|\mathcal{M} \times \mathcal{M}})$ is a Hilbert space over K.

EXERCISE 20. For all $z, z' \in \mathbb{C}^n$, $n \ge 1$, we define:

$$\langle z, z' \rangle \stackrel{\triangle}{=} \sum_{i=1}^{n} z_i \bar{z_i}'$$

- 1. Show that $\langle \cdot, \cdot \rangle$ is an inner-product on \mathbb{C}^n .
- 2. Show that the metric $d_{\langle \cdot, \cdot \rangle}$ is equal to the usual metric of \mathbb{C}^n .
- 3. Conclude that $(\mathbf{C}^n, \langle \cdot, \cdot \rangle)$ is a Hilbert space over \mathbf{C} .
- 4. Show that \mathbf{R}^n is a closed subset of \mathbf{C}^n .
- 5. Show however that \mathbf{R}^n is not a linear subspace of \mathbf{C}^n .
- 6. Show that $(\mathbf{R}^n, \langle \cdot, \cdot \rangle_{|\mathbf{R}^n \times \mathbf{R}^n})$ is a Hilbert space over \mathbf{R} .

Definition 84 We call usual inner-product in \mathbb{K}^n , where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , the inner-product denoted $\langle \cdot, \cdot \rangle$ and defined by:

$$\forall x, y \in \mathbf{K}^n \ , \ \langle x, y \rangle = \sum_{i=1}^n x_i \bar{y_i}$$

Theorem 51 \mathbb{C}^n and \mathbb{R}^n together with their usual inner-products, are Hilbert spaces over \mathbb{C} and \mathbb{R} respectively.

Definition 85 Let \mathcal{H} be a **K**-vector space, where **K** = **R** or **C**. Let $\mathcal{C} \subseteq \mathcal{H}$. We say that \mathcal{C} is a **convex subset** or \mathcal{H} , if and only if, for all $x, y \in \mathcal{C}$ and $t \in [0, 1]$, we have $tx + (1 - t)y \in \mathcal{C}$.

EXERCISE 21. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let $\mathcal{C} \subseteq \mathcal{H}$ be a non-empty closed convex subset of \mathcal{H} . Let $x_0 \in \mathcal{H}$. Define:

$$\delta_{\min} \stackrel{\triangle}{=} \inf\{\|x - x_0\| : x \in \mathcal{C}\}\$$

- 1. Show the existence of a sequence $(x_n)_{n\geq 1}$ in \mathcal{C} such that $||x_n-x_0||\to \delta_{\min}$.
- 2. Show that for all $x, y \in \mathcal{H}$, we have:

$$||x - y||^2 = 2||x||^2 + 2||y||^2 - 4\left|\left|\frac{x + y}{2}\right|\right|^2$$

3. Explain why for all $n, m \ge 1$, we have:

$$\delta_{\min} \le \left\| \frac{x_n + x_m}{2} - x_0 \right\|$$

4. Show that for all $n, m \geq 1$, we have:

$$||x_n - x_m||^2 \le 2||x_n - x_0||^2 + 2||x_m - x_0||^2 - 4\delta_{\min}^2$$

- 5. Show the existence of some $x^* \in \mathcal{H}$, such that $x_n \stackrel{\mathcal{T}_{\langle \cdot, \cdot \rangle}}{\longrightarrow} x^*$.
- 6. Explain why $x^* \in \mathcal{C}$
- 7. Show that for all $x, y \in \mathcal{H}$, we have $| \|x\| \|y\| | \le \|x y\|$.
- 8. Show that $||x_n x_0|| \to ||x^* x_0||$.
- 9. Conclude that we have found $x^* \in \mathcal{C}$ such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

10. Let y^* be another element of \mathcal{C} with such property. Show that:

$$||x^* - y^*||^2 \le 2||x^* - x_0||^2 + 2||y^* - x_0||^2 - 4\delta_{\min}^2$$

11. Conclude that $x^* = y^*$.

Theorem 52 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let \mathcal{C} be a non-empty, closed and convex subset of \mathcal{H} . For all $x_0 \in \mathcal{H}$, there exists a unique $x^* \in \mathcal{C}$ such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

Definition 86 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let $\mathcal{G} \subseteq \mathcal{H}$. We call **orthogonal** of \mathcal{G} , the subset of \mathcal{H} denoted \mathcal{G}^{\perp} and defined by:

$$\mathcal{G}^{\perp} \stackrel{\triangle}{=} \left\{ x \in \mathcal{H} : \langle x, y \rangle = 0 , \forall y \in \mathcal{G} \right\}$$

EXERCISE 22. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K** and $\mathcal{G} \subseteq \mathcal{H}$.

- 1. Show that \mathcal{G}^{\perp} is a linear subspace of \mathcal{H} , even if \mathcal{G} isn't.
- 2. Show that $\phi_y : \mathcal{H} \to K$ defined by $\phi_y(x) = \langle x, y \rangle$ is continuous.
- 3. Show that $\mathcal{G}^{\perp} = \bigcap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\}).$
- 4. Show that \mathcal{G}^{\perp} is a closed subset of \mathcal{H} , even if \mathcal{G} isn't.
- 5. Show that $\emptyset^{\perp} = \{0\}^{\perp} = \mathcal{H}$.
- 6. Show that $\mathcal{H}^{\perp} = \{0\}.$

EXERCISE 23. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let \mathcal{M} be a closed linear subspace of \mathcal{H} , and $x_0 \in \mathcal{H}$.

1. Explain why there exists $x^* \in \mathcal{M}$ such that:

$$||x^* - x_0|| = \inf\{ ||x - x_0|| : x \in \mathcal{M} \}$$

2. Define $y^* = x_0 - x^* \in \mathcal{H}$. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$:

$$||y^*||^2 \le ||y^* - \alpha y||^2$$

3. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, we have:

$$0 \le -\alpha \langle y, y^* \rangle - \overline{\alpha \langle y, y^* \rangle} + |\alpha|^2 . ||y||^2$$

4. For all $y \in \mathcal{M} \setminus \{0\}$, taking $\alpha = \overline{\langle y, y^* \rangle} / ||y||^2$, show that:

$$0 \le -\frac{|\langle y, y^* \rangle|^2}{\|y\|^2}$$

- 5. Conclude that $x^* \in \mathcal{M}, y^* \in \mathcal{M}^{\perp}$ and $x_0 = x^* + y^*$.
- 6. Show that $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$
- 7. Show that $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$ with $x_0 = x^* + y^*$, are unique.

Theorem 53 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let \mathcal{M} be a closed linear subspace of \mathcal{H} . Then, for all $x_0 \in \mathcal{H}$, there is a unique decomposition:

$$x_0 = x^* + y^*$$

where $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$.

Definition 87 Let \mathcal{H} be a **K**-vector space, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call **linear functional**, any map $\lambda : \mathcal{H} \to \mathbf{K}$, such that for all $x, y \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:

$$\lambda(x + \alpha y) = \lambda(x) + \alpha \lambda(y)$$

EXERCISE 24. Let λ be a linear functional on a **K**-Hilbert¹ space \mathcal{H} .

1. Suppose that λ is continuous at some point $x_0 \in \mathcal{H}$. Show the existence of $\eta > 0$ such that:

$$\forall x \in \mathcal{H}, \|x - x_0\| \le \eta \Rightarrow |\lambda(x) - \lambda(x_0)| \le 1$$

¹Norm vector spaces are introduced later in these tutorials.

Show that for all $x \in \mathcal{H}$ with $x \neq 0$, we have $|\lambda(\eta x/||x||)| \leq 1$.

2. Show that if λ is continuous at x_0 , there exits $M \in \mathbb{R}^+$, with:

$$\forall x \in \mathcal{H} \ , \ |\lambda(x)| \le M||x|| \tag{2}$$

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert² space over $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let λ be a linear functional on \mathcal{H} . Then, the following are equivalent:

(i)
$$\lambda: (\mathcal{H}, \mathcal{T}_{\langle \cdot, \cdot \rangle}) \to (K, \mathcal{T}_{\mathbf{K}})$$
 is continuous

(ii)
$$\exists M \in \mathbf{R}^+, \ \forall x \in \mathcal{H}, \ |\lambda(x)| \leq M.||x||$$

In which case, we say that λ is a bounded linear functional.

 $^{^2}$ Norm vector spaces are introduced later in these tutorials.

EXERCISE 25. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over **K**. Let λ be a bounded linear functional on \mathcal{H} , such that $\lambda(x) \neq 0$ for some $x \in \mathcal{H}$, and define $\mathcal{M} = \lambda^{-1}(\{0\})$.

- 1. Show the existence of $x_0 \in \mathcal{H}$, such that $x_0 \notin \mathcal{M}$.
- 2. Show the existence of $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$ with $x_0 = x^* + y^*$.
- 3. Deduce the existence of some $z \in \mathcal{M}^{\perp}$ such that ||z|| = 1.
- 4. Show that for all $\alpha \in \mathbf{K} \setminus \{0\}$ and $x \in \mathcal{H}$, we have:

$$\frac{\lambda(x)}{\bar{\alpha}}\langle z, \alpha z \rangle = \lambda(x)$$

5. Show that in order to have:

$$\forall x \in \mathcal{H} , \ \lambda(x) = \langle x, \alpha z \rangle$$

it is sufficient to choose $\alpha \in \mathbf{K} \setminus \{0\}$ such that:

$$\forall x \in \mathcal{H} , \frac{\lambda(x)z}{\bar{\alpha}} - x \in \mathcal{M}$$

6. Show the existence of $y \in \mathcal{H}$ such that:

$$\forall x \in \mathcal{H} , \ \lambda(x) = \langle x, y \rangle$$

7. Show the uniqueness of such $y \in \mathcal{H}$.

Theorem 54 Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbf{K} , where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . Let λ be a bounded linear functional on \mathcal{H} . Then, there exists a unique $y \in \mathcal{H}$ such that: $\forall x \in \mathcal{H}$, $\lambda(x) = \langle x, y \rangle$.

Definition 89 Let $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . We call K-vector space, any set \mathcal{H} , together with operators \oplus and \otimes for which there exits an element $0_{\mathcal{H}} \in \mathcal{H}$ such that for all $x, y, z \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

(i)
$$0_{\mathcal{H}} \oplus x = x$$

(ii)
$$\exists (-x) \in \mathcal{H} , (-x) \oplus x = 0_{\mathcal{H}}$$

$$(iii) x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

$$(iv) x \oplus y = y \oplus x$$

$$(v) 1 \otimes x = x$$

$$(vi) \alpha \otimes (\beta \otimes x) = (\alpha \beta) \otimes x$$

$$(vii) (\alpha + \beta) \otimes x = (\alpha \otimes x) \oplus (\beta \otimes x)$$

$$(viii) \alpha \otimes (x \oplus y) = (\alpha \otimes x) \oplus (\alpha \otimes y)$$

EXERCISE 26. For all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, define:

$$\mathcal{H} \stackrel{\triangle}{=} \left\{ [f] : f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \right\}$$

where $[f] = \{g \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) : g = f, \mu\text{-a.s.}\}$. Let $0_{\mathcal{H}} = [0]$, and for all $[f], [g] \in \mathcal{H}$, and $\alpha \in \mathbf{K}$, we define:

$$[f] \oplus [g] \stackrel{\triangle}{=} [f+g]$$

 $\alpha \otimes [f] \stackrel{\triangle}{=} [\alpha f]$

We assume f, f', g and g' are elements of $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

- 1. Show that for f = g μ -a.s. is equivalent to [f] = [g].
- 2. Show that if [f] = [f'] and [g] = [g'], then [f + g] = [f' + g'].
- 3. Conclude that \oplus is well-defined.
- 4. Show that \otimes is also well-defined.
- 5. Show that $(\mathcal{H}, \oplus, \otimes)$ is a **K**-vector space.

EXERCISE 27. Further to ex. (26), we define for all $[f], [g] \in \mathcal{H}$:

$$\langle [f], [g] \rangle_{\mathcal{H}} \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$$

- 1. Show that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is well-defined.
- 2. Show that $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H} .
- 3. Show that $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is a Hilbert space over **K**.

4. Why is $\langle f, g \rangle \stackrel{\triangle}{=} \int_{\Omega} f \bar{g} d\mu$ not an inner-product on $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$?

EXERCISE 28. Further to ex. (27), Let $\lambda: L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional³. Define $\Lambda: \mathcal{H} \to \mathbf{K}$ by $\Lambda([f]) = \lambda(f)$.

1. Show the existence of $M \in \mathbf{R}^+$ such that:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) , |\lambda(f)| \leq M.||f||_2$$

- 2. Show that if [f] = [g] then $\lambda(f) = \lambda(g)$.
- 3. Show that Λ is a well defined bounded linear functional on \mathcal{H} .
- 4. Conclude with the following:

³As defined in these tutorials, $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space (not even a norm vector space). However, both $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ and \mathbf{K} have natural topologies and it is therefore meaningful to speak of *continuous linear functional*. Note however that we are slightly outside the framework of definition (88).

Theorem 55 Let $\lambda: L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional, where $\mathbf{K} = \mathbf{R}$ or \mathbf{C} . There exists $g \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ such that:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \ , \ \lambda(f) = \int_{\Omega} f \bar{g} d\mu$$

Solutions to Exercises

Exercise 1.

1. Let $(x_n)_{n\geq 1}$ be a sequence in E, and $x\in E$. Suppose that $x_n\stackrel{\mathcal{T}}{\to} x$. Let $\epsilon>0$. The open ball $B(x,\epsilon)$ being open in E, there exists $n_0\geq 1$, such that $n\geq n_0 \Rightarrow x_n\in B(x,\epsilon)$. In other words, we have:

$$n \ge n_0 \implies d(x_n, x) \le \epsilon$$
 (3)

Conversely, suppose that for all $\epsilon > 0$, there exists $n_0 \geq 1$ such that (3) holds. Let U be open in E, with $x \in U$. By definition (30) of the metric topology, there exists $\epsilon > 0$ such that $B(x,\epsilon) \subseteq U$. Since, there exists $n_0 \geq 1$ such that (3) holds, we have found $n_0 \geq 1$ such that:

$$n \ge n_0 \implies x_n \in U$$

This proves that $x_n \stackrel{\mathcal{T}}{\to} x$.

- 2. $F_n = \overline{\{x_k : k \ge n\}}$. So $F_{n+1} \subseteq F_n$ for all $n \ge 1$. Being the closure of some subset of E, for all $n \ge 1$, F_n is a closed subset of E, (see definition (37) and following exercise). It follows that $(F_n)_{n\ge 1}$ is a decreasing sequence of closed subsets of E.
- 3. Suppose $F_n \downarrow \emptyset$, i.e. $F_{n+1} \subseteq F_n$ with $\cap_{n>1} F_n = \emptyset$. Then:

$$E = \emptyset^c = \left(\bigcap_{n=1}^{+\infty} F_n\right)^c = \bigcup_{n=1}^{+\infty} F_n^c$$

Since each F_n is closed in E, each F_n^c is an open subset of E. We conclude that $(F_n^c)_{n\geq 1}$ is an open covering of E.

4. Suppose (E, \mathcal{T}) is compact. If $\bigcap_{n\geq 1} F_n = \emptyset$, then from 3. $(F_n^c)_{n\geq 1}$ is an open covering of E, of which we can extract a finite sub-covering (see definition (65)). There exists a finite subset $\{n_1, \ldots, n_p\}$ of \mathbb{N}^* such that:

$$E = F_{n_1}^c \cup \ldots \cup F_{n_p}^c$$

and therefore $F_{n_1} \cap \ldots \cap F_{n_p} = \emptyset$. However, without loss of generality, we can assume that $n_p \geq n_k$ for all $k = 1, \ldots, p$. Since $F_{n+1} \subseteq F_n$ for all $n \geq 1$, it follows that:

$$F_{n_p} = F_{n_1} \cap \ldots \cap F_{n_p} = \emptyset$$

This is a contradiction since F_{n_p} contains all x_k 's for $k \geq n_p$. We conclude that if (E, \mathcal{T}) is a compact, then $\cap_{n \geq 1} F_n \neq \emptyset$.

5. Suppose (E, \mathcal{T}) is compact. From 4., there exists $x \in \cap_{n \geq 1} F_n$. Then, for all $n \geq 1$, we have $x \in F_n = \overline{\{x_k : k \geq n\}}$, i.e. x lies in the closure of $\{x_k : k \geq n\}$. It follows that for all $\epsilon > 0$:

$$\{x_k : k \ge n\} \cap B(x, \epsilon) \ne \emptyset \tag{4}$$

We have proved the existence of $x \in E$, such that (4) holds for all $n \ge 1$ and $\epsilon > 0$.

6. Let $x \in E$ be as in 5. Take n = 1 and $\epsilon = 1$. Then, we have $\{x_k : k \geq 1\} \cap B(x,1) \neq \emptyset$. There exists $n_1 \geq 1$, such that $x_{n_1} \in B(x,1)$. Suppose we have found $n_1 < \ldots < n_p \ (p \geq 1)$,

such that $x_{n_k} \in B(x, 1/k)$ for all $k \in \mathbf{N}_p$. Take $n = n_p + 1$ and $\epsilon = 1/(p+1)$ in 5. We have:

$$\{x_k : k \ge n_p + 1\} \cap B(x, 1/(p+1)) \ne \emptyset$$

So there exists $n_{p+1} > n_p$, such that $x_{n_{p+1}} \in B(x, 1/(p+1))$. Following this induction argument, we can construct a subsequence $(x_{n_p})_{p\geq 1}$ of $(x_n)_{n\geq 1}$, such that $x_{n_p} \in B(x, 1/p)$ for all $p\geq 1$.

7. If (E, \mathcal{T}) is compact, then from 5. and 6., given a sequence $(x_n)_{n\geq 1}$ in E, there exists $x\in E$ and a subsequence $(x_{n_p})_{p\geq 1}$ such that $d(x,x_{n_p})<1/p$ for all $p\geq 1$. From 1., it follows that $x_{n_p} \xrightarrow{\mathcal{T}} x$ as $p\to +\infty$, and we have proved that any sequence in a compact metric space, has a convergent subsequence.

Exercise 2.

- 1. Let $x \in E$. By assumption, $(V_i)_{i \in I}$ is an open covering of E, so in particular $E = \bigcup_{i \in I} V_i$. There exists $i \in I$, such that $x \in V_i$. Furthermore, V_i is open with respect to the metric topology on E. There exists r > 0, such that $B(x, r) \subseteq V_i$. We have proved that for all $x \in E$, there exists $i \in I$ and r > 0, such that $B(x, r) \subseteq V_i$.
- 2. Let $x \in E$. Then $r(x) = \sup A(x)$, where:

$$A(x) \stackrel{\triangle}{=} \{r > 0 : \exists i \in I , B(x,r) \subseteq V_i\}$$

From 1., the set A(x) is non-empty. There exists r > 0 such that $r \in A(x)$. r(x) being an upper-bound of A(x), we have $r \le r(x)$. In particular, r(x) > 0. We have proved that for all $x \in E$, r(x) > 0.

Exercise 3.

- 1. Let $\alpha = \inf_{x \in E} r(x)$. We assume that $\alpha = 0$. Let $n \geq 1$. Then $\alpha < 1/n$. α being the greatest lower bound of all r(x)'s for $x \in E$, 1/n cannot be such lower bound. There exists $x_n \in E$, such that $r(x_n) < 1/n$.
- 2. From 1., we have constructed a sequence $(x_n)_{n\geq 1}$ in E, such that $r(x_n) < 1/n$ for all $n \geq 1$. By assumption (see previous exercise (2)), the metric space (E,d) is such that any sequence has a convergent sub-sequence. Let $(x_{n_k})_{k\geq 1}$ be a sub-sequence of $(x_n)_{n\geq 1}$ and let $x^* \in E$, be such that $x_{n_k} \stackrel{\mathcal{T}}{\to} x^*$. From exercise (2), there exists $r^* > 0$ and $i \in I$, with $B(x^*, r^*) \subseteq V_i$. Since $r^* > 0$ and $x_{n_k} \stackrel{\mathcal{T}}{\to} x^*$, there exists $k'_0 \geq 1$, such that:

$$k \ge k_0' \implies d(x^*, x_{n_k}) < r^*/2$$

Since $n_k \uparrow +\infty$ as $k \to +\infty$, there exists $k_0'' \geq 1$, such that:

$$k \ge k_0^{"} \Rightarrow \frac{1}{n_k} \le r^*/4$$

It follows that for all $k \ge k_0''$, we have $r(x_{n_k}) \le 1/n_k \le r^*/4$. Take $k_0 = \max(k_0', k_0'')$. We have both $d(x^*, x_{n_{k_0}}) < r^*/2$ and $r(x_{n_{k_0}}) \le r^*/4$.

3. From 2., we have found $k_0 \ge 1$, such that $d(x^*, x_{n_{k_0}}) < r^*/2$. Let $y \in B(x_{n_{k_0}}, r^*/2)$. Then, from the triangle inequality:

$$d(x^*, y) \le d(x^*, x_{n_{k_0}}) + d(x_{n_{k_0}}, y) < \frac{r^*}{2} + \frac{r^*}{2} = r^*$$

So $y \in B(x^*, r^*)$. Hence, we see that $B(x_{n_{k_0}}, r^*/2) \subseteq B(x^*, r^*)$. However, from 2., $B(x^*, r^*) \subseteq V_i$. So $B(x_{n_{k_0}}, r^*/2) \subseteq V_i$. It follows that $r^*/2$ belongs to the set:

$$A(x_{n_{k_0}}) = \{r > 0 : \exists i \in I , B(x_{n_{k_0}}, r) \subseteq V_i\}$$

and consequently, $r^*/2 \le r(x_{n_{k_0}}) = \sup A(x_{n_{k_0}})$. This contradicts the fact that $r(x_{n_{k_0}}) \le r^*/4$, as obtained in 2. We conclude that our initial hypothesis of $\alpha = \inf_{x \in E} r(x) = 0$ is absurd, and we have proved that $\inf_{x \in E} r(x) > 0$.

Exercise 4.

1. Let $r_0 > 0$ be such that $0 < r_0 < \inf_{x \in E} r(x)$. We assume that E cannot be covered by a finite number of open balls with radius r_0 . Let x_1 be an arbitrary element of E. Then, by assumption, $B(x_1, r_0)$ cannot cover the whole of E. There exists $x_2 \in E$, such that $x_2 \notin B(x_1, r_0)$. By assumption, $B(x_1, r_0) \cup B(x_2, r_0)$ cannot cover the whole of E. There exists $x_3 \in E$, such that $x_3 \notin B(x_1, r_0) \cup B(x_2, r_0)$. By induction, we can construct a sequence $(x_n)_{n \geq 1}$ in E, such that for all $n \geq 1$:

$$x_{n+1} \notin B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)$$

- 2. Let n > m. Then $x_n \notin B(x_m, r_0)$. So $d(x_n, x_m) \ge r_0$.
- 3. Suppose $(x_n)_{n\geq 1}$ has a convergent sub-sequence, There exists $x^* \in E$, and a sub-sequence $(x_{n_k})_{k\geq 1}$ such that $x_{n_k} \xrightarrow{\mathcal{T}} x^*$. Take $\epsilon = r_0/4 > 0$. There exists $k_0 \geq 1$, such that:

$$k \ge k_0 \implies d(x^*, x_{n_k}) < r_0/4$$

It follows that for all $k, k' \geq k_0$, we have:

$$d(x_{n_k}, x_{n_{k'}}) \le d(x^*, x_{n_k}) + d(x^*, x_{n_{k'}}) < r_0/2$$

This contradicts 2., since $d(x_{n_k}, x_{n_{k'}}) \ge r_0$ for $k \ne k'$. So $(x_n)_{n\ge 1}$ cannot have a convergent sub-sequence.

is a contradiction to our initial assumption (see exercise (2)), that any sequence in E should have a convergent sub-sequence. It follows that the hypothesis in 1. is absurd, and we conclude that E can indeed be covered by a finite number of open balls of radius r_0 . In other words, there exists a finite subset $\{x_1, \ldots, x_n\}$ of E, such that $E = B(x_1, r_0) \cup \ldots \cup B(x_n, r_0)$.

4. From 3., $(x_n)_{n\geq 1}$ cannot have a convergent sub-sequence. This

5. Let $x \in E$. By assumption, $r_0 < \inf_{x \in E} r(x)$. In particular, we have $r_0 < r(x) = \sup A(x)$, where:

$$A(x) = \{r > 0 : \exists i \in I , B(x,r) \subseteq V_i\}$$

r(x) being the smallest upper-bound of A(x), it follows that r_0 cannot be such upper bound. There exists r>0, $r\in A(x)$, such that $r_0< r$. Since $r\in A(x)$, there exists $i\in I$, such that $B(x,r)\subseteq V_i$. But from $r_0< r$, we conclude that $B(x,r_0)\subseteq V_i$. We have proved that for all $x\in E$, there exists $i\in I$, such that $B(x,r_0)\subseteq V_i$.

6. From 4., we have $E = B(x_1, r_0) \cup ... \cup B(x_n, r_0)$. However, from 5., for all $k \in \mathbf{N}_n$, there exists $i_k \in I$, such that $B(x_k, r_0) \subseteq V_{i_k}$. It follows that:

$$E = V_{i_1} \cup \ldots \cup V_{i_n} \tag{5}$$

Given a family of open sets $(V_i)_{i\in I}$ such that $E = \bigcup_{i\in I} V_i$ (see exercise (2)), we have been able to find a finite subset $\{i_1, \ldots, i_n\}$ of I, such that (5) holds. We conclude that the metrizable space (E, \mathcal{T}) is a compact topological space.

7. Let (E, \mathcal{T}) be a metrizable topological space. If (E, \mathcal{T}) is compact, then from exercise (1), any sequence in E has a convergent

sub-sequence. Conversely, if E is such that any sequence in E has a convergent sub-sequence, then as proved in 6., (E, \mathcal{T}) is a compact topological space. This proves the difficult and very important theorem (47).

Exercise 5.

- 1. Let $a, b \in \mathbf{R}$, a < b. Let $(x_n)_{n \geq 1}$ be a sequence in]a, b[. In particular, $(x_n)_{n \geq 1}$ is a sequence in [a, b]. From theorem (34), [a, b] is a compact subset of \mathbf{R} . Applying theorem (47), there exists a subsequence $(x_{n_k})_{k \geq 1}$ of $(x_n)_{n \geq 1}$, and $x \in [a, b]$, such that $x_{n_k} \to x^4$. So $(x_n)_{n \geq 1}$ has a convergent subsequence.
- 2. No. One cannot conclude that]a,b[is compact. In fact, \mathbf{R} being Hausdorff, from theorem (35), if]a,b[was compact, it would be closed, and $]-\infty,a]\cup[b,+\infty[$ would be open in \mathbf{R} ... One has to be careful with the phrase having a convergent subsequence. As proved in 1., any sequence in]a,b[has a convergent subsequence, but the limit of such subsequence may not lie in]a,b[itself (we only know for sure it lies in [a,b]). This is why, one cannot apply theorem (47) to conclude that]a,b[is compact.

⁴In a clear context, we shall omit notations such as $x_{n_k} \stackrel{T_{\mathbf{R}}}{\to} x$ or $x_{n_k} \stackrel{T_{[a,b]}}{\to} x$.

Exercise 6.

- 1. The equivalence between $x_p \stackrel{\mathcal{T}_E}{\to} x$ and $x_p \stackrel{\mathcal{T}_{\mathbf{R}^n}}{\to} x$ has already been proved in exercise (7) of the previous tutorial. Since the topology \mathcal{T}_E is induced by the topology $\mathcal{T}_{\mathbf{R}^n}$ on E, whether we regard $(x_p)_{p\geq 1}$ and x as belonging to E or \mathbf{R}^n , is irrelevant as far as the convergence $x_p \to x$ is concerned. Note however that it is important to have $x_p \in E$ for all $p \geq 1$, and $x \in E$.
- 2. As seen in exercise (14) of Tutorial 6, various metrics will induce the product topology $\mathcal{T}_{\mathbf{R}^n}$ on \mathbf{R}^n . The most common, viewed as the *usual* metric on \mathbf{R}^n , is:

$$d_2(x,y) \stackrel{\triangle}{=} \sqrt{\sum_{i=1}^n (x^i - y^i)^2}$$

Other possible metrics are:

$$d_1(x,y) \stackrel{\triangle}{=} \sum_{i=1}^n |x^i - y^i|$$

or:

$$d_{\infty}(x,y) \stackrel{\triangle}{=} \max_{i \in \mathbf{N}^n} |x^i - y^i|$$

3. Let $(x_p)_{p\geq 1}$ be a sequence in \mathbf{R}^n and $x\in \mathbf{R}^n$. Suppose that $x_p\to x^5$. Then for all $\epsilon>0$, there exists $p_0\geq 1$, such that:

$$p \ge p_0 \implies d_1(x, x_p) = \sum_{i=1}^n |x^i - x_p^i| \le \epsilon$$

In particular, for all $i \in \mathbf{N}_n$, we have:

$$p \ge p_0 \Rightarrow |x^i - x_p^i| \le \epsilon$$

⁵i.e. $x_p \stackrel{\mathcal{T}_{\mathbf{R}^n}}{\longrightarrow} x$, as should be clear from context.

So $x_p^i \to x^{i6}$ for all $i \in \mathbf{N}_n$. Conversely, suppose $x_p^i \to x^i$ for all i's. Given $\epsilon > 0$, for all $i \in \mathbf{N}_n$, there exists $p_i \ge 1$, such that:

$$p \ge p_i \implies |x^i - x_p^i| \le \epsilon/n$$

Taking $p_0 = \max(p_1, \ldots, p_n)$, we obtain:

$$p \ge p_0 \implies d_1(x, x_p) = \sum_{i=1}^n |x^i - x_p^i| \le \epsilon$$

So $x_p \to x$, which is equivalent to $[x_p^i \to x^i]$ for all $i \in \mathbf{N}_n$. Note that although we used the metric structure of \mathbf{R} and \mathbf{R}^n to prove this equivalence, we had no need to do so. In fact, any sequence with values in an arbitrary product, even uncountable, of topological spaces, even non-metrizable, will converge if and only if each coordinate sequence itself converges. For those interested in this small digression, here is a quick proof: let $(x_p)_{p\geq 1}$ be a sequence in the product $\Pi_{i\in I}\Omega_i$. Let x be an element of

⁶i.e. $x_p^i \stackrel{T_{\mathbf{R}}}{\to} x^i$, as should be clear from context.

 $\Pi_{i\in I}\Omega_i$. Suppose $x_n\to x$, with respect to the product topology. Let $i \in I$ and U be an arbitrary open set in Ω_i containing x^i . Then $U \times \prod_{i \neq i} \Omega_i$ is an open set in $\prod_{i \in I} \Omega_i$ containing x. Since $x_p \to x$, x_p is eventually in $U \times \prod_{i \neq i} \Omega_i$. It follows that x_p^i is eventually in U, and we see that $x_n^i \to x^i$. Conversely, suppose $x_n^i \to x^i$ for all $i \in I$. Let U be an open set in $\Pi_{i \in I} \Omega_i$ containing x. There exists a rectangle $V = \prod_{i \in I} A_i$ such that $x \in V \subseteq U$. The set $J = \{i \in I : A_i \neq \Omega_i\}$ is finite, and for all $i \in J$, A_i is an open set in Ω_i containing x^j . From $x_p^j \to x^j$ we see that x_p^j is eventually in A_i . J being finite, it follows that x_p is eventually in $(\Pi_{i \in J} A_i) \times (\Pi_{i \notin J} \Omega_i) = V$. Since $V \subseteq U$, x_p is eventually in U, and we have proved that $x_p \to x$.

⁷there exists $p_0 \ge 1$ such that $p \ge p_0 \Rightarrow x_p \in U \times \prod_{j \ne i} \Omega_j$.

Exercise 7.

- 1. Let $(x_p)_{p\geq 1}$ be a sequence in E. Then $(x_p^1)_{p\geq 1}$ is a sequence in [-M,M], which is a compact subset of \mathbf{R} . From theorem (47), we can extract a subsequence of $(x_p^1)_{p\geq 1}$, converging to some $x^1\in [-M,M]$. In other words, from definition (78), there exists a strictly increasing map $\phi: \mathbf{N}^*\to \mathbf{N}^*$, and $x^1\in [-M,M]$ such that $x_{\phi(p)}^1\to x^1$. Hence, we have found a subsequence $(x_{\phi(p)})_{p\geq 1}$ such that $x_{\phi(p)}^1\to x^1$, for some $x^1\in [-M,M]$.
- 2. The topology on [-M, M] being induced by the topology on \mathbf{R} , the convergence $x^1_{\phi(p)} \to x^1$ is independent of the particular topology (that of \mathbf{R} or [-M, M]) with respect to which, it is being considered.
- 3. Let $1 \le k \le n-1$. Let $(y_p)_{p\ge 1} = (x_{\phi(p)})_{p\ge 1}$ be a subsequence of $(x_p)_{p\ge 1}$, with the property that for all $j\in \mathbf{N}_k$, we have $y_p^j\to x^j$

⁸ i.e. $x_{\phi(p)}^1 \stackrel{\mathcal{T}_{[-M,M]}}{\longrightarrow} x^1$, which is the same as $x_{\phi(p)}^1 \stackrel{\mathcal{T}_{\mathbf{R}}}{\longrightarrow} x^1$.

for some $x^j \in [-M,M]$. Then, $(y_p^{k+1})_{p\geq 1}$ is a sequence in the compact interval [-M,M]. From theorem (47), there exists a strictly increasing map $\psi: \mathbf{N}^* \to \mathbf{N}^*$ such that $y_{\psi(p)}^{k+1} \to x^{k+1}$, for some $x^{k+1} \in [-M,M]$.

- 4. If both $\phi, \psi : \mathbf{N}^* \to \mathbf{N}^*$ are strictly increasing, so is $\phi \circ \psi$.
- 5. Since $\phi \circ \psi$ is strictly increasing, $(x_{\phi \circ \psi(p)})_{p \geq 1}$ is indeed a subsequence of $(x_p)_{p \geq 1}$, which furthermore coincides with $(y_{\psi(p)})_{p \geq 1}$, as defined in 3. It follows that $x_{\phi \circ \psi(p)}^{k+1} \to x^{k+1}$. Furthermore, from 3. the subsequence $(y_p)_{p \geq 1}$ is assumed to be such that $y_p^j \to x^j$ for all $j \in \mathbf{N}_k$. Hence, we also have $y_{\psi(p)}^j \to x^j$, i.e. $x_{\phi \circ \psi(p)}^j \to x^j$ for all $j \in \mathbf{N}_k$. We conclude that $(x_{\phi \circ \psi(p)})_{p \geq 1}$ is a subsequence of $(x_p)_{p \geq 1}$ such that $x_{\phi \circ \psi(p)}^j \to x^j$ for all $j \in \mathbf{N}_{k+1}$.
- 6. From 1., given a sequence $(x_p)_{p\geq 1}$ in E, we can extract a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$ such that $x^1_{\phi(p)} \to x^1$ for some $x^1 \in [-M,M]$. Given $1 \leq k \leq n-1$, and a subsequence

 $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, such that for all $j\in \mathbf{N}_k$, $x_{\phi(p)}^j\to x^j$ for some $x^j\in [-M,M]$, we showed in 5. that we could extract a further subsequence $(x_{\phi(\psi(p)})_{p\geq 1}$ having a similar property for all $j\in \mathbf{N}_{k+1}$. By induction, it follows that there exists a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, such that for all $j\in \mathbf{N}_n$, we have $x_{\phi(p)}^j\to x^j$ for some $x^j\in [-M,M]$. Hence, taking $x=(x^1,\ldots,x^n)$, we see that $x_{\phi(p)}\to x^9$.

7. Let $(x_p)_{p\geq 1}$ be a sequence in E. From 6., there exists $x\in E$, and a subsequence $(x_{\phi(p)})_{p\geq 1}$ of $(x_p)_{p\geq 1}$, with $x_{\phi(p)}\to x$. From theorem (47), we conclude that (E,\mathcal{T}_E) is a compact topological space, or equivalently, that E is a compact subset of \mathbf{R}^n . The purpose of this exercise is to prove that the n-dimensional product $[-M,M]\times\ldots\times[-M,M]$ is compact¹⁰.

⁹Both with respect to \mathcal{T}_E and $\mathcal{T}_{\mathbf{R}^n}$.

¹⁰Tychonoff theorem will hopefully be the subject of some future tutorial :-)

Exercise 8.

1. If $A = \emptyset$ then $A \subseteq [-M, M] \times ... \times [-M, M]$, for all $M \in \mathbf{R}^+$. We assume that $A \neq \emptyset$. Let $\delta(A)$ be the diameter of A (see definition (68)) with respect to the usual metric:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x^i - y^i)^2}$$

i.e. $\delta(A) = \sup\{d(x,y) : x,y \in A\}$. Since $A \neq \emptyset$, $\delta(A) \geq 0$. Furthermore, A being assumed to be bounded with respect to the usual metric of \mathbf{R}^n , we have $\delta(A) < +\infty$. So $\delta(A) \in \mathbf{R}^+$. Let y be an arbitrary element of A. For all $x \in A$, we have:

$$|x^i - y^i| \le d(x, y) \le \delta(A)$$

So $|x^i| \leq |y^i| + \delta(A)$, and taking $M = \max(|y^1|, \dots, |y^n|) + \delta(A)$, we conclude that $A \subseteq [-M, M] \times \dots \times [-M, M]$, with $M \in \mathbf{R}^+$.

- 2. By assumption, A is a closed subset of \mathbf{R}^n . So A^c is open. It follows that $E \setminus A = E \cap A^c$ is an element of the topology induced on E, by the topology on \mathbf{R}^n . In other words, $E \setminus A$ is an open subset of E. We conclude that A is a closed subset of E.
- 3. From ex. (7), (E, \mathcal{T}_E) is a compact topological space. From 2., A is a closed subset of E. Using exercise (2)[6.] of Tutorial 8, we conclude that A is a compact subset of E. In other words, $(A, (\mathcal{T}_E)_{|A})$ is a compact topological space. However, the topology \mathcal{T}_E is induced by $\mathcal{T}_{\mathbf{R}^n}$, i.e. $\mathcal{T}_E = (\mathcal{T}_{\mathbf{R}^n})_{|E}$. It follows that $(\mathcal{T}_E)_{|A} = (\mathcal{T}_{\mathbf{R}^n})_{|A}$. So $(A, (\mathcal{T}_{\mathbf{R}^n})_{|A})$ is a compact topological space, or equivalently, A is a compact subset of \mathbf{R}^n .
- 4. Let A be a compact subset of \mathbb{R}^n . From theorem (35), \mathbb{R}^n being Hausdorff, A is closed in \mathbb{R}^n . From exercise (6)[4.] of Tutorial 8, A is bounded with respect to any metric inducing the usual topology of \mathbb{R}^n . This proves theorem (48).

Exercise 9.

1. $d_{\mathbf{C}^n}$ and $d_{\mathbf{R}^{2n}}$ are defined by:

$$d_{\mathbf{C}^{n}}(z, z') = \sqrt{\sum_{i=1}^{n} |z_{i} - z'_{i}|^{2}}$$
$$d_{\mathbf{R}^{2n}}(x, x') = \sqrt{\sum_{i=1}^{2n} (x_{i} - x'_{i})^{2}}$$

for all $z, z' \in \mathbf{C}^n$ and $x, x' \in \mathbf{R}^{2n}$.

2. Given $z, z' \in \mathbf{C}^n$, we have:

$$d_{\mathbf{C}^n}(z, z') = \sqrt{\sum_{i=1}^n (Re(z_i) - Re(z_i'))^2 + \sum_{i=1}^n (Im(z_i) - Im(z_i'))^2}$$

It follows that $d_{\mathbf{C}^n}(z,z') = d_{\mathbf{R}^{2n}}(\phi(z),\phi(z')).$

3. ϕ is clearly a bijection between \mathbb{C}^n and \mathbb{R}^{2n} . From 2., we see that ϕ is continuous, and furthermore that:

$$d_{\mathbf{C}^n}(\phi^{-1}(x), \phi^{-1}(x')) = d_{\mathbf{R}^{2n}}(x, x')$$

for all $x, x' \in \mathbf{R}^{2n}$. So ϕ^{-1} is also continuous. From definition (31), ϕ is a homeomorphism from \mathbf{C}^n to \mathbf{R}^{2n} .

4. Let $K \subseteq \mathbf{C}^n$. Suppose K is a compact subset of \mathbf{C}^n . Then, $(K, (\mathcal{T}_{\mathbf{C}^n})_{|K})$ is a compact topological space. ϕ being continuous, its restriction $\phi_{|K}$ is also continuous. Using exercise (8) of Tutorial 8., the direct image $\phi_{|K}(K)$ is a compact subset of \mathbf{R}^{2n} . In other words, $\phi(K)$ is a compact subset of \mathbf{R}^{2n} . Conversely, suppose $\phi(K)$ is a compact subset of \mathbf{R}^{2n} . Since K can be written as the direct image $K = \phi^{-1}(\phi(K))$ of $\phi(K)$ by ϕ^{-1} , and ϕ^{-1} is continuous, we conclude similarly that K is a compact subset of \mathbf{C}^n . We have proved that for all $K \subseteq \mathbf{C}^n$, K is compact if and only if $\phi(K)$ is compact.

 $^{^{11}}$ If uneasy with $K=\emptyset$ and $\phi_{|K}=\emptyset,$ consider the case separately.

- 5. Let $K \subseteq \mathbb{C}^n$. Suppose K is a closed subset of \mathbb{C}^n . Since $\phi(K)$ can be written as the inverse image $\phi(K) = (\phi^{-1})^{-1}(K)$ of K by ϕ^{-1} , and ϕ^{-1} is continuous, we see that $\phi(K)$ is a closed subset of \mathbb{R}^{2n} . Conversely, suppose $\phi(K)$ is a closed subset of \mathbb{R}^{2n} . Since K can be written as the inverse image $K = \phi^{-1}(\phi(K))$ of $\phi(K)$ by ϕ , and ϕ is continuous, we see that K is a closed subset of \mathbb{C}^n . We have proved that for all $K \subseteq \mathbb{C}^n$, K is closed if and only if $\phi(K)$ is closed.
- 6. Let $K \subseteq \mathbb{C}^n$ and $\delta(\phi(K))$ be the diameter of $\phi(K)$ in \mathbb{R}^{2n} :

$$\begin{array}{lll} \delta(\phi(K)) & = & \sup\{d_{\mathbf{R}^{2n}}(x,x'): x,x' \in \phi(K)\} \\ & = & \sup\{d_{\mathbf{R}^{2n}}(\phi(z),\phi(z')): z,z' \in K\} \\ & = & \sup\{d_{\mathbf{C}^n}(z,z'): z,z' \in K\} \end{array}$$

i.e. $\delta(\phi(K)) = \delta(K)$, where $\delta(K)$ is the diameter of K in \mathbb{C}^n . It follows that $\delta(K) < +\infty$ is equivalent to $\delta(\phi(K)) < +\infty$. we have proved that for all $K \subseteq \mathbb{C}^n$, K is bounded if and only if $\phi(K)$ is bounded.

7. Let $K \subseteq \mathbf{C}^n$. From 4., K is compact, if and only if $\phi(K)$ is compact. From theorem (48), $\phi(K)$ being a subset of \mathbf{R}^{2n} , it is compact if and only if, it is closed and bounded. From 5. and 6., this in turn is equivalent to K being itself closed and bounded. We have proved that for all $K \subseteq \mathbf{C}^n$, K is compact if and only if K is closed and bounded.

Exercise 10.

- 1. Definition (79) defines the notion of Cauchy sequences in a metric space. In contrast, definition (77) defines the notion of Cauchy sequences in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Since that latter was defined in (73) as a set of functions, as opposed to a set of μ -almost sure equivalence classes, strictly speaking $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not a metric space. So definition (77) is not a particular case of definition (79).
- 2. Definition (80) defines the notion of complete metric space, as a metric space where all Cauchy sequences converge. 12 Theorem (46) does state that all Cauchy sequences in $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ converge. However, since $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is not strictly speaking a metric space, it cannot be said to be a *complete metric space*.

 $^{^{12}}$ to a limit belonging to that same metric space...

Exercise 11.

1. Let $(z_k)_{k\geq 1}$ be a Cauchy sequence in \mathbb{C}^n . Taking $\epsilon=1$, there exists $k_0\geq 1$, such that:

$$k, k' \ge k_0 \implies ||z_k - z_{k'}|| \le 1$$

Since $|||z|| - ||z'|| | \le ||z - z'||$ for all $z, z' \in \mathbb{C}^n$, we have:

$$k \ge k_0 \implies ||z_k|| \le 1 + ||z_{k_0}||$$

Taking $M = \max(1 + \|z_{k_0}\|, \|z_1\|, \dots, \|z_{k_0-1}\|)$, we see that $\|z_k\| \leq M$ for all $k \geq 1$. We have proved that $(z_k)_{k \geq 1}$ is a bounded sequence in \mathbb{C}^n .

2. Let $B = \{z \in \mathbf{C}^n : \|z\| \le M\}$. For all $z, z' \in B$, we have $\|z - z'\| \le \|z\| + \|z'\| \le 2M$. It follows that $\delta(B) \le 2M$, where $\delta(B)$ is the diameter of B in \mathbf{C}^n . So $\delta(B) < +\infty$, i.e. B is a bounded subset of \mathbf{C}^n . Let $z_0 \in B^c$. Then $M < \|z_0\|$. Let $\epsilon = \|z_0\| - M > 0$, and $z \in \mathbf{C}^n$ with $\|z - z_0\| < \epsilon$. Then, we have $\|z_0\| - \|z\| \le \|z - z_0\| < \epsilon = \|z_0\| - M$, and consequently

M < ||z||, i.e. $z \in B^c$. So $B(z_0, \epsilon) \subseteq B^c$. For all $z_0 \in B^c$, we have found $\epsilon > 0$, such that $B(z_0, \epsilon) \subseteq B^c$. This proves that B^c is open with respect to the (metric) topology of \mathbb{C}^n . So B is a closed subset of \mathbb{C}^n .

- 3. From 2., B is a closed and bounded subset of \mathbb{C}^n . From exercise (9), it follows that B is a compact subset of \mathbb{C}^n . In other words, $(B, (\mathcal{T}_{\mathbb{C}^n})_{|B})$ is a compact topological space. However, from 1., $(z_k)_{k\geq 1}$ is a sequence of elements of B. Using theorem (47), $(z_k)_{k\geq 1}$ has a convergent subsequence, i.e. there exists $z \in B$, and a subsequence $(z_{k_p})_{p\geq 1}$, such that $z_{k_p} \to z$. 13
- 4. $(z_k)_{k\geq 1}$ being Cauchy, given $\epsilon>0$, there exist $n_0\geq 1$, such that:

$$k, k' \ge n_0 \Rightarrow d(z_k, z_{k'}) \le \epsilon/2$$

Furthermore, since $z_{k_p} \to z$, there exists $p'_0 \ge 1$, such that:

$$p \ge p_0' \implies d(z, z_{k_p}) \le \epsilon/2$$

¹³Both with respect to $\mathcal{T}_{\mathbf{C}^n}$ and the induced topology $(\mathcal{T}_{\mathbf{C}^n})_{|B}$.

Moreover, since $k_p \uparrow +\infty$ as $p \to +\infty$, there exists $p_0'' \geq 1$, such that $p \geq p_0'' \Rightarrow k_p \geq n_0$. Take $p_0 = \max(p_0', p_0'')$. Then, $d(z, z_{k_{p_0}}) \leq \epsilon/2$, and we have:

$$k \ge n_0 \implies d(z_k, z_{k_{p_0}}) \le \epsilon/2$$

5. From 4., we have found $n_0 \ge 1$, such that:

$$k \ge n_0 \implies d(z, z_k) \le \epsilon$$

It follows that $z_k \to z$.

- 6. From 5., we see that every Cauchy sequence $(z_k)_{k\geq 1}$ in \mathbb{C}^n , converges to some limit $z\in\mathbb{C}^n$. From definition (80), we conclude that \mathbb{C}^n is complete metric space.
- 7. The completeness of \mathbf{C} was used in exercise (12)[6.] of Tutorial 9, leading to theorem (44) where we proved that any sequence

 $(f_n)_{n\geq 1}$ in $L^p_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$ such that:

$$\sum_{k=1}^{+\infty} ||f_{k+1} - f_k||_p < +\infty$$

converges to some $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. This, in turn, was crucially important in proving theorem (46), where $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$ is shown to be complete.

Exercise 12.

1. Let $(x_k)_{k\geq 1}$ be a sequence in \mathbb{R}^n , such that $x_k \to z$, for some $z \in \mathbb{C}^n$. For all $k \geq 1$ and $i \in \mathbb{N}_n$, we have:

$$|Im(z^i)| = |Im(z^i) - Im(x_k^i)| \le ||z - x_k||$$

Taking the limit as $k \to +\infty$, we obtain $Im(z^i) = 0$. This being true for all $i \in \mathbb{N}_n$, we have proved that $z \in \mathbb{R}^n$.

2. Let $(x_k)_{k\geq 1}$ be a Cauchy sequence in \mathbf{R}^n . In particular, it is a Cauchy sequence in \mathbf{C}^n . From exercise (11), \mathbf{C}^n is a complete metric space. Hence, there exists $z\in\mathbf{C}^n$, such that $x_k\to z$. From 1., z is in fact an element of \mathbf{R}^n . We have proved that any Cauchy sequence $(x_k)_{k\geq 1}$ in \mathbf{R}^n , converges to some $z\in\mathbf{R}^n$. From definition (80), we conclude that \mathbf{R}^n is a complete metric space. This, together with exercise (11), proves theorem (49).

Exercise 13.

- 1. Let $x \in \bar{F}$. From definition (37), if U is an open set with $x \in U$, then $F \cap U \neq \emptyset$. Given $n \geq 1$, the open ball B(x, 1/n) is an open set with $x \in B(x, 1/n)$. So $F \cap B(x, 1/n) \neq \emptyset$.
- 2. Let $x \in F$. From 1., for all $n \ge 1$, we can choose an arbitrary element $x_n \in F \cap B(x, 1/n)$. This defines a sequence $(x_n)_{n \ge 1}$ of elements of F, such that $d(x, x_n) < 1/n$ for all $n \ge 1$. So $x_n \to x$.
- 3. Let $x \in E$. We assume that there exists a sequence $(x_n)_{n\geq 1}$ of elements of F, with $x_n \to x$. Let U be an open set containing x. Since $x_n \to x$, there exists $n_0 \geq 1$, such that:

$$n \ge n_0 \implies x_n \in U$$

In particular, $x_{n_0} \in U$. But x_{n_0} is also an element of F. So $x_{n_0} \in F \cap U$. We have proved that for all open set U containing x, we have $F \cap U \neq \emptyset$. From definition (37), we conclude that $x \in \bar{F}$.

- 4. Suppose that F is closed, and let $(x_n)_{n\geq 1}$ be a sequence in F such that $x_n\to x$ for some $x\in E$. From 3. we have $x\in \bar{F}$. However from exercise (21) of Tutorial 4, we have $F=\bar{F}$. So $x\in F$. Conversely, suppose that for any sequence $(x_n)_{n\geq 1}$ in F such that $x_n\to x$ for some $x\in E$, we have $x\in F$. We claim that F is closed. From exercise (21) of Tutorial 4., it is sufficient to show that $\bar{F}=F$, or equivalently that $\bar{F}\subseteq F$. So let $x\in \bar{F}$. From 2. there exists a sequence $(x_n)_{n\geq 1}$ in F such that $x_n\to x$. By assumption, this implies that $x\in F$. It follows that $x\in F$.
- 5. The fact that the induced topological space $(F, \mathcal{T}_{|F})$ is metrizable, is a consequence of theorem (12). The induced topology $\mathcal{T}_{|F}$ is nothing but the metric topology associated with the induced metric $d_{|F} = d_{|F \times F}$.
- 6. Suppose F is complete with respect to the induced metric $d_{|F}$. Let $x \in E$ and $(x_n)_{n\geq 1}$ be a sequence of elements of F, with $x_n \to x$. In particular, $(x_n)_{n\geq 1}$ is a Cauchy sequence with respect to the metric d. $(x_n)_{n\geq 1}$ being a sequence of elements

of F, it is also a Cauchy sequence with respect to the induced metric $d_{|F}$. F being complete, there exists $y \in F$, such that $x_n \to y$. This convergence, with respect to $\mathcal{T}_{|F}$, is also valid with respect \mathcal{T} . Since we also have $x_n \to x$, we see that x = y. It follows that $x \in F$. Given $x \in E$, and a sequence $(x_n)_{n \geq 1}$ of elements of F such that $x_n \to x$, we have proved that $x \in F$. From 4., this shows that F is a closed subset of F. We conclude that if F is complete (with respect to its natural metric $d_{|F}$), then it is a closed subset of F.

- 7. From theorem (12), the induced metric $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R}}$ induces the induced topology $(\mathcal{T}_{\bar{\mathbf{R}}})_{|\mathbf{R}}$. Such topology is nothing but the usual topology on \mathbf{R} . It follows that d' induces $\mathcal{T}_{\mathbf{R}}$.
- 8. Let $d_{\mathbf{R}}$ be the usual metric on \mathbf{R} . From theorem (12), the induced metric $(d_{\mathbf{R}})_{|[-1,1]}$ induces the induced topology on [-1,1]. Such topology is nothing but the usual topology on [-1,1].
- 9. From 8., if $\{-1,1\}$ was open in [-1,1], there would exists $\epsilon > 0$,

such that $]1 - \epsilon, 1] \subseteq \{-1, 1\}$, which is absurd.

- 10. If $\{-\infty, +\infty\}$ was open in $\bar{\mathbf{R}}$, then $\{-1, 1\}$ would be open in [-1, 1], since one is the inverse image of the other, by a strictly increasing homeomorphism.
- 11. If **R** was closed in $\bar{\mathbf{R}}$, then $\{-\infty, +\infty\}$ would be open in $\bar{\mathbf{R}}$.
- 12. Let $d_{\mathbf{R}}$ be the usual metric on \mathbf{R} . Then $d_{\mathbf{R}}$ induces the usual topology on \mathbf{R} . However, from 7., the metric d' also induces the usual topology on \mathbf{R} . It follows that $d_{\mathbf{R}}$ and d' both induce the same topology. From theorem (49), \mathbf{R} is complete with respect to its usual metric $d_{\mathbf{R}}$. If \mathbf{R} was complete with respect to $d' = (d_{\bar{\mathbf{R}}})_{|\mathbf{R}}$, then from 6., \mathbf{R} would be a closed subset of $\bar{\mathbf{R}}$, contradicting 11. So \mathbf{R} is not complete with respect to d'. We conclude that although the two metric spaces $(\mathbf{R}, d_{\mathbf{R}})$ and (\mathbf{R}, d') are identical in the topological sense, one is complete whereas the other is not.

Exercise 14.

1. Let $y \in \mathcal{H}$. For all $x, x' \in \mathcal{H}$ and $\alpha \in \mathbf{K}$, using (ii) and (iii) of definition (81), we obtain:

$$\langle x + \alpha x', y \rangle = \langle x, y \rangle + \alpha \langle x', y \rangle$$

We conclude that $x \to \langle x, y \rangle$ is linear for all $y \in \mathcal{H}$.

2. Let $x \in \mathcal{H}$. For all $y, y' \in \mathcal{H}$ and $\alpha \in \mathbf{K}$, using (i), (ii) and (iii) of definition (81), we obtain:

$$\langle x, y + \alpha y' \rangle = \langle x, y \rangle + \bar{\alpha} \langle x, y' \rangle$$

where $\bar{\alpha}$ is the complex conjugate of α . Hence, $y \to \langle x, y \rangle$ is conjugate-linear for all $x \in \mathcal{H}$. In the case when $\mathbf{K} = \mathbf{R}$, it is in fact linear.

Exercise 15.

- 1. The inner-product $\langle \cdot, \cdot \rangle$ has values in **K**. From (iv) of definition (81), $\langle x, x \rangle \geq 0$ for all $x \in \mathcal{H}$. It follows that $||x|| = \sqrt{\langle x, x \rangle}$ is a well-defined element of \mathbf{R}^+ , for all $x \in \mathcal{H}$. Hence, we see that $A = ||x||^2$ and $C = ||y||^2$ are both well-defined elements of \mathbf{R}^+ . Furthermore, $B = |\langle x, y \rangle|$ being the modulus of an element of **K**, is a well-defined element of \mathbf{R}^+ .
- 2. Let $t \in \mathbf{R}$. Using the linearity properties of exercise (14):

$$\langle x - t\alpha y, x - t\alpha y \rangle = \langle x, x \rangle - t\alpha \overline{\langle x, y \rangle} - t\overline{\alpha} \langle x, y \rangle + t^2 \alpha \overline{\alpha} \langle y, y \rangle$$

Since $B = \overline{B} = \alpha \overline{\langle x, y \rangle}$ and $\alpha \overline{\alpha} = 1$, we conclude that:

$$\langle x - t\alpha y, x - t\alpha y \rangle = A - 2tB + t^2C$$

3. Suppose C=0. Then $\langle y,y\rangle=0$. From (v) of definition (81), we see that y=0. From the conjugate linearity of $y'\to\langle x,y'\rangle$, we have $\langle x,0\rangle=0$ for all $x\in\mathcal{H}$, and consequently $\langle x,y\rangle=0$. So B=0, and finally $B^2\leq AC$.

4. Suppose $C \neq 0$. Let $P(t) = A - 2tB + t^2C$ for all $t \in \mathbf{R}$. Since C > 0 and P'(t) = 2tC - 2B, the second degree polynomial P has a minimum value at t = B/C. From 2., for all $t \in \mathbf{R}$:

$$P(t) = \langle x - t\alpha y, x - t\alpha y \rangle \ge 0$$

In particular, $P(B/C) \ge 0$. It follows that $B^2 \le AC$.

5. From $B^2 \leq AC$, since $A,B,C \in \mathbf{R}^+,$ we obtain $B \leq \sqrt{AC},$ i.e.

$$|\langle x, y \rangle| \le ||x||.||y||$$

This proves theorem (50).

Exercise 16.

1. Let $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Then, $f\bar{g}$ is a complex-valued and measurable map. Furthermore, from theorem (42):

$$\int |f||g|d\mu \leq \left(\int |f|^2 d\mu\right)^{\frac{1}{2}} \left(\int |g|^2 d\mu\right)^{\frac{1}{2}}$$

So $\int |f\bar{g}|d\mu < +\infty$ and $f\bar{g} \in L^1_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. It follows that $\langle f, g \rangle = \int f\bar{g}d\mu$ is a well-defined complex number.

2. Let $f \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. From definition (73), $||f||_2$ is defined as $||f||_2 = (\int |f|^2 d\mu)^{1/2}$. It follows that:

$$||f||_2 = \left(\int f\bar{f}d\mu\right)^{\frac{1}{2}} = \sqrt{\langle f, f\rangle}$$

3. Let $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. From theorems (24) and (42), we have:

$$|\langle f, g \rangle| = \left| \int f \bar{g} d\mu \right| \le \int |f| |g| d\mu \le ||f||_2 \cdot ||g||_2$$

- 4. Among properties (i)-(v) of definition (81), only (v) fails to be satisfied. Indeed, although f=0 does imply that $\langle f,f\rangle=\int |f|^2d\mu=0$, the converse is not true. Having $\int |f|^2d\mu=0$ only guarantees that f=0 μ -almost surely, and not necessarily everywhere. We conclude that $\langle\cdot,\cdot\rangle$ is not strictly speaking an inner-product on $L^2_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$, as defined by definition (81). It follows that equation (1) which we proved in 3., cannot be viewed as a consequence of theorem (50).
- 5. Let $f, g \in L^2_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. Let $P(t) = \int (|f| + t|g|)^2 d\mu$ for all $t \in \mathbf{R}$. Then, $P(t) \geq 0$ for all $t \in \mathbf{R}$, and furthermore:

$$P(t) = A + 2tB + t^2C$$

where $A = \int |f|^2 d\mu$, $B = \int |f||g|d\mu$ and $C = \int |g|^2 d\mu$. All three numbers A, B and C are elements of \mathbf{R}^+ . If C = 0, then g = 0 μ -a.s. and consequently B = 0. In particular, the inequality $B^2 \leq AC$ holds. If $C \neq 0$, from $P(-B/C) \geq 0$ we

 $^{^{14}}B$ can be shown to be finite from $|fg| \le (|f|^2 + |g|^2)/2$.

obtain $B^2 \leq AC$, and consequently:

$$\int |fg| d\mu \leq \left(\int |f|^2 d\mu\right)^{\frac{1}{2}} \left(\int |g|^2 d\mu\right)^{\frac{1}{2}}$$

6. Let $f,g:(\Omega,\mathcal{F})\to [0,+\infty]$ be non-negative and measurable. Suppose both integrals $\int f^2 d\mu$ and $\int g^2 d\mu$ are finite. Then f and g are μ -almost surely finite, and therefore μ -almost surely equal to $f1_{\{f<+\infty\}}$ and $g1_{\{g<+\infty\}}$ respectively. It follows that f and g are μ -almost surely equal to elements of $L^2_{\mathbf{C}}(\Omega,\mathcal{F},\mu)$. Applying 5. to $f1_{\{f<+\infty\}}$ and $g1_{\{g<+\infty\}}$, we obtain:

$$\int fgd\mu \le \left(\int f^2 d\mu\right)^{\frac{1}{2}} \left(\int g^2 d\mu\right)^{\frac{1}{2}}$$

If $\int f^2 d\mu = +\infty$ or $\int g^2 d\mu = +\infty$, such inequality still holds. We have effectively proved theorem (42), without using holder's inequality (41).

Exercise 17.

1. Let $x, y \in \mathcal{H}$. Using (ii) of definition (81), we have:

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x+y \rangle + \langle y, x+y \rangle$$

Furthermore, using (i) and (ii):

$$\langle x, x + y \rangle = \overline{\langle x + y, x \rangle} = \overline{\langle x, x \rangle} + \overline{\langle y, x \rangle} = ||x||^2 + \langle x, y \rangle$$

and also:

$$\langle y, x + y \rangle = \overline{\langle x + y, y \rangle} = ||y||^2 + \overline{\langle x, y \rangle}$$

We conclude that:

$$||x + y||^2 = ||x||^2 + ||y||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle}$$

2. From the Cauchy-Schwarz inequality of theorem (50):

$$|\overline{\langle x, y \rangle}| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Consequently, using 1., we have:

$$||x + y||^2 \le ||x||^2 + ||y||^2 + 2||x|| \cdot ||y|| = (||x|| + ||y||)^2$$

We conclude that for all $x, y \in \mathcal{H}$, we have:

$$||x + y|| \le ||x|| + ||y||$$

3. Let $d=d_{\langle\cdot,\cdot\rangle}$ be the map defined by $d(x,y)=\|x-y\|$. Note that from (iv) of definition (81):

$$d(x,y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

is well-defined, and non-negative. So d is indeed a map from $\mathcal{H} \times \mathcal{H}$, with values in \mathbf{R}^+ . Let $x,y,z \in \mathcal{H}$. d(x,y)=0 is equivalent to $\langle x-y,x-y\rangle=0$, which from (v) of definition (81), is itself equivalent to x=y. So (i) of definition (28) is satisfied by d. Furthermore, we have:

$$||-x||^2 = \langle -x, -x \rangle = -\overline{\langle -x, x \rangle} = ||x||^2$$

and consequently, d(x,y) = ||x-y|| = ||y-x|| = d(y,x). So (ii) of definition (28) is satisfied by d. Finally, using 2.:

$$||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y||$$

and we see that $d(x,y) \leq d(x,z) + d(z,y)$. So (iii) of definition (28) is also satisfied by d. Having checked conditions (i), (ii) and (iii) of definition (28), we conclude that d is indeed a metric on \mathcal{H} .

Exercise 18.

1. \mathcal{M} being a linear subspace of the **K**-vector space \mathcal{H} , is itself a **K**-vector space. $[\cdot, \cdot]$ being the restriction of $\langle \cdot, \cdot \rangle$ to $\mathcal{M} \times \mathcal{M}$, is indeed a map $[\cdot, \cdot] : \mathcal{M} \times \mathcal{M} \to K$. For all $x, y \in \mathcal{M}$, we have:

$$[x,y] = \langle x,y \rangle = \overline{\langle y,x \rangle} = \overline{[y,x]}$$

So (i) of definition (81) is satisfied by $[\cdot,\cdot]$. Similarly, it is clear that all properties (ii) - (v) of definition (81) are also satisfied by $[\cdot,\cdot]$. We conclude that $[\cdot,\cdot]$ is indeed an inner-product on the **K**-vector space \mathcal{M} .

2. Recall that from definition (83), the metric $d_{[\cdot,\cdot]}$ is defined by:

$$d_{[\cdot,\cdot]}(x,y) = \sqrt{[x-y,x-y]}$$

 $[\cdot,\cdot]$ being the restriction of $\langle\cdot,\cdot\rangle$ to $\mathcal{M}\times\mathcal{M}$, we have:

$$d_{[\cdot,\cdot]}(x,y) = \sqrt{\langle x-y,x-y\rangle} = d_{\langle\cdot,\cdot\rangle}(x,y)$$

We conclude that the metric $d_{[\cdot,\cdot]}$ is nothing but the restriction of the metric $d_{\langle\cdot,\cdot\rangle}$ to $\mathcal{M}\times\mathcal{M}$, i.e. $d_{[\cdot,\cdot]}=(d_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}\times\mathcal{M}}$.

3. From theorem (12), the topology induced on \mathcal{M} by the norm topology $\mathcal{T}_{\langle\cdot,\cdot\rangle}$ (the latter being the metric topology associated with $d_{\langle\cdot,\cdot,\rangle}$, by definition (82)), is nothing but the metric topology associated with $(d_{\langle\cdot,\cdot\rangle})_{\mathcal{M}\times\mathcal{M}} = d_{[\cdot,\cdot]}$ (which by definition (82), is the norm topology on \mathcal{M} , i.e. $\mathcal{T}_{[\cdot,\cdot]}$). So $(\mathcal{T}_{\langle\cdot,\cdot\rangle})_{|\mathcal{M}} = \mathcal{T}_{[\cdot,\cdot]}$.

Exercise 19.

1. Since $(x_n)_{n\geq 1}$ is a Cauchy sequence in \mathcal{M} , with respect to the metric $d_{[\cdot,\cdot]}$, from definition (79), for all $\epsilon > 0$, there exists an integer $n_0 \geq 1$, such that:

$$n, m \ge n_0 \implies d_{[\cdot,\cdot]}(x_n, x_m) \le \epsilon$$

However, since $d_{[\cdot,\cdot]}$ is the restriction of $d_{\langle\cdot,\cdot\rangle}$ to $\mathcal{M} \times \mathcal{M}$, we have $d_{[\cdot,\cdot]}(x,y) = d_{\langle\cdot,\cdot\rangle}(x,y)$ for all $x,y \in \mathcal{M}$. It follows that $(x_n)_{n\geq 1}$ is also a Cauchy sequence in \mathcal{H} , with respect to the metric $d_{\langle\cdot,\cdot\rangle}$.

- 2. $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ being a Hilbert space, from definition (83), \mathcal{H} is a also a complete metric space. From definition (80), $(x_n)_{n\geq 1}$ being a Cauchy sequence in \mathcal{H} , there exists $x \in \mathcal{H}$ such that $x_n \to x$.
- 3. \mathcal{M} is a closed subset of \mathcal{H} , and $(x_n)_{n\geq 1}$ is a sequence of elements of \mathcal{M} converging to $x\in \mathcal{H}$. From exercise (13) [4.], we conclude that $x\in \mathcal{M}$.

- 4. As seen in the previous exercise, the norm topology $\mathcal{T}_{[\cdot,\cdot]}$ on \mathcal{M} is induced by the norm topology $\mathcal{T}_{\langle\cdot,\cdot\rangle}$ on \mathcal{H} . Since $(x_n)_{n\geq 1}$ is a sequence in \mathcal{M} and $x\in\mathcal{M}$, the convergence $x_n\to x$ relative to the topology $\mathcal{T}_{[\cdot,\cdot]}$, is equivalent to the convergence $x_n\to x$ relative to the topology $\mathcal{T}_{\langle\cdot,\cdot\rangle}$.
- 5. Given a Cauchy sequence (x_n)_{n≥1} in M, we have found an element x ∈ M, such that x_n → x. From definition (80), this shows that (M, d_[·,·]) is a complete metric space. It follows that M is a K-vector space, that [·,·] is an inner-product on M, under which M is complete. From definition (83), we conclude that (M, [·,·]) = (M, ⟨·,·⟩_{|M×M}) is a Hilbert space over K. The purpose of this exercise is to show that any closed linear subspace of a Hilbert space, is itself a Hilbert space, together with its restricted inner-product.

Exercise 20.

1. Let $z, z', z'' \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$. We have:

$$\langle z, z' \rangle = \sum_{i=1}^{n} z_{i} \bar{z}_{i}' = \sum_{i=1}^{n} \bar{z}_{i} z_{i}' = \overline{\langle z', z \rangle}$$

$$\langle z + z', z'' \rangle = \sum_{i=1}^{n} (z_{i} + z_{i}') \bar{z}_{i}'' = \langle z, z'' \rangle + \langle z', z'' \rangle$$

$$\langle \alpha z, z' \rangle = \sum_{i=1}^{n} (\alpha z_{i}) \bar{z}_{i}' = \alpha \langle z, z' \rangle$$

$$\langle z, z \rangle = \sum_{i=1}^{n} z_{i} \bar{z}_{i} = \sum_{i=1}^{n} |z_{i}|^{2} \geq 0$$

and finally, $\langle z, z \rangle = 0$ is equivalent to $z_i = 0$ for all $i \in \mathbf{N}_n$, itself equivalent to z = 0. Hence, we see that all five conditions (i) - (v) of definition (81) are satisfied by $\langle \cdot, \cdot \rangle$. So $\langle \cdot, \cdot \rangle$ is indeed an inner-product on \mathbf{C}^n .

2. The metric $d_{\langle ... \rangle}$ is defined by:

$$d_{\langle \cdot, \cdot \rangle}(z, z') = \sqrt{\langle z - z', z - z' \rangle} = \sqrt{\sum_{i=1}^{n} |z_i - z_i'|^2}$$

It therefore coincides with the usual metric on \mathbb{C}^n .

- 3. From theorem (49), \mathbf{C}^n is a complete metric space, with respect to its usual metric. The latter being the same as the metric $d_{\langle\cdot,\cdot\rangle}$, we conclude from definition (83) that $(\mathbf{C}^n, \langle\cdot,\cdot\rangle)$ is a Hilbert space over \mathbf{C} .
- 4. For all $i \in \mathbf{N}_n$, let $\phi_i : \mathbf{C}^n \to \mathbf{R}$ be defined by $\phi_i(z) = Im(z_i)$. For all $z, z' \in \mathbf{C}^n$, we have:

$$|\phi_i(z) - \phi_i(z')| = |Im(z_i - z_i')| \le ||z - z'|| = d_{\mathbf{C}^n}(z, z')$$

So each ϕ_i is a continuous map. The set $\{0\}$ being a closed subset of \mathbf{R} , the inverse image $\phi_i^{-1}(\{0\})$ is a closed subset of \mathbf{C}^n .

It follows that $\mathbf{R}^n = \bigcap_{i=1}^n \phi_i^{-1}(\{0\})$ as an intersection of closed subsets of \mathbf{C}^n , is itself a closed subset of \mathbf{C}^n .

- 5. Given $x \in \mathbf{R}^n$ and $\alpha \in \mathbf{C}$, $\alpha.x$ is not in general an element of \mathbf{R}^n . So \mathbf{R}^n is not a linear subspace of \mathbf{C}^n . It is of course an \mathbf{R} -vector space...
- 6. Since \mathbf{R}^n is not a linear subspace of \mathbf{C}^n , we cannot rely on exercise (19) to argue that $(\mathbf{R}^n, \langle \cdot, \cdot \rangle)$ is a Hilbert space. In fact, we want to show that \mathbf{R}^n is a Hilbert space over \mathbf{R} , (not \mathbf{C}), so exercise (19) is no good to us... However, the restriction of $\langle \cdot, \cdot \rangle$ to $\mathbf{R}^n \times \mathbf{R}^n$ also satisfies conditions (i) (v) of definition (81), and is therefore an inner-product on \mathbf{R}^n , which furthermore induces the usual metric on \mathbf{R}^n . Since from theorem (49), \mathbf{R}^n is complete with respect to its usual metric, we conclude from definition (83) that it is a Hilbert space over \mathbf{R} .

Exercise 21.

- 1. Since $\mathcal{C} \neq \emptyset$, there exists $y \in \mathcal{C}$. From $\delta_{\min} \leq \|y x_0\|$, we obtain $\delta_{\min} < +\infty$. In particular, $\delta_{\min} < \delta_{\min} + 1/n$ for all $n \geq 1$. δ_{\min} being the greatest of all lower-bound of $\|x x_0\|$ for $x \in \mathcal{C}$, it follows that $\delta_{\min} + 1/n$ cannot be such lower-bound. There exists $x_n \in \mathcal{C}$, such that $\|x_n x_0\| < \delta_{\min} + 1/n$. This being true for all $n \geq 1$, we have found a sequence $(x_n)_{n \geq 1}$ in \mathcal{C} , such that $\delta_{\min} \leq \|x_n x_0\| < \delta_{\min} + 1/n$, for all $n \geq 1$. In particular, $\|x_n x_0\| \to \delta_{\min}$.
- 2. For all $x, y \in \mathcal{H}$:

$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 + ||y||^2 - \langle x, y \rangle - \overline{\langle x, y \rangle}$$
$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + ||y||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle}$$

and therefore:

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$

or equivalently:

$$||x - y||^2 = 2||x||^2 + 2||y||^2 - 4\left|\left|\frac{x + y}{2}\right|\right|^2$$
 (6)

3. Let $n, m \ge 1$. x_n and x_m are both elements of \mathcal{C} . Since we have $1/2 \in [0,1]$, from definition (85), \mathcal{C} being convex, $(x_n + x_m)/2$ is also an element of \mathcal{C} . Since δ_{\min} is a lower-bound of $||x - x_0||$ for $x \in \mathcal{C}$, we conclude that:

$$\delta_{\min} \le \left\| \frac{x_n + x_m}{2} - x_0 \right\| \tag{7}$$

4. Let $n, m \ge 1$. Applying (6) to $x = x_n - x_0$ and $y = x_m - x_0$:

$$||x_n - x_m||^2 = 2||x_n - x_0||^2 + 2||x_m - x_0||^2 - 4\left|\left|\frac{x_n + x_m}{2} - x_0\right|\right|^2$$

and therefore, from (7):

$$||x_n - x_m||^2 \le 2||x_n - x_0||^2 + 2||x_m - x_0||^2 - 4\delta_{\min}^2$$
 (8)

5. Let $\epsilon > 0$. Since $(x_n)_{n \geq 1}$ is such that $||x_n - x_0|| \to \delta_{\min}$, in particular, there exists $N \geq 1$ such that:

$$n \ge N \Rightarrow 2||x_n - x_0||^2 \le 2\delta_{\min}^2 + \epsilon^2/2$$

Using (8), we have:

$$n, m \ge N \implies ||x_n - x_m||^2 \le \epsilon^2$$

It follows from definition (79) that $(x_n)_{n\geq 1}$ is a Cauchy sequence in \mathcal{H} . Since \mathcal{H} is a Hilbert space, it is also a complete metric space. So $(x_n)_{n\geq 1}$ has a limit in \mathcal{H} . There exists $x^* \in \mathcal{H}$, such that $x_n \to x^{*15}$.

6. From 5., we have $x_n \to x^*$, while $(x_n)_{n\geq 1}$ is a sequence of elements of \mathcal{C} . Since by assumption, \mathcal{C} is a closed subset of \mathcal{H} , using exercise (13) [4.], we conclude that $x^* \in \mathcal{C}$.

¹⁵Convergence relative to the norm topology, so $x_n \stackrel{\mathcal{T}_{\langle \cdot,\cdot \rangle}}{\longrightarrow} x^*$.

7. Let $x, y \in \mathcal{H}$. From exercise (17), we have:

$$||x|| \le ||x - y|| + ||y||$$

$$||y|| \le ||x - y|| + ||x||$$

where we have used the fact that ||x - y|| = ||y - x||. Hence:

$$-\|x - y\| \le \|x\| - \|y\| \le \|x - y\|$$

or equivalently $||x|| - ||y|| | \le ||x - y||$.

8. For all n > 1, from 7., we have:

$$||x_n - x_0|| - ||x^* - x_0||| \le ||x^* - x_n||$$

Since
$$x_n \to x^*$$
, $||x^* - x_n|| \to 0$, and so $||x_n - x_0|| \to ||x^* - x_0||$.

9. By construction, $(x_n)_{n\geq 1}$ is such that $||x_n - x_0|| \to \delta_{\min}$. However, from 8., $||x_n - x_0|| \to ||x^* - x_0||$. So $||x^* - x_0|| = \delta_{\min}$. Since $x^* \in \mathcal{C}$, we have found $x^* \in \mathcal{C}$, such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

10. Suppose y^* is another element of \mathcal{C} , such that:

$$||y^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{C}\}$$

Applying (6) to $x = x^* - x_0$ and $y = y^* - x_0$, we obtain:

$$||x^* - y^*||^2 = 2||x^* - x_0||^2 + 2||y^* - x_0||^2 - 4\left|\left|\frac{x^* + y^*}{2} - x_0\right|\right|^2$$

Since C is convex and x^* , y^* are elements of C, $(x^* + y^*)/2$ is also an element of C. It follows that:

$$\delta_{\min} \le \left\| \frac{x^* + y^*}{2} - x_0 \right\|$$

and finally $||x^* - y^*||^2 \le 2||x^* - x_0||^2 + 2||y^* - x_0||^2 - 4\delta_{\min}^2$.

11. Since $\delta_{\min} = ||x^* - x_0|| = ||y^* - x_0||$, we see from 10. that $||x^* - y^*|| = 0$, and finally $x^* = y^*$. This proves theorem (52).

Exercise 22.

1. For all $y \in \mathcal{G}$, $\langle 0, y \rangle = 0$. $\langle 0, y \rangle = 0$. So $0 \in \mathcal{G}^{\perp}$ and in particular $\mathcal{G}^{\perp} \neq \emptyset$. Let $x_1, x_2 \in \mathcal{G}^{\perp}$ and $\alpha \in \mathbf{K}$. For all $y \in \mathcal{G}$, we have $\langle x_1, y \rangle = 0$ and $\langle x_2, y \rangle = 0$. Hence:

$$\langle x_1 + \alpha x_2, y \rangle = \langle x_1, y \rangle + \alpha \langle x_2, y \rangle = 0$$

This being true for all $y \in \mathcal{G}$, $x_1 + \alpha x_2 \in \mathcal{G}^{\perp}$. We conclude that \mathcal{G}^{\perp} is a linear sub-space of \mathcal{H} . Note that no assumption was made, as to whether \mathcal{G} is itself a linear sub-space or not.

2. Given $y \in \mathcal{H}$, let $\phi_y : \mathcal{H} \to \mathbf{K}$ be defined by $\phi_y(x) = \langle x, y \rangle$. From the Cauchy-Schwarz inequality of theorem (50), if $x_1, x_2 \in \mathcal{H}$, we have $|\phi_y(x_1) - \phi_y(x_2)| = |\langle x_1 - x_2, y \rangle| \leq ||y|| . ||x_1 - x_2||$ or equivalently $d_{\mathbf{K}}(\phi_y(x_1), \phi_y(x_2)) \leq ||y|| . d_{\langle \cdot, \cdot \rangle}(x_1, x_2)$, where $d_{\mathbf{K}}$ is the usual metric on \mathbf{K} . It follows that $\phi_y : \mathcal{H} \to \mathbf{K}$ is a continuous map, with respect to the norm topology on \mathcal{H} , and the usual topology on \mathbf{K} .

- 3. Suppose $x \in \mathcal{G}^{\perp}$. For all $y \in \mathcal{G}$, we have $\langle x, y \rangle = 0 = \phi_y(x)$. So $x \in \cap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\})$. Conversely, if $x \in \cap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\})$, then for all $y \in \mathcal{G}$, we have $\phi_y(x) = 0 = \langle x, y \rangle$, and therefore $x \in \mathcal{G}^{\perp}$. This proves that $\mathcal{G}^{\perp} = \cap_{y \in \mathcal{G}} \phi_y^{-1}(\{0\})$.
- 4. The set $\{0\}$ is a closed subset of **K**. Since $\phi_y : \mathcal{H} \to \mathbf{K}$ is a continuous map for all $y \in \mathcal{H}$, the inverse image $\phi_y^{-1}(\{0\})$ is a closed subset of \mathcal{H} . From 3., \mathcal{G}^{\perp} being an arbitrary intersection of closed subsets of \mathcal{H} , we conclude that \mathcal{G}^{\perp} is itself a closed subset of \mathcal{H} .
- 5. $\emptyset^{\perp} \subseteq \mathcal{H}$ and $\{0\}^{\perp} \subseteq \mathcal{H}$ are obviously true. Furthermore, a statement such that $[\forall y \in \emptyset, \langle x, y \rangle = 0]$ is also true for any $x \in \mathcal{H}$. So $\mathcal{H} \subseteq \emptyset^{\perp}$. Moreover, for all $x \in \mathcal{H}$, $\langle x, 0 \rangle = 0$, i.e. $x \in \{0\}^{\perp}$. So $\mathcal{H} \subseteq \{0\}^{\perp}$. We have proved that $\mathcal{H} = \emptyset^{\perp} = \{0\}^{\perp}$.
- 6. For all $y \in \mathcal{H}$, $\langle 0, y \rangle = 0$. So $\{0\} \subseteq \mathcal{H}^{\perp}$. Conversely, if $x \in \mathcal{H}^{\perp}$, then $\langle x, x \rangle = 0$ and therefore x = 0. So $\mathcal{H}^{\perp} \subseteq \{0\}$.

Exercise 23.

1. \mathcal{M} being a linear sub-space of \mathcal{H} , it has at least one element, namely 0. So $\mathcal{M} \neq \emptyset$. Furthermore, for all $x,y \in \mathcal{M}$ and $\alpha, \beta \in \mathbf{K}$, we have $\alpha x + \beta y \in \mathcal{M}$. In particular, for all $t \in [0,1]$, $tx + (1-t)y \in \mathcal{M}$. From definition (85), it follows that \mathcal{M} is also a convex subset of \mathcal{H} . Having assumed \mathcal{M} to be closed, it is therefore a non-empty, closed and convex subset of \mathcal{H} . Applying theorem (52), there exists $x^* \in \mathcal{M}$ such that:

$$||x^* - x_0|| = \inf\{||x - x_0|| : x \in \mathcal{M}\}$$

2. Let $y^* = x_0 - x^*$. Since $x^* \in \mathcal{M}$, for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, $x^* + \alpha y$ is also an element of \mathcal{M} . It follows that:

$$||x^* - x_0|| \le ||x^* + \alpha y - x_0||$$

or equivalently:

$$||y^*||^2 < ||y^* - \alpha y||^2 \tag{9}$$

3. Let $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$. We have:

$$\|y^* - \alpha y\|^2 = \|y^*\|^2 - \alpha \langle y, y^* \rangle - \overline{\alpha \langle y, y^* \rangle} + |\alpha|^2 \|y\|^2$$

Hence, using (9), we obtain:

$$0 \le -\alpha \langle y, y^* \rangle - \overline{\alpha \langle y, y^* \rangle} + |\alpha|^2 ||y||^2$$
 (10)

4. Given $y \in \mathcal{M} \setminus \{0\}$, take $\alpha = \langle y, y^* \rangle / \|y\|^2$ in (10). We obtain:

$$0 \le -\frac{|\langle y, y^* \rangle|^2}{\|y\|^2}$$

- 5. It follows from 4. that $|\langle y, y^* \rangle|^2 \leq 0$ for all $y \in \mathcal{M} \setminus \{0\}$. So $\langle y^*, y \rangle = \langle y, y^* \rangle = 0$, for all $y \in \mathcal{M} \setminus \{0\}$. Since $\langle y^*, 0 \rangle = 0$, we in fact have $\langle y^*, y \rangle = 0$ for all $y \in \mathcal{M}$, and we see that $y^* \in \mathcal{M}^{\perp}$. So $x^* \in \mathcal{M}$, $y^* \in \mathcal{M}^{\perp}$, and since $y^* = x_0 x^*$, we conclude that $x_0 = x^* + y^*$.
- 6. \mathcal{M} and \mathcal{M}^{\perp} being linear sub-spaces of \mathcal{H} , 0 is an element of both \mathcal{M} and \mathcal{M}^{\perp} . So $\{0\} \subseteq \mathcal{M} \cap \mathcal{M}^{\perp}$. Conversely, suppose

 $x \in \mathcal{M} \cap \mathcal{M}^{\perp}$. From $x \in \mathcal{M}^{\perp}$, we have $\langle x, y \rangle = 0$ for all $y \in \mathcal{M}$. From $x \in \mathcal{M}$, we see in particular that $\langle x, x \rangle = 0$. From (v) of definition (81), we conclude that x = 0. So $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$.

7. Suppose there exist $\bar{x} \in \mathcal{M}$ and $\bar{y} \in \mathcal{M}^{\perp}$, such that $x_0 = \bar{x} + \bar{y}$. Then $x^* + y^* = \bar{x} + \bar{y}$ and consequently $x^* - \bar{x} = \bar{y} - y^*$, while $x^* - \bar{x} \in \mathcal{M}$ and $\bar{y} - y^* \in \mathcal{M}^{\perp}$. Since $\mathcal{M} \cap \mathcal{M}^{\perp} = \{0\}$, we conclude that $x^* = \bar{x}$ and $y^* = \bar{y}$. So $x^* \in \mathcal{M}$ and $y^* \in \mathcal{M}^{\perp}$ such that $x_0 = x^* + y^*$ are unique. This proves theorem (53).

Exercise 24.

1. Let $\lambda: \mathcal{H} \to \mathbf{K}$ be a linear functional, which is continuous at $x_0 \in \mathcal{H}^{16}$. Given an open set V in \mathbf{K} containing $\lambda(x_0)$, there exists an open set U in \mathcal{H} containing x_0 , such that $f(U) \subseteq V$. Since the two topologies on \mathcal{H} and \mathbf{K} are metric, this is easily shown to be equivalent to the property that for all $\epsilon > 0$, there exists $\delta > 0$, such that:

$$\forall x \in \mathcal{H}, \|x - x_0\| < \delta \implies |\lambda(x) - \lambda(x_0)| < \epsilon$$

In particular, taking $\epsilon = 1$ and some $\eta > 0$ strictly smaller than the associated δ , we have:

$$\forall x \in \mathcal{H}, \|x - x_0\| \le \eta \Rightarrow |\lambda(x) - \lambda(x_0)| \le 1$$

Hence, given $x \in \mathcal{H}$, $x \neq 0$, we have:

$$|\lambda(\eta x/||x||)| = |\lambda(x_0 + \eta x/||x||) - \lambda(x_0)| \le 1$$

¹⁶Continuity at a given point is defined in what follows.

2. If λ is continuous at some $x_0 \in \mathcal{H}$, from 1., there exists $\eta > 0$ such that $|\lambda(\eta x/\|x\|)| \leq 1$ for all $x \in \mathcal{H} \setminus \{0\}$. So $|\lambda(x)| \leq \|x\|/\eta$ for all $x \in \mathcal{H} \setminus \{0\}$, which is obviously still valid if x = 0. We have found $M = 1/\eta \in \mathbf{R}^+$, such that:

$$\forall x \in \mathcal{H} , |\lambda(x)| \le M||x|| \tag{11}$$

3. Suppose $\lambda : \mathcal{H} \to \mathbf{K}$ is a linear functional, such that (11) holds for some $M \in \mathbf{R}^+$. Then for all $x_1, x_2 \in \mathcal{H}$, we have:

$$|\lambda(x_1) - \lambda(x_2)| = |\lambda(x_1 - x_2)| \le M||x_1 - x_2||$$

So λ is continuous (everywhere).

Exercise 25.

- 1. Let $x_0 \in \mathcal{H}$ such that $\lambda(x_0) \neq 0$. Then $x_0 \notin \mathcal{M} = \lambda^{-1}(\{0\})$.
- 2. $\mathcal{M} = \lambda^{-1}(\{0\})$ is a linear sub-space of \mathcal{H} . Indeed, it is not empty $(\lambda(0) = 0)$, and if $\lambda(x_1) = \lambda(x_2) = 0$ and $\alpha \in \mathbf{K}$, then:

$$\lambda(x_1 + \alpha x_2) = \lambda(x_1) + \alpha \lambda(x_2) = 0$$

Furthermore, λ being a bounded linear functional, is continuous, and $\mathcal{M} = \lambda^{-1}(\{0\})$ is therefore a closed subset of \mathcal{H} . So \mathcal{M} is a closed linear sub-space of \mathcal{H} . From theorem (53), there exists $x^* \in \mathcal{M}$, $y^* \in \mathcal{M}^{\perp}$, such that $x_0 = x^* + y^*$.

- 3. Since $x^* \in \mathcal{M}$, $\lambda(y^*) = \lambda(x_0)$ and therefore $\lambda(y^*) \neq 0$. In particular, $y^* \neq 0$. Taking $z = y^*/\|y^*\|$, we have found $z \in \mathcal{M}^{\perp}$, such that $\|z\| = 1$.
- 4. Let $\alpha \in \mathbf{K} \setminus \{0\}$. We have $\langle z, \alpha z \rangle / \bar{\alpha} = \langle z, (\alpha z) / \alpha \rangle = \langle z, z \rangle = 1$. It follows that $\lambda(x) \langle z, \alpha z \rangle / \bar{\alpha} = \lambda(x)$ for all $x \in \mathcal{H}$.

5. In order to have $\lambda(x) = \langle x, \alpha z \rangle$ for all $x \in \mathcal{H}$, we need:

$$0 = \lambda(x) - \langle x, \alpha z \rangle = \lambda(x) \langle z, \alpha z \rangle / \bar{\alpha} - \langle x, \alpha z \rangle = \langle \lambda(x) z / \bar{\alpha} - x, \alpha z \rangle$$

Since $z \in \mathcal{M}^{\perp}$, it is sufficient to choose $\alpha \in \mathbf{K} \setminus \{0\}$, with:

$$\forall x \in \mathcal{H} , \frac{\lambda(x)z}{\bar{\alpha}} - x \in \mathcal{M}$$
 (12)

6. Since $\mathcal{M} = \lambda^{-1}(\{0\})$, property (12) is equivalent to:

$$0 = \lambda \left(\frac{\lambda(x)z}{\bar{\alpha}} - x \right) = \lambda(x)\lambda(z)/\bar{\alpha} - \lambda(x)$$

for all $x \in \mathcal{H}$, which is satisfied for $\alpha = \overline{\lambda(z)}$, provided $\lambda(z) \neq 0$. But if $\lambda(z) = 0$, then $z \in \mathcal{M}$. So $z \in \mathcal{M} \cap \mathcal{M}^{\perp}$ and $\langle z, z \rangle = 0$, contradicting the fact that ||z|| = 1. Hence, if we take $\alpha = \overline{\lambda(z)}$, then condition (12) is satisfied, and therefore $\lambda(x) = \langle x, \alpha z \rangle$ for all $x \in \mathcal{H}$. Taking $y = \alpha z = \overline{\lambda(z)}z$, we have found $y \in \mathcal{H}$, with:

$$\forall x \in \mathcal{H} \ , \ \lambda(x) = \langle x, y \rangle \tag{13}$$

In case one has any doubt about (13), one can quickly check:

$$\begin{array}{rcl} \lambda(x) - \langle x, \overline{\lambda(z)}z \rangle & = & \lambda(x)\langle z, z \rangle - \lambda(z)\langle x, z \rangle \\ & = & \langle \lambda(x)z - \lambda(z)x, z \rangle \\ & = & 0 \end{array}$$

the last equality arising from $\lambda(x)z - \lambda(z)x \in \mathcal{M}$ and $z \in \mathcal{M}^{\perp}$.

7. Suppose $\bar{y} \in \mathcal{H}$ is such that $\lambda(x) = \langle x, \bar{y} \rangle$ for all $x \in \mathcal{H}$. Then $\langle x, y - \bar{y} \rangle = 0$ for all $x \in \mathcal{H}$, and in particular $||y - \bar{y}||^2 = 0$, i.e. $\bar{y} = y$. So $y \in \mathcal{H}$ satisfying (13) is unique. This proves theorem (54) ¹⁷.

¹⁷The case $\lambda = 0$ is easy to handle.

Exercise 26.

- 1. Suppose $f = g \mu$ -a.s. For all $h \in [f]$, we have $h = f \mu$ -a.s. and therefore $h = g \mu$ -a.s., i.e. $h \in [g]$. So $[f] \subseteq [g]$, and similarly $[g] \subseteq [f]$. Conversely, if [f] = [g], then in particular $f \in [g]$ and therefore $f = g \mu$ -a.s. We have proved that $f = g \mu$ -a.s. is equivalent to [f] = [g].
- 2. Suppose [f] = [f'] and [g] = [g']. Then f = f' μ -a.s. and g = g' μ -a.s. So f + g = f' + g' μ -a.s. and [f + g] = [f' + g'].
- 3. \oplus is defined as $[f] \oplus [g] = [f+g]$. This definition may not be legitimate, as $[f] \oplus [g]$ is defined in terms of particular representatives f and g of the equivalence classes [f] and [g]. Since such representative are normally far from being unique, this may lead to different values of [f+g], as f and g range over all possible choices. However, as shown in 2., [f+g] is in fact independent of the particular choice of $f \in [f]$ and $g \in [g]$. So $[f] \oplus [g]$ is unambiguously defined, i.e. the operator \oplus is well-defined.

- 4. Let $\alpha \in \mathbf{K}$. If [f] = [f'], then f = f' μ -a.s. and $\alpha f = \alpha f'$ μ -a.s. So $[\alpha f] = [\alpha f']$. It follows that $[\alpha f]$ is independent of the particular choice of $f \in [f]$. So $\alpha \otimes [f]$ is unambiguously defined, i.e. the operator \otimes is well-defined.
- 5. For all $[f], [g], [h] \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

(i)
$$[0] \oplus [f] = [0+f] = [f]$$

$$(ii)$$
 $[-f] \oplus [f] = [-f + f] = [0]$

(iii)
$$[f] \oplus ([g] \oplus [h]) = [f + g + h] = ([f] \oplus [g]) \oplus [h]$$

$$(iv) [f] \oplus [g] = [f+g] = [g] \oplus [f]$$

$$(v)$$
 $1 \otimes [f] = [1.f] = [f]$

$$(vi) \qquad \alpha \otimes (\beta \otimes [f]) = [\alpha \beta f] = (\alpha \beta) \otimes [f]$$

$$(vii) \qquad (\alpha + \beta) \otimes [f] = [\alpha f + \beta f] = (\alpha \otimes [f]) \oplus (\beta \otimes [f])$$

$$(viii) \qquad \alpha \otimes ([f] \oplus [g]) = [\alpha f + \alpha g] = (\alpha \otimes [f]) \oplus (\alpha \otimes [g])$$

Exercise 27.

1. Suppose [f]=[f'] and [g]=[g']. Then f=f' μ -a.s. and g=g' μ -a.s. So $f\bar{g}=f'\bar{g}'$ μ -a.s. and therefore:

$$\int f\bar{g}d\mu = \int f'\bar{g}'d\mu \tag{14}$$

It follows that (14) is independent of the of choice of $f \in [f]$ and $g \in [g]$. We conclude that $\langle [f], [g] \rangle_{\mathcal{H}}$ is unambiguously defined, i.e. $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is well-defined.

2. Let $[f], [g] \in \mathcal{H}, \alpha \in \mathbf{K}$ and $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\mathcal{H}}$. We have:

(i)
$$\langle [f], [g] \rangle = \int f \bar{g} d\mu = \overline{\langle [g], [f] \rangle}$$

(ii)
$$\langle [f] \oplus [g], [h] \rangle = \int_{a} (f+g)\bar{h}d\mu = \langle [f], [h] \rangle + \langle [g], [h] \rangle$$

(iii)
$$\langle \alpha \otimes [f], [g] \rangle = \int (\alpha f) \bar{g} d\mu = \alpha \langle [f], [g] \rangle$$

(iv)
$$\langle [f], [f] \rangle = \int |f|^2 d\mu \in \mathbf{R}^+$$

and finally, $\langle [f], [f] \rangle = 0$ is equivalent to $\int |f|^2 d\mu = 0$, which is in turn equivalent to f = 0 μ -a.s., i.e. [f] = [0]. From definition (81), we conclude that $\langle \cdot, \cdot \rangle$ is an inner-product on \mathcal{H} .

3. \mathcal{H} is a **K**-vector space, and $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H} . From definition (83), to show that $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is a Hilbert space over **K**, we need to prove that \mathcal{H} is in fact complete with respect to the metric induced by the inner-product. Let $([f_n])_{n\geq 1}$ be a Cauchy sequence in \mathcal{H} . For all $\epsilon > 0$, there exists $n_0 \geq 1$ with:

$$n, m \ge n_0 \Rightarrow ||[f_n] - [f_m]||_{\mathcal{H}} \le \epsilon^{18}$$

However, for all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, we have:

$$||[f]||_{\mathcal{H}} = (\langle [f], [f] \rangle_{\mathcal{H}})^{\frac{1}{2}} = \left(\int |f|^2 d\mu \right)^{\frac{1}{2}} = ||f||_2$$

 $^{^{18}[}f_n] - [f_m]$ is a light notation to indicate $[f_n] \oplus [-f_m]$.

It follows that $(f_n)_{n\geq 1}$ is a Cauchy sequence in $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. From theorem (46), there exists $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, such that $f_n \to f$ in L^2 . In other words, for all $\epsilon > 0$, there exists $n_0 \geq 1$, such that:

$$n \ge n_0 \implies ||f_n - f||_2 \le \epsilon$$

Since $||f_n - f||_2 = ||[f_n] - [f]||_{\mathcal{H}}$, we conclude that $[f_n] \to [f]$ with respect to the norm topology on \mathcal{H} . Having found a limit for the Cauchy sequence $([f_n])_{n\geq 1}$, we have proved that \mathcal{H} is complete, and $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is finally a Hilbert space over \mathbf{K} .

4. $\langle f,g\rangle = \int f\bar{g}d\mu$ is not an inner-product on $L^2_{\mathbf{K}}(\Omega,\mathcal{F},\mu)$, as property (v) of definition (81) fails to be satisfied. If $\langle f,f\rangle = 0$, then we know for sure that f=0 μ -a.s. There is no reason why f should be 0 everywhere. This is the very reason why in this exercise, we go through so much trouble considering the quotient set $\mathcal{H} = (L^2_{\mathbf{K}}(\Omega,\mathcal{F},\mu))_{|\mathcal{R}}$, where \mathcal{R} is the μ -a.s. equivalence relation on $L^2_{\mathbf{K}}(\Omega,\mathcal{F},\mu)$.

Exercise 28.

1. Since $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space, we cannot use exercise (24) in its literal form. However, most of what we did then, can be reproduced here. Let $\lambda: L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional. The open ball $B(0,1) = \{z \in \mathbf{K}: |z| < 1\}$ being open in \mathbf{K} , the inverse image $\lambda^{-1}(B(0,1))$ is an open subset of $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. Since $0 \in \lambda^{-1}(B(0,1))$, there exists $\delta > 0$, such that $B(0,\delta) \subseteq \lambda^{-1}(B(0,1))$, where $B(0,\delta)$ is the open ball in $L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. Taking an arbitrary $\eta > 0$, strictly smaller than δ , for all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, we have:

$$||f||_2 \le \eta \implies |\lambda(f)| \le 1$$

It follows that $|\lambda(\eta f/\|f\|_2)| \le 1$ for all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, $f \ne 0$, and finally:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) , |\lambda(f)| \le \frac{1}{n} ||f||_2$$
 (15)

- 2. If [f] = [g], then f g = 0 μ -a.s. and $||f g||_2 = 0$. It follows from (15) that $\lambda(f) = \lambda(g)$.
- 3. $\Lambda: \mathcal{H} \to \mathbf{K}$ is defined by $\Lambda([f]) = \lambda(f)$. Since $\lambda(f)$ is independent of the particular choice of $f \in [f]$, $\Lambda([f])$ is unambiguously defined, i.e. Λ is well-defined. For all [f], $[g] \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:

$$\Lambda([f] \oplus (\alpha \otimes [g])) = \Lambda([f + \alpha g]) = \lambda(f) + \alpha \lambda(g) = \Lambda([f]) + \alpha \Lambda([g])$$

So Λ is a linear functional on \mathcal{H} . Furthermore, since we have $||[f]||_{\mathcal{H}} = ||f||_2$ for all $f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, we obtain immediately from (15) that:

$$\forall [f] \in \mathcal{H} , |\Lambda([f])| \leq \frac{1}{\eta} ||[f]||_{\mathcal{H}}$$

and we conclude from definition (88) that Λ is a well-defined bounded linear functional on \mathcal{H} .

4. Let $\lambda: L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \to \mathbf{K}$ be a continuous linear functional. Then from 3., $\Lambda: \mathcal{H} \to \mathbf{K}$ defined by $\Lambda([f]) = \lambda(f)$ is a bounded linear functional on the Hilbert space \mathcal{H} . Applying theorem (54), there exists $[g] \in \mathcal{H}$, such that:

$$\forall [f] \in \mathcal{H} \ , \ \Lambda([f]) = \langle [f], [g] \rangle_{\mathcal{H}}$$

It follows that:

$$\forall f \in L^2_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \ , \ \lambda(f) = \int f \bar{g} d\mu$$

This proves theorem (55).