10. Bounded Linear Functionals in L^{2}

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.
Definition 78 We call subsequence of a sequence $\left(x_{n}\right)_{n \geq 1}$, any sequence of the form $\left(x_{\phi(n)}\right)_{n \geq 1}$ where $\phi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is a strictly increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology \mathcal{T}. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in E. For all $n \geq 1$, let F_{n} be the closure of the set $\left\{x_{k}: k \geq n\right\}$.

1. Show that for all $x \in E, x_{n} \xrightarrow{\mathcal{T}} x$ is equivalent to:

$$
\forall \epsilon>0, \exists n_{0} \geq 1, n \geq n_{0} \Rightarrow d\left(x_{n}, x\right) \leq \epsilon
$$

2. Show that $\left(F_{n}\right)_{n \geq 1}$ is a decreasing sequence of closed sets in E.
3. Show that if $F_{n} \downarrow \emptyset$, then $\left(F_{n}^{c}\right)_{n \geq 1}$ is an open covering of E.
4. Show that if (E, \mathcal{T}) is compact then $\cap_{n=1}^{+\infty} F_{n} \neq \emptyset$.
5. Show that if (E, \mathcal{T}) is compact, there exists $x \in E$ such that for all $n \geq 1$ and $\epsilon>0$, we have $B(x, \epsilon) \cap\left\{x_{k}, k \geq n\right\} \neq \emptyset$.
6. By induction, construct a subsequence $\left(x_{n_{p}}\right)_{p \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ such that $x_{n_{p}} \in B(x, 1 / p)$ for all $p \geq 1$.
7. Conclude that if (E, \mathcal{T}) is compact, any sequence $\left(x_{n}\right)_{n \geq 1}$ in E has a convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology \mathcal{T}. We assume that any sequence $\left(x_{n}\right)_{n \geq 1}$ in E has a convergent subsequence. Let $\left(V_{i}\right)_{i \in I}$ be an open covering of E. For $x \in E$, let:

$$
r(x) \triangleq \sup \left\{r>0: B(x, r) \subseteq V_{i}, \text { for some } i \in I\right\}
$$

1. Show that $\forall x \in E, \exists i \in I, \exists r>0$, such that $B(x, r) \subseteq V_{i}$.

Tutorial 10: Bounded Linear Functionals in L^{2}
2. Show that $\forall x \in E, r(x)>0$.

Exercise 3. Further to ex. (2), suppose $\inf _{x \in E} r(x)=0$.

1. Show that for all $n \geq 1$, there is $x_{n} \in E$ such that $r\left(x_{n}\right)<1 / n$.
2. Extract a subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ converging to some $x^{*} \in E$. Let $r^{*}>0$ and $i \in I$ be such that $B\left(x^{*}, r^{*}\right) \subseteq V_{i}$. Show that we can find some $k_{0} \geq 1$, such that $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$ and $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$.
3. Show that $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$ implies that $B\left(x_{n_{k_{0}}}, r^{*} / 2\right) \subseteq V_{i}$. Show that this contradicts $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$, and conclude that $\inf _{x \in E} r(x)>0$.

Exercise 4. Further to ex. (3), Let r_{0} with $0<r_{0}<\inf _{x \in E} r(x)$. Suppose that E cannot be covered by a finite number of open balls with radius r_{0}.

1. Show the existence of a sequence $\left(x_{n}\right)_{n \geq 1}$ in E, such that for all $n \geq 1, x_{n+1} \notin B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$.
2. Show that for all $n>m$ we have $d\left(x_{n}, x_{m}\right) \geq r_{0}$.
3. Show that $\left(x_{n}\right)_{n \geq 1}$ cannot have a convergent subsequence.
4. Conclude that there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of E such that $E=B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$.
5. Show that for all $x \in E$, we have $B\left(x, r_{0}\right) \subseteq V_{i}$ for some $i \in I$.
6. Conclude that (E, \mathcal{T}) is compact.
7. Prove the following:

Theorem 47 A metrizable topological space (E, \mathcal{T}) is compact, if and only if for every sequence $\left(x_{n}\right)_{n \geq 1}$ in E, there exists a subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$ and some $x \in E$, such that $x_{n_{k}} \xrightarrow{\mathcal{T}} x$.

Tutorial 10: Bounded Linear Functionals in L^{2}
Exercise 5. Let $a, b \in \mathbf{R}, a<b$ and $\left(x_{n}\right)_{n \geq 1}$ be a sequence in $] a, b[$.

1. Show that $\left(x_{n}\right)_{n \geq 1}$ has a convergent subsequence.
2. Can we conclude that $] a, b[$ is a compact subset of \mathbf{R} ?

Exercise 6. Let $E=[-M, M] \times \ldots \times[-M, M] \subseteq \mathbf{R}^{n}$, where $n \geq 1$ and $M \in \mathbf{R}^{+}$. Let $\mathcal{T}_{\mathbf{R}^{n}}$ be the usual product topology on \mathbf{R}^{n}, and $\mathcal{T}_{E}=\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid E}$ be the induced topology on E.

1. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in E. Let $x \in E$. Show that $x_{p} \xrightarrow{\mathcal{T}_{E}} x$ is equivalent to $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}^{n}}} x$.
2. Propose a metric on \mathbf{R}^{n}, inducing the topology $\mathcal{T}_{\mathbf{R}^{n}}$.
3. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in \mathbf{R}^{n}. Let $x \in \mathbf{R}^{n}$. Show that $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x$ if and only if, $x_{p}^{i} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{i}$ for all $i \in \mathbf{N}_{n}$.

Exercise 7. Further to ex. (6), suppose $\left(x_{p}\right)_{p \geq 1}$ is a sequence in E.

1. Show the existence of a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, such that $x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{[-M, M]}} x^{1}$ for some $x^{1} \in[-M, M]$.
2. Explain why the above convergence is equivalent to $x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{R}} x^{1}$.
3. Suppose that $1 \leq k \leq n-1$ and $\left(y_{p}\right)_{p \geq 1}=\left(x_{\phi(p)}\right)_{p \geq 1}$ is a subsequence of $\left(x_{p}\right)_{p \geq 1}$ such that:

$$
\forall j=1, \ldots, k, x_{\phi(p)}^{j} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{j} \text { for some } x^{j} \in[-M, M]
$$

Show the existence of a subsequence $\left(y_{\psi(p)}\right)_{p \geq 1}$ of $\left(y_{p}\right)_{p \geq 1}$ such that $y_{\psi(p)}^{k+1} \xrightarrow{\mathcal{T}_{\mathrm{R}}} x^{k+1}$ for some $x^{k+1} \in[-M, M]$.
4. Show that $\phi \circ \psi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ is strictly increasing.
5. Show that $\left(x_{\phi \circ \psi(p)}\right)_{p \geq 1}$ is a subsequence of $\left(x_{p}\right)_{p \geq 1}$ such that:

$$
\forall j=1, \ldots, k+1, x_{\phi \circ \psi(p)}^{j} \xrightarrow{\mathcal{T}_{\boldsymbol{R}}} x^{j} \in[-M, M]
$$

6. Show the existence of a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, and $x \in E$, such that $x_{\phi(p)} \xrightarrow{\mathcal{T}_{E}} x$
7. Show that $\left(E, \mathcal{I}_{E}\right)$ is a compact topological space.

Exercise 8. Let A be a closed subset of $\mathbf{R}^{n}, n \geq 1$, which is bounded with respect to the usual metric of \mathbf{R}^{n}.

1. Show that $A \subseteq E=[-M, M] \times \ldots \times[-M, M]$, for some $M \in \mathbf{R}^{+}$.
2. Show from $E \backslash A=E \cap A^{c}$ that A is closed in E.
3. Show $\left(A,\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid A}\right)$ is a compact topological space.
4. Conversely, let A is a compact subset of \mathbf{R}^{n}. Show that A is closed and bounded.

Theorem 48 A subset of \mathbf{R}^{n} is compact if and only if it is closed and bounded with respect to its usual metric.

Exercise 9. Let $n \geq 1$. Consider the map:

$$
\phi:\left\{\begin{array}{ccc}
\mathbf{C}^{n} & \rightarrow & \mathbf{R}^{2 n} \\
\left(a_{1}+i b_{1}, \ldots, a_{n}+i b_{n}\right) & \rightarrow & \left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)
\end{array}\right.
$$

1. Recall the expressions of the usual metrics $d_{\mathbf{C}^{n}}$ and $d_{\mathbf{R}^{2 n}}$ of \mathbf{C}^{n} and $\mathbf{R}^{2 n}$ respectively.
2. Show that for all $z, z^{\prime} \in \mathbf{C}^{n}, d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right)=d_{\mathbf{R}^{2 n}}\left(\phi(z), \phi\left(z^{\prime}\right)\right)$.
3. Show that ϕ is a homeomorphism from \mathbf{C}^{n} to $\mathbf{R}^{2 n}$.
4. Show that a subset K of \mathbf{C}^{n} is compact, if and only if $\phi(K)$ is a compact subset of $\mathbf{R}^{2 n}$.
5. Show that K is closed, if and only if $\phi(K)$ is closed.
6. Show that K is bounded, if and only if $\phi(K)$ is bounded.
7. Show that a subset K of \mathbf{C}^{n} is compact, if and only if it is closed and bounded with respect to its usual metric.

Definition 79 Let (E, d) be a metric space. A sequence $\left(x_{n}\right)_{n \geq 1}$ in E is said to be a Cauchy sequence with respect to the metric d, if and only if for all $\epsilon>0$, there exists $n_{0} \geq 1$ such that:

$$
n, m \geq n_{0} \Rightarrow d\left(x_{n}, x_{m}\right) \leq \epsilon
$$

Definition 80 We say that a metric space (E, d) is complete, if and only if for any Cauchy sequence $\left(x_{n}\right)_{n \geq 1}$ in E, there exists $x \in E$ such that $\left(x_{n}\right)_{n \geq 1}$ converges to x.

Exercise 10.

1. Explain why strictly speaking, given $p \in[1,+\infty]$, definition (77) of Cauchy sequences in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not a covered by definition (79).
2. Explain why $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not a complete metric space, despite theorem (46) and definition (80).

Exercise 11. Let $\left(z_{k}\right)_{k \geq 1}$ be a Cauchy sequence in $\mathbf{C}^{n}, n \geq 1$, with respect to the usual metric $d\left(z, z^{\prime}\right)=\left\|z-z^{\prime}\right\|$, where:

$$
\|z\| \triangleq \sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}}
$$

1. Show that the sequence $\left(z_{k}\right)_{k \geq 1}$ is bounded, i.e. that there exists $M \in \mathbf{R}^{+}$such that $\left\|z_{k}\right\| \leq M$, for all $k \geq 1$.
2. Define $B=\left\{z \in \mathbf{C}^{n},\|z\| \leq M\right\}$. Show that $\delta(B)<+\infty$, and that B is closed in \mathbf{C}^{n}.
3. Show the existence of a subsequence $\left(z_{k_{p}}\right)_{p \geq 1}$ of $\left(z_{k}\right)_{k \geq 1}$ such that $z_{k_{p}} \xrightarrow{\mathcal{T}_{\mathbb{C}^{n}}} z$ for some $z \in B$.
4. Show that for all $\epsilon>0$, there exists $p_{0} \geq 1$ and $n_{0} \geq 1$ such that $d\left(z, z_{k_{p_{0}}}\right) \leq \epsilon / 2$ and:

$$
k \geq n_{0} \Rightarrow d\left(z_{k}, z_{k_{p_{0}}}\right) \leq \epsilon / 2
$$

5. Show that $z_{k} \xrightarrow{\mathcal{T}_{\mathbf{C l}^{n}}} z$.
6. Conclude that \mathbf{C}^{n} is complete with respect to its usual metric.
7. For which theorem of Tutorial 9 was the completeness of \mathbf{C} used?

EXERCISE 12. Let $\left(x_{k}\right)_{k \geq 1}$ be a sequence in \mathbf{R}^{n} such that $x_{k} \xrightarrow{\mathcal{T}_{\mathbf{C}^{n}}} z$, for some $z \in \mathbf{C}^{n}$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that $z \in \mathbf{R}^{n}$.
2. Show that \mathbf{R}^{n} is complete with respect to its usual metric.

Theorem $49 \mathbf{C}^{n}$ and \mathbf{R}^{n} are complete w.r. to their usual metrics.

Exercise 13. Let (E, d) be a metric space, with metric topology \mathcal{T}. Let $F \subseteq E$, and \bar{F} denote the closure of F.

1. Explain why, for all $x \in \bar{F}$ and $n \geq 1$, we have $F \cap B(x, 1 / n) \neq \emptyset$.
2. Show that for all $x \in \bar{F}$, there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ in F, such that $x_{n} \xrightarrow{\mathcal{T}} x$.
3. Show conversely that if there is a sequence $\left(x_{n}\right)_{n \geq 1}$ in F with $x_{n} \xrightarrow{\mathcal{T}} x$, then $x \in \bar{F}$.
4. Show that F is closed if and only if for all sequence $\left(x_{n}\right)_{n \geq 1}$ in F such that $x_{n} \xrightarrow{\mathcal{T}} x$ for some $x \in E$, we have $x \in F$.
5. Explain why $\left(F, \mathcal{T}_{\mid F}\right)$ is metrizable.
6. Show that if F is complete with respect to the metric $d_{\mid F \times F}$, then F is closed in E.
7. Let $d_{\overline{\mathbf{R}}}$ be a metric on $\overline{\mathbf{R}}$, inducing the usual topology $\mathcal{T}_{\overline{\mathbf{R}}}$. Show that $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R} \times \mathbf{R}}$ is a metric on \mathbf{R}, inducing the topology $\mathcal{T}_{\mathbf{R}}$.
8. Find a metric on $[-1,1]$ which induces its usual topology.
9. Show that $\{-1,1\}$ is not open in $[-1,1]$.
10. Show that $\{-\infty,+\infty\}$ is not open in $\overline{\mathbf{R}}$.
11. Show that \mathbf{R} is not closed in $\overline{\mathbf{R}}$.
12. Let $d_{\mathbf{R}}$ be the usual metric of \mathbf{R}. Show that $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R} \times \mathbf{R}}$ and $d_{\mathbf{R}}$ induce the same topology on \mathbf{R}, but that however, \mathbf{R}
is complete with respect to $d_{\mathbf{R}}$, whereas it cannot be complete with respect to d^{\prime}.

Definition 81 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call inner-product on \mathcal{H}, any map $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbf{K}$ with the following properties:

$$
\begin{aligned}
\text { (i) } & \forall x, y \in \mathcal{H},\langle x, y\rangle=\overline{\langle y, x\rangle} \\
(i i) & \forall x, y, z \in \mathcal{H},\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle \\
\text { (iii) } & \forall x, y \in \mathcal{H}, \forall \alpha \in \mathbf{K},\langle\alpha x, y\rangle=\alpha\langle x, y\rangle \\
\text { (iv) } & \forall x \in \mathcal{H},\langle x, x\rangle \geq 0 \\
(v) & \forall x \in \mathcal{H}, \quad\langle x, x\rangle=0 \Leftrightarrow x=0)
\end{aligned}
$$

where for all $z \in \mathbf{C}, \bar{z}$ denotes the complex conjugate of z. For all $x \in \mathcal{H}$, we call norm of x, denoted $\|x\|$, the number defined by:

$$
\|x\| \triangleq \sqrt{\langle x, x\rangle}
$$

Tutorial 10: Bounded Linear Functionals in L^{2}

Exercise 14. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}.

1. Show that for all $y \in \mathcal{H}$, the map $x \rightarrow\langle x, y\rangle$ is linear.
2. Show that for all $x \in \mathcal{H}$, the map $y \rightarrow\langle x, y\rangle$ is linear if $\mathbf{K}=\mathbf{R}$, and conjugate-linear if $\mathbf{K}=\mathbf{C}$.

Exercise 15. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}. Let $x, y \in \mathcal{H}$. Let $A=\|x\|^{2}, B=|\langle x, y\rangle|$ and $C=\|y\|^{2}$. let $\alpha \in \mathbf{K}$ be such that $|\alpha|=1$ and:

$$
B=\alpha \overline{\langle x, y\rangle}
$$

1. Show that $A, B, C \in \mathbf{R}^{+}$.
2. For all $t \in \mathbf{R}$, show that $\langle x-t \alpha y, x-t \alpha y\rangle=A-2 t B+t^{2} C$.
3. Show that if $C=0$ then $B^{2} \leq A C$.
4. Suppose that $C \neq 0$. Show that $P(t)=A-2 t B+t^{2} C$ has a minimal value which is in \mathbf{R}^{+}, and conclude that $B^{2} \leq A C$.
5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz's inequality:second) Let \mathcal{H} be a K-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\langle\cdot, \cdot\rangle$ be an inner-product on \mathcal{H}. Then, for all $x, y \in \mathcal{H}$, we have:

$$
|\langle x, y\rangle| \leq\|x\| \cdot\|y\|
$$

Exercise 16. For all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we define:

$$
\langle f, g\rangle \triangleq \int_{\Omega} f \bar{g} d \mu
$$

1. Use the first Cauchy-Schwarz inequality (42) to prove that for all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have $f \bar{g} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Conclude that $\langle f, g\rangle$ is a well-defined complex number.
2. Show that for all $f \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have $\|f\|_{2}=\sqrt{\langle f, f\rangle}$.
3. Make another use of the first Cauchy-Schwarz inequality to show that for all $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\begin{equation*}
|\langle f, g\rangle| \leq\|f\|_{2} \cdot\|g\|_{2} \tag{1}
\end{equation*}
$$

4. Go through definition (81), and indicate which of the properties $(i)-(v)$ fails to be satisfied by $\langle\cdot, \cdot\rangle$. Conclude that $\langle\cdot, \cdot\rangle$ is not an inner-product on $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, and therefore that inequality $\left({ }^{*}\right)$ is not a particular case of the second Cauchy-Schwarz inequality (50).
5. Let $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. By considering $\int(|f|+t|g|)^{2} d \mu$ for $t \in \mathbf{R}$, imitate the proof of the second Cauchy-Schwarz inequality to show that:

$$
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega}|g|^{2} d \mu\right)^{\frac{1}{2}}
$$

6. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ non-negative and measurable. Show that if $\int f^{2} d \mu$ and $\int g^{2} d \mu$ are finite, then f and g are μ-almost surely equal to elements of $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. Deduce from 5 . a new proof of the first Cauchy-Schwarz inequality:

$$
\int_{\Omega} f g d \mu \leq\left(\int_{\Omega} f^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega} g^{2} d \mu\right)^{\frac{1}{2}}
$$

Exercise 17. Let $\langle\cdot, \cdot\rangle$ be an inner-product on a \mathbf{K}-vector space \mathcal{H}.

1. Show that for all $x, y \in \mathcal{H}$, we have:

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}
$$

2. Using the second Cauchy-Schwarz inequality (50), show that:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

3. Show that $d_{\langle\cdot, \cdot\rangle}(x, y)=\|x-y\|$ defines a metric on \mathcal{H}.

Definition 82 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, and $\langle\cdot, \cdot\rangle$ be an inner-product on \mathcal{H}. We call norm topology on \mathcal{H}, denoted $\mathcal{T}_{\langle\cdot,\rangle,}$, the metric topology associated with $d_{\langle\cdot,\rangle}(x, y)=\|x-y\|$.

Definition 83 We call Hilbert space over \mathbf{K} where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, any ordered pair $(\mathcal{H},\langle\cdot, \cdot\rangle)$ where $\langle\cdot, \cdot\rangle$ is an inner-product on a \mathbf{K}-vector space \mathcal{H}, which is complete w.r. to $d_{\langle\cdot, \cdot\rangle}(x, y)=\|x-y\|$.

Exercise 18. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K} and let \mathcal{M} be a closed linear subspace of \mathcal{H}, (closed with respect to the norm topology $\left.\mathcal{T}_{\langle\cdot, \cdot\rangle}\right)$. Define $[\cdot, \cdot]=\langle\cdot, \cdot\rangle_{\mid \mathcal{M} \times \mathcal{M}}$.

1. Show that $[\cdot, \cdot]$ is an inner-product on the \mathbf{K}-vector space \mathcal{M}.
2. With obvious notations, show that $d_{[\cdot, \cdot]}=\left(d_{\langle\cdot,\rangle}\right)_{\mid \mathcal{M} \times \mathcal{M}}$.
3. Deduce that $\mathcal{T}_{[\cdot,]}=\left(\mathcal{T}_{\langle, \cdot,\rangle}\right)_{\mid \mathcal{M}}$.

Exercise 19. Further to ex. (18), Let $\left(x_{n}\right)_{n \geq 1}$ be a Cauchy sequence in \mathcal{M}, with respect to the metric $d_{[,,]}$.

1. Show that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in \mathcal{H}.
2. Explain why there exists $x \in \mathcal{H}$ such that $x_{n} \xrightarrow{\mathcal{T}_{\langle(, .)}} x$.
3. Explain why $x \in \mathcal{M}$.
4. Explain why we also have $x_{n} \xrightarrow{\mathcal{T}_{[,]]}} x$.
5. Explain why $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{\mid \mathcal{M} \times \mathcal{M}}\right)$ is a Hilbert space over \mathbf{K}.

Exercise 20. For all $z, z^{\prime} \in \mathbf{C}^{n}, n \geq 1$, we define:

$$
\left\langle z, z^{\prime}\right\rangle \triangleq \sum_{i=1}^{n} z_{i} \bar{z}_{i}^{\prime}
$$

1. Show that $\langle\cdot, \cdot\rangle$ is an inner-product on \mathbf{C}^{n}.
2. Show that the metric $d_{\langle\cdot, \cdot\rangle}$ is equal to the usual metric of \mathbf{C}^{n}.
3. Conclude that $\left(\mathbf{C}^{n},\langle\cdot, \cdot\rangle\right)$ is a Hilbert space over \mathbf{C}.
4. Show that \mathbf{R}^{n} is a closed subset of \mathbf{C}^{n}.
5. Show however that \mathbf{R}^{n} is not a linear subspace of \mathbf{C}^{n}.
6. Show that $\left(\mathbf{R}^{n},\langle\cdot, \cdot\rangle_{\mid \mathbf{R}^{n} \times \mathbf{R}^{n}}\right)$ is a Hilbert space over \mathbf{R}.

Definition 84 We call usual inner-product in \mathbf{K}^{n}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}, the inner-product denoted $\langle\cdot, \cdot\rangle$ and defined by:

$$
\forall x, y \in \mathbf{K}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}
$$

Theorem $51 \mathbf{C}^{n}$ and \mathbf{R}^{n} together with their usual inner-products, are Hilbert spaces over \mathbf{C} and \mathbf{R} respectively.

Definition 85 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let $\mathcal{C} \subseteq \mathcal{H}$. We say that \mathcal{C} is a convex subset or \mathcal{H}, if and only if, for all $x, y \in \mathcal{C}$ and $t \in[0,1]$, we have $t x+(1-t) y \in \mathcal{C}$.

Exercise 21. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}. Let $\mathcal{C} \subseteq \mathcal{H}$ be a non-empty closed convex subset of \mathcal{H}. Let $x_{0} \in \mathcal{H}$. Define:

$$
\delta_{\min } \triangleq \inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

1. Show the existence of a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathcal{C} such that

$$
\left\|x_{n}-x_{0}\right\| \rightarrow \delta_{\min }
$$

2. Show that for all $x, y \in \mathcal{H}$, we have:

$$
\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}-4\left\|\frac{x+y}{2}\right\|^{2}
$$

3. Explain why for all $n, m \geq 1$, we have:

$$
\delta_{\min } \leq\left\|\frac{x_{n}+x_{m}}{2}-x_{0}\right\|
$$

4. Show that for all $n, m \geq 1$, we have:

$$
\left\|x_{n}-x_{m}\right\|^{2} \leq 2\left\|x_{n}-x_{0}\right\|^{2}+2\left\|x_{m}-x_{0}\right\|^{2}-4 \delta_{\min }^{2}
$$

5. Show the existence of some $x^{*} \in \mathcal{H}$, such that $x_{n} \xrightarrow{\mathcal{T}\langle\cdots,\rangle} x^{*}$.
6. Explain why $x^{*} \in \mathcal{C}$
7. Show that for all $x, y \in \mathcal{H}$, we have $|\|x\|-\|y\|| \leq\|x-y\|$.
8. Show that $\left\|x_{n}-x_{0}\right\| \rightarrow\left\|x^{*}-x_{0}\right\|$.
9. Conclude that we have found $x^{*} \in \mathcal{C}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

10. Let y^{*} be another element of \mathcal{C} with such property. Show that:

$$
\left\|x^{*}-y^{*}\right\|^{2} \leq 2\left\|x^{*}-x_{0}\right\|^{2}+2\left\|y^{*}-x_{0}\right\|^{2}-4 \delta_{\min }^{2}
$$

11. Conclude that $x^{*}=y^{*}$.

Theorem 52 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let \mathcal{C} be a non-empty, closed and convex subset of \mathcal{H}. For all $x_{0} \in \mathcal{H}$, there exists a unique $x^{*} \in \mathcal{C}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

Definition 86 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let $\mathcal{G} \subseteq \mathcal{H}$. We call orthogonal of \mathcal{G}, the subset of \mathcal{H} denoted \mathcal{G}^{\perp} and defined by:

$$
\mathcal{G}^{\perp} \triangleq\{x \in \mathcal{H}:\langle x, y\rangle=0, \forall y \in \mathcal{G}\}
$$

Exercise 22. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K} and $\mathcal{G} \subseteq \mathcal{H}$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that \mathcal{G}^{\perp} is a linear subspace of \mathcal{H}, even if \mathcal{G} isn't.
2. Show that $\phi_{y}: \mathcal{H} \rightarrow K$ defined by $\phi_{y}(x)=\langle x, y\rangle$ is continuous.
3. Show that $\mathcal{G}^{\perp}=\cap_{y \in \mathcal{G}} \phi_{y}^{-1}(\{0\})$.
4. Show that \mathcal{G}^{\perp} is a closed subset of \mathcal{H}, even if \mathcal{G} isn't.
5. Show that $\emptyset^{\perp}=\{0\}^{\perp}=\mathcal{H}$.
6. Show that $\mathcal{H}^{\perp}=\{0\}$.

Exercise 23. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over K. Let \mathcal{M} be a closed linear subspace of \mathcal{H}, and $x_{0} \in \mathcal{H}$.

1. Explain why there exists $x^{*} \in \mathcal{M}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{M}\right\}
$$

2. Define $y^{*}=x_{0}-x^{*} \in \mathcal{H}$. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$:

$$
\left\|y^{*}\right\|^{2} \leq\left\|y^{*}-\alpha y\right\|^{2}
$$

3. Show that for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, we have:

$$
0 \leq-\alpha\left\langle y, y^{*}\right\rangle-\overline{\alpha\left\langle y, y^{*}\right\rangle}+|\alpha|^{2} \cdot\|y\|^{2}
$$

4. For all $y \in \mathcal{M} \backslash\{0\}$, taking $\alpha=\overline{\left\langle y, y^{*}\right\rangle} /\|y\|^{2}$, show that:

$$
0 \leq-\frac{\left|\left\langle y, y^{*}\right\rangle\right|^{2}}{\|y\|^{2}}
$$

5. Conclude that $x^{*} \in \mathcal{M}, y^{*} \in \mathcal{M}^{\perp}$ and $x_{0}=x^{*}+y^{*}$.
6. Show that $\mathcal{M} \cap \mathcal{M}^{\perp}=\{0\}$
7. Show that $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$ with $x_{0}=x^{*}+y^{*}$, are unique.

Theorem 53 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let \mathcal{M} be a closed linear subspace of \mathcal{H}. Then, for all $x_{0} \in \mathcal{H}$, there is a unique decomposition:

$$
x_{0}=x^{*}+y^{*}
$$

where $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$.
Definition 87 Let \mathcal{H} be a \mathbf{K}-vector space, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call linear functional, any map $\lambda: \mathcal{H} \rightarrow \mathbf{K}$, such that for all $x, y \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:

$$
\lambda(x+\alpha y)=\lambda(x)+\alpha \lambda(y)
$$

Exercise 24. Let λ be a linear functional on a \mathbf{K}-Hilbert ${ }^{1}$ space \mathcal{H}.

1. Suppose that λ is continuous at some point $x_{0} \in \mathcal{H}$. Show the existence of $\eta>0$ such that:

$$
\forall x \in \mathcal{H},\left\|x-x_{0}\right\| \leq \eta \Rightarrow\left|\lambda(x)-\lambda\left(x_{0}\right)\right| \leq 1
$$

[^0]Show that for all $x \in \mathcal{H}$ with $x \neq 0$, we have $|\lambda(\eta x /\|x\|)| \leq 1$.
2. Show that if λ is continuous at x_{0}, there exits $M \in \mathbf{R}^{+}$, with:

$$
\begin{equation*}
\forall x \in \mathcal{H},|\lambda(x)| \leq M\|x\| \tag{2}
\end{equation*}
$$

3 . Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert ${ }^{2}$ space over $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let λ be a linear functional on \mathcal{H}. Then, the following are equivalent:

$$
\begin{array}{ll}
\text { (i) } & \lambda:\left(\mathcal{H}, \mathcal{T}_{\langle\cdot, \cdot\rangle}\right) \rightarrow\left(K, \mathcal{T}_{\mathbf{K}}\right) \text { is continuous } \\
\text { (ii) } & \exists M \in \mathbf{R}^{+}, \forall x \in \mathcal{H},|\lambda(x)| \leq M .\|x\|
\end{array}
$$

In which case, we say that λ is a bounded linear functional.
${ }^{2}$ Norm vector spaces are introduced later in these tutorials.

Exercise 25. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over K. Let λ be a bounded linear functional on \mathcal{H}, such that $\lambda(x) \neq 0$ for some $x \in \mathcal{H}$, and define $\mathcal{M}=\lambda^{-1}(\{0\})$.

1. Show the existence of $x_{0} \in \mathcal{H}$, such that $x_{0} \notin \mathcal{M}$.
2. Show the existence of $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$ with $x_{0}=x^{*}+y^{*}$.
3. Deduce the existence of some $z \in \mathcal{M}^{\perp}$ such that $\|z\|=1$.
4. Show that for all $\alpha \in \mathbf{K} \backslash\{0\}$ and $x \in \mathcal{H}$, we have:

$$
\frac{\lambda(x)}{\bar{\alpha}}\langle z, \alpha z\rangle=\lambda(x)
$$

5. Show that in order to have:

$$
\forall x \in \mathcal{H}, \lambda(x)=\langle x, \alpha z\rangle
$$

it is sufficient to choose $\alpha \in \mathbf{K} \backslash\{0\}$ such that:

$$
\forall x \in \mathcal{H}, \frac{\lambda(x) z}{\bar{\alpha}}-x \in \mathcal{M}
$$

6. Show the existence of $y \in \mathcal{H}$ such that:

$$
\forall x \in \mathcal{H}, \lambda(x)=\langle x, y\rangle
$$

7. Show the uniqueness of such $y \in \mathcal{H}$.

Theorem 54 Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. Let λ be a bounded linear functional on \mathcal{H}. Then, there exists a unique $y \in \mathcal{H}$ such that: $\forall x \in \mathcal{H}, \lambda(x)=\langle x, y\rangle$.

Definition 89 Let $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. We call K-vector space, any set \mathcal{H}, together with operators \oplus and \otimes for which there exits an element $0_{\mathcal{H}} \in \mathcal{H}$ such that for all $x, y, z \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

$$
\begin{aligned}
\text { (i) } & 0_{\mathcal{H}} \oplus x=x \\
\text { (ii) } & \exists(-x) \in \mathcal{H},(-x) \oplus x=0_{\mathcal{H}} \\
\text { (iii) } & x \oplus(y \oplus z)=(x \oplus y) \oplus z
\end{aligned}
$$

Tutorial 10: Bounded Linear Functionals in L^{2}

$$
\begin{aligned}
(i v) & x \oplus y=y \oplus x \\
(v) & 1 \otimes x=x \\
(v i) & \alpha \otimes(\beta \otimes x)=(\alpha \beta) \otimes x \\
(v i i) & (\alpha+\beta) \otimes x=(\alpha \otimes x) \oplus(\beta \otimes x) \\
(v i i i) & \alpha \otimes(x \oplus y)=(\alpha \otimes x) \oplus(\alpha \otimes y)
\end{aligned}
$$

Exercise 26. For all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, define:

$$
\mathcal{H} \triangleq\left\{[f]: f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)\right\}
$$

where $[f]=\left\{g \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu): g=f, \mu\right.$-a.s. $\}$. Let $0_{\mathcal{H}}=[0]$, and for all $[f],[g] \in \mathcal{H}$, and $\alpha \in \mathbf{K}$, we define:

$$
\begin{aligned}
{[f] \oplus[g] } & \triangleq[f+g] \\
\alpha \otimes[f] & \triangleq[\alpha f]
\end{aligned}
$$

We assume f, f^{\prime}, g and g^{\prime} are elements of $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$.

Tutorial 10: Bounded Linear Functionals in L^{2}

1. Show that for $f=g \mu$-a.s. is equivalent to $[f]=[g]$.
2. Show that if $[f]=\left[f^{\prime}\right]$ and $[g]=\left[g^{\prime}\right]$, then $[f+g]=\left[f^{\prime}+g^{\prime}\right]$.
3. Conclude that \oplus is well-defined.
4. Show that \otimes is also well-defined.
5. Show that $(\mathcal{H}, \oplus, \otimes)$ is a \mathbf{K}-vector space.

Exercise 27. Further to ex. (26), we define for all $[f],[g] \in \mathcal{H}$:

$$
\langle[f],[g]\rangle_{\mathcal{H}} \triangleq \int_{\Omega} f \bar{g} d \mu
$$

1. Show that $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is well-defined.
2. Show that $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H}.
3. Show that $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is a Hilbert space over \mathbf{K}.
4. Why is $\langle f, g\rangle \triangleq \int_{\Omega} f \bar{g} d \mu$ not an inner-product on $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$?

Exercise 28. Further to ex. (27), Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional ${ }^{3}$. Define $\Lambda: \mathcal{H} \rightarrow \mathbf{K}$ by $\Lambda([f])=\lambda(f)$.

1. Show the existence of $M \in \mathbf{R}^{+}$such that:

$$
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu),|\lambda(f)| \leq M \cdot\|f\|_{2}
$$

2. Show that if $[f]=[g]$ then $\lambda(f)=\lambda(g)$.
3. Show that Λ is a well defined bounded linear functional on \mathcal{H}.
4. Conclude with the following:
${ }^{3}$ As defined in these tutorials, $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space (not even a norm vector space). However, both $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ and \mathbf{K} have natural topologies and it is therefore meaningful to speak of continuous linear functional. Note however that we are slightly outside the framework of definition (88).

Theorem 55 Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}. There exists $g \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ such that:

$$
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu), \lambda(f)=\int_{\Omega} f \bar{g} d \mu
$$

Solutions to Exercises

Exercise 1.

1. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in E, and $x \in E$. Suppose that $x_{n} \xrightarrow{\mathcal{T}} x$. Let $\epsilon>0$. The open ball $B(x, \epsilon)$ being open in E, there exists $n_{0} \geq 1$, such that $n \geq n_{0} \Rightarrow x_{n} \in B(x, \epsilon)$. In other words, we have:

$$
\begin{equation*}
n \geq n_{0} \Rightarrow d\left(x_{n}, x\right) \leq \epsilon \tag{3}
\end{equation*}
$$

Conversely, suppose that for all $\epsilon>0$, there exists $n_{0} \geq 1$ such that (3) holds. Let U be open in E, with $x \in U$. By definition (30) of the metric topology, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq U$. Since, there exists $n_{0} \geq 1$ such that (3) holds, we have found $n_{0} \geq 1$ such that:

$$
n \geq n_{0} \Rightarrow x_{n} \in U
$$

This proves that $x_{n} \xrightarrow{\mathcal{T}} x$.
2. $F_{n}=\overline{\left\{x_{k}: k \geq n\right\}}$. So $F_{n+1} \subseteq F_{n}$ for all $n \geq 1$. Being the closure of some subset of E, for all $n \geq 1, F_{n}$ is a closed subset of E, (see definition (37) and following exercise). It follows that $\left(F_{n}\right)_{n \geq 1}$ is a decreasing sequence of closed subsets of E.
3. Suppose $F_{n} \downarrow \emptyset$, i.e. $F_{n+1} \subseteq F_{n}$ with $\cap_{n \geq 1} F_{n}=\emptyset$. Then:

$$
E=\emptyset^{c}=\left(\bigcap_{n=1}^{+\infty} F_{n}\right)^{c}=\bigcup_{n=1}^{+\infty} F_{n}^{c}
$$

Since each F_{n} is closed in E, each F_{n}^{c} is an open subset of E. We conclude that $\left(F_{n}^{c}\right)_{n \geq 1}$ is an open covering of E.
4. Suppose (E, \mathcal{T}) is compact. If $\cap_{n \geq 1} F_{n}=\emptyset$, then from 3 . $\left(F_{n}^{c}\right)_{n \geq 1}$ is an open covering of E, of which we can extract a finite sub-covering (see definition (65)). There exists a finite subset $\left\{n_{1}, \ldots, n_{p}\right\}$ of \mathbf{N}^{*} such that:

$$
E=F_{n_{1}}^{c} \cup \ldots \cup F_{n_{p}}^{c}
$$

and therefore $F_{n_{1}} \cap \ldots \cap F_{n_{p}}=\emptyset$. However, without loss of generality, we can assume that $n_{p} \geq n_{k}$ for all $k=1, \ldots, p$. Since $F_{n+1} \subseteq F_{n}$ for all $n \geq 1$, it follows that:

$$
F_{n_{p}}=F_{n_{1}} \cap \ldots \cap F_{n_{p}}=\emptyset
$$

This is a contradiction since $F_{n_{p}}$ contains all x_{k} 's for $k \geq n_{p}$. We conclude that if (E, \mathcal{T}) is a compact, then $\cap_{n \geq 1} F_{n} \neq \emptyset$.
5. Suppose (E, \mathcal{T}) is compact. From 4., there exists $x \in \cap_{n \geq 1} F_{n}$. Then, for all $n \geq 1$, we have $x \in F_{n}=\overline{\left\{x_{k}: k \geq n\right\}}$, i.e. x lies in the closure of $\left\{x_{k}: k \geq n\right\}$. It follows that for all $\epsilon>0$:

$$
\begin{equation*}
\left\{x_{k}: k \geq n\right\} \cap B(x, \epsilon) \neq \emptyset \tag{4}
\end{equation*}
$$

We have proved the existence of $x \in E$, such that (4) holds for all $n \geq 1$ and $\epsilon>0$.
6. Let $x \in E$ be as in 5 . Take $n=1$ and $\epsilon=1$. Then, we have $\left\{x_{k}: k \geq 1\right\} \cap B(x, 1) \neq \emptyset$. There exists $n_{1} \geq 1$, such that $x_{n_{1}} \in B(x, 1)$. Suppose we have found $n_{1}<\ldots<n_{p}(p \geq 1)$,
such that $x_{n_{k}} \in B(x, 1 / k)$ for all $k \in \mathbf{N}_{p}$. Take $n=n_{p}+1$ and $\epsilon=1 /(p+1)$ in 5 . We have:

$$
\left\{x_{k}: k \geq n_{p}+1\right\} \cap B(x, 1 /(p+1)) \neq \emptyset
$$

So there exists $n_{p+1}>n_{p}$, such that $x_{n_{p+1}} \in B(x, 1 /(p+1))$. Following this induction argument, we can construct a subsequence $\left(x_{n_{p}}\right)_{p \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$, such that $x_{n_{p}} \in B(x, 1 / p)$ for all $p \geq 1$.
7. If (E, \mathcal{T}) is compact, then from 5 . and 6 ., given a sequence $\left(x_{n}\right)_{n \geq 1}$ in E, there exists $x \in E$ and a subsequence $\left(x_{n_{p}}\right)_{p \geq 1}$ such that $d\left(x, x_{n_{p}}\right)<1 / p$ for all $p \geq 1$. From 1., it follows that $x_{n_{p}} \xrightarrow{\mathcal{T}} x$ as $p \rightarrow+\infty$, and we have proved that any sequence in a compact metric space, has a convergent subsequence.

Exercise 1

Exercise 2.

1. Let $x \in E$. By assumption, $\left(V_{i}\right)_{i \in I}$ is an open covering of E, so in particular $E=\cup_{i \in I} V_{i}$. There exists $i \in I$, such that $x \in V_{i}$. Furthermore, V_{i} is open with respect to the metric topology on E. There exists $r>0$, such that $B(x, r) \subseteq V_{i}$. We have proved that for all $x \in E$, there exists $i \in I$ and $r>0$, such that $B(x, r) \subseteq V_{i}$.
2. Let $x \in E$. Then $r(x)=\sup A(x)$, where:

$$
A(x) \triangleq\left\{r>0: \exists i \in I, B(x, r) \subseteq V_{i}\right\}
$$

From 1., the set $A(x)$ is non-empty. There exists $r>0$ such that $r \in A(x) . r(x)$ being an upper-bound of $A(x)$, we have $r \leq r(x)$. In particular, $r(x)>0$. We have proved that for all $x \in E, r(x)>0$.

Exercise 3.

1. Let $\alpha=\inf _{x \in E} r(x)$. We assume that $\alpha=0$. Let $n \geq 1$. Then $\alpha<1 / n$. α being the greatest lower bound of all $r(x)^{\prime} s$ for $x \in E, 1 / n$ cannot be such lower bound. There exists $x_{n} \in E$, such that $r\left(x_{n}\right)<1 / n$.
2. From 1., we have constructed a sequence $\left(x_{n}\right)_{n \geq 1}$ in E, such that $r\left(x_{n}\right)<1 / n$ for all $n \geq 1$. By assumption (see previous exercise (2)), the metric space (E, d) is such that any sequence has a convergent sub-sequence. Let $\left(x_{n_{k}}\right)_{k \geq 1}$ be a sub-sequence of $\left(x_{n}\right)_{n \geq 1}$ and let $x^{*} \in E$, be such that $x_{n_{k}} \xrightarrow{\mathcal{T}} x^{*}$. From exercise (2), there exists $r^{*}>0$ and $i \in I$, with $B\left(x^{*}, r^{*}\right) \subseteq V_{i}$. Since $r^{*}>0$ and $x_{n_{k}} \xrightarrow{\mathcal{T}} x^{*}$, there exists $k_{0}^{\prime} \geq 1$, such that:

$$
k \geq k_{0}^{\prime} \Rightarrow d\left(x^{*}, x_{n_{k}}\right)<r^{*} / 2
$$

Since $n_{k} \uparrow+\infty$ as $k \rightarrow+\infty$, there exists $k_{0}^{\prime \prime} \geq 1$, such that:

$$
k \geq k_{0}^{\prime \prime} \Rightarrow \frac{1}{n_{k}} \leq r^{*} / 4
$$

It follows that for all $k \geq k_{0}^{\prime \prime}$, we have $r\left(x_{n_{k}}\right) \leq 1 / n_{k} \leq r^{*} / 4$. Take $k_{0}=\max \left(k_{0}^{\prime}, k_{0}^{\prime \prime}\right)$. We have both $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$ and $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$.
3. From 2., we have found $k_{0} \geq 1$, such that $d\left(x^{*}, x_{n_{k_{0}}}\right)<r^{*} / 2$. Let $y \in B\left(x_{n_{k_{0}}}, r^{*} / 2\right)$. Then, from the triangle inequality:

$$
d\left(x^{*}, y\right) \leq d\left(x^{*}, x_{n_{k_{0}}}\right)+d\left(x_{n_{k_{0}}}, y\right)<\frac{r^{*}}{2}+\frac{r^{*}}{2}=r^{*}
$$

So $y \in B\left(x^{*}, r^{*}\right)$. Hence, we see that $B\left(x_{n_{k_{0}}}, r^{*} / 2\right) \subseteq B\left(x^{*}, r^{*}\right)$. However, from 2., $B\left(x^{*}, r^{*}\right) \subseteq V_{i}$. So $B\left(x_{n_{k_{0}}}, r^{*} / 2\right) \subseteq V_{i}$. It follows that $r^{*} / 2$ belongs to the set:

$$
A\left(x_{n_{k_{0}}}\right)=\left\{r>0: \exists i \in I, B\left(x_{n_{k_{0}}}, r\right) \subseteq V_{i}\right\}
$$

and consequently, $r^{*} / 2 \leq r\left(x_{n_{k_{0}}}\right)=\sup A\left(x_{n_{k_{0}}}\right)$. This contradicts the fact that $r\left(x_{n_{k_{0}}}\right) \leq r^{*} / 4$, as obtained in 2 . We conclude that our initial hypothesis of $\alpha=\inf _{x \in E} r(x)=0$ is absurd, and we have proved that $\inf _{x \in E} r(x)>0$.

Exercise 3

Exercise 4.

1. Let $r_{0}>0$ be such that $0<r_{0}<\inf _{x \in E} r(x)$. We assume that E cannot be covered by a finite number of open balls with radius r_{0}. Let x_{1} be an arbitrary element of E. Then, by assumption, $B\left(x_{1}, r_{0}\right)$ cannot cover the whole of E. There exists $x_{2} \in E$, such that $x_{2} \notin B\left(x_{1}, r_{0}\right)$. By assumption, $B\left(x_{1}, r_{0}\right) \cup B\left(x_{2}, r_{0}\right)$ cannot cover the whole of E. There exists $x_{3} \in E$, such that $x_{3} \notin B\left(x_{1}, r_{0}\right) \cup B\left(x_{2}, r_{0}\right)$. By induction, we can construct a sequence $\left(x_{n}\right)_{n \geq 1}$ in E, such that for all $n \geq 1$:

$$
x_{n+1} \notin B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)
$$

2. Let $n>m$. Then $x_{n} \notin B\left(x_{m}, r_{0}\right)$. So $d\left(x_{n}, x_{m}\right) \geq r_{0}$.
3. Suppose $\left(x_{n}\right)_{n \geq 1}$ has a convergent sub-sequence, There exists $x^{*} \in E$, and a sub-sequence $\left(x_{n_{k}}\right)_{k \geq 1}$ such that $x_{n_{k}} \xrightarrow{\mathcal{T}} x^{*}$. Take $\epsilon=r_{0} / 4>0$. There exists $k_{0} \geq 1$, such that:

$$
k \geq k_{0} \Rightarrow d\left(x^{*}, x_{n_{k}}\right)<r_{0} / 4
$$

It follows that for all $k, k^{\prime} \geq k_{0}$, we have:

$$
d\left(x_{n_{k}}, x_{n_{k^{\prime}}}\right) \leq d\left(x^{*}, x_{n_{k}}\right)+d\left(x^{*}, x_{n_{k^{\prime}}}\right)<r_{0} / 2
$$

This contradicts 2., since $d\left(x_{n_{k}}, x_{n_{k^{\prime}}}\right) \geq r_{0}$ for $k \neq k^{\prime}$. So $\left(x_{n}\right)_{n \geq 1}$ cannot have a convergent sub-sequence.
4. From 3., $\left(x_{n}\right)_{n \geq 1}$ cannot have a convergent sub-sequence. This is a contradiction to our initial assumption (see exercise (2)), that any sequence in E should have a convergent sub-sequence. It follows that the hypothesis in 1 . is absurd, and we conclude that E can indeed be covered by a finite number of open balls of radius r_{0}. In other words, there exists a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of E, such that $E=B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$.
5. Let $x \in E$. By assumption, $r_{0}<\inf _{x \in E} r(x)$. In particular, we have $r_{0}<r(x)=\sup A(x)$, where:

$$
A(x)=\left\{r>0: \exists i \in I, B(x, r) \subseteq V_{i}\right\}
$$

$r(x)$ being the smallest upper-bound of $A(x)$, it follows that r_{0} cannot be such upper bound. There exists $r>0, r \in A(x)$, such that $r_{0}<r$. Since $r \in A(x)$, there exists $i \in I$, such that $B(x, r) \subseteq V_{i}$. But from $r_{0}<r$, we conclude that $B\left(x, r_{0}\right) \subseteq V_{i}$. We have proved that for all $x \in E$, there exists $i \in I$, such that $B\left(x, r_{0}\right) \subseteq V_{i}$.
6. From 4., we have $E=B\left(x_{1}, r_{0}\right) \cup \ldots \cup B\left(x_{n}, r_{0}\right)$. However, from 5., for all $k \in \mathbf{N}_{n}$, there exists $i_{k} \in I$, such that $B\left(x_{k}, r_{0}\right) \subseteq V_{i_{k}}$. It follows that:

$$
\begin{equation*}
E=V_{i_{1}} \cup \ldots \cup V_{i_{n}} \tag{5}
\end{equation*}
$$

Given a family of open sets $\left(V_{i}\right)_{i \in I}$ such that $E=\cup_{i \in I} V_{i}$ (see exercise (2)), we have been able to find a finite subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of I, such that (5) holds. We conclude that the metrizable space (E, \mathcal{T}) is a compact topological space.
7. Let (E, \mathcal{T}) be a metrizable topological space. If (E, \mathcal{T}) is compact, then from exercise (1), any sequence in E has a convergent
sub-sequence. Conversely, if E is such that any sequence in E has a convergent sub-sequence, then as proved in 6., (E, \mathcal{T}) is a compact topological space. This proves the difficult and very important theorem (47).

Exercise 4

Exercise 5.

1. Let $a, b \in \mathbf{R}, a<b$. Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in $] a, b$. In particular, $\left(x_{n}\right)_{n \geq 1}$ is a sequence in $[a, b]$. From theorem (34), $[a, b]$ is a compact subset of \mathbf{R}. Applying theorem (47), there exists a subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$ of $\left(x_{n}\right)_{n \geq 1}$, and $x \in[a, b]$, such that $x_{n_{k}} \rightarrow x^{4}$. So $\left(x_{n}\right)_{n \geq 1}$ has a convergent subsequence.
2. No. One cannot conclude that $] a, b[$ is compact. In fact, \mathbf{R} being Hausdorff, from theorem (35), if $] a, b[$ was compact, it would be closed, and $]-\infty, a] \cup[b,+\infty[$ would be open in \mathbf{R}. . One has to be careful with the phrase having a convergent subsequence. As proved in 1 ., any sequence in $] a, b[$ has a convergent subsequence, but the limit of such subsequence may not lie in $] a, b[$ itself (we only know for sure it lies in $[a, b])$. This is why, one cannot apply theorem (47) to conclude that $] a, b[$ is compact.

Exercise 5

${ }^{4}$ In a clear context, we shall omit notations such as $x_{n_{k}} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x$ or $x_{n_{k}} \xrightarrow{\mathcal{T}_{[a, b]}} x$.

Exercise 6.

1. The equivalence between $x_{p} \xrightarrow{\mathcal{T}_{E}} x$ and $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}} n} x$ has already been proved in exercise (7) of the previous tutorial. Since the topology \mathcal{T}_{E} is induced by the topology $\mathcal{T}_{\mathbf{R}^{n}}$ on E, whether we regard $\left(x_{p}\right)_{p \geq 1}$ and x as belonging to E or \mathbf{R}^{n}, is irrelevant as far as the convergence $x_{p} \rightarrow x$ is concerned. Note however that it is important to have $x_{p} \in E$ for all $p \geq 1$, and $x \in E$.
2. As seen in exercise (14) of Tutorial 6 , various metrics will induce the product topology $\mathcal{T}_{\mathbf{R}^{n}}$ on \mathbf{R}^{n}. The most common, viewed as the usual metric on \mathbf{R}^{n}, is:

$$
d_{2}(x, y) \triangleq \sqrt{\sum_{i=1}^{n}\left(x^{i}-y^{i}\right)^{2}}
$$

Other possible metrics are:

$$
d_{1}(x, y) \triangleq \sum_{i=1}^{n}\left|x^{i}-y^{i}\right|
$$

or:

$$
d_{\infty}(x, y) \triangleq \max _{i \in \mathbf{N}^{n}}\left|x^{i}-y^{i}\right|
$$

3. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in \mathbf{R}^{n} and $x \in \mathbf{R}^{n}$. Suppose that $x_{p} \rightarrow x^{5}$. Then for all $\epsilon>0$, there exists $p_{0} \geq 1$, such that:

$$
p \geq p_{0} \Rightarrow d_{1}\left(x, x_{p}\right)=\sum_{i=1}^{n}\left|x^{i}-x_{p}^{i}\right| \leq \epsilon
$$

In particular, for all $i \in \mathbf{N}_{n}$, we have:

$$
p \geq p_{0} \Rightarrow\left|x^{i}-x_{p}^{i}\right| \leq \epsilon
$$

${ }^{5}$ i.e. $x_{p} \xrightarrow{\mathcal{T}_{\mathbf{R}} n} x$, as should be clear from context.

So $x_{p}^{i} \rightarrow x^{i 6}$ for all $i \in \mathbf{N}_{n}$. Conversely, suppose $x_{p}^{i} \rightarrow x^{i}$ for all i 's. Given $\epsilon>0$, for all $i \in \mathbf{N}_{n}$, there exists $p_{i} \geq 1$, such that:

$$
p \geq p_{i} \Rightarrow\left|x^{i}-x_{p}^{i}\right| \leq \epsilon / n
$$

Taking $p_{0}=\max \left(p_{1}, \ldots, p_{n}\right)$, we obtain:

$$
p \geq p_{0} \Rightarrow d_{1}\left(x, x_{p}\right)=\sum_{i=1}^{n}\left|x^{i}-x_{p}^{i}\right| \leq \epsilon
$$

So $x_{p} \rightarrow x$, which is equivalent to $\left[x_{p}^{i} \rightarrow x^{i}\right.$ for all $\left.i \in \mathbf{N}_{n}\right]$. Note that although we used the metric structure of \mathbf{R} and \mathbf{R}^{n} to prove this equivalence, we had no need to do so. In fact, any sequence with values in an arbitrary product, even uncountable, of topological spaces, even non-metrizable, will converge if and only if each coordinate sequence itself converges. For those interested in this small digression, here is a quick proof: let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in the product $\Pi_{i \in I} \Omega_{i}$. Let x be an element of
${ }^{6}$ i.e. $x_{p}^{i} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{i}$, as should be clear from context.
$\Pi_{i \in I} \Omega_{i}$. Suppose $x_{p} \rightarrow x$, with respect to the product topology. Let $i \in I$ and U be an arbitrary open set in Ω_{i} containing x^{i}. Then $U \times \Pi_{j \neq i} \Omega_{j}$ is an open set in $\Pi_{i \in I} \Omega_{i}$ containing x. Since $x_{p} \rightarrow x, x_{p}$ is eventually ${ }^{7}$ in $U \times \Pi_{j \neq i} \Omega_{j}$. It follows that x_{p}^{i} is eventually in U, and we see that $x_{p}^{i} \rightarrow x^{i}$. Conversely, suppose $x_{p}^{i} \rightarrow x^{i}$ for all $i \in I$. Let U be an open set in $\Pi_{i \in I} \Omega_{i}$ containing x. There exists a rectangle $V=\Pi_{i \in I} A_{i}$ such that $x \in V \subseteq U$. The set $J=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$ is finite, and for all $j \in J, A_{j}$ is an open set in Ω_{j} containing x^{j}. From $x_{p}^{j} \rightarrow x^{j}$ we see that x_{p}^{j} is eventually in A_{j}. J being finite, it follows that x_{p} is eventually in $\left(\Pi_{j \in J} A_{j}\right) \times\left(\Pi_{i \notin J} \Omega_{i}\right)=V$. Since $V \subseteq U, x_{p}$ is eventually in U, and we have proved that $x_{p} \rightarrow x$.

Exercise 6
${ }^{7}$ there exists $p_{0} \geq 1$ such that $p \geq p_{0} \Rightarrow x_{p} \in U \times \Pi_{j \neq i} \Omega_{j}$.

Exercise 7.

1. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in E. Then $\left(x_{p}^{1}\right)_{p \geq 1}$ is a sequence in $[-M, M]$, which is a compact subset of \mathbf{R}. From theorem (47), we can extract a subsequence of $\left(x_{p}^{1}\right)_{p \geq 1}$, converging to some $x^{1} \in[-M, M]$. In other words, from definition (78), there exists a strictly increasing map $\phi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$, and $x^{1} \in[-M, M]$ such that ${ }^{8} x_{\phi(p)}^{1} \rightarrow x^{1}$. Hence, we have found a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ such that $x_{\phi(p)}^{1} \rightarrow x^{1}$, for some $x^{1} \in[-M, M]$.
2. The topology on $[-M, M]$ being induced by the topology on \mathbf{R}, the convergence $x_{\phi(p)}^{1} \rightarrow x^{1}$ is independent of the particular topology (that of \mathbf{R} or $[-M, M]$) with respect to which, it is being considered.
3. Let $1 \leq k \leq n-1$. Let $\left(y_{p}\right)_{p \geq 1}=\left(x_{\phi(p)}\right)_{p \geq 1}$ be a subsequence of $\left(x_{p}\right)_{p \geq 1}$, with the property that for all $j \in \mathbf{N}_{k}$, we have $y_{p}^{j} \rightarrow x^{j}$
$8_{\text {i.e. }} x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{[-M, M]}} x^{1}$, which is the same as $x_{\phi(p)}^{1} \xrightarrow{\mathcal{T}_{\mathbf{R}}} x^{1}$.
for some $x^{j} \in[-M, M]$. Then, $\left(y_{p}^{k+1}\right)_{p \geq 1}$ is a sequence in the compact interval $[-M, M]$. From theorem (47), there exists a strictly increasing map $\psi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ such that $y_{\psi(p)}^{k+1} \rightarrow x^{k+1}$, for some $x^{k+1} \in[-M, M]$.
4. If both $\phi, \psi: \mathbf{N}^{*} \rightarrow \mathbf{N}^{*}$ are strictly increasing, so is $\phi \circ \psi$.
5. Since $\phi \circ \psi$ is strictly increasing, $\left(x_{\phi \circ \psi(p)}\right)_{p \geq 1}$ is indeed a subsequence of $\left(x_{p}\right)_{p \geq 1}$, which furthermore coincides with $\left(y_{\psi(p)}\right)_{p \geq 1}$, as defined in 3. It follows that $x_{\phi \circ \psi(p)}^{k+1} \rightarrow x^{k+1}$. Furthermore, from 3. the subsequence $\left(y_{p}\right)_{p \geq 1}$ is assumed to be such that $y_{p}^{j} \rightarrow x^{j}$ for all $j \in \mathbf{N}_{k}$. Hence, we also have $y_{\psi(p)}^{j} \rightarrow x^{j}$, i.e. $x_{\phi \circ \psi(p)}^{j} \rightarrow x^{j}$ for all $j \in \mathbf{N}_{k}$. We conclude that $\left(x_{\phi \circ \psi(p)}\right)_{p \geq 1}$ is a subsequence of $\left(x_{p}\right)_{p \geq 1}$ such that $x_{\phi \circ \psi(p)}^{j} \rightarrow x^{j}$ for all $j \in \mathbf{N}_{k+1}$.
6. From 1., given a sequence $\left(x_{p}\right)_{p \geq 1}$ in E, we can extract a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$ such that $x_{\phi(p)}^{1} \rightarrow x^{1}$ for some $x^{1} \in[-M, M]$. Given $1 \leq k \leq n-1$, and a subsequence
$\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, such that for all $j \in \mathbf{N}_{k}, x_{\phi(p)}^{j} \rightarrow x^{j}$ for some $x^{j} \in[-M, M]$, we showed in 5 . that we could extract a further subsequence $\left(x_{\phi \circ \psi(p)}\right)_{p \geq 1}$ having a similar property for all $j \in \mathbf{N}_{k+1}$. By induction, it follows that there exists a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, such that for all $j \in \mathbf{N}_{n}$, we have $x_{\phi(p)}^{j} \rightarrow x^{j}$ for some $x^{j} \in[-M, M]$. Hence, taking $x=\left(x^{1}, \ldots, x^{n}\right)$, we see that $x_{\phi(p)} \rightarrow x^{9}$.
7. Let $\left(x_{p}\right)_{p \geq 1}$ be a sequence in E. From 6., there exists $x \in E$, and a subsequence $\left(x_{\phi(p)}\right)_{p \geq 1}$ of $\left(x_{p}\right)_{p \geq 1}$, with $x_{\phi(p)} \rightarrow x$. From theorem (47), we conclude that $\left(E, \mathcal{T}_{E}\right)$ is a compact topological space, or equivalently, that E is a compact subset of \mathbf{R}^{n}. The purpose of this exercise is to prove that the n-dimensional product $[-M, M] \times \ldots \times[-M, M]$ is compact ${ }^{10}$.

Exercise 7

[^1]
Exercise 8.

1. If $A=\emptyset$ then $A \subseteq[-M, M] \times \ldots \times[-M, M]$, for all $M \in \mathbf{R}^{+}$. We assume that $A \neq \emptyset$. Let $\delta(A)$ be the diameter of A (see definition (68)) with respect to the usual metric:

$$
d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x^{i}-y^{i}\right)^{2}}
$$

i.e. $\delta(A)=\sup \{d(x, y): x, y \in A\}$. Since $A \neq \emptyset, \delta(A) \geq 0$. Furthermore, A being assumed to be bounded with respect to the usual metric of \mathbf{R}^{n}, we have $\delta(A)<+\infty$. So $\delta(A) \in \mathbf{R}^{+}$. Let y be an arbitrary element of A. For all $x \in A$, we have:

$$
\left|x^{i}-y^{i}\right| \leq d(x, y) \leq \delta(A)
$$

So $\left|x^{i}\right| \leq\left|y^{i}\right|+\delta(A)$, and taking $M=\max \left(\left|y^{1}\right|, \ldots,\left|y^{n}\right|\right)+\delta(A)$, we conclude that $A \subseteq[-M, M] \times \ldots \times[-M, M]$, with $M \in \mathbf{R}^{+}$.
2. By assumption, A is a closed subset of \mathbf{R}^{n}. So A^{c} is open. It follows that $E \backslash A=E \cap A^{c}$ is an element of the topology induced on E, by the topology on \mathbf{R}^{n}. In other words, $E \backslash A$ is an open subset of E. We conclude that A is a closed subset of E.
3. From ex. (7), $\left(E, \mathcal{T}_{E}\right)$ is a compact topological space. From 2., A is a closed subset of E. Using exercise (2)[6.] of Tutorial 8, we conclude that A is a compact subset of E. In other words, $\left(A,\left(\mathcal{T}_{E}\right)_{\mid A}\right)$ is a compact topological space. However, the topology \mathcal{T}_{E} is induced by $\mathcal{T}_{\mathbf{R}^{n}}$, i.e. $\mathcal{T}_{E}=\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid E}$. It follows that $\left(\mathcal{T}_{E}\right)_{\mid A}=\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid A}$. So $\left(A,\left(\mathcal{T}_{\mathbf{R}^{n}}\right)_{\mid A}\right)$ is a compact topological space, or equivalently, A is a compact subset of \mathbf{R}^{n}.
4. Let A be a compact subset of \mathbf{R}^{n}. From theorem (35), \mathbf{R}^{n} being Hausdorff, A is closed in \mathbf{R}^{n}. From exercise (6)[4.] of Tutorial $8, A$ is bounded with respect to any metric inducing the usual topology of \mathbf{R}^{n}. This proves theorem (48).

Exercise 8

Exercise 9.

1. $d_{\mathbf{C}^{n}}$ and $d_{\mathbf{R}^{2 n}}$ are defined by:

$$
\begin{aligned}
d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right) & =\sqrt{\sum_{i=1}^{n}\left|z_{i}-z_{i}^{\prime}\right|^{2}} \\
d_{\mathbf{R}^{2 n}}\left(x, x^{\prime}\right) & =\sqrt{\sum_{i=1}^{2 n}\left(x_{i}-x_{i}^{\prime}\right)^{2}}
\end{aligned}
$$

for all $z, z^{\prime} \in \mathbf{C}^{n}$ and $x, x^{\prime} \in \mathbf{R}^{2 n}$.
2. Given $z, z^{\prime} \in \mathbf{C}^{n}$, we have:

$$
d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right)=\sqrt{\sum_{i=1}^{n}\left(\operatorname{Re}\left(z_{i}\right)-\operatorname{Re}\left(z_{i}^{\prime}\right)\right)^{2}+\sum_{i=1}^{n}\left(\operatorname{Im}\left(z_{i}\right)-\operatorname{Im}\left(z_{i}^{\prime}\right)\right)^{2}}
$$

It follows that $d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right)=d_{\mathbf{R}^{2 n}}\left(\phi(z), \phi\left(z^{\prime}\right)\right)$.
3. ϕ is clearly a bijection between \mathbf{C}^{n} and $\mathbf{R}^{2 n}$. From 2., we see that ϕ is continuous, and furthermore that:

$$
d_{\mathbf{C}^{n}}\left(\phi^{-1}(x), \phi^{-1}\left(x^{\prime}\right)\right)=d_{\mathbf{R}^{2 n}}\left(x, x^{\prime}\right)
$$

for all $x, x^{\prime} \in \mathbf{R}^{2 n}$. So ϕ^{-1} is also continuous. From definition (31), ϕ is a homeomorphism from \mathbf{C}^{n} to $\mathbf{R}^{2 n}$.
4. Let $K \subseteq \mathbf{C}^{n}$. Suppose K is a compact subset of \mathbf{C}^{n}. Then, $\left(K,\left(\mathcal{T}_{\mathbf{C}^{n}}\right)_{\mid K}\right)$ is a compact topological space. ϕ being continuous, its restriction $\phi_{\mid K}$ is also continuous. ${ }^{11}$ Using exercise (8) of Tutorial 8., the direct image $\phi_{\mid K}(K)$ is a compact subset of $\mathbf{R}^{2 n}$. In other words, $\phi(K)$ is a compact subset of $\mathbf{R}^{2 n}$. Conversely, suppose $\phi(K)$ is a compact subset of $\mathbf{R}^{2 n}$. Since K can be written as the direct image $K=\phi^{-1}(\phi(K))$ of $\phi(K)$ by ϕ^{-1}, and ϕ^{-1} is continuous, we conclude similarly that K is a compact subset of \mathbf{C}^{n}. We have proved that for all $K \subseteq \mathbf{C}^{n}, K$ is compact if and only if $\phi(K)$ is compact.

[^2]5. Let $K \subseteq \mathbf{C}^{n}$. Suppose K is a closed subset of \mathbf{C}^{n}. Since $\phi(K)$ can be written as the inverse image $\phi(K)=\left(\phi^{-1}\right)^{-1}(K)$ of K by ϕ^{-1}, and ϕ^{-1} is continuous, we see that $\phi(K)$ is a closed subset of $\mathbf{R}^{2 n}$. Conversely, suppose $\phi(K)$ is a closed subset of $\mathbf{R}^{2 n}$. Since K can be written as the inverse image $K=\phi^{-1}(\phi(K))$ of $\phi(K)$ by ϕ, and ϕ is continuous, we see that K is a closed subset of \mathbf{C}^{n}. We have proved that for all $K \subseteq \mathbf{C}^{n}, K$ is closed if and only if $\phi(K)$ is closed.
6. Let $K \subseteq \mathbf{C}^{n}$ and $\delta(\phi(K))$ be the diameter of $\phi(K)$ in $\mathbf{R}^{2 n}$:
\[

$$
\begin{aligned}
\delta(\phi(K)) & =\sup \left\{d_{\mathbf{R}^{2 n}}\left(x, x^{\prime}\right): x, x^{\prime} \in \phi(K)\right\} \\
& =\sup \left\{d_{\mathbf{R}^{2 n}}\left(\phi(z), \phi\left(z^{\prime}\right)\right): z, z^{\prime} \in K\right\} \\
& =\sup \left\{d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right): z, z^{\prime} \in K\right\}
\end{aligned}
$$
\]

i.e. $\delta(\phi(K))=\delta(K)$, where $\delta(K)$ is the diameter of K in \mathbf{C}^{n}. It follows that $\delta(K)<+\infty$ is equivalent to $\delta(\phi(K))<+\infty$. we have proved that for all $K \subseteq \mathbf{C}^{n}, K$ is bounded if and only if $\phi(K)$ is bounded.
7. Let $K \subseteq \mathbf{C}^{n}$. From 4., K is compact, if and only if $\phi(K)$ is compact. From theorem (48), $\phi(K)$ being a subset of $\mathbf{R}^{2 n}$, it is compact if and only if, it is closed and bounded. From 5. and 6., this in turn is equivalent to K being itself closed and bounded. We have proved that for all $K \subseteq \mathbf{C}^{n}, K$ is compact if and only if K is closed and bounded.

Exercise 9

Exercise 10.

1. Definition (79) defines the notion of Cauchy sequences in a metric space. In contrast, definition (77) defines the notion of Cauchy sequences in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. Since that latter was defined in (73) as a set of functions, as opposed to a set of μ-almost sure equivalence classes, strictly speaking $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not a metric space. So definition (77) is not a particular case of definition (79).
2. Definition (80) defines the notion of complete metric space, as a metric space where all Cauchy sequences converge. ${ }^{12}$ Theorem (46) does state that all Cauchy sequences in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ converge. However, since $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is not strictly speaking a metric space, it cannot be said to be a complete metric space.

Exercise 10

[^3]
Exercise 11.

1. Let $\left(z_{k}\right)_{k \geq 1}$ be a Cauchy sequence in \mathbf{C}^{n}. Taking $\epsilon=1$, there exists $k_{0} \geq 1$, such that:

$$
k, k^{\prime} \geq k_{0} \Rightarrow\left\|z_{k}-z_{k^{\prime}}\right\| \leq 1
$$

Since $\left|\|z\|-\left\|z^{\prime}\right\|\right| \leq\left\|z-z^{\prime}\right\|$ for all $z, z^{\prime} \in \mathbf{C}^{n}$, we have:

$$
k \geq k_{0} \Rightarrow\left\|z_{k}\right\| \leq 1+\left\|z_{k_{0}}\right\|
$$

Taking $M=\max \left(1+\left\|z_{k_{0}}\right\|,\left\|z_{1}\right\|, \ldots,\left\|z_{k_{0}-1}\right\|\right)$, we see that $\left\|z_{k}\right\| \leq M$ for all $k \geq 1$. We have proved that $\left(z_{k}\right)_{k \geq 1}$ is a bounded sequence in \mathbf{C}^{n}.
2. Let $B=\left\{z \in \mathbf{C}^{n}:\|z\| \leq M\right\}$. For all $z, z^{\prime} \in B$, we have $\left\|z-z^{\prime}\right\| \leq\|z\|+\left\|z^{\prime}\right\| \leq 2 M$. It follows that $\delta(B) \leq 2 M$, where $\delta(B)$ is the diameter of B in \mathbf{C}^{n}. So $\delta(B)<+\infty$, i.e. B is a bounded subset of \mathbf{C}^{n}. Let $z_{0} \in B^{c}$. Then $M<\left\|z_{0}\right\|$. Let $\epsilon=\left\|z_{0}\right\|-M>0$, and $z \in \mathbf{C}^{n}$ with $\left\|z-z_{0}\right\|<\epsilon$. Then, we have $\left\|z_{0}\right\|-\|z\| \leq\left\|z-z_{0}\right\|<\epsilon=\left\|z_{0}\right\|-M$, and consequently
$M<\|z\|$, i.e. $z \in B^{c}$. So $B\left(z_{0}, \epsilon\right) \subseteq B^{c}$. For all $z_{0} \in B^{c}$, we have found $\epsilon>0$, such that $B\left(z_{0}, \epsilon\right) \subseteq B^{c}$. This proves that B^{c} is open with respect to the (metric) topology of \mathbf{C}^{n}. So B is a closed subset of \mathbf{C}^{n}.
3. From 2., B is a closed and bounded subset of \mathbf{C}^{n}. From exercise (9), it follows that B is a compact subset of \mathbf{C}^{n}. In other words, $\left(B,\left(\mathcal{T}_{\mathbf{C}^{n}}\right)_{\mid B}\right)$ is a compact topological space. However, from 1., $\left(z_{k}\right)_{k \geq 1}$ is a sequence of elements of B. Using theorem (47), $\left(z_{k}\right)_{k \geq 1}$ has a convergent subsequence, i.e. there exists $z \in B$, and a subsequence $\left(z_{k_{p}}\right)_{p \geq 1}$, such that $z_{k_{p}} \rightarrow z .{ }^{13}$
4. $\left(z_{k}\right)_{k \geq 1}$ being Cauchy, given $\epsilon>0$, there exist $n_{0} \geq 1$, such that:

$$
k, k^{\prime} \geq n_{0} \Rightarrow d\left(z_{k}, z_{k^{\prime}}\right) \leq \epsilon / 2
$$

Furthermore, since $z_{k_{p}} \rightarrow z$, there exists $p_{0}^{\prime} \geq 1$, such that:

$$
p \geq p_{0}^{\prime} \Rightarrow d\left(z, z_{k_{p}}\right) \leq \epsilon / 2
$$

${ }^{13}$ Both with respect to $\mathcal{T}_{\mathbf{C}^{n}}$ and the induced topology $\left(\mathcal{T}_{\mathbf{C}^{n}}\right)_{\mid B}$.

Moreover, since $k_{p} \uparrow+\infty$ as $p \rightarrow+\infty$, there exists $p_{0}^{\prime \prime} \geq 1$, such that $p \geq p_{0}^{\prime \prime} \Rightarrow k_{p} \geq n_{0}$. Take $p_{0}=\max \left(p_{0}^{\prime}, p_{0}^{\prime \prime}\right)$. Then, $d\left(z, z_{k_{p_{0}}}\right) \leq \epsilon / 2$, and we have:

$$
k \geq n_{0} \Rightarrow d\left(z_{k}, z_{k_{p_{0}}}\right) \leq \epsilon / 2
$$

5. From 4., we have found $n_{0} \geq 1$, such that:

$$
k \geq n_{0} \Rightarrow d\left(z, z_{k}\right) \leq \epsilon
$$

It follows that $z_{k} \rightarrow z$.
6. From 5., we see that every Cauchy sequence $\left(z_{k}\right)_{k>1}$ in \mathbf{C}^{n}, converges to some limit $z \in \mathbf{C}^{n}$. From definition (80), we conclude that \mathbf{C}^{n} is complete metric space.
7. The completeness of \mathbf{C} was used in exercise (12) [6.] of Tutorial 9, leading to theorem (44) where we proved that any sequence
$\left(f_{n}\right)_{n \geq 1}$ in $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ such that:

$$
\sum_{k=1}^{+\infty}\left\|f_{k+1}-f_{k}\right\|_{p}<+\infty
$$

converges to some $f \in L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$. This, in turn, was crucially important in proving theorem (46), where $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$ is shown to be complete.

Exercise 12.

1. Let $\left(x_{k}\right)_{k \geq 1}$ be a sequence in \mathbf{R}^{n}, such that $x_{k} \rightarrow z$, for some $z \in \mathbf{C}^{n}$. For all $k \geq 1$ and $i \in \mathbf{N}_{n}$, we have:

$$
\left|\operatorname{Im}\left(z^{i}\right)\right|=\left|\operatorname{Im}\left(z^{i}\right)-\operatorname{Im}\left(x_{k}^{i}\right)\right| \leq\left\|z-x_{k}\right\|
$$

Taking the limit as $k \rightarrow+\infty$, we obtain $\operatorname{Im}\left(z^{i}\right)=0$. This being true for all $i \in \mathbf{N}_{n}$, we have proved that $z \in \mathbf{R}^{n}$.
2. Let $\left(x_{k}\right)_{k \geq 1}$ be a Cauchy sequence in \mathbf{R}^{n}. In particular, it is a Cauchy sequence in \mathbf{C}^{n}. From exercise (11), \mathbf{C}^{n} is a complete metric space. Hence, there exists $z \in \mathbf{C}^{n}$, such that $x_{k} \rightarrow z$. From 1., z is in fact an element of \mathbf{R}^{n}. We have proved that any Cauchy sequence $\left(x_{k}\right)_{k \geq 1}$ in \mathbf{R}^{n}, converges to some $z \in \mathbf{R}^{n}$. From definition (80), we conclude that \mathbf{R}^{n} is a complete metric space. This, together with exercise (11), proves theorem (49).

Exercise 12

Exercise 13.

1. Let $x \in \bar{F}$. From definition (37), if U is an open set with $x \in U$, then $F \cap U \neq \emptyset$. Given $n \geq 1$, the open ball $B(x, 1 / n)$ is an open set with $x \in B(x, 1 / n)$. So $F \cap B(x, 1 / n) \neq \emptyset$.
2. Let $x \in \bar{F}$. From 1., for all $n \geq 1$, we can choose an arbitrary element $x_{n} \in F \cap B(x, 1 / n)$. This defines a sequence $\left(x_{n}\right)_{n \geq 1}$ of elements of F, such that $d\left(x, x_{n}\right)<1 / n$ for all $n \geq 1$. So $x_{n} \rightarrow x$.
3. Let $x \in E$. We assume that there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ of elements of F, with $x_{n} \rightarrow x$. Let U be an open set containing x. Since $x_{n} \rightarrow x$, there exists $n_{0} \geq 1$, such that:

$$
n \geq n_{0} \Rightarrow x_{n} \in U
$$

In particular, $x_{n_{0}} \in U$. But $x_{n_{0}}$ is also an element of F. So $x_{n_{0}} \in F \cap U$. We have proved that for all open set U containing x, we have $F \cap U \neq \emptyset$. From definition (37), we conclude that $x \in \bar{F}$.
4. Suppose that F is closed, and let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in F such that $x_{n} \rightarrow x$ for some $x \in E$. From 3. we have $x \in \bar{F}$. However from exercise (21) of Tutorial 4, we have $F=\bar{F}$. So $x \in F$. Conversely, suppose that for any sequence $\left(x_{n}\right)_{n \geq 1}$ in F such that $x_{n} \rightarrow x$ for some $x \in E$, we have $x \in F$. We claim that F is closed. From exercise (21) of Tutorial 4., it is sufficient to show that $\bar{F}=F$, or equivalently that $\bar{F} \subseteq F$. So let $x \in \bar{F}$. From 2. there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ in F such that $x_{n} \rightarrow x$. By assumption, this implies that $x \in F$. It follows that $\bar{F} \subseteq F$.
5. The fact that the induced topological space $\left(F, \mathcal{T}_{\mid F}\right)$ is metrizable, is a consequence of theorem (12). The induced topology $\mathcal{T}_{\mid F}$ is nothing but the metric topology associated with the induced metric $d_{\mid F}=d_{\mid F \times F}$.
6. Suppose F is complete with respect to the induced metric $d_{\mid F}$. Let $x \in E$ and $\left(x_{n}\right)_{n \geq 1}$ be a sequence of elements of F, with $x_{n} \rightarrow x$. In particular, $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence with respect to the metric $d .\left(x_{n}\right)_{n \geq 1}$ being a sequence of elements
of F, it is also a Cauchy sequence with respect to the induced metric $d_{\mid F}$. F being complete, there exists $y \in F$, such that $x_{n} \rightarrow y$. This convergence, with respect to $\mathcal{T}_{\mid F}$, is also valid with respect \mathcal{T}. Since we also have $x_{n} \rightarrow x$, we see that $x=y$. It follows that $x \in F$. Given $x \in E$, and a sequence $\left(x_{n}\right)_{n \geq 1}$ of elements of F such that $x_{n} \rightarrow x$, we have proved that $x \in F$. From 4., this shows that F is a closed subset of E. We conclude that if F is complete (with respect to its natural metric $d_{\mid F}$), then it is a closed subset of E.
7. From theorem (12), the induced metric $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R}}$ induces the induced topology $\left(\mathcal{T}_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R}}$. Such topology is nothing but the usual topology on \mathbf{R}. It follows that d^{\prime} induces $\mathcal{T}_{\mathbf{R}}$.
8. Let $d_{\mathbf{R}}$ be the usual metric on \mathbf{R}. From theorem (12), the induced metric $\left(d_{\mathbf{R}}\right)_{\mid[-1,1]}$ induces the induced topology on $[-1,1]$. Such topology is nothing but the usual topology on $[-1,1]$.
9. From 8., if $\{-1,1\}$ was open in $[-1,1]$, there would exists $\epsilon>0$,
such that $] 1-\epsilon, 1] \subseteq\{-1,1\}$, which is absurd.
10. If $\{-\infty,+\infty\}$ was open in $\overline{\mathbf{R}}$, then $\{-1,1\}$ would be open in $[-1,1]$, since one is the inverse image of the other, by a strictly increasing homeomorphism.
11. If \mathbf{R} was closed in $\overline{\mathbf{R}}$, then $\{-\infty,+\infty\}$ would be open in $\overline{\mathbf{R}}$.
12. Let $d_{\mathbf{R}}$ be the usual metric on \mathbf{R}. Then $d_{\mathbf{R}}$ induces the usual topology on \mathbf{R}. However, from 7., the metric d^{\prime} also induces the usual topology on \mathbf{R}. It follows that $d_{\mathbf{R}}$ and d^{\prime} both induce the same topology. From theorem (49), \mathbf{R} is complete with respect to its usual metric $d_{\mathbf{R}}$. If \mathbf{R} was complete with respect to $d^{\prime}=\left(d_{\overline{\mathbf{R}}}\right)_{\mid \mathbf{R}}$, then from 6., \mathbf{R} would be a closed subset of $\overline{\mathbf{R}}$, contradicting 11 . So \mathbf{R} is not complete with respect to d^{\prime}. We conclude that although the two metric spaces $\left(\mathbf{R}, d_{\mathbf{R}}\right)$ and $\left(\mathbf{R}, d^{\prime}\right)$ are identical in the topological sense, one is complete whereas the other is not.

Exercise 13

Exercise 14.

1. Let $y \in \mathcal{H}$. For all $x, x^{\prime} \in \mathcal{H}$ and $\alpha \in \mathbf{K}$, using (ii) and (iii) of definition (81), we obtain:

$$
\left\langle x+\alpha x^{\prime}, y\right\rangle=\langle x, y\rangle+\alpha\left\langle x^{\prime}, y\right\rangle
$$

We conclude that $x \rightarrow\langle x, y\rangle$ is linear for all $y \in \mathcal{H}$.
2. Let $x \in \mathcal{H}$. For all $y, y^{\prime} \in \mathcal{H}$ and $\alpha \in \mathbf{K}$, using (i), (ii) and (iii) of definition (81), we obtain:

$$
\left\langle x, y+\alpha y^{\prime}\right\rangle=\langle x, y\rangle+\bar{\alpha}\left\langle x, y^{\prime}\right\rangle
$$

where $\bar{\alpha}$ is the complex conjugate of α. Hence, $y \rightarrow\langle x, y\rangle$ is conjugate-linear for all $x \in \mathcal{H}$. In the case when $\mathbf{K}=\mathbf{R}$, it is in fact linear.

Exercise 14

Exercise 15.

1. The inner-product $\langle\cdot, \cdot\rangle$ has values in K. From (iv) of definition (81), $\langle x, x\rangle \geq 0$ for all $x \in \mathcal{H}$. It follows that $\|x\|=\sqrt{\langle x, x\rangle}$ is a well-defined element of \mathbf{R}^{+}, for all $x \in \mathcal{H}$. Hence, we see that $A=\|x\|^{2}$ and $C=\|y\|^{2}$ are both well-defined elements of \mathbf{R}^{+}. Furthermore, $B=|\langle x, y\rangle|$ being the modulus of an element of \mathbf{K}, is a well-defined element of \mathbf{R}^{+}.
2. Let $t \in \mathbf{R}$. Using the linearity properties of exercise (14):

$$
\langle x-t \alpha y, x-t \alpha y\rangle=\langle x, x\rangle-t \alpha \overline{\langle x, y\rangle}-t \bar{\alpha}\langle x, y\rangle+t^{2} \alpha \bar{\alpha}\langle y, y\rangle
$$

Since $B=\bar{B}=\alpha \overline{\langle x, y\rangle}$ and $\alpha \bar{\alpha}=1$, we conclude that:

$$
\langle x-t \alpha y, x-t \alpha y\rangle=A-2 t B+t^{2} C
$$

3. Suppose $C=0$. Then $\langle y, y\rangle=0$. From (v) of definition (81), we see that $y=0$. From the conjugate linearity of $y^{\prime} \rightarrow\left\langle x, y^{\prime}\right\rangle$, we have $\langle x, 0\rangle=0$ for all $x \in \mathcal{H}$, and consequently $\langle x, y\rangle=0$. So $B=0$, and finally $B^{2} \leq A C$.
4. Suppose $C \neq 0$. Let $P(t)=A-2 t B+t^{2} C$ for all $t \in \mathbf{R}$. Since $C>0$ and $P^{\prime}(t)=2 t C-2 B$, the second degree polynomial P has a minimum value at $t=B / C$. From 2 ., for all $t \in \mathbf{R}$:

$$
P(t)=\langle x-t \alpha y, x-t \alpha y\rangle \geq 0
$$

In particular, $P(B / C) \geq 0$. It follows that $B^{2} \leq A C$.
5. From $B^{2} \leq A C$, since $A, B, C \in \mathbf{R}^{+}$, we obtain $B \leq \sqrt{A C}$, i.e.

$$
|\langle x, y\rangle| \leq\|x\| \cdot\|y\|
$$

This proves theorem (50).
Exercise 15

Exercise 16.

1. Let $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. Then, $f \bar{g}$ is a complex-valued and measurable map. Furthermore, from theorem (42):

$$
\int|f||g| d \mu \leq\left(\int|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int|g|^{2} d \mu\right)^{\frac{1}{2}}
$$

So $\int|f \bar{g}| d \mu<+\infty$ and $f \bar{g} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. It follows that $\langle f, g\rangle=\int f \bar{g} d \mu$ is a well-defined complex number.
2. Let $f \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. From definition (73), $\|f\|_{2}$ is defined as $\|f\|_{2}=\left(\int|f|^{2} d \mu\right)^{1 / 2}$. It follows that:

$$
\|f\|_{2}=\left(\int f \bar{f} d \mu\right)^{\frac{1}{2}}=\sqrt{\langle f, f\rangle}
$$

3. Let $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. From theorems (24) and (42), we have:

$$
|\langle f, g\rangle|=\left|\int f \bar{g} d \mu\right| \leq \int|f||g| d \mu \leq\|f\|_{2} \cdot\|g\|_{2}
$$

4. Among properties $(i)-(v)$ of definition (81), only (v) fails to be satisfied. Indeed, although $f=0$ does imply that $\langle f, f\rangle=$ $\int|f|^{2} d \mu=0$, the converse is not true. Having $\int|f|^{2} d \mu=0$ only guarantees that $f=0 \mu$-almost surely, and not necessarily everywhere. We conclude that $\langle\cdot, \cdot\rangle$ is not strictly speaking an inner-product on $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$, as defined by definition (81). It follows that equation (1) which we proved in 3., cannot be viewed as a consequence of theorem (50).
5. Let $f, g \in L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. Let $P(t)=\int(|f|+t|g|)^{2} d \mu$ for all $t \in \mathbf{R}$. Then, $P(t) \geq 0$ for all $t \in \mathbf{R}$, and furthermore:

$$
P(t)=A+2 t B+t^{2} C
$$

where $A=\int|f|^{2} d \mu, B=\int|f||g| d \mu$ and $C=\int|g|^{2} d \mu$. All three numbers A, B and C are elements of $\mathbf{R}^{+} .{ }^{14}$ If $C=0$, then $g=0 \mu$-a.s. and consequently $B=0$. In particular, the inequality $B^{2} \leq A C$ holds. If $C \neq 0$, from $P(-B / C) \geq 0$ we
${ }^{14} B$ can be shown to be finite from $|f g| \leq\left(|f|^{2}+|g|^{2}\right) / 2$.
obtain $B^{2} \leq A C$, and consequently:

$$
\int|f g| d \mu \leq\left(\int|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int|g|^{2} d \mu\right)^{\frac{1}{2}}
$$

6. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be non-negative and measurable. Suppose both integrals $\int f^{2} d \mu$ and $\int g^{2} d \mu$ are finite. Then f and g are μ-almost surely finite, and therefore μ-almost surely equal to $f 1_{\{f<+\infty\}}$ and $g 1_{\{g<+\infty\}}$ respectively. It follows that f and g are μ-almost surely equal to elements of $L_{\mathbf{C}}^{2}(\Omega, \mathcal{F}, \mu)$. Applying 5. to $f 1_{\{f<+\infty\}}$ and $g 1_{\{g<+\infty\}}$, we obtain:

$$
\int f g d \mu \leq\left(\int f^{2} d \mu\right)^{\frac{1}{2}}\left(\int g^{2} d \mu\right)^{\frac{1}{2}}
$$

If $\int f^{2} d \mu=+\infty$ or $\int g^{2} d \mu=+\infty$, such inequality still holds. We have effectively proved theorem (42), without using holder's inequality (41).

Exercise 16

Exercise 17.

1. Let $x, y \in \mathcal{H}$. Using (ii) of definition (81), we have:

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x+y\rangle+\langle y, x+y\rangle
$$

Furthermore, using (i) and (ii):

$$
\langle x, x+y\rangle=\overline{\langle x+y, x\rangle}=\overline{\langle x, x\rangle}+\overline{\langle y, x\rangle}=\|x\|^{2}+\langle x, y\rangle
$$

and also:

$$
\langle y, x+y\rangle=\overline{\langle x+y, y\rangle}=\|y\|^{2}+\overline{\langle x, y\rangle}
$$

We conclude that:

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}
$$

2. From the Cauchy-Schwarz inequality of theorem (50):

$$
|\overline{\langle x, y\rangle}|=|\langle x, y\rangle| \leq\|x\| \cdot\|y\|
$$

Consequently, using 1., we have:

$$
\|x+y\|^{2} \leq\|x\|^{2}+\|y\|^{2}+2\|x\| \cdot\|y\|=(\|x\|+\|y\|)^{2}
$$

We conclude that for all $x, y \in \mathcal{H}$, we have:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

3. Let $d=d_{\langle\cdot, \cdot\rangle}$ be the map defined by $d(x, y)=\|x-y\|$. Note that from (iv) of definition (81):

$$
d(x, y)=\|x-y\|=\sqrt{\langle x-y, x-y\rangle}
$$

is well-defined, and non-negative. So d is indeed a map from $\mathcal{H} \times \mathcal{H}$, with values in \mathbf{R}^{+}. Let $x, y, z \in \mathcal{H} . d(x, y)=0$ is equivalent to $\langle x-y, x-y\rangle=0$, which from (v) of definition (81), is itself equivalent to $x=y$. So (i) of definition (28) is satisfied by d. Furthermore, we have:

$$
\|-x\|^{2}=\langle-x,-x\rangle=-\overline{\langle-x, x\rangle}=\|x\|^{2}
$$

and consequently, $d(x, y)=\|x-y\|=\|y-x\|=d(y, x)$. So (ii) of definition (28) is satisfied by d. Finally, using $2 .:$

$$
\|x-y\|=\|x-z+z-y\| \leq\|x-z\|+\|z-y\|
$$

and we see that $d(x, y) \leq d(x, z)+d(z, y)$. So (iii) of definition (28) is also satisfied by d. Having checked conditions (i), (ii) and (iii) of definition (28), we conclude that d is indeed a metric on \mathcal{H}.

Exercise 17

Exercise 18.

1. \mathcal{M} being a linear subspace of the \mathbf{K}-vector space \mathcal{H}, is itself a \mathbf{K}-vector space. $[\cdot, \cdot]$ being the restriction of $\langle\cdot, \cdot\rangle$ to $\mathcal{M} \times \mathcal{M}$, is indeed a map $[\cdot, \cdot]: \mathcal{M} \times \mathcal{M} \rightarrow K$. For all $x, y \in \mathcal{M}$, we have:

$$
[x, y]=\langle x, y\rangle=\overline{\langle y, x\rangle}=\overline{[y, x]}
$$

So (i) of definition (81) is satisfied by $[\cdot, \cdot]$. Similarly, it is clear that all properties $(i i)-(v)$ of definition (81) are also satisfied by $[\cdot, \cdot]$. We conclude that $[\cdot, \cdot]$ is indeed an inner-product on the K-vector space \mathcal{M}.
2. Recall that from definition (83), the metric $d_{[\cdot, \cdot]}$ is defined by:

$$
d_{[\cdot, \cdot]}(x, y)=\sqrt{[x-y, x-y]}
$$

$[\cdot, \cdot]$ being the restriction of $\langle\cdot, \cdot\rangle$ to $\mathcal{M} \times \mathcal{M}$, we have:

$$
d_{[\cdot, \cdot]}(x, y)=\sqrt{\langle x-y, x-y\rangle}=d_{\langle\cdot, \cdot\rangle}(x, y)
$$

We conclude that the metric $d_{[\cdot, \cdot]}$ is nothing but the restriction of the metric $d_{\langle\cdot,\rangle}$ to $\mathcal{M} \times \mathcal{M}$, i.e. $d_{[\cdot, \cdot]}=\left(d_{\langle\cdot,\rangle}\right)_{\mid \mathcal{M} \times \mathcal{M}}$.
3. From theorem (12), the topology induced on \mathcal{M} by the norm topology $\mathcal{T}_{\langle\cdot, \cdot\rangle}$ (the latter being the metric topology associated with $d_{\langle\cdot, \cdot\rangle}$, by definition (82)), is nothing but the metric topology associated with $\left(d_{\langle\cdot,\rangle}\right)_{\mathcal{M} \times \mathcal{M}}=d_{[\cdot, \cdot]}$ (which by definition (82), is the norm topology on \mathcal{M}, i.e. $\left.\mathcal{T}_{[\cdot, \cdot]}\right)$. So $\left(\mathcal{T}_{\langle\cdot, \cdot\rangle}\right)_{\mid \mathcal{M}}=\mathcal{T}_{[\cdot, \cdot]}$.

Exercise 18

Exercise 19.

1. Since $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in \mathcal{M}, with respect to the metric $d_{[\cdot, \cdot]}$, from definition (79), for all $\epsilon>0$, there exists an integer $n_{0} \geq 1$, such that:

$$
n, m \geq n_{0} \Rightarrow d_{[\cdot, \cdot]}\left(x_{n}, x_{m}\right) \leq \epsilon
$$

However, since $d_{[\cdot,]}$ is the restriction of $d_{\langle\cdot,,\rangle}$ to $\mathcal{M} \times \mathcal{M}$, we have $d_{[\cdot, \cdot]}(x, y)=d_{\langle\cdot,\rangle}(x, y)$ for all $x, y \in \mathcal{M}$. It follows that $\left(x_{n}\right)_{n \geq 1}$ is also a Cauchy sequence in \mathcal{H}, with respect to the metric $d_{\langle\cdot,\rangle\rangle}$.
2. $(\mathcal{H},\langle\cdot, \cdot\rangle)$ being a Hilbert space, from definition (83), \mathcal{H} is a also a complete metric space. From definition (80), $\left(x_{n}\right)_{n \geq 1}$ being a Cauchy sequence in \mathcal{H}, there exists $x \in \mathcal{H}$ such that $x_{n} \rightarrow x$.
3. \mathcal{M} is a closed subset of \mathcal{H}, and $\left(x_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{M} converging to $x \in \mathcal{H}$. From exercise (13) [4.], we conclude that $x \in \mathcal{M}$.
4. As seen in the previous exercise, the norm topology $\mathcal{T}_{[,,]}$on \mathcal{M} is induced by the norm topology $\mathcal{T}_{\langle\cdot, \cdot\rangle}$ on \mathcal{H}. Since $\left(x_{n}\right)_{n \geq 1}$ is a sequence in \mathcal{M} and $x \in \mathcal{M}$, the convergence $x_{n} \rightarrow x$ relative to the topology $\mathcal{T}_{[,, \cdot]}$, is equivalent to the convergence $x_{n} \rightarrow x$ relative to the topology $\mathcal{T}_{\langle\cdot,,\rangle}$.
5. Given a Cauchy sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathcal{M}, we have found an element $x \in \mathcal{M}$, such that $x_{n} \rightarrow x$. From definition (80), this shows that $\left(\mathcal{M}, d_{[,,]}\right)$is a complete metric space. It follows that \mathcal{M} is a \mathbf{K}-vector space, that $[\cdot, \cdot]$ is an inner-product on \mathcal{M}, under which \mathcal{M} is complete. From definition (83), we conclude that $(\mathcal{M},[\cdot, \cdot])=\left(\mathcal{M},\langle\cdot, \cdot\rangle_{\mid \mathcal{M} \times \mathcal{M}}\right)$ is a Hilbert space over \mathbf{K}. The purpose of this exercise is to show that any closed linear subspace of a Hilbert space, is itself a Hilbert space, together with its restricted inner-product.

Exercise 19

Exercise 20.

1. Let $z, z^{\prime}, z^{\prime \prime} \in \mathbf{C}^{n}$ and $\alpha \in \mathbf{C}$. We have:

$$
\begin{gathered}
\left\langle z, z^{\prime}\right\rangle=\sum_{i=1}^{n} z_{i} \bar{z}_{i}^{\prime}=\overline{\sum_{i=1}^{n} \overline{z_{i}} z_{i}^{\prime}}=\overline{\left\langle z^{\prime}, z\right\rangle} \\
\left\langle z+z^{\prime}, z^{\prime \prime}\right\rangle=\sum_{i=1}^{n}\left(z_{i}+z_{i}^{\prime}\right) \bar{z}_{i}^{\prime \prime}=\left\langle z, z^{\prime \prime}\right\rangle+\left\langle z^{\prime}, z^{\prime \prime}\right\rangle \\
\left\langle\alpha z, z^{\prime}\right\rangle=\sum_{i=1}^{n}\left(\alpha z_{i}\right) \bar{z}_{i}^{\prime}=\alpha\left\langle z, z^{\prime}\right\rangle \\
\langle z, z\rangle=\sum_{i=1}^{n} z_{i} \overline{z_{i}}=\sum_{i=1}^{n}\left|z_{i}\right|^{2} \geq 0
\end{gathered}
$$

and finally, $\langle z, z\rangle=0$ is equivalent to $z_{i}=0$ for all $i \in \mathbf{N}_{n}$, itself equivalent to $z=0$. Hence, we see that all five conditions $(i)-(v)$ of definition (81) are satisfied by $\langle\cdot, \cdot\rangle$. So $\langle\cdot, \cdot\rangle$ is indeed an inner-product on \mathbf{C}^{n}.
2. The metric $d_{\langle\cdot,\rangle}$ is defined by:

$$
d_{\langle\cdot, \cdot\rangle}\left(z, z^{\prime}\right)=\sqrt{\left\langle z-z^{\prime}, z-z^{\prime}\right\rangle}=\sqrt{\sum_{i=1}^{n}\left|z_{i}-z_{i}^{\prime}\right|^{2}}
$$

It therefore coincides with the usual metric on \mathbf{C}^{n}.
3. From theorem (49), \mathbf{C}^{n} is a complete metric space, with respect to its usual metric. The latter being the same as the metric $d_{\langle\cdot, \cdot\rangle}$, we conclude from definition (83) that $\left(\mathbf{C}^{n},\langle\cdot, \cdot\rangle\right)$ is a Hilbert space over C.
4. For all $i \in \mathbf{N}_{n}$, let $\phi_{i}: \mathbf{C}^{n} \rightarrow \mathbf{R}$ be defined by $\phi_{i}(z)=\operatorname{Im}\left(z_{i}\right)$. For all $z, z^{\prime} \in \mathbf{C}^{n}$, we have:

$$
\left|\phi_{i}(z)-\phi_{i}\left(z^{\prime}\right)\right|=\left|\operatorname{Im}\left(z_{i}-z_{i}^{\prime}\right)\right| \leq\left\|z-z^{\prime}\right\|=d_{\mathbf{C}^{n}}\left(z, z^{\prime}\right)
$$

So each ϕ_{i} is a continuous map. The set $\{0\}$ being a closed subset of \mathbf{R}, the inverse image $\phi_{i}^{-1}(\{0\})$ is a closed subset of \mathbf{C}^{n}.

It follows that $\mathbf{R}^{n}=\cap_{i=1}^{n} \phi_{i}^{-1}(\{0\})$ as an intersection of closed subsets of \mathbf{C}^{n}, is itself a closed subset of \mathbf{C}^{n}.
5. Given $x \in \mathbf{R}^{n}$ and $\alpha \in \mathbf{C}, \alpha . x$ is not in general an element of \mathbf{R}^{n}. So \mathbf{R}^{n} is not a linear subspace of \mathbf{C}^{n}. It is of course an \mathbf{R}-vector space...
6. Since \mathbf{R}^{n} is not a linear subspace of \mathbf{C}^{n}, we cannot rely on exercise (19) to argue that $\left(\mathbf{R}^{n},\langle\cdot, \cdot\rangle\right)$ is a Hilbert space. In fact, we want to show that \mathbf{R}^{n} is a Hilbert space over \mathbf{R}, (not $\left.\mathbf{C}\right)$, so exercise (19) is no good to us... However, the restriction of $\langle\cdot, \cdot \cdot\rangle$ to $\mathbf{R}^{n} \times \mathbf{R}^{n}$ also satisfies conditions $(i)-(v)$ of definition (81), and is therefore an inner-product on \mathbf{R}^{n}, which furthermore induces the usual metric on \mathbf{R}^{n}. Since from theorem (49), \mathbf{R}^{n} is complete with respect to its usual metric, we conclude from definition (83) that it is a Hilbert space over \mathbf{R}.

Exercise 20

Exercise 21.

1. Since $\mathcal{C} \neq \emptyset$, there exists $y \in \mathcal{C}$. From $\delta_{\min } \leq\left\|y-x_{0}\right\|$, we obtain $\delta_{\text {min }}<+\infty$. In particular, $\delta_{\min }<\delta_{\text {min }}+1 / n$ for all $n \geq 1$. $\delta_{\text {min }}$ being the greatest of all lower-bound of $\left\|x-x_{0}\right\|$ for $x \in \mathcal{C}$, it follows that $\delta_{\min }+1 / n$ cannot be such lower-bound. There exists $x_{n} \in \mathcal{C}$, such that $\left\|x_{n}-x_{0}\right\|<\delta_{\text {min }}+1 / n$. This being true for all $n \geq 1$, we have found a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathcal{C}, such that $\delta_{\text {min }} \leq\left\|x_{n}-x_{0}\right\|<\delta_{\text {min }}+1 / n$, for all $n \geq 1$. In particular, $\left\|x_{n}-x_{0}\right\| \rightarrow \delta_{\text {min }}$.
2. For all $x, y \in \mathcal{H}$:

$$
\begin{aligned}
\|x-y\|^{2} & =\langle x-y, x-y\rangle
\end{aligned}=\|x\|^{2}+\|y\|^{2}-\langle x, y\rangle-\overline{\langle x, y\rangle} \bar{u} . \overline{\langle x, y\rangle}
$$

and therefore:

$$
\|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

or equivalently:

$$
\begin{equation*}
\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}-4\left\|\frac{x+y}{2}\right\|^{2} \tag{6}
\end{equation*}
$$

3. Let $n, m \geq 1 . x_{n}$ and x_{m} are both elements of \mathcal{C}. Since we have $1 / 2 \in[0,1]$, from definition (85), \mathcal{C} being convex, $\left(x_{n}+x_{m}\right) / 2$ is also an element of \mathcal{C}. Since $\delta_{\text {min }}$ is a lower-bound of $\left\|x-x_{0}\right\|$ for $x \in \mathcal{C}$, we conclude that:

$$
\begin{equation*}
\delta_{\min } \leq\left\|\frac{x_{n}+x_{m}}{2}-x_{0}\right\| \tag{7}
\end{equation*}
$$

4. Let $n, m \geq 1$. Applying (6) to $x=x_{n}-x_{0}$ and $y=x_{m}-x_{0}$:

$$
\left\|x_{n}-x_{m}\right\|^{2}=2\left\|x_{n}-x_{0}\right\|^{2}+2\left\|x_{m}-x_{0}\right\|^{2}-4\left\|\frac{x_{n}+x_{m}}{2}-x_{0}\right\|^{2}
$$

and therefore, from (7):

$$
\begin{equation*}
\left\|x_{n}-x_{m}\right\|^{2} \leq 2\left\|x_{n}-x_{0}\right\|^{2}+2\left\|x_{m}-x_{0}\right\|^{2}-4 \delta_{\min }^{2} \tag{8}
\end{equation*}
$$

5. Let $\epsilon>0$. Since $\left(x_{n}\right)_{n \geq 1}$ is such that $\left\|x_{n}-x_{0}\right\| \rightarrow \delta_{\min }$, in particular, there exists $N \geq 1$ such that:

$$
n \geq N \Rightarrow 2\left\|x_{n}-x_{0}\right\|^{2} \leq 2 \delta_{\min }^{2}+\epsilon^{2} / 2
$$

Using (8), we have:

$$
n, m \geq N \Rightarrow\left\|x_{n}-x_{m}\right\|^{2} \leq \epsilon^{2}
$$

It follows from definition (79) that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence in \mathcal{H}. Since \mathcal{H} is a Hilbert space, it is also a complete metric space. So $\left(x_{n}\right)_{n \geq 1}$ has a limit in \mathcal{H}. There exists $x^{*} \in \mathcal{H}$, such that $x_{n} \rightarrow x^{* 15}$.
6. From 5., we have $x_{n} \rightarrow x^{*}$, while $\left(x_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{C}. Since by assumption, \mathcal{C} is a closed subset of \mathcal{H}, using exercise (13) [4.], we conclude that $x^{*} \in \mathcal{C}$.
${ }^{15}$ Convergence relative to the norm topology, so $x_{n} \xrightarrow{\mathcal{T}_{\langle\langle,\rangle}} x^{*}$.
7. Let $x, y \in \mathcal{H}$. From exercise (17), we have:

$$
\begin{aligned}
\|x\| & \leq\|x-y\|+\|y\| \\
\|y\| & \leq\|x-y\|+\|x\|
\end{aligned}
$$

where we have used the fact that $\|x-y\|=\|y-x\|$. Hence:

$$
-\|x-y\| \leq\|x\|-\|y\| \leq\|x-y\|
$$

or equivalently $|\|x\|-\|y\|| \leq\|x-y\|$.
8. For all $n \geq 1$, from 7., we have:

$$
\left|\left\|x_{n}-x_{0}\right\|-\left\|x^{*}-x_{0}\right\|\right| \leq\left\|x^{*}-x_{n}\right\|
$$

Since $x_{n} \rightarrow x^{*},\left\|x^{*}-x_{n}\right\| \rightarrow 0$, and so $\left\|x_{n}-x_{0}\right\| \rightarrow\left\|x^{*}-x_{0}\right\|$.
9. By construction, $\left(x_{n}\right)_{n \geq 1}$ is such that $\left\|x_{n}-x_{0}\right\| \rightarrow \delta_{\text {min }}$. However, from 8., $\left\|x_{n}-x_{0}\right\| \rightarrow\left\|x^{*}-x_{0}\right\|$. So $\left\|x^{*}-x_{0}\right\|=\delta_{\text {min }}$. Since $x^{*} \in \mathcal{C}$, we have found $x^{*} \in \mathcal{C}$, such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

10. Suppose y^{*} is another element of \mathcal{C}, such that:

$$
\left\|y^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{C}\right\}
$$

Applying (6) to $x=x^{*}-x_{0}$ and $y=y^{*}-x_{0}$, we obtain:

$$
\left\|x^{*}-y^{*}\right\|^{2}=2\left\|x^{*}-x_{0}\right\|^{2}+2\left\|y^{*}-x_{0}\right\|^{2}-4\left\|\frac{x^{*}+y^{*}}{2}-x_{0}\right\|^{2}
$$

Since \mathcal{C} is convex and x^{*}, y^{*} are elements of $\mathcal{C},\left(x^{*}+y^{*}\right) / 2$ is also an element of \mathcal{C}. It follows that:

$$
\delta_{\min } \leq\left\|\frac{x^{*}+y^{*}}{2}-x_{0}\right\|
$$

and finally $\left\|x^{*}-y^{*}\right\|^{2} \leq 2\left\|x^{*}-x_{0}\right\|^{2}+2\left\|y^{*}-x_{0}\right\|^{2}-4 \delta_{\text {min }}^{2}$.
11. Since $\delta_{\min }=\left\|x^{*}-x_{0}\right\|=\left\|y^{*}-x_{0}\right\|$, we see from 10. that $\left\|x^{*}-y^{*}\right\|=0$, and finally $x^{*}=y^{*}$. This proves theorem (52).

Exercise 21

Exercise 22.

1. For all $y \in \mathcal{G},\langle 0, y\rangle=0 .\langle 0, y\rangle=0$. So $0 \in \mathcal{G}^{\perp}$ and in particular $\mathcal{G}^{\perp} \neq \emptyset$. Let $x_{1}, x_{2} \in \mathcal{G}^{\perp}$ and $\alpha \in \mathbf{K}$. For all $y \in \mathcal{G}$, we have $\left\langle x_{1}, y\right\rangle=0$ and $\left\langle x_{2}, y\right\rangle=0$. Hence:

$$
\left\langle x_{1}+\alpha x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\alpha\left\langle x_{2}, y\right\rangle=0
$$

This being true for all $y \in \mathcal{G}, x_{1}+\alpha x_{2} \in \mathcal{G}^{\perp}$. We conclude that \mathcal{G}^{\perp} is a linear sub-space of \mathcal{H}. Note that no assumption was made, as to whether \mathcal{G} is itself a linear sub-space or not.
2. Given $y \in \mathcal{H}$, let $\phi_{y}: \mathcal{H} \rightarrow \mathbf{K}$ be defined by $\phi_{y}(x)=\langle x, y\rangle$. From the Cauchy-Schwarz inequality of theorem (50), if $x_{1}, x_{2} \in \mathcal{H}$, we have $\left|\phi_{y}\left(x_{1}\right)-\phi_{y}\left(x_{2}\right)\right|=\left|\left\langle x_{1}-x_{2}, y\right\rangle\right| \leq\|y\| \cdot\left\|x_{1}-x_{2}\right\|$ or equivalently $d_{\mathbf{K}}\left(\phi_{y}\left(x_{1}\right), \phi_{y}\left(x_{2}\right)\right) \leq\|y\| . d_{\langle\cdot, \cdot\rangle}\left(x_{1}, x_{2}\right)$, where $d_{\mathbf{K}}$ is the usual metric on \mathbf{K}. It follows that $\phi_{y}: \mathcal{H} \rightarrow \mathbf{K}$ is a continuous map, with respect to the norm topology on \mathcal{H}, and the usual topology on \mathbf{K}.
3. Suppose $x \in \mathcal{G}^{\perp}$. For all $y \in \mathcal{G}$, we have $\langle x, y\rangle=0=\phi_{y}(x)$. So $x \in \cap_{y \in \mathcal{G}} \phi_{y}^{-1}(\{0\})$. Conversely, if $x \in \cap_{y \in \mathcal{G}} \phi_{y}^{-1}(\{0\})$, then for all $y \in \mathcal{G}$, we have $\phi_{y}(x)=0=\langle x, y\rangle$, and therefore $x \in \mathcal{G}^{\perp}$. This proves that $\mathcal{G}^{\perp}=\cap_{y \in \mathcal{G}} \phi_{y}^{-1}(\{0\})$.
4. The set $\{0\}$ is a closed subset of \mathbf{K}. Since $\phi_{y}: \mathcal{H} \rightarrow \mathbf{K}$ is a continuous map for all $y \in \mathcal{H}$, the inverse image $\phi_{y}^{-1}(\{0\})$ is a closed subset of \mathcal{H}. From 3 ., \mathcal{G}^{\perp} being an arbitrary intersection of closed subsets of \mathcal{H}, we conclude that \mathcal{G}^{\perp} is itself a closed subset of \mathcal{H}.
5. $\emptyset^{\perp} \subseteq \mathcal{H}$ and $\{0\}^{\perp} \subseteq \mathcal{H}$ are obviously true. Furthermore, a statement such that $[\forall y \in \emptyset,\langle x, y\rangle=0]$ is also true for any $x \in \mathcal{H}$. So $\mathcal{H} \subseteq \emptyset^{\perp}$. Moreover, for all $x \in \mathcal{H},\langle x, 0\rangle=0$, i.e. $x \in\{0\}^{\perp}$. So $\mathcal{H} \subseteq\{0\}^{\perp}$. We have proved that $\mathcal{H}=\emptyset^{\perp}=\{0\}^{\perp}$.
6. For all $y \in \mathcal{H},\langle 0, y\rangle=0$. So $\{0\} \subseteq \mathcal{H}^{\perp}$. Conversely, if $x \in \mathcal{H}^{\perp}$, then $\langle x, x\rangle=0$ and therefore $x=0$. So $\mathcal{H}^{\perp} \subseteq\{0\}$.

Exercise 22

Exercise 23.

1. \mathcal{M} being a linear sub-space of \mathcal{H}, it has at least one element, namely 0 . So $\mathcal{M} \neq \emptyset$. Furthermore, for all $x, y \in \mathcal{M}$ and $\alpha, \beta \in \mathbf{K}$, we have $\alpha x+\beta y \in \mathcal{M}$. In particular, for all $t \in[0,1]$, $t x+(1-t) y \in \mathcal{M}$. From definition (85), it follows that \mathcal{M} is also a convex subset of \mathcal{H}. Having assumed \mathcal{M} to be closed, it is therefore a non-empty, closed and convex subset of \mathcal{H}. Applying theorem (52), there exists $x^{*} \in \mathcal{M}$ such that:

$$
\left\|x^{*}-x_{0}\right\|=\inf \left\{\left\|x-x_{0}\right\|: x \in \mathcal{M}\right\}
$$

2. Let $y^{*}=x_{0}-x^{*}$. Since $x^{*} \in \mathcal{M}$, for all $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$, $x^{*}+\alpha y$ is also an element of \mathcal{M}. It follows that:

$$
\left\|x^{*}-x_{0}\right\| \leq\left\|x^{*}+\alpha y-x_{0}\right\|
$$

or equivalently:

$$
\begin{equation*}
\left\|y^{*}\right\|^{2} \leq\left\|y^{*}-\alpha y\right\|^{2} \tag{9}
\end{equation*}
$$

3. Let $y \in \mathcal{M}$ and $\alpha \in \mathbf{K}$. We have:

$$
\left\|y^{*}-\alpha y\right\|^{2}=\left\|y^{*}\right\|^{2}-\alpha\left\langle y, y^{*}\right\rangle-\overline{\alpha\left\langle y, y^{*}\right\rangle}+|\alpha|^{2}\|y\|^{2}
$$

Hence, using (9), we obtain:

$$
\begin{equation*}
0 \leq-\alpha\left\langle y, y^{*}\right\rangle-\overline{\alpha\left\langle y, y^{*}\right\rangle}+|\alpha|^{2}\|y\|^{2} \tag{10}
\end{equation*}
$$

4. Given $y \in \mathcal{M} \backslash\{0\}$, take $\alpha=\overline{\left\langle y, y^{*}\right\rangle} /\|y\|^{2}$ in (10). We obtain:

$$
0 \leq-\frac{\left|\left\langle y, y^{*}\right\rangle\right|^{2}}{\|y\|^{2}}
$$

5. It follows from 4. that $\left|\left\langle y, y^{*}\right\rangle\right|^{2} \leq 0$ for all $y \in \mathcal{M} \backslash\{0\}$. So $\left\langle y^{*}, y\right\rangle=\left\langle y, y^{*}\right\rangle=0$, for all $y \in \mathcal{M} \backslash\{0\}$. Since $\left\langle y^{*}, 0\right\rangle=0$, we in fact have $\left\langle y^{*}, y\right\rangle=0$ for all $y \in \mathcal{M}$, and we see that $y^{*} \in \mathcal{M}^{\perp}$. So $x^{*} \in \mathcal{M}, y^{*} \in \mathcal{M}^{\perp}$, and since $y^{*}=x_{0}-x^{*}$, we conclude that $x_{0}=x^{*}+y^{*}$.
6. \mathcal{M} and \mathcal{M}^{\perp} being linear sub-spaces of $\mathcal{H}, 0$ is an element of both \mathcal{M} and \mathcal{M}^{\perp}. So $\{0\} \subseteq \mathcal{M} \cap \mathcal{M}^{\perp}$. Conversely, suppose
$x \in \mathcal{M} \cap \mathcal{M}^{\perp}$. From $x \in \mathcal{M}^{\perp}$, we have $\langle x, y\rangle=0$ for all $y \in \mathcal{M}$. From $x \in \mathcal{M}$, we see in particular that $\langle x, x\rangle=0$. From (v) of definition (81), we conclude that $x=0$. So $\mathcal{M} \cap \mathcal{M}^{\perp}=\{0\}$.
7. Suppose there exist $\bar{x} \in \mathcal{M}$ and $\bar{y} \in \mathcal{M}^{\perp}$, such that $x_{0}=\bar{x}+\bar{y}$. Then $x^{*}+y^{*}=\bar{x}+\bar{y}$ and consequently $x^{*}-\bar{x}=\bar{y}-y^{*}$, while $x^{*}-\bar{x} \in \mathcal{M}$ and $\bar{y}-y^{*} \in \mathcal{M}^{\perp}$. Since $\mathcal{M} \cap \mathcal{M}^{\perp}=\{0\}$, we conclude that $x^{*}=\bar{x}$ and $y^{*}=\bar{y}$. So $x^{*} \in \mathcal{M}$ and $y^{*} \in \mathcal{M}^{\perp}$ such that $x_{0}=x^{*}+y^{*}$ are unique. This proves theorem (53).

Exercise 23

Exercise 24.

1. Let $\lambda: \mathcal{H} \rightarrow \mathbf{K}$ be a linear functional, which is continuous at $x_{0} \in \mathcal{H}^{16}$. Given an open set V in \mathbf{K} containing $\lambda\left(x_{0}\right)$, there exists an open set U in \mathcal{H} containing x_{0}, such that $f(U) \subseteq V$. Since the two topologies on \mathcal{H} and \mathbf{K} are metric, this is easily shown to be equivalent to the property that for all $\epsilon>0$, there exists $\delta>0$, such that:

$$
\forall x \in \mathcal{H},\left\|x-x_{0}\right\|<\delta \Rightarrow\left|\lambda(x)-\lambda\left(x_{0}\right)\right|<\epsilon
$$

In particular, taking $\epsilon=1$ and some $\eta>0$ strictly smaller than the associated δ, we have:

$$
\forall x \in \mathcal{H},\left\|x-x_{0}\right\| \leq \eta \Rightarrow\left|\lambda(x)-\lambda\left(x_{0}\right)\right| \leq 1
$$

Hence, given $x \in \mathcal{H}, x \neq 0$, we have:

$$
|\lambda(\eta x /\|x\|)|=\left|\lambda\left(x_{0}+\eta x /\|x\|\right)-\lambda\left(x_{0}\right)\right| \leq 1
$$

[^4]2. If λ is continuous at some $x_{0} \in \mathcal{H}$, from 1 ., there exists $\eta>0$ such that $|\lambda(\eta x /\|x\|)| \leq 1$ for all $x \in \mathcal{H} \backslash\{0\}$. So $|\lambda(x)| \leq\|x\| / \eta$ for all $x \in \mathcal{H} \backslash\{0\}$, which is obviously still valid if $x=0$. We have found $M=1 / \eta \in \mathbf{R}^{+}$, such that:
\[

$$
\begin{equation*}
\forall x \in \mathcal{H},|\lambda(x)| \leq M\|x\| \tag{11}
\end{equation*}
$$

\]

3. Suppose $\lambda: \mathcal{H} \rightarrow \mathbf{K}$ is a linear functional, such that (11) holds for some $M \in \mathbf{R}^{+}$. Then for all $x_{1}, x_{2} \in \mathcal{H}$, we have:

$$
\left|\lambda\left(x_{1}\right)-\lambda\left(x_{2}\right)\right|=\left|\lambda\left(x_{1}-x_{2}\right)\right| \leq M\left\|x_{1}-x_{2}\right\|
$$

So λ is continuous (everywhere).

Exercise 25.

1. Let $x_{0} \in \mathcal{H}$ such that $\lambda\left(x_{0}\right) \neq 0$. Then $x_{0} \notin \mathcal{M}=\lambda^{-1}(\{0\})$.
2. $\mathcal{M}=\lambda^{-1}(\{0\})$ is a linear sub-space of \mathcal{H}. Indeed, it is not empty $(\lambda(0)=0)$, and if $\lambda\left(x_{1}\right)=\lambda\left(x_{2}\right)=0$ and $\alpha \in \mathbf{K}$, then:

$$
\lambda\left(x_{1}+\alpha x_{2}\right)=\lambda\left(x_{1}\right)+\alpha \lambda\left(x_{2}\right)=0
$$

Furthermore, λ being a bounded linear functional, is continuous, and $\mathcal{M}=\lambda^{-1}(\{0\})$ is therefore a closed subset of \mathcal{H}. So \mathcal{M} is a closed linear sub-space of \mathcal{H}. From theorem (53), there exists $x^{*} \in \mathcal{M}, y^{*} \in \mathcal{M}^{\perp}$, such that $x_{0}=x^{*}+y^{*}$.
3. Since $x^{*} \in \mathcal{M}, \lambda\left(y^{*}\right)=\lambda\left(x_{0}\right)$ and therefore $\lambda\left(y^{*}\right) \neq 0$. In particular, $y^{*} \neq 0$. Taking $z=y^{*} /\left\|y^{*}\right\|$, we have found $z \in \mathcal{M}^{\perp}$, such that $\|z\|=1$.
4. Let $\alpha \in \mathbf{K} \backslash\{0\}$. We have $\langle z, \alpha z\rangle / \bar{\alpha}=\langle z,(\alpha z) / \alpha\rangle=\langle z, z\rangle=1$. It follows that $\lambda(x)\langle z, \alpha z\rangle / \bar{\alpha}=\lambda(x)$ for all $x \in \mathcal{H}$.
5. In order to have $\lambda(x)=\langle x, \alpha z\rangle$ for all $x \in \mathcal{H}$, we need:

$$
0=\lambda(x)-\langle x, \alpha z\rangle=\lambda(x)\langle z, \alpha z\rangle / \bar{\alpha}-\langle x, \alpha z\rangle=\langle\lambda(x) z / \bar{\alpha}-x, \alpha z\rangle
$$

Since $z \in \mathcal{M}^{\perp}$, it is sufficient to choose $\alpha \in \mathbf{K} \backslash\{0\}$, with:

$$
\begin{equation*}
\forall x \in \mathcal{H}, \frac{\lambda(x) z}{\bar{\alpha}}-x \in \mathcal{M} \tag{12}
\end{equation*}
$$

6. Since $\mathcal{M}=\lambda^{-1}(\{0\})$, property (12) is equivalent to:

$$
0=\lambda\left(\frac{\lambda(x) z}{\bar{\alpha}}-x\right)=\lambda(x) \lambda(z) / \bar{\alpha}-\lambda(x)
$$

for all $x \in \mathcal{H}$, which is satisfied for $\alpha=\overline{\lambda(z)}$, provided $\lambda(z) \neq 0$. But if $\lambda(z)=0$, then $z \in \mathcal{M}$. So $z \in \mathcal{M} \cap \mathcal{M}^{\perp}$ and $\langle z, z\rangle=0$, contradicting the fact that $\|z\|=1$. Hence, if we take $\alpha=\overline{\lambda(z)}$, then condition (12) is satisfied, and therefore $\lambda(x)=\langle x, \alpha z\rangle$ for all $x \in \mathcal{H}$. Taking $y=\alpha z=\overline{\lambda(z)} z$, we have found $y \in \mathcal{H}$, with:

$$
\begin{equation*}
\forall x \in \mathcal{H}, \lambda(x)=\langle x, y\rangle \tag{13}
\end{equation*}
$$

In case one has any doubt about (13), one can quickly check:

$$
\begin{aligned}
\lambda(x)-\langle x, \overline{\lambda(z)} z\rangle & =\lambda(x)\langle z, z\rangle-\lambda(z)\langle x, z\rangle \\
& =\langle\lambda(x) z-\lambda(z) x, z\rangle \\
& =0
\end{aligned}
$$

the last equality arising from $\lambda(x) z-\lambda(z) x \in \mathcal{M}$ and $z \in \mathcal{M}^{\perp}$.
7. Suppose $\bar{y} \in \mathcal{H}$ is such that $\lambda(x)=\langle x, \bar{y}\rangle$ for all $x \in \mathcal{H}$. Then $\langle x, y-\bar{y}\rangle=0$ for all $x \in \mathcal{H}$, and in particular $\|y-\bar{y}\|^{2}=0$, i.e. $\bar{y}=y$. So $y \in \mathcal{H}$ satisfying (13) is unique. This proves theorem (54) ${ }^{17}$.

Exercise 25
${ }^{17}$ The case $\lambda=0$ is easy to handle.

Exercise 26.

1. Suppose $f=g \mu$-a.s. For all $h \in[f]$, we have $h=f \mu$-a.s. and therefore $h=g \mu$-a.s., i.e. $h \in[g]$. So $[f] \subseteq[g]$, and similarly $[g] \subseteq[f]$. Conversely, if $[f]=[g]$, then in particular $f \in[g]$ and therefore $f=g \mu$-a.s. We have proved that $f=g \mu$-a.s. is equivalent to $[f]=[g]$.
2. Suppose $[f]=\left[f^{\prime}\right]$ and $[g]=\left[g^{\prime}\right]$. Then $f=f^{\prime} \mu$-a.s. and $g=g^{\prime}$ μ-a.s. So $f+g=f^{\prime}+g^{\prime} \mu$-a.s. and $[f+g]=\left[f^{\prime}+g^{\prime}\right]$.
3. \oplus is defined as $[f] \oplus[g]=[f+g]$. This definition may not be legitimate, as $[f] \oplus[g]$ is defined in terms of particular representatives f and g of the equivalence classes $[f]$ and $[g]$. Since such representative are normally far from being unique, this may lead to different values of $[f+g]$, as f and g range over all possible choices. However, as shown in $2 .,[f+g]$ is in fact independent of the particular choice of $f \in[f]$ and $g \in[g]$. So $[f] \oplus[g]$ is unambiguously defined, i.e. the operator \oplus is well-defined.
4. Let $\alpha \in \mathbf{K}$. If $[f]=\left[f^{\prime}\right]$, then $f=f^{\prime} \mu$-a.s. and $\alpha f=\alpha f^{\prime}$ μ-a.s. So $[\alpha f]=\left[\alpha f^{\prime}\right]$. It follows that $[\alpha f]$ is independent of the particular choice of $f \in[f]$. So $\alpha \otimes[f]$ is unambiguously defined, i.e. the operator \otimes is well-defined.
5. For all $[f],[g],[h] \in \mathcal{H}$ and $\alpha, \beta \in \mathbf{K}$, we have:

$$
\begin{aligned}
(i) & {[0] \oplus[f]=[0+f]=[f] } \\
(i i) & {[-f] \oplus[f]=[-f+f]=[0] } \\
(i i i) & {[f] \oplus([g] \oplus[h])=[f+g+h]=([f] \oplus[g]) \oplus[h] } \\
(i v) & {[f] \oplus[g]=[f+g]=[g] \oplus[f] } \\
(v) & 1 \otimes[f]=[1 . f]=[f] \\
(v i) & \alpha \otimes(\beta \otimes[f])=[\alpha \beta f]=(\alpha \beta) \otimes[f] \\
(v i i) & (\alpha+\beta) \otimes[f]=[\alpha f+\beta f]=(\alpha \otimes[f]) \oplus(\beta \otimes[f]) \\
(v i i i) & \alpha \otimes([f] \oplus[g])=[\alpha f+\alpha g]=(\alpha \otimes[f]) \oplus(\alpha \otimes[g])
\end{aligned}
$$

Exercise 26

Exercise 27.

1. Suppose $[f]=\left[f^{\prime}\right]$ and $[g]=\left[g^{\prime}\right]$. Then $f=f^{\prime} \mu$-a.s. and $g=g^{\prime}$ μ-a.s. So $f \bar{g}=f^{\prime} \bar{g}^{\prime} \mu$-a.s. and therefore:

$$
\begin{equation*}
\int f \bar{g} d \mu=\int f^{\prime} \bar{g}^{\prime} d \mu \tag{14}
\end{equation*}
$$

It follows that (14) is independent of the of choice of $f \in[f]$ and $g \in[g]$. We conclude that $\langle[f],[g]\rangle_{\mathcal{H}}$ is unambiguously defined, i.e. $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is well-defined.
2. Let $[f],[g] \in \mathcal{H}, \alpha \in \mathbf{K}$ and $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{\mathcal{H}}$. We have:

$$
\begin{equation*}
\langle[f],[g]\rangle=\int f \bar{g} d \mu=\overline{\langle[g],[f]\rangle} \tag{i}
\end{equation*}
$$

$$
\begin{align*}
& \langle[f] \oplus[g],[h]\rangle=\int(f+g) \bar{h} d \mu=\langle[f],[h]\rangle+\langle[g],[h]\rangle \tag{ii}\\
& \langle\alpha \otimes[f],[g]\rangle=\int(\alpha f) \bar{g} d \mu=\alpha\langle[f],[g]\rangle \tag{iii}
\end{align*}
$$

$$
\begin{equation*}
\langle[f],[f]\rangle=\int|f|^{2} d \mu \in \mathbf{R}^{+} \tag{iv}
\end{equation*}
$$

and finally, $\langle[f],[f]\rangle=0$ is equivalent to $\int|f|^{2} d \mu=0$, which is in turn equivalent to $f=0 \mu$-a.s., i.e. $[f]=[0]$. From definition (81), we conclude that $\langle\cdot, \cdot\rangle$ is an inner-product on \mathcal{H}.
3. \mathcal{H} is a \mathbf{K}-vector space, and $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ is an inner-product on \mathcal{H}. From definition (83), to show that $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is a Hilbert space over \mathbf{K}, we need to prove that \mathcal{H} is in fact complete with respect to the metric induced by the inner-product. Let $\left(\left[f_{n}\right]\right)_{n \geq 1}$ be a Cauchy sequence in \mathcal{H}. For all $\epsilon>0$, there exists $n_{0} \geq 1$ with:

$$
n, m \geq n_{0} \Rightarrow\left\|\left[f_{n}\right]-\left[f_{m}\right]\right\|_{\mathcal{H}} \leq \epsilon^{18}
$$

However, for all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\|[f]\|_{\mathcal{H}}=\left(\langle[f],[f]\rangle_{\mathcal{H}}\right)^{\frac{1}{2}}=\left(\int|f|^{2} d \mu\right)^{\frac{1}{2}}=\|f\|_{2}
$$

${ }^{18}\left[f_{n}\right]-\left[f_{m}\right]$ is a light notation to indicate $\left[f_{n}\right] \oplus\left[-f_{m}\right]$.

It follows that $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$. From theorem (46), there exists $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, such that $f_{n} \rightarrow f$ in L^{2}. In other words, for all $\epsilon>0$, there exists $n_{0} \geq 1$, such that:

$$
n \geq n_{0} \Rightarrow\left\|f_{n}-f\right\|_{2} \leq \epsilon
$$

Since $\left\|f_{n}-f\right\|_{2}=\left\|\left[f_{n}\right]-[f]\right\|_{\mathcal{H}}$, we conclude that $\left[f_{n}\right] \rightarrow[f]$ with respect to the norm topology on \mathcal{H}. Having found a limit for the Cauchy sequence $\left(\left[f_{n}\right]\right)_{n \geq 1}$, we have proved that \mathcal{H} is complete, and $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is finally a Hilbert space over \mathbf{K}.
4. $\langle f, g\rangle=\int f \bar{g} d \mu$ is not an inner-product on $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, as property (v) of definition (81) fails to be satisfied. If $\langle f, f\rangle=0$, then we know for sure that $f=0 \mu$-a.s. There is no reason why f should be 0 everywhere. This is the very reason why in this exercise, we go through so much trouble considering the quotient set $\mathcal{H}=\left(L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)\right)_{\mid \mathcal{R}}$, where \mathcal{R} is the μ-a.s. equivalence relation on $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$.

Exercise 27

Exercise 28.

1. Since $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$ is not a Hilbert space, we cannot use exercise (24) in its literal form. However, most of what we did then, can be reproduced here. Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional. The open ball $B(0,1)=\{z \in \mathbf{K}:|z|<1\}$ being open in \mathbf{K}, the inverse image $\lambda^{-1}(B(0,1))$ is an open subset of $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$. Since $0 \in \lambda^{-1}(B(0,1))$, there exists $\delta>0$, such that $B(0, \delta) \subseteq \lambda^{-1}(B(0,1))$, where $B(0, \delta)$ is the open ball in $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$. Taking an arbitrary $\eta>0$, strictly smaller than δ, for all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, we have:

$$
\|f\|_{2} \leq \eta \Rightarrow|\lambda(f)| \leq 1
$$

It follows that $\left|\lambda\left(\eta f /\|f\|_{2}\right)\right| \leq 1$ for all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu), f \neq 0$, and finally:

$$
\begin{equation*}
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu),|\lambda(f)| \leq \frac{1}{\eta}\|f\|_{2} \tag{15}
\end{equation*}
$$

2. If $[f]=[g]$, then $f-g=0 \mu$-a.s. and $\|f-g\|_{2}=0$. It follows from (15) that $\lambda(f)=\lambda(g)$.
3. $\Lambda: \mathcal{H} \rightarrow \mathbf{K}$ is defined by $\Lambda([f])=\lambda(f)$. Since $\lambda(f)$ is independent of the particular choice of $f \in[f], \Lambda([f])$ is unambiguously defined, i.e. Λ is well-defined. For all $[f],[g] \in \mathcal{H}$ and $\alpha \in \mathbf{K}$:
$\Lambda([f] \oplus(\alpha \otimes[g]))=\Lambda([f+\alpha g])=\lambda(f)+\alpha \lambda(g)=\Lambda([f])+\alpha \Lambda([g])$
So Λ is a linear functional on \mathcal{H}. Furthermore, since we have $\|[f]\|_{\mathcal{H}}=\|f\|_{2}$ for all $f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$, we obtain immediately from (15) that:

$$
\forall[f] \in \mathcal{H},|\Lambda([f])| \leq \frac{1}{\eta}\|[f]\|_{\mathcal{H}}
$$

and we conclude from definition (88) that Λ is a well-defined bounded linear functional on \mathcal{H}.
4. Let $\lambda: L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu) \rightarrow \mathbf{K}$ be a continuous linear functional. Then from 3., $\Lambda: \mathcal{H} \rightarrow \mathbf{K}$ defined by $\Lambda([f])=\lambda(f)$ is a
bounded linear functional on the Hilbert space \mathcal{H}. Applying theorem (54), there exists $[g] \in \mathcal{H}$, such that:

$$
\forall[f] \in \mathcal{H}, \Lambda([f])=\langle[f],[g]\rangle_{\mathcal{H}}
$$

It follows that:

$$
\forall f \in L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu), \lambda(f)=\int f \bar{g} d \mu
$$

This proves theorem (55).
Exercise 28

[^0]: ${ }^{1}$ Norm vector spaces are introduced later in these tutorials.

[^1]: ${ }^{9}$ Both with respect to \mathcal{T}_{E} and $\mathcal{T}_{\mathbf{R}}{ }^{n}$.
 ${ }^{10}$ Tychonoff theorem will hopefully be the subject of some future tutorial :-)

[^2]: ${ }^{11}$ If uneasy with $K=\emptyset$ and $\phi_{\mid K}=\emptyset$, consider the case separately.

[^3]: ${ }^{12}$ to a limit belonging to that same metric space...

[^4]: ${ }^{16}$ Continuity at a given point is defined in what follows.

