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10. Bounded Linear Functionals in L2

In the following, (Ω,F , μ) is a measure space.

Definition 78 We call subsequence of a sequence (xn)n≥1, any
sequence of the form (xφ(n))n≥1 where φ : N∗ → N∗ is a strictly
increasing map.

Exercise 1. Let (E, d) be a metric space, with metric topology T .
Let (xn)n≥1 be a sequence in E. For all n ≥ 1, let Fn be the closure
of the set {xk : k ≥ n}.

1. Show that for all x ∈ E, xn
T→ x is equivalent to:

∀ε > 0 , ∃n0 ≥ 1 , n ≥ n0 ⇒ d(xn, x) ≤ ε

2. Show that (Fn)n≥1 is a decreasing sequence of closed sets in E.

3. Show that if Fn ↓ ∅, then (F cn)n≥1 is an open covering of E.
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4. Show that if (E, T ) is compact then ∩+∞
n=1Fn �= ∅.

5. Show that if (E, T ) is compact, there exists x ∈ E such that for
all n ≥ 1 and ε > 0, we have B(x, ε) ∩ {xk , k ≥ n} �= ∅.

6. By induction, construct a subsequence (xnp)p≥1 of (xn)n≥1 such
that xnp ∈ B(x, 1/p) for all p ≥ 1.

7. Conclude that if (E, T ) is compact, any sequence (xn)n≥1 in E
has a convergent subsequence.

Exercise 2. Let (E, d) be a metric space, with metric topology T .
We assume that any sequence (xn)n≥1 in E has a convergent subse-
quence. Let (Vi)i∈I be an open covering of E. For x ∈ E, let:

r(x)
�
= sup{r > 0 : B(x, r) ⊆ Vi , for some i ∈ I}

1. Show that ∀x ∈ E, ∃i ∈ I, ∃r > 0, such that B(x, r) ⊆ Vi.
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2. Show that ∀x ∈ E, r(x) > 0.

Exercise 3. Further to ex. (2), suppose infx∈E r(x) = 0.

1. Show that for all n ≥ 1, there is xn ∈ E such that r(xn) < 1/n.

2. Extract a subsequence (xnk
)k≥1 of (xn)n≥1 converging to some

x∗ ∈ E. Let r∗ > 0 and i ∈ I be such that B(x∗, r∗) ⊆ Vi. Show
that we can find some k0 ≥ 1, such that d(x∗, xnk0

) < r∗/2 and
r(xnk0

) ≤ r∗/4.

3. Show that d(x∗, xnk0
) < r∗/2 implies that B(xnk0

, r∗/2) ⊆ Vi.
Show that this contradicts r(xnk0

) ≤ r∗/4, and conclude that
infx∈E r(x) > 0.

Exercise 4. Further to ex. (3), Let r0 with 0 < r0 < infx∈E r(x).
Suppose that E cannot be covered by a finite number of open balls
with radius r0.
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1. Show the existence of a sequence (xn)n≥1 in E, such that for all
n ≥ 1, xn+1 �∈ B(x1, r0) ∪ . . . ∪B(xn, r0).

2. Show that for all n > m we have d(xn, xm) ≥ r0.

3. Show that (xn)n≥1 cannot have a convergent subsequence.

4. Conclude that there exists a finite subset {x1, . . . , xn} of E such
that E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Show that for all x ∈ E, we have B(x, r0) ⊆ Vi for some i ∈ I.

6. Conclude that (E, T ) is compact.

7. Prove the following:

Theorem 47 A metrizable topological space (E, T ) is compact, if
and only if for every sequence (xn)n≥1 in E, there exists a subsequence

(xnk
)k≥1 of (xn)n≥1 and some x ∈ E, such that xnk

T→ x.
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Exercise 5. Let a, b ∈ R , a < b and (xn)n≥1 be a sequence in ]a, b[.

1. Show that (xn)n≥1 has a convergent subsequence.

2. Can we conclude that ]a, b[ is a compact subset of R?

Exercise 6. Let E = [−M,M ] × . . .× [−M,M ] ⊆ Rn, where n ≥ 1
and M ∈ R+. Let TRn be the usual product topology on Rn, and
TE = (TRn)|E be the induced topology on E.

1. Let (xp)p≥1 be a sequence in E. Let x ∈ E. Show that xp
TE→ x

is equivalent to xp
TRn→ x.

2. Propose a metric on Rn, inducing the topology TRn .

3. Let (xp)p≥1 be a sequence in Rn. Let x ∈ Rn. Show that

xp
TRn→ x if and only if, xip

TR→ xi for all i ∈ Nn.
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Exercise 7. Further to ex. (6), suppose (xp)p≥1 is a sequence in E.

1. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, such

that x1
φ(p)

T[−M,M]→ x1 for some x1 ∈ [−M,M ].

2. Explain why the above convergence is equivalent to x1
φ(p)

TR→ x1.

3. Suppose that 1 ≤ k ≤ n − 1 and (yp)p≥1 = (xφ(p))p≥1 is a
subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k , xjφ(p)

TR→ xj for some xj ∈ [−M,M ]

Show the existence of a subsequence (yψ(p))p≥1 of (yp)p≥1 such

that yk+1
ψ(p)

TR→ xk+1 for some xk+1 ∈ [−M,M ].

4. Show that φ ◦ ψ : N∗ → N∗ is strictly increasing.
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5. Show that (xφ◦ψ(p))p≥1 is a subsequence of (xp)p≥1 such that:

∀j = 1, . . . , k + 1 , xjφ◦ψ(p)

TR→ xj ∈ [−M,M ]

6. Show the existence of a subsequence (xφ(p))p≥1 of (xp)p≥1, and

x ∈ E, such that xφ(p)
TE→ x

7. Show that (E, TE) is a compact topological space.

Exercise 8. Let A be a closed subset of Rn, n ≥ 1, which is bounded
with respect to the usual metric of Rn.

1. Show that A ⊆ E = [−M,M ]×. . .×[−M,M ], for some M ∈ R+.

2. Show from E \A = E ∩Ac that A is closed in E.

3. Show (A, (TRn)|A) is a compact topological space.
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4. Conversely, let A is a compact subset of Rn. Show that A is
closed and bounded.

Theorem 48 A subset of Rn is compact if and only if it is closed
and bounded with respect to its usual metric.

Exercise 9. Let n ≥ 1. Consider the map:

φ :
{

Cn → R2n

(a1 + ib1, . . . , an + ibn) → (a1, b1, . . . , an, bn)

1. Recall the expressions of the usual metrics dCn and dR2n of Cn

and R2n respectively.

2. Show that for all z, z′ ∈ Cn, dCn(z, z′) = dR2n(φ(z), φ(z′)).

3. Show that φ is a homeomorphism from Cn to R2n.
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4. Show that a subset K of Cn is compact, if and only if φ(K) is
a compact subset of R2n.

5. Show that K is closed, if and only if φ(K) is closed.

6. Show that K is bounded, if and only if φ(K) is bounded.

7. Show that a subset K of Cn is compact, if and only if it is closed
and bounded with respect to its usual metric.

Definition 79 Let (E, d) be a metric space. A sequence (xn)n≥1 in
E is said to be a Cauchy sequence with respect to the metric d, if
and only if for all ε > 0, there exists n0 ≥ 1 such that:

n,m ≥ n0 ⇒ d(xn, xm) ≤ ε

Definition 80 We say that a metric space (E, d) is complete, if
and only if for any Cauchy sequence (xn)n≥1 in E, there exists x ∈ E
such that (xn)n≥1 converges to x.
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Exercise 10.

1. Explain why strictly speaking, given p ∈ [1,+∞], definition (77)
of Cauchy sequences in LpC(Ω,F , μ) is not a covered by defini-
tion (79).

2. Explain why LpC(Ω,F , μ) is not a complete metric space, despite
theorem (46) and definition (80).

Exercise 11. Let (zk)k≥1 be a Cauchy sequence in Cn, n ≥ 1, with
respect to the usual metric d(z, z′) = ‖z − z′‖, where:

‖z‖ �
=

√√√√ n∑
i=1

|zi|2

1. Show that the sequence (zk)k≥1 is bounded, i.e. that there exists
M ∈ R+ such that ‖zk‖ ≤M , for all k ≥ 1.
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2. Define B = {z ∈ Cn , ‖z‖ ≤ M}. Show that δ(B) < +∞, and
that B is closed in Cn.

3. Show the existence of a subsequence (zkp)p≥1 of (zk)k≥1 such

that zkp

TCn→ z for some z ∈ B.

4. Show that for all ε > 0, there exists p0 ≥ 1 and n0 ≥ 1 such
that d(z, zkp0

) ≤ ε/2 and:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2

5. Show that zk
TCn→ z.

6. Conclude that Cn is complete with respect to its usual metric.

7. For which theorem of Tutorial 9 was the completeness of C used?

Exercise 12. Let (xk)k≥1 be a sequence in Rn such that xk
TCn→ z,

for some z ∈ Cn.
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1. Show that z ∈ Rn.

2. Show that Rn is complete with respect to its usual metric.

Theorem 49 Cn and Rn are complete w.r. to their usual metrics.

Exercise 13. Let (E, d) be a metric space, with metric topology T .
Let F ⊆ E, and F̄ denote the closure of F .

1. Explain why, for all x ∈ F̄ and n ≥ 1, we have F∩B(x, 1/n) �= ∅.

2. Show that for all x ∈ F̄ , there exists a sequence (xn)n≥1 in F ,
such that xn

T→ x.

3. Show conversely that if there is a sequence (xn)n≥1 in F with

xn
T→ x, then x ∈ F̄ .
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4. Show that F is closed if and only if for all sequence (xn)n≥1 in
F such that xn

T→ x for some x ∈ E, we have x ∈ F .

5. Explain why (F, T|F ) is metrizable.

6. Show that if F is complete with respect to the metric d|F×F ,
then F is closed in E.

7. Let dR̄ be a metric on R̄, inducing the usual topology TR̄. Show
that d′ = (dR̄)|R×R is a metric on R, inducing the topology TR.

8. Find a metric on [−1, 1] which induces its usual topology.

9. Show that {−1, 1} is not open in [−1, 1].

10. Show that {−∞,+∞} is not open in R̄.

11. Show that R is not closed in R̄.

12. Let dR be the usual metric of R. Show that d′ = (dR̄)|R×R

and dR induce the same topology on R, but that however, R

www.probability.net

http://www.probability.net


Tutorial 10: Bounded Linear Functionals in L2 14

is complete with respect to dR, whereas it cannot be complete
with respect to d′.

Definition 81 Let H be a K-vector space, where K = R or C. We
call inner-product on H, any map 〈·, ·〉 : H × H → K with the
following properties:

(i) ∀x, y ∈ H , 〈x, y〉 = 〈y, x〉
(ii) ∀x, y, z ∈ H , 〈x+ z, y〉 = 〈x, y〉 + 〈z, y〉

(iii) ∀x, y ∈ H, ∀α ∈ K , 〈αx, y〉 = α〈x, y〉
(iv) ∀x ∈ H , 〈x, x〉 ≥ 0
(v) ∀x ∈ H , (〈x, x〉 = 0 ⇔ x = 0)

where for all z ∈ C, z̄ denotes the complex conjugate of z. For all
x ∈ H, we call norm of x, denoted ‖x‖, the number defined by:

‖x‖ �
=
√
〈x, x〉
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Exercise 14. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all y ∈ H, the map x→ 〈x, y〉 is linear.

2. Show that for all x ∈ H, the map y → 〈x, y〉 is linear if K = R,
and conjugate-linear if K = C.

Exercise 15. Let 〈·, ·〉 be an inner-product on a K-vector space H.
Let x, y ∈ H. Let A = ‖x‖2, B = |〈x, y〉| and C = ‖y‖2. let α ∈ K
be such that |α| = 1 and:

B = α〈x, y〉

1. Show that A,B,C ∈ R+.

2. For all t ∈ R, show that 〈x− tαy, x− tαy〉 = A− 2tB + t2C.

3. Show that if C = 0 then B2 ≤ AC.
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4. Suppose that C �= 0. Show that P (t) = A − 2tB + t2C has a
minimal value which is in R+, and conclude that B2 ≤ AC.

5. Conclude with the following:

Theorem 50 (Cauchy-Schwarz’s inequality:second) Let H be
a K-vector space, where K = R or C, and 〈·, ·〉 be an inner-product
on H. Then, for all x, y ∈ H, we have:

|〈x, y〉| ≤ ‖x‖.‖y‖

Exercise 16. For all f, g ∈ L2
C(Ω,F , μ), we define:

〈f, g〉 �
=
∫

Ω

f ḡdμ

1. Use the first Cauchy-Schwarz inequality (42) to prove that for
all f, g ∈ L2

C(Ω,F , μ), we have f ḡ ∈ L1
C(Ω,F , μ). Conclude

that 〈f, g〉 is a well-defined complex number.

www.probability.net

http://www.probability.net


Tutorial 10: Bounded Linear Functionals in L2 17

2. Show that for all f ∈ L2
C(Ω,F , μ), we have ‖f‖2 =

√
〈f, f〉.

3. Make another use of the first Cauchy-Schwarz inequality to show
that for all f, g ∈ L2

C(Ω,F , μ), we have:

|〈f, g〉| ≤ ‖f‖2.‖g‖2 (1)

4. Go through definition (81), and indicate which of the properties
(i) − (v) fails to be satisfied by 〈·, ·〉. Conclude that 〈·, ·〉 is not
an inner-product on L2

C(Ω,F , μ), and therefore that inequal-
ity (*) is not a particular case of the second Cauchy-Schwarz
inequality (50).

5. Let f, g ∈ L2
C(Ω,F , μ). By considering

∫
(|f |+t|g|)2dμ for t ∈ R,

imitate the proof of the second Cauchy-Schwarz inequality to
show that: ∫

Ω

|fg|dμ ≤
(∫

Ω

|f |2dμ
) 1

2
(∫

Ω

|g|2dμ
) 1

2
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6. Let f, g : (Ω,F) → [0,+∞] non-negative and measurable. Show
that if

∫
f2dμ and

∫
g2dμ are finite, then f and g are μ-almost

surely equal to elements of L2
C(Ω,F , μ). Deduce from 5. a new

proof of the first Cauchy-Schwarz inequality:∫
Ω

fgdμ ≤
(∫

Ω

f2dμ

) 1
2
(∫

Ω

g2dμ

) 1
2

Exercise 17. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that for all x, y ∈ H, we have:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈x, y〉

2. Using the second Cauchy-Schwarz inequality (50), show that:

‖x+ y‖ ≤ ‖x‖ + ‖y‖

3. Show that d〈·,·〉(x, y) = ‖x− y‖ defines a metric on H.
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Definition 82 Let H be a K-vector space, where K = R or C,
and 〈·, ·〉 be an inner-product on H. We call norm topology on H,
denoted T〈·,·〉, the metric topology associated with d〈·,·〉(x, y) = ‖x−y‖.

Definition 83 We call Hilbert space over K where K = R or
C, any ordered pair (H, 〈·, ·〉) where 〈·, ·〉 is an inner-product on a
K-vector space H, which is complete w.r. to d〈·,·〉(x, y) = ‖x− y‖.

Exercise 18. Let (H, 〈·, ·〉) be a Hilbert space over K and let M be a
closed linear subspace of H, (closed with respect to the norm topology
T〈·,·〉). Define [·, ·] = 〈·, ·〉|M×M.

1. Show that [·, ·] is an inner-product on the K-vector space M.

2. With obvious notations, show that d[·,·] = (d〈·,·〉)|M×M.

3. Deduce that T[·,·] = (T〈·,·〉)|M.
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Exercise 19. Further to ex. (18), Let (xn)n≥1 be a Cauchy sequence
in M, with respect to the metric d[·,·].

1. Show that (xn)n≥1 is a Cauchy sequence in H.

2. Explain why there exists x ∈ H such that xn
T〈·,·〉→ x.

3. Explain why x ∈ M.

4. Explain why we also have xn
T[·,·]→ x.

5. Explain why (M, 〈·, ·〉|M×M) is a Hilbert space over K.

Exercise 20. For all z, z′ ∈ Cn, n ≥ 1, we define:

〈z, z′〉 �
=

n∑
i=1

ziz̄i
′
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1. Show that 〈·, ·〉 is an inner-product on Cn.

2. Show that the metric d〈·,·〉 is equal to the usual metric of Cn.

3. Conclude that (Cn, 〈·, ·〉) is a Hilbert space over C.

4. Show that Rn is a closed subset of Cn.

5. Show however that Rn is not a linear subspace of Cn.

6. Show that (Rn, 〈·, ·〉|Rn×Rn) is a Hilbert space over R.

Definition 84 We call usual inner-product in Kn, where K = R
or C, the inner-product denoted 〈·, ·〉 and defined by:

∀x, y ∈ Kn , 〈x, y〉 =
n∑
i=1

xiȳi
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Theorem 51 Cn and Rn together with their usual inner-products,
are Hilbert spaces over C and R respectively.

Definition 85 Let H be a K-vector space, where K = R or C. Let
C ⊆ H. We say that C is a convex subset or H, if and only if, for
all x, y ∈ C and t ∈ [0, 1], we have tx+ (1 − t)y ∈ C.

Exercise 21. Let (H, 〈·, ·〉) be a Hilbert space over K. Let C ⊆ H be
a non-empty closed convex subset of H. Let x0 ∈ H. Define:

δmin
�
= inf{‖x− x0‖ : x ∈ C}

1. Show the existence of a sequence (xn)n≥1 in C such that
‖xn − x0‖ → δmin.

2. Show that for all x, y ∈ H, we have:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥
2
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3. Explain why for all n,m ≥ 1, we have:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥
4. Show that for all n,m ≥ 1, we have:

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2min

5. Show the existence of some x∗ ∈ H, such that xn
T〈·,·〉→ x∗.

6. Explain why x∗ ∈ C

7. Show that for all x, y ∈ H, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. Show that ‖xn − x0‖ → ‖x∗ − x0‖.

9. Conclude that we have found x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}
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10. Let y∗ be another element of C with such property. Show that:

‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2min

11. Conclude that x∗ = y∗.

Theorem 52 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let C be a non-empty, closed and convex subset of H. For all
x0 ∈ H, there exists a unique x∗ ∈ C such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Definition 86 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let G ⊆ H. We call orthogonal of G, the subset of H denoted
G⊥ and defined by:

G⊥ �
= { x ∈ H : 〈x, y〉 = 0 , ∀y ∈ G }

Exercise 22. Let (H, 〈·, ·〉) be a Hilbert space over K and G ⊆ H.
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1. Show that G⊥ is a linear subspace of H, even if G isn’t.

2. Show that φy : H → K defined by φy(x) = 〈x, y〉 is continuous.

3. Show that G⊥ = ∩y∈Gφ
−1
y ({0}).

4. Show that G⊥ is a closed subset of H, even if G isn’t.

5. Show that ∅⊥ = {0}⊥ = H.

6. Show that H⊥ = {0}.

Exercise 23. Let (H, 〈·, ·〉) be a Hilbert space over K. Let M be a
closed linear subspace of H, and x0 ∈ H.

1. Explain why there exists x∗ ∈ M such that:

‖x∗ − x0‖ = inf{ ‖x− x0‖ : x ∈ M }
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2. Define y∗ = x0 − x∗ ∈ H. Show that for all y ∈ M and α ∈ K:

‖y∗‖2 ≤ ‖y∗ − αy‖2

3. Show that for all y ∈ M and α ∈ K, we have:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉 + |α|2.‖y‖2

4. For all y ∈ M \ {0}, taking α = 〈y, y∗〉/‖y‖2, show that:

0 ≤ −|〈y, y∗〉|2
‖y‖2

5. Conclude that x∗ ∈ M, y∗ ∈ M⊥ and x0 = x∗ + y∗.

6. Show that M∩M⊥ = {0}

7. Show that x∗ ∈ M and y∗ ∈ M⊥ with x0 = x∗+y∗, are unique.
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Theorem 53 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let M be a closed linear subspace of H. Then, for all x0 ∈ H,
there is a unique decomposition:

x0 = x∗ + y∗

where x∗ ∈ M and y∗ ∈ M⊥.

Definition 87 Let H be a K-vector space, where K = R or C.
We call linear functional, any map λ : H → K, such that for all
x, y ∈ H and α ∈ K:

λ(x + αy) = λ(x) + αλ(y)

Exercise 24. Let λ be a linear functional on a K-Hilbert1 space H.

1. Suppose that λ is continuous at some point x0 ∈ H. Show the
existence of η > 0 such that:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1
1Norm vector spaces are introduced later in these tutorials.
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Show that for all x ∈ H with x �= 0, we have |λ(ηx/‖x‖)| ≤ 1.

2. Show that if λ is continuous at x0, there exits M ∈ R+, with:

∀x ∈ H , |λ(x)| ≤M‖x‖ (2)

3. Show conversely that if (2) holds, λ is continuous everywhere.

Definition 88 Let (H, 〈·, ·〉) be a Hilbert2 space over K = R or C.
Let λ be a linear functional on H. Then, the following are equivalent:

(i) λ : (H, T〈·,·〉) → (K, TK) is continuous

(ii) ∃M ∈ R+ , ∀x ∈ H , |λ(x)| ≤M.‖x‖
In which case, we say that λ is a bounded linear functional.

2Norm vector spaces are introduced later in these tutorials.
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Exercise 25. Let (H, 〈·, ·〉) be a Hilbert space over K. Let λ be a
bounded linear functional on H, such that λ(x) �= 0 for some x ∈ H,
and define M = λ−1({0}).

1. Show the existence of x0 ∈ H, such that x0 �∈ M.

2. Show the existence of x∗ ∈ M and y∗ ∈ M⊥ with x0 = x∗ + y∗.

3. Deduce the existence of some z ∈ M⊥ such that ‖z‖ = 1.

4. Show that for all α ∈ K \ {0} and x ∈ H, we have:

λ(x)
ᾱ

〈z, αz〉 = λ(x)

5. Show that in order to have:

∀x ∈ H , λ(x) = 〈x, αz〉
it is sufficient to choose α ∈ K \ {0} such that:

∀x ∈ H ,
λ(x)z
ᾱ

− x ∈ M
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6. Show the existence of y ∈ H such that:

∀x ∈ H , λ(x) = 〈x, y〉

7. Show the uniqueness of such y ∈ H.

Theorem 54 Let (H, 〈·, ·〉) be a Hilbert space over K, where K = R
or C. Let λ be a bounded linear functional on H. Then, there exists
a unique y ∈ H such that: ∀x ∈ H , λ(x) = 〈x, y〉.

Definition 89 Let K = R or C. We call K-vector space, any set
H, together with operators ⊕ and ⊗ for which there exits an element
0H ∈ H such that for all x, y, z ∈ H and α, β ∈ K, we have:

(i) 0H ⊕ x = x

(ii) ∃(−x) ∈ H , (−x) ⊕ x = 0H
(iii) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z
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(iv) x⊕ y = y ⊕ x

(v) 1 ⊗ x = x

(vi) α⊗ (β ⊗ x) = (αβ) ⊗ x

(vii) (α+ β) ⊗ x = (α⊗ x) ⊕ (β ⊗ x)
(viii) α⊗ (x⊕ y) = (α ⊗ x) ⊕ (α⊗ y)

Exercise 26. For all f ∈ L2
K(Ω,F , μ), define:

H �
= { [f ] : f ∈ L2

K(Ω,F , μ) }

where [f ] = {g ∈ L2
K(Ω,F , μ) : g = f, μ-a.s.}. Let 0H = [0], and for

all [f ], [g] ∈ H, and α ∈ K, we define:

[f ] ⊕ [g]
�
= [f + g]

α⊗ [f ]
�
= [αf ]

We assume f, f ′, g and g′ are elements of L2
K(Ω,F , μ).
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1. Show that for f = g μ-a.s. is equivalent to [f ] = [g].

2. Show that if [f ] = [f ′] and [g] = [g′], then [f + g] = [f ′ + g′].

3. Conclude that ⊕ is well-defined.

4. Show that ⊗ is also well-defined.

5. Show that (H,⊕,⊗) is a K-vector space.

Exercise 27. Further to ex. (26), we define for all [f ], [g] ∈ H:

〈[f ], [g]〉H
�
=
∫

Ω

f ḡdμ

1. Show that 〈·, ·〉H is well-defined.

2. Show that 〈·, ·〉H is an inner-product on H.

3. Show that (H, 〈·, ·〉H) is a Hilbert space over K.
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4. Why is 〈f, g〉 �
=
∫
Ω
f ḡdμ not an inner-product on L2

K(Ω,F , μ)?

Exercise 28. Further to ex. (27), Let λ : L2
K(Ω,F , μ) → K be a

continuous linear functional3. Define Λ : H → K by Λ([f ]) = λ(f).

1. Show the existence of M ∈ R+ such that:

∀f ∈ L2
K(Ω,F , μ) , |λ(f)| ≤M.‖f‖2

2. Show that if [f ] = [g] then λ(f) = λ(g).

3. Show that Λ is a well defined bounded linear functional on H.

4. Conclude with the following:
3As defined in these tutorials, L2

K(Ω,F , μ) is not a Hilbert space (not even a
norm vector space). However, both L2

K(Ω,F , μ) and K have natural topologies
and it is therefore meaningful to speak of continuous linear functional. Note
however that we are slightly outside the framework of definition (88).
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Theorem 55 Let λ : L2
K(Ω,F , μ) → K be a continuous linear func-

tional, where K = R or C. There exists g ∈ L2
K(Ω,F , μ) such that:

∀f ∈ L2
K(Ω,F , μ) , λ(f) =

∫
Ω

f ḡdμ
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Solutions to Exercises
Exercise 1.

1. Let (xn)n≥1 be a sequence in E, and x ∈ E. Suppose that

xn
T→ x. Let ε > 0. The open ball B(x, ε) being open in E,

there exists n0 ≥ 1, such that n ≥ n0 ⇒ xn ∈ B(x, ε). In other
words, we have:

n ≥ n0 ⇒ d(xn, x) ≤ ε (3)

Conversely, suppose that for all ε > 0, there exists n0 ≥ 1
such that (3) holds. Let U be open in E, with x ∈ U . By
definition (30) of the metric topology, there exists ε > 0 such
that B(x, ε) ⊆ U . Since, there exists n0 ≥ 1 such that (3) holds,
we have found n0 ≥ 1 such that:

n ≥ n0 ⇒ xn ∈ U

This proves that xn
T→ x.
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2. Fn = {xk : k ≥ n}. So Fn+1 ⊆ Fn for all n ≥ 1. Being the
closure of some subset of E, for all n ≥ 1, Fn is a closed subset
of E, (see definition (37) and following exercise). It follows that
(Fn)n≥1 is a decreasing sequence of closed subsets of E.

3. Suppose Fn ↓ ∅, i.e. Fn+1 ⊆ Fn with ∩n≥1Fn = ∅. Then:

E = ∅c =

(
+∞⋂
n=1

Fn

)c
=

+∞⋃
n=1

F cn

Since each Fn is closed in E, each F cn is an open subset of E.
We conclude that (F cn)n≥1 is an open covering of E.

4. Suppose (E, T ) is compact. If ∩n≥1Fn = ∅, then from 3.
(F cn)n≥1 is an open covering of E, of which we can extract a
finite sub-covering (see definition (65)). There exists a finite
subset {n1, . . . , np} of N∗ such that:

E = F cn1
∪ . . . ∪ F cnp
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and therefore Fn1 ∩ . . . ∩ Fnp = ∅. However, without loss of
generality, we can assume that np ≥ nk for all k = 1, . . . , p.
Since Fn+1 ⊆ Fn for all n ≥ 1, it follows that:

Fnp = Fn1 ∩ . . . ∩ Fnp = ∅
This is a contradiction since Fnp contains all xk’s for k ≥ np.
We conclude that if (E, T ) is a compact, then ∩n≥1Fn �= ∅.

5. Suppose (E, T ) is compact. From 4., there exists x ∈ ∩n≥1Fn.
Then, for all n ≥ 1, we have x ∈ Fn = {xk : k ≥ n}, i.e. x lies
in the closure of {xk : k ≥ n}. It follows that for all ε > 0:

{xk : k ≥ n} ∩B(x, ε) �= ∅ (4)

We have proved the existence of x ∈ E, such that (4) holds for
all n ≥ 1 and ε > 0.

6. Let x ∈ E be as in 5. Take n = 1 and ε = 1. Then, we have
{xk : k ≥ 1} ∩ B(x, 1) �= ∅. There exists n1 ≥ 1, such that
xn1 ∈ B(x, 1). Suppose we have found n1 < . . . < np (p ≥ 1),
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such that xnk
∈ B(x, 1/k) for all k ∈ Np. Take n = np + 1 and

ε = 1/(p+ 1) in 5. We have:

{xk : k ≥ np + 1} ∩B(x, 1/(p+ 1)) �= ∅
So there exists np+1 > np, such that xnp+1 ∈ B(x, 1/(p + 1)).
Following this induction argument, we can construct a subse-
quence (xnp)p≥1 of (xn)n≥1, such that xnp ∈ B(x, 1/p) for all
p ≥ 1.

7. If (E, T ) is compact, then from 5. and 6., given a sequence
(xn)n≥1 in E, there exists x ∈ E and a subsequence (xnp)p≥1

such that d(x, xnp ) < 1/p for all p ≥ 1. From 1., it follows that

xnp

T→ x as p→ +∞, and we have proved that any sequence in
a compact metric space, has a convergent subsequence.

Exercise 1
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Exercise 2.

1. Let x ∈ E. By assumption, (Vi)i∈I is an open covering of E, so
in particular E = ∪i∈IVi. There exists i ∈ I, such that x ∈ Vi.
Furthermore, Vi is open with respect to the metric topology on
E. There exists r > 0, such that B(x, r) ⊆ Vi. We have proved
that for all x ∈ E, there exists i ∈ I and r > 0, such that
B(x, r) ⊆ Vi.

2. Let x ∈ E. Then r(x) = supA(x), where:

A(x)
�
= {r > 0 : ∃i ∈ I , B(x, r) ⊆ Vi}

From 1., the set A(x) is non-empty. There exists r > 0 such
that r ∈ A(x). r(x) being an upper-bound of A(x), we have
r ≤ r(x). In particular, r(x) > 0. We have proved that for all
x ∈ E, r(x) > 0.

Exercise 2
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Exercise 3.

1. Let α = infx∈E r(x). We assume that α = 0. Let n ≥ 1. Then
α < 1/n. α being the greatest lower bound of all r(x)′s for
x ∈ E, 1/n cannot be such lower bound. There exists xn ∈ E,
such that r(xn) < 1/n.

2. From 1., we have constructed a sequence (xn)n≥1 in E, such
that r(xn) < 1/n for all n ≥ 1. By assumption (see previous
exercise (2)), the metric space (E, d) is such that any sequence
has a convergent sub-sequence. Let (xnk

)k≥1 be a sub-sequence
of (xn)n≥1 and let x∗ ∈ E, be such that xnk

T→ x∗. From
exercise (2), there exists r∗ > 0 and i ∈ I, with B(x∗, r∗) ⊆ Vi.
Since r∗ > 0 and xnk

T→ x∗, there exists k′0 ≥ 1, such that:

k ≥ k′0 ⇒ d(x∗, xnk
) < r∗/2
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Since nk ↑ +∞ as k → +∞, there exists k′′0 ≥ 1, such that:

k ≥ k′′0 ⇒ 1
nk

≤ r∗/4

It follows that for all k ≥ k′′0 , we have r(xnk
) ≤ 1/nk ≤ r∗/4.

Take k0 = max(k′0, k′′0 ). We have both d(x∗, xnk0
) < r∗/2 and

r(xnk0
) ≤ r∗/4.

3. From 2., we have found k0 ≥ 1, such that d(x∗, xnk0
) < r∗/2.

Let y ∈ B(xnk0
, r∗/2). Then, from the triangle inequality:

d(x∗, y) ≤ d(x∗, xnk0
) + d(xnk0

, y) <
r∗

2
+
r∗

2
= r∗

So y ∈ B(x∗, r∗). Hence, we see that B(xnk0
, r∗/2) ⊆ B(x∗, r∗).

However, from 2., B(x∗, r∗) ⊆ Vi. So B(xnk0
, r∗/2) ⊆ Vi. It

follows that r∗/2 belongs to the set:

A(xnk0
) = {r > 0 : ∃i ∈ I , B(xnk0

, r) ⊆ Vi}
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and consequently, r∗/2 ≤ r(xnk0
) = supA(xnk0

). This contra-
dicts the fact that r(xnk0

) ≤ r∗/4, as obtained in 2.We conclude
that our initial hypothesis of α = infx∈E r(x) = 0 is absurd, and
we have proved that infx∈E r(x) > 0.

Exercise 3
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Exercise 4.

1. Let r0 > 0 be such that 0 < r0 < infx∈E r(x). We assume that
E cannot be covered by a finite number of open balls with radius
r0. Let x1 be an arbitrary element of E. Then, by assumption,
B(x1, r0) cannot cover the whole of E. There exists x2 ∈ E,
such that x2 �∈ B(x1, r0). By assumption, B(x1, r0) ∪ B(x2, r0)
cannot cover the whole of E. There exists x3 ∈ E, such that
x3 �∈ B(x1, r0) ∪ B(x2, r0). By induction, we can construct a
sequence (xn)n≥1 in E, such that for all n ≥ 1:

xn+1 �∈ B(x1, r0) ∪ . . . ∪B(xn, r0)

2. Let n > m. Then xn �∈ B(xm, r0). So d(xn, xm) ≥ r0.

3. Suppose (xn)n≥1 has a convergent sub-sequence, There exists

x∗ ∈ E, and a sub-sequence (xnk
)k≥1 such that xnk

T→ x∗. Take
ε = r0/4 > 0. There exists k0 ≥ 1, such that:

k ≥ k0 ⇒ d(x∗, xnk
) < r0/4
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It follows that for all k, k′ ≥ k0, we have:

d(xnk
, xnk′ ) ≤ d(x∗, xnk

) + d(x∗, xnk′ ) < r0/2

This contradicts 2., since d(xnk
, xnk′ ) ≥ r0 for k �= k′. So

(xn)n≥1 cannot have a convergent sub-sequence.

4. From 3., (xn)n≥1 cannot have a convergent sub-sequence. This
is a contradiction to our initial assumption (see exercise (2)),
that any sequence in E should have a convergent sub-sequence.
It follows that the hypothesis in 1. is absurd, and we con-
clude that E can indeed be covered by a finite number of open
balls of radius r0. In other words, there exists a finite subset
{x1, . . . , xn} of E, such that E = B(x1, r0) ∪ . . . ∪B(xn, r0).

5. Let x ∈ E. By assumption, r0 < infx∈E r(x). In particular, we
have r0 < r(x) = supA(x), where:

A(x) = {r > 0 : ∃i ∈ I , B(x, r) ⊆ Vi}
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r(x) being the smallest upper-bound of A(x), it follows that r0
cannot be such upper bound. There exists r > 0, r ∈ A(x),
such that r0 < r. Since r ∈ A(x), there exists i ∈ I, such that
B(x, r) ⊆ Vi. But from r0 < r, we conclude that B(x, r0) ⊆ Vi.
We have proved that for all x ∈ E, there exists i ∈ I, such that
B(x, r0) ⊆ Vi.

6. From 4., we have E = B(x1, r0)∪ . . .∪B(xn, r0). However, from
5., for all k ∈ Nn, there exists ik ∈ I, such that B(xk, r0) ⊆ Vik .
It follows that:

E = Vi1 ∪ . . . ∪ Vin (5)
Given a family of open sets (Vi)i∈I such that E = ∪i∈IVi (see ex-
ercise (2)), we have been able to find a finite subset {i1, . . . , in}
of I, such that (5) holds. We conclude that the metrizable space
(E, T ) is a compact topological space.

7. Let (E, T ) be a metrizable topological space. If (E, T ) is com-
pact, then from exercise (1), any sequence in E has a convergent
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sub-sequence. Conversely, if E is such that any sequence in E
has a convergent sub-sequence, then as proved in 6., (E, T ) is
a compact topological space. This proves the difficult and very
important theorem (47).

Exercise 4
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Exercise 5.

1. Let a, b ∈ R, a < b. Let (xn)n≥1 be a sequence in ]a, b[. In
particular, (xn)n≥1 is a sequence in [a, b]. From theorem (34),
[a, b] is a compact subset of R. Applying theorem (47), there
exists a subsequence (xnk

)k≥1 of (xn)n≥1, and x ∈ [a, b], such
that xnk

→ x4. So (xn)n≥1 has a convergent subsequence.

2. No. One cannot conclude that ]a, b[ is compact. In fact, R being
Hausdorff, from theorem (35), if ]a, b[ was compact, it would be
closed, and ]−∞, a]∪ [b,+∞[ would be open in R. . .One has to
be careful with the phrase having a convergent subsequence. As
proved in 1., any sequence in ]a, b[ has a convergent subsequence,
but the limit of such subsequence may not lie in ]a, b[ itself (we
only know for sure it lies in [a, b]). This is why, one cannot apply
theorem (47) to conclude that ]a, b[ is compact.

Exercise 5

4In a clear context, we shall omit notations such as xnk

TR→ x or xnk

T[a,b]→ x.
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Exercise 6.

1. The equivalence between xp
TE→ x and xp

TRn→ x has already
been proved in exercise (7) of the previous tutorial. Since the
topology TE is induced by the topology TRn on E, whether we
regard (xp)p≥1 and x as belonging to E or Rn, is irrelevant as
far as the convergence xp → x is concerned. Note however that
it is important to have xp ∈ E for all p ≥ 1, and x ∈ E.

2. As seen in exercise (14) of Tutorial 6, various metrics will induce
the product topology TRn on Rn. The most common, viewed
as the usual metric on Rn, is:

d2(x, y)
�
=

√√√√ n∑
i=1

(xi − yi)2
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Other possible metrics are:

d1(x, y)
�
=

n∑
i=1

|xi − yi|

or:
d∞(x, y)

�
= max
i∈Nn

|xi − yi|

3. Let (xp)p≥1 be a sequence in Rn and x ∈ Rn. Suppose that
xp → x5. Then for all ε > 0, there exists p0 ≥ 1, such that:

p ≥ p0 ⇒ d1(x, xp) =
n∑
i=1

|xi − xip| ≤ ε

In particular, for all i ∈ Nn, we have:

p ≥ p0 ⇒ |xi − xip| ≤ ε

5i.e. xp
TRn→ x, as should be clear from context.
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So xip → xi6 for all i ∈ Nn. Conversely, suppose xip → xi for all
i’s. Given ε > 0, for all i ∈ Nn, there exists pi ≥ 1, such that:

p ≥ pi ⇒ |xi − xip| ≤ ε/n

Taking p0 = max(p1, . . . , pn), we obtain:

p ≥ p0 ⇒ d1(x, xp) =
n∑
i=1

|xi − xip| ≤ ε

So xp → x, which is equivalent to [xip → xi for all i ∈ Nn].
Note that although we used the metric structure of R and Rn

to prove this equivalence, we had no need to do so. In fact, any
sequence with values in an arbitrary product, even uncountable,
of topological spaces, even non-metrizable, will converge if and
only if each coordinate sequence itself converges. For those inter-
ested in this small digression, here is a quick proof: let (xp)p≥1

be a sequence in the product Πi∈IΩi. Let x be an element of

6i.e. xi
p

TR→ xi, as should be clear from context.
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Πi∈IΩi. Suppose xp → x, with respect to the product topology.
Let i ∈ I and U be an arbitrary open set in Ωi containing xi.
Then U × Πj �=iΩj is an open set in Πi∈IΩi containing x. Since
xp → x, xp is eventually7 in U × Πj �=iΩj . It follows that xip is
eventually in U , and we see that xip → xi. Conversely, suppose
xip → xi for all i ∈ I. Let U be an open set in Πi∈IΩi containing
x. There exists a rectangle V = Πi∈IAi such that x ∈ V ⊆ U .
The set J = {i ∈ I : Ai �= Ωi} is finite, and for all j ∈ J , Aj is
an open set in Ωj containing xj . From xjp → xj we see that xjp is
eventually in Aj . J being finite, it follows that xp is eventually
in (Πj∈JAj) × (Πi�∈JΩi) = V . Since V ⊆ U , xp is eventually in
U , and we have proved that xp → x.

Exercise 6

7there exists p0 ≥ 1 such that p ≥ p0 ⇒ xp ∈ U × Πj �=iΩj .
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Exercise 7.

1. Let (xp)p≥1 be a sequence in E. Then (x1
p)p≥1 is a sequence in

[−M,M ], which is a compact subset of R. From theorem (47),
we can extract a subsequence of (x1

p)p≥1, converging to some
x1 ∈ [−M,M ]. In other words, from definition (78), there exists
a strictly increasing map φ : N∗ → N∗, and x1 ∈ [−M,M ]
such that8 x1

φ(p) → x1. Hence, we have found a subsequence
(xφ(p))p≥1 such that x1

φ(p) → x1, for some x1 ∈ [−M,M ].

2. The topology on [−M,M ] being induced by the topology on
R, the convergence x1

φ(p) → x1 is independent of the particular
topology (that of R or [−M,M ]) with respect to which, it is
being considered.

3. Let 1 ≤ k ≤ n−1. Let (yp)p≥1 = (xφ(p))p≥1 be a subsequence of
(xp)p≥1, with the property that for all j ∈ Nk, we have yjp → xj

8i.e. x1
φ(p)

T[−M,M]→ x1, which is the same as x1
φ(p)

TR→ x1.
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for some xj ∈ [−M,M ]. Then, (yk+1
p )p≥1 is a sequence in the

compact interval [−M,M ]. From theorem (47), there exists a
strictly increasing map ψ : N∗ → N∗ such that yk+1

ψ(p) → xk+1,
for some xk+1 ∈ [−M,M ].

4. If both φ, ψ : N∗ → N∗ are strictly increasing, so is φ ◦ ψ.

5. Since φ ◦ψ is strictly increasing, (xφ◦ψ(p))p≥1 is indeed a subse-
quence of (xp)p≥1, which furthermore coincides with (yψ(p))p≥1,
as defined in 3. It follows that xk+1

φ◦ψ(p) → xk+1. Furthermore,
from 3. the subsequence (yp)p≥1 is assumed to be such that
yjp → xj for all j ∈ Nk. Hence, we also have yjψ(p) → xj , i.e.

xjφ◦ψ(p) → xj for all j ∈ Nk. We conclude that (xφ◦ψ(p))p≥1 is a

subsequence of (xp)p≥1 such that xjφ◦ψ(p) → xj for all j ∈ Nk+1.

6. From 1., given a sequence (xp)p≥1 in E, we can extract a subse-
quence (xφ(p))p≥1 of (xp)p≥1 such that x1

φ(p) → x1 for some
x1 ∈ [−M,M ]. Given 1 ≤ k ≤ n − 1, and a subsequence

www.probability.net

http://www.probability.net


Solutions to Exercises 54

(xφ(p))p≥1 of (xp)p≥1, such that for all j ∈ Nk, x
j
φ(p) → xj

for some xj ∈ [−M,M ], we showed in 5. that we could extract
a further subsequence (xφ◦ψ(p))p≥1 having a similar property
for all j ∈ Nk+1. By induction, it follows that there exists a
subsequence (xφ(p))p≥1 of (xp)p≥1, such that for all j ∈ Nn,
we have xjφ(p) → xj for some xj ∈ [−M,M ]. Hence, taking
x = (x1, . . . , xn), we see that xφ(p) → x9.

7. Let (xp)p≥1 be a sequence in E. From 6., there exists x ∈ E,
and a subsequence (xφ(p))p≥1 of (xp)p≥1, with xφ(p) → x. From
theorem (47), we conclude that (E, TE) is a compact topolog-
ical space, or equivalently, that E is a compact subset of Rn.
The purpose of this exercise is to prove that the n-dimensional
product [−M,M ] × . . .× [−M,M ] is compact10.

Exercise 7

9Both with respect to TE and TRn .
10Tychonoff theorem will hopefully be the subject of some future tutorial :-)
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Exercise 8.

1. If A = ∅ then A ⊆ [−M,M ] × . . .× [−M,M ], for all M ∈ R+.
We assume that A �= ∅. Let δ(A) be the diameter of A (see
definition (68)) with respect to the usual metric:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

i.e. δ(A) = sup{d(x, y) : x, y ∈ A}. Since A �= ∅, δ(A) ≥ 0.
Furthermore, A being assumed to be bounded with respect to
the usual metric of Rn, we have δ(A) < +∞. So δ(A) ∈ R+.
Let y be an arbitrary element of A. For all x ∈ A, we have:

|xi − yi| ≤ d(x, y) ≤ δ(A)

So |xi| ≤ |yi|+δ(A), and taking M = max(|y1|, . . . , |yn|)+δ(A),
we conclude that A ⊆ [−M,M ]× . . .× [−M,M ], with M ∈ R+.
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2. By assumption, A is a closed subset of Rn. So Ac is open. It
follows that E\A = E∩Ac is an element of the topology induced
on E, by the topology on Rn . In other words, E \A is an open
subset of E. We conclude that A is a closed subset of E.

3. From ex. (7), (E, TE) is a compact topological space. From 2.,
A is a closed subset of E. Using exercise (2)[6.] of Tutorial 8,
we conclude that A is a compact subset of E. In other words,
(A, (TE)|A) is a compact topological space. However, the topol-
ogy TE is induced by TRn , i.e. TE = (TRn)|E . It follows that
(TE)|A = (TRn)|A. So (A, (TRn)|A) is a compact topological
space, or equivalently, A is a compact subset of Rn.

4. Let A be a compact subset of Rn. From theorem (35), Rn

being Hausdorff, A is closed in Rn. From exercise (6)[4.] of
Tutorial 8, A is bounded with respect to any metric inducing
the usual topology of Rn. This proves theorem (48).

Exercise 8
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Exercise 9.

1. dCn and dR2n are defined by:

dCn(z, z′) =

√√√√ n∑
i=1

|zi − z′i|2

dR2n(x, x′) =

√√√√ 2n∑
i=1

(xi − x′i)2

for all z, z′ ∈ Cn and x, x′ ∈ R2n.

2. Given z, z′ ∈ Cn, we have:

dCn(z, z′) =

√√√√ n∑
i=1

(Re(zi) −Re(z′i))2 +
n∑
i=1

(Im(zi) − Im(z′i))2

It follows that dCn(z, z′) = dR2n(φ(z), φ(z′)).
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3. φ is clearly a bijection between Cn and R2n. From 2., we see
that φ is continuous, and furthermore that:

dCn(φ−1(x), φ−1(x′)) = dR2n(x, x′)

for all x, x′ ∈ R2n. So φ−1 is also continuous. From defini-
tion (31), φ is a homeomorphism from Cn to R2n.

4. Let K ⊆ Cn. Suppose K is a compact subset of Cn. Then,
(K, (TCn)|K) is a compact topological space. φ being continu-
ous, its restriction φ|K is also continuous.11 Using exercise (8)
of Tutorial 8., the direct image φ|K(K) is a compact subset of
R2n. In other words, φ(K) is a compact subset of R2n. Con-
versely, suppose φ(K) is a compact subset of R2n. Since K can
be written as the direct image K = φ−1(φ(K)) of φ(K) by φ−1,
and φ−1 is continuous, we conclude similarly that K is a com-
pact subset of Cn. We have proved that for all K ⊆ Cn, K is
compact if and only if φ(K) is compact.

11 If uneasy with K = ∅ and φ|K = ∅, consider the case separately.
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5. Let K ⊆ Cn. Suppose K is a closed subset of Cn. Since φ(K)
can be written as the inverse image φ(K) = (φ−1)−1(K) ofK by
φ−1, and φ−1 is continuous, we see that φ(K) is a closed subset
of R2n. Conversely, suppose φ(K) is a closed subset of R2n.
Since K can be written as the inverse image K = φ−1(φ(K))
of φ(K) by φ, and φ is continuous, we see that K is a closed
subset of Cn. We have proved that for all K ⊆ Cn, K is closed
if and only if φ(K) is closed.

6. Let K ⊆ Cn and δ(φ(K)) be the diameter of φ(K) in R2n:

δ(φ(K)) = sup{dR2n(x, x′) : x, x′ ∈ φ(K)}
= sup{dR2n(φ(z), φ(z′)) : z, z′ ∈ K}
= sup{dCn(z, z′) : z, z′ ∈ K}

i.e. δ(φ(K)) = δ(K), where δ(K) is the diameter of K in Cn.
It follows that δ(K) < +∞ is equivalent to δ(φ(K)) < +∞. we
have proved that for all K ⊆ Cn, K is bounded if and only if
φ(K) is bounded.
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7. Let K ⊆ Cn. From 4., K is compact, if and only if φ(K) is
compact. From theorem (48), φ(K) being a subset of R2n, it is
compact if and only if, it is closed and bounded. From 5. and 6.,
this in turn is equivalent to K being itself closed and bounded.
We have proved that for all K ⊆ Cn, K is compact if and only
if K is closed and bounded.

Exercise 9
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Exercise 10.

1. Definition (79) defines the notion of Cauchy sequences in a
metric space. In contrast, definition (77) defines the notion of
Cauchy sequences in LpC(Ω,F , μ). Since that latter was defined
in (73) as a set of functions, as opposed to a set of μ-almost
sure equivalence classes, strictly speaking LpC(Ω,F , μ) is not a
metric space. So definition (77) is not a particular case of defi-
nition (79).

2. Definition (80) defines the notion of complete metric space, as
a metric space where all Cauchy sequences converge.12 Theo-
rem (46) does state that all Cauchy sequences in LpC(Ω,F , μ)
converge. However, since LpC(Ω,F , μ) is not strictly speaking a
metric space, it cannot be said to be a complete metric space.

Exercise 10

12to a limit belonging to that same metric space. . .
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Exercise 11.

1. Let (zk)k≥1 be a Cauchy sequence in Cn. Taking ε = 1, there
exists k0 ≥ 1, such that:

k, k′ ≥ k0 ⇒ ‖zk − zk′‖ ≤ 1

Since | ‖z‖ − ‖z′‖ | ≤ ‖z − z′‖ for all z, z′ ∈ Cn, we have:

k ≥ k0 ⇒ ‖zk‖ ≤ 1 + ‖zk0‖
Taking M = max(1 + ‖zk0‖, ‖z1‖, . . . , ‖zk0−1‖), we see that
‖zk‖ ≤ M for all k ≥ 1. We have proved that (zk)k≥1 is a
bounded sequence in Cn.

2. Let B = {z ∈ Cn : ‖z‖ ≤ M}. For all z, z′ ∈ B, we have
‖z − z′‖ ≤ ‖z‖+ ‖z′‖ ≤ 2M . It follows that δ(B) ≤ 2M , where
δ(B) is the diameter of B in Cn. So δ(B) < +∞, i.e. B is
a bounded subset of Cn. Let z0 ∈ Bc. Then M < ‖z0‖. Let
ε = ‖z0‖ −M > 0, and z ∈ Cn with ‖z − z0‖ < ε. Then, we
have ‖z0‖ − ‖z‖ ≤ ‖z − z0‖ < ε = ‖z0‖ −M , and consequently
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M < ‖z‖, i.e. z ∈ Bc. So B(z0, ε) ⊆ Bc. For all z0 ∈ Bc, we
have found ε > 0, such that B(z0, ε) ⊆ Bc. This proves that Bc

is open with respect to the (metric) topology of Cn. So B is a
closed subset of Cn.

3. From 2., B is a closed and bounded subset of Cn. From exer-
cise (9), it follows that B is a compact subset of Cn. In other
words, (B, (TCn)|B) is a compact topological space. However,
from 1., (zk)k≥1 is a sequence of elements of B. Using the-
orem (47), (zk)k≥1 has a convergent subsequence, i.e. there
exists z ∈ B, and a subsequence (zkp)p≥1, such that zkp → z.13

4. (zk)k≥1 being Cauchy, given ε > 0, there exist n0 ≥ 1, such
that:

k, k′ ≥ n0 ⇒ d(zk, zk′) ≤ ε/2
Furthermore, since zkp → z, there exists p′0 ≥ 1, such that:

p ≥ p′0 ⇒ d(z, zkp) ≤ ε/2
13Both with respect to TCn and the induced topology (TCn )|B .
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Moreover, since kp ↑ +∞ as p → +∞, there exists p′′0 ≥ 1,
such that p ≥ p′′0 ⇒ kp ≥ n0. Take p0 = max(p′0, p

′′
0). Then,

d(z, zkp0
) ≤ ε/2, and we have:

k ≥ n0 ⇒ d(zk, zkp0
) ≤ ε/2

5. From 4., we have found n0 ≥ 1, such that:

k ≥ n0 ⇒ d(z, zk) ≤ ε

It follows that zk → z.

6. From 5., we see that every Cauchy sequence (zk)k≥1 in Cn, con-
verges to some limit z ∈ Cn. From definition (80), we conclude
that Cn is complete metric space.

7. The completeness of C was used in exercise (12)[6.] of Tutorial 9,
leading to theorem (44) where we proved that any sequence
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(fn)n≥1 in LpC(Ω,F , μ) such that:

+∞∑
k=1

‖fk+1 − fk‖p < +∞

converges to some f ∈ LpC(Ω,F , μ). This, in turn, was crucially
important in proving theorem (46), where LpC(Ω,F , μ) is shown
to be complete.

Exercise 11
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Exercise 12.

1. Let (xk)k≥1 be a sequence in Rn, such that xk → z, for some
z ∈ Cn. For all k ≥ 1 and i ∈ Nn, we have:

|Im(zi)| = |Im(zi) − Im(xik)| ≤ ‖z − xk‖
Taking the limit as k → +∞, we obtain Im(zi) = 0. This being
true for all i ∈ Nn, we have proved that z ∈ Rn.

2. Let (xk)k≥1 be a Cauchy sequence in Rn. In particular, it is a
Cauchy sequence in Cn. From exercise (11), Cn is a complete
metric space. Hence, there exists z ∈ Cn, such that xk → z.
From 1., z is in fact an element of Rn. We have proved that
any Cauchy sequence (xk)k≥1 in Rn, converges to some z ∈ Rn.
From definition (80), we conclude that Rn is a complete metric
space. This, together with exercise (11), proves theorem (49).

Exercise 12
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Exercise 13.

1. Let x ∈ F̄ . From definition (37), if U is an open set with x ∈ U ,
then F ∩ U �= ∅. Given n ≥ 1, the open ball B(x, 1/n) is an
open set with x ∈ B(x, 1/n). So F ∩B(x, 1/n) �= ∅.

2. Let x ∈ F̄ . From 1., for all n ≥ 1, we can choose an arbitrary
element xn ∈ F ∩ B(x, 1/n). This defines a sequence (xn)n≥1

of elements of F , such that d(x, xn) < 1/n for all n ≥ 1. So
xn → x.

3. Let x ∈ E. We assume that there exists a sequence (xn)n≥1 of
elements of F , with xn → x. Let U be an open set containing
x. Since xn → x, there exists n0 ≥ 1, such that:

n ≥ n0 ⇒ xn ∈ U

In particular, xn0 ∈ U . But xn0 is also an element of F . So
xn0 ∈ F ∩U . We have proved that for all open set U containing
x, we have F ∩ U �= ∅. From definition (37), we conclude that
x ∈ F̄ .
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4. Suppose that F is closed, and let (xn)n≥1 be a sequence in F
such that xn → x for some x ∈ E. From 3. we have x ∈ F̄ .
However from exercise (21) of Tutorial 4, we have F = F̄ . So
x ∈ F . Conversely, suppose that for any sequence (xn)n≥1 in F
such that xn → x for some x ∈ E, we have x ∈ F . We claim
that F is closed. From exercise (21) of Tutorial 4., it is sufficient
to show that F̄ = F , or equivalently that F̄ ⊆ F . So let x ∈ F̄ .
From 2. there exists a sequence (xn)n≥1 in F such that xn → x.
By assumption, this implies that x ∈ F . It follows that F̄ ⊆ F .

5. The fact that the induced topological space (F, T|F ) is metriz-
able, is a consequence of theorem (12). The induced topology
T|F is nothing but the metric topology associated with the in-
duced metric d|F = d|F×F .

6. Suppose F is complete with respect to the induced metric d|F .
Let x ∈ E and (xn)n≥1 be a sequence of elements of F , with
xn → x. In particular, (xn)n≥1 is a Cauchy sequence with
respect to the metric d. (xn)n≥1 being a sequence of elements
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of F , it is also a Cauchy sequence with respect to the induced
metric d|F . F being complete, there exists y ∈ F , such that
xn → y. This convergence, with respect to T|F , is also valid
with respect T . Since we also have xn → x, we see that x = y.
It follows that x ∈ F . Given x ∈ E, and a sequence (xn)n≥1 of
elements of F such that xn → x, we have proved that x ∈ F .
From 4., this shows that F is a closed subset of E. We conclude
that if F is complete (with respect to its natural metric d|F ),
then it is a closed subset of E.

7. From theorem (12), the induced metric d′ = (dR̄)|R induces
the induced topology (TR̄)|R. Such topology is nothing but the
usual topology on R. It follows that d′ induces TR.

8. Let dR be the usual metric on R. From theorem (12), the in-
duced metric (dR)|[−1,1] induces the induced topology on [−1, 1].
Such topology is nothing but the usual topology on [−1, 1].

9. From 8., if {−1, 1} was open in [−1, 1], there would exists ε > 0,
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such that ]1 − ε, 1] ⊆ {−1, 1}, which is absurd.

10. If {−∞,+∞} was open in R̄, then {−1, 1} would be open in
[−1, 1], since one is the inverse image of the other, by a strictly
increasing homeomorphism.

11. If R was closed in R̄, then {−∞,+∞} would be open in R̄.

12. Let dR be the usual metric on R. Then dR induces the usual
topology on R. However, from 7., the metric d′ also induces
the usual topology on R. It follows that dR and d′ both induce
the same topology. From theorem (49), R is complete with
respect to its usual metric dR. If R was complete with respect
to d′ = (dR̄)|R, then from 6., R would be a closed subset of
R̄, contradicting 11. So R is not complete with respect to d′.
We conclude that although the two metric spaces (R, dR) and
(R, d′) are identical in the topological sense, one is complete
whereas the other is not.

Exercise 13
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Exercise 14.

1. Let y ∈ H. For all x, x′ ∈ H and α ∈ K, using (ii) and (iii) of
definition (81), we obtain:

〈x + αx′, y〉 = 〈x, y〉 + α〈x′, y〉
We conclude that x→ 〈x, y〉 is linear for all y ∈ H.

2. Let x ∈ H. For all y, y′ ∈ H and α ∈ K, using (i), (ii) and (iii)
of definition (81), we obtain:

〈x, y + αy′〉 = 〈x, y〉 + ᾱ〈x, y′〉

where ᾱ is the complex conjugate of α. Hence, y → 〈x, y〉 is
conjugate-linear for all x ∈ H. In the case when K = R, it is in
fact linear.

Exercise 14
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Exercise 15.

1. The inner-product 〈·, ·〉 has values in K. From (iv) of defini-
tion (81), 〈x, x〉 ≥ 0 for all x ∈ H. It follows that ‖x‖ =

√
〈x, x〉

is a well-defined element of R+, for all x ∈ H. Hence, we see
that A = ‖x‖2 and C = ‖y‖2 are both well-defined elements of
R+. Furthermore, B = |〈x, y〉| being the modulus of an element
of K, is a well-defined element of R+.

2. Let t ∈ R. Using the linearity properties of exercise (14):

〈x− tαy, x− tαy〉 = 〈x, x〉 − tα〈x, y〉 − tᾱ〈x, y〉 + t2αᾱ〈y, y〉
Since B = B̄ = α〈x, y〉 and αᾱ = 1, we conclude that:

〈x − tαy, x− tαy〉 = A− 2tB + t2C

3. Suppose C = 0. Then 〈y, y〉 = 0. From (v) of definition (81),
we see that y = 0. From the conjugate linearity of y′ → 〈x, y′〉,
we have 〈x, 0〉 = 0 for all x ∈ H, and consequently 〈x, y〉 = 0.
So B = 0, and finally B2 ≤ AC.
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4. Suppose C �= 0. Let P (t) = A− 2tB + t2C for all t ∈ R. Since
C > 0 and P ′(t) = 2tC − 2B, the second degree polynomial P
has a minimum value at t = B/C. From 2., for all t ∈ R:

P (t) = 〈x− tαy, x− tαy〉 ≥ 0

In particular, P (B/C) ≥ 0. It follows that B2 ≤ AC.

5. From B2 ≤ AC, since A,B,C ∈ R+, we obtain B ≤
√
AC, i.e.

|〈x, y〉| ≤ ‖x‖.‖y‖

This proves theorem (50).

Exercise 15
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Exercise 16.

1. Let f, g ∈ L2
C(Ω,F , μ). Then, f ḡ is a complex-valued and mea-

surable map. Furthermore, from theorem (42):∫
|f ||g|dμ ≤

(∫
|f |2dμ

) 1
2
(∫

|g|2dμ
) 1

2

So
∫
|f ḡ|dμ < +∞ and f ḡ ∈ L1

C(Ω,F , μ). It follows that
〈f, g〉 =

∫
f ḡdμ is a well-defined complex number.

2. Let f ∈ L2
C(Ω,F , μ). From definition (73), ‖f‖2 is defined as

‖f‖2 = (
∫
|f |2dμ)1/2. It follows that:

‖f‖2 =
(∫

f f̄dμ

) 1
2

=
√
〈f, f〉

3. Let f, g ∈ L2
C(Ω,F , μ). From theorems (24) and (42) , we have:

|〈f, g〉| =
∣∣∣∣
∫
f ḡdμ

∣∣∣∣ ≤
∫

|f ||g|dμ ≤ ‖f‖2.‖g‖2
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4. Among properties (i) − (v) of definition (81), only (v) fails to
be satisfied. Indeed, although f = 0 does imply that 〈f, f〉 =∫
|f |2dμ = 0, the converse is not true. Having

∫
|f |2dμ = 0

only guarantees that f = 0 μ-almost surely, and not necessar-
ily everywhere. We conclude that 〈·, ·〉 is not strictly speaking
an inner-product on L2

C(Ω,F , μ), as defined by definition (81).
It follows that equation (1) which we proved in 3., cannot be
viewed as a consequence of theorem (50).

5. Let f, g ∈ L2
C(Ω,F , μ). Let P (t) =

∫
(|f |+t|g|)2dμ for all t ∈ R.

Then, P (t) ≥ 0 for all t ∈ R, and furthermore:

P (t) = A+ 2tB + t2C

where A =
∫
|f |2dμ, B =

∫
|f ||g|dμ and C =

∫
|g|2dμ. All

three numbers A,B and C are elements of R+.14 If C = 0,
then g = 0 μ-a.s. and consequently B = 0. In particular, the
inequality B2 ≤ AC holds. If C �= 0, from P (−B/C) ≥ 0 we

14B can be shown to be finite from |fg| ≤ (|f |2 + |g|2)/2.
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obtain B2 ≤ AC, and consequently:∫
|fg|dμ ≤

(∫
|f |2dμ

) 1
2
(∫

|g|2dμ
) 1

2

6. Let f, g : (Ω,F) → [0,+∞] be non-negative and measurable.
Suppose both integrals

∫
f2dμ and

∫
g2dμ are finite. Then f

and g are μ-almost surely finite, and therefore μ-almost surely
equal to f1{f<+∞} and g1{g<+∞} respectively. It follows that
f and g are μ-almost surely equal to elements of L2

C(Ω,F , μ).
Applying 5. to f1{f<+∞} and g1{g<+∞}, we obtain:∫

fgdμ ≤
(∫

f2dμ

) 1
2
(∫

g2dμ

) 1
2

If
∫
f2dμ = +∞ or

∫
g2dμ = +∞, such inequality still holds.

We have effectively proved theorem (42), without using holder’s
inequality (41).

Exercise 16
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Exercise 17.

1. Let x, y ∈ H. Using (ii) of definition (81), we have:

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x+ y〉 + 〈y, x+ y〉

Furthermore, using (i) and (ii):

〈x, x+ y〉 = 〈x+ y, x〉 = 〈x, x〉 + 〈y, x〉 = ‖x‖2 + 〈x, y〉

and also:

〈y, x+ y〉 = 〈x+ y, y〉 = ‖y‖2 + 〈x, y〉
We conclude that:

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈x, y〉

2. From the Cauchy-Schwarz inequality of theorem (50):

|〈x, y〉| = |〈x, y〉| ≤ ‖x‖.‖y‖
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Consequently, using 1., we have:

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖.‖y‖ = (‖x‖ + ‖y‖)2

We conclude that for all x, y ∈ H, we have:

‖x+ y‖ ≤ ‖x‖ + ‖y‖

3. Let d = d〈·,·〉 be the map defined by d(x, y) = ‖x − y‖. Note
that from (iv) of definition (81):

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

is well-defined, and non-negative. So d is indeed a map from
H × H, with values in R+. Let x, y, z ∈ H. d(x, y) = 0 is
equivalent to 〈x−y, x−y〉 = 0, which from (v) of definition (81),
is itself equivalent to x = y. So (i) of definition (28) is satisfied
by d. Furthermore, we have:

‖ − x‖2 = 〈−x,−x〉 = −〈−x, x〉 = ‖x‖2

www.probability.net

http://www.probability.net


Solutions to Exercises 79

and consequently, d(x, y) = ‖x− y‖ = ‖y−x‖ = d(y, x). So (ii)
of definition (28) is satisfied by d. Finally, using 2.:

‖x− y‖ = ‖x− z + z − y‖ ≤ ‖x− z‖ + ‖z − y‖
and we see that d(x, y) ≤ d(x, z) + d(z, y). So (iii) of defi-
nition (28) is also satisfied by d. Having checked conditions
(i), (ii) and (iii) of definition (28), we conclude that d is indeed
a metric on H.

Exercise 17
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Exercise 18.

1. M being a linear subspace of the K-vector space H, is itself a
K-vector space. [·, ·] being the restriction of 〈·, ·〉 to M×M, is
indeed a map [·, ·] : M×M → K. For all x, y ∈ M, we have:

[x, y] = 〈x, y〉 = 〈y, x〉 = [y, x]

So (i) of definition (81) is satisfied by [·, ·]. Similarly, it is clear
that all properties (ii) − (v) of definition (81) are also satisfied
by [·, ·]. We conclude that [·, ·] is indeed an inner-product on the
K-vector space M.

2. Recall that from definition (83), the metric d[·,·] is defined by:

d[·,·](x, y) =
√

[x− y, x− y]

[·, ·] being the restriction of 〈·, ·〉 to M×M, we have:

d[·,·](x, y) =
√
〈x− y, x− y〉 = d〈·,·〉(x, y)
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We conclude that the metric d[·,·] is nothing but the restriction
of the metric d〈·,·〉 to M×M, i.e. d[·,·] = (d〈·,·〉)|M×M.

3. From theorem (12), the topology induced on M by the norm
topology T〈·,·〉 (the latter being the metric topology associated
with d〈·,·〉, by definition (82)), is nothing but the metric topology
associated with (d〈·,·〉)M×M = d[·,·] (which by definition (82), is
the norm topology on M, i.e. T[·,·]). So (T〈·,·〉)|M = T[·,·].

Exercise 18
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Exercise 19.

1. Since (xn)n≥1 is a Cauchy sequence in M, with respect to the
metric d[·,·], from definition (79), for all ε > 0, there exists an
integer n0 ≥ 1, such that:

n,m ≥ n0 ⇒ d[·,·](xn, xm) ≤ ε

However, since d[·,·] is the restriction of d〈·,·〉 to M×M, we have
d[·,·](x, y) = d〈·,·〉(x, y) for all x, y ∈ M. It follows that (xn)n≥1

is also a Cauchy sequence in H, with respect to the metric d〈·,·〉.

2. (H, 〈·, ·〉) being a Hilbert space, from definition (83), H is a also
a complete metric space. From definition (80), (xn)n≥1 being a
Cauchy sequence in H, there exists x ∈ H such that xn → x.

3. M is a closed subset of H, and (xn)n≥1 is a sequence of elements
of M converging to x ∈ H. From exercise (13) [4.], we conclude
that x ∈ M.
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4. As seen in the previous exercise, the norm topology T[·,·] on M
is induced by the norm topology T〈·,·〉 on H. Since (xn)n≥1 is
a sequence in M and x ∈ M, the convergence xn → x relative
to the topology T[·,·], is equivalent to the convergence xn → x
relative to the topology T〈·,·〉.

5. Given a Cauchy sequence (xn)n≥1 in M, we have found an el-
ement x ∈ M, such that xn → x. From definition (80), this
shows that (M, d[·,·]) is a complete metric space. It follows that
M is a K-vector space, that [·, ·] is an inner-product on M,
under which M is complete. From definition (83), we conclude
that (M, [·, ·]) = (M, 〈·, ·〉|M×M) is a Hilbert space over K. The
purpose of this exercise is to show that any closed linear sub-
space of a Hilbert space, is itself a Hilbert space, together with
its restricted inner-product.

Exercise 19
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Exercise 20.

1. Let z, z′, z′′ ∈ Cn and α ∈ C. We have:

〈z, z′〉 =
n∑
i=1

ziz̄i
′ =

n∑
i=1

z̄iz′i = 〈z′, z〉

〈z + z′, z′′〉 =
n∑
i=1

(zi + z′i)z̄i
′′ = 〈z, z′′〉 + 〈z′, z′′〉

〈αz, z′〉 =
n∑
i=1

(αzi)z̄i′ = α〈z, z′〉

〈z, z〉 =
n∑
i=1

ziz̄i =
n∑
i=1

|zi|2 ≥ 0

and finally, 〈z, z〉 = 0 is equivalent to zi = 0 for all i ∈ Nn,
itself equivalent to z = 0. Hence, we see that all five conditions
(i)−(v) of definition (81) are satisfied by 〈·, ·〉. So 〈·, ·〉 is indeed
an inner-product on Cn.
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2. The metric d〈·,·〉 is defined by:

d〈·,·〉(z, z′) =
√
〈z − z′, z − z′〉 =

√√√√ n∑
i=1

|zi − z′i|2

It therefore coincides with the usual metric on Cn.

3. From theorem (49), Cn is a complete metric space, with respect
to its usual metric. The latter being the same as the metric d〈·,·〉,
we conclude from definition (83) that (Cn, 〈·, ·〉) is a Hilbert
space over C.

4. For all i ∈ Nn, let φi : Cn → R be defined by φi(z) = Im(zi).
For all z, z′ ∈ Cn, we have:

|φi(z) − φi(z′)| = |Im(zi − z′i)| ≤ ‖z − z′‖ = dCn(z, z′)

So each φi is a continuous map. The set {0} being a closed
subset of R, the inverse image φ−1

i ({0}) is a closed subset of Cn.
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It follows that Rn = ∩ni=1φ
−1
i ({0}) as an intersection of closed

subsets of Cn, is itself a closed subset of Cn.

5. Given x ∈ Rn and α ∈ C, α.x is not in general an element of
Rn. So Rn is not a linear subspace of Cn. It is of course an
R-vector space. . .

6. Since Rn is not a linear subspace of Cn, we cannot rely on
exercise (19) to argue that (Rn, 〈·, ·〉) is a Hilbert space. In fact,
we want to show that Rn is a Hilbert space over R, (not C), so
exercise (19) is no good to us. . .However, the restriction of 〈·, ·〉
to Rn ×Rn also satisfies conditions (i) − (v) of definition (81),
and is therefore an inner-product on Rn, which furthermore
induces the usual metric on Rn. Since from theorem (49), Rn

is complete with respect to its usual metric, we conclude from
definition (83) that it is a Hilbert space over R.

Exercise 20
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Exercise 21.

1. Since C �= ∅, there exists y ∈ C. From δmin ≤ ‖y − x0‖, we
obtain δmin < +∞. In particular, δmin < δmin + 1/n for all
n ≥ 1. δmin being the greatest of all lower-bound of ‖x−x0‖ for
x ∈ C, it follows that δmin + 1/n cannot be such lower-bound.
There exists xn ∈ C, such that ‖xn − x0‖ < δmin + 1/n. This
being true for all n ≥ 1, we have found a sequence (xn)n≥1 in
C, such that δmin ≤ ‖xn − x0‖ < δmin + 1/n, for all n ≥ 1. In
particular, ‖xn − x0‖ → δmin.

2. For all x, y ∈ H:

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 + ‖y‖2 − 〈x, y〉 − 〈x, y〉
‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x, y〉 + 〈x, y〉

and therefore:

‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2
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or equivalently:

‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − 4
∥∥∥∥x+ y

2

∥∥∥∥
2

(6)

3. Let n,m ≥ 1. xn and xm are both elements of C. Since we have
1/2 ∈ [0, 1], from definition (85), C being convex, (xn + xm)/2
is also an element of C. Since δmin is a lower-bound of ‖x− x0‖
for x ∈ C, we conclude that:

δmin ≤
∥∥∥∥xn + xm

2
− x0

∥∥∥∥ (7)

4. Let n,m ≥ 1. Applying (6) to x = xn − x0 and y = xm − x0:

‖xn− xm‖2 = 2‖xn− x0‖2 + 2‖xm− x0‖2 − 4
∥∥∥∥xn + xm

2
− x0

∥∥∥∥
2

and therefore, from (7):

‖xn − xm‖2 ≤ 2‖xn − x0‖2 + 2‖xm − x0‖2 − 4δ2min (8)
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5. Let ε > 0. Since (xn)n≥1 is such that ‖xn − x0‖ → δmin, in
particular, there exists N ≥ 1 such that:

n ≥ N ⇒ 2‖xn − x0‖2 ≤ 2δ2min + ε2/2

Using (8), we have:

n,m ≥ N ⇒ ‖xn − xm‖2 ≤ ε2

It follows from definition (79) that (xn)n≥1 is a Cauchy sequence
in H. Since H is a Hilbert space, it is also a complete metric
space. So (xn)n≥1 has a limit in H. There exists x∗ ∈ H, such
that xn → x∗15.

6. From 5., we have xn → x∗, while (xn)n≥1 is a sequence of
elements of C. Since by assumption, C is a closed subset of H,
using exercise (13) [4.], we conclude that x∗ ∈ C.

15Convergence relative to the norm topology, so xn

T〈·,·〉→ x∗.
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7. Let x, y ∈ H. From exercise (17), we have:

‖x‖ ≤ ‖x− y‖ + ‖y‖
‖y‖ ≤ ‖x− y‖ + ‖x‖

where we have used the fact that ‖x− y‖ = ‖y − x‖. Hence:

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖
or equivalently | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.

8. For all n ≥ 1, from 7., we have:

| ‖xn − x0‖ − ‖x∗ − x0‖ | ≤ ‖x∗ − xn‖
Since xn → x∗, ‖x∗ − xn‖ → 0, and so ‖xn − x0‖ → ‖x∗ − x0‖.

9. By construction, (xn)n≥1 is such that ‖xn − x0‖ → δmin. How-
ever, from 8., ‖xn − x0‖ → ‖x∗ − x0‖. So ‖x∗ − x0‖ = δmin.
Since x∗ ∈ C, we have found x∗ ∈ C, such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}
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10. Suppose y∗ is another element of C, such that:

‖y∗ − x0‖ = inf{‖x− x0‖ : x ∈ C}

Applying (6) to x = x∗ − x0 and y = y∗ − x0, we obtain:

‖x∗ − y∗‖2 = 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4
∥∥∥∥x∗ + y∗

2
− x0

∥∥∥∥
2

Since C is convex and x∗, y∗ are elements of C, (x∗ + y∗)/2 is
also an element of C. It follows that:

δmin ≤
∥∥∥∥x∗ + y∗

2
− x0

∥∥∥∥
and finally ‖x∗ − y∗‖2 ≤ 2‖x∗ − x0‖2 + 2‖y∗ − x0‖2 − 4δ2min.

11. Since δmin = ‖x∗ − x0‖ = ‖y∗ − x0‖, we see from 10. that
‖x∗ − y∗‖ = 0, and finally x∗ = y∗. This proves theorem (52).

Exercise 21

www.probability.net

http://www.probability.net


Solutions to Exercises 92

Exercise 22.

1. For all y ∈ G, 〈0, y〉 = 0.〈0, y〉 = 0. So 0 ∈ G⊥ and in particular
G⊥ �= ∅. Let x1, x2 ∈ G⊥ and α ∈ K. For all y ∈ G, we have
〈x1, y〉 = 0 and 〈x2, y〉 = 0. Hence:

〈x1 + αx2, y〉 = 〈x1, y〉 + α〈x2, y〉 = 0

This being true for all y ∈ G, x1 +αx2 ∈ G⊥. We conclude that
G⊥ is a linear sub-space of H. Note that no assumption was
made, as to whether G is itself a linear sub-space or not.

2. Given y ∈ H, let φy : H → K be defined by φy(x) = 〈x, y〉. From
the Cauchy-Schwarz inequality of theorem (50), if x1, x2 ∈ H,
we have |φy(x1) − φy(x2)| = |〈x1 − x2, y〉| ≤ ‖y‖.‖x1 − x2‖ or
equivalently dK(φy(x1), φy(x2)) ≤ ‖y‖.d〈·,·〉(x1, x2), where dK
is the usual metric on K. It follows that φy : H → K is a
continuous map, with respect to the norm topology on H, and
the usual topology on K.
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3. Suppose x ∈ G⊥. For all y ∈ G, we have 〈x, y〉 = 0 = φy(x). So
x ∈ ∩y∈Gφ

−1
y ({0}). Conversely, if x ∈ ∩y∈Gφ

−1
y ({0}), then for

all y ∈ G, we have φy(x) = 0 = 〈x, y〉, and therefore x ∈ G⊥.
This proves that G⊥ = ∩y∈Gφ

−1
y ({0}).

4. The set {0} is a closed subset of K. Since φy : H → K is a
continuous map for all y ∈ H, the inverse image φ−1

y ({0}) is a
closed subset of H. From 3., G⊥ being an arbitrary intersection
of closed subsets of H, we conclude that G⊥ is itself a closed
subset of H.

5. ∅⊥ ⊆ H and {0}⊥ ⊆ H are obviously true. Furthermore, a
statement such that [∀y ∈ ∅, 〈x, y〉 = 0] is also true for any
x ∈ H. So H ⊆ ∅⊥. Moreover, for all x ∈ H, 〈x, 0〉 = 0, i.e.
x ∈ {0}⊥. So H ⊆ {0}⊥. We have proved that H = ∅⊥ = {0}⊥.

6. For all y ∈ H, 〈0, y〉 = 0. So {0} ⊆ H⊥. Conversely, if x ∈ H⊥,
then 〈x, x〉 = 0 and therefore x = 0. So H⊥ ⊆ {0}.

Exercise 22
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Exercise 23.

1. M being a linear sub-space of H, it has at least one element,
namely 0. So M �= ∅. Furthermore, for all x, y ∈ M and
α, β ∈ K, we have αx+ βy ∈ M. In particular, for all t ∈ [0, 1],
tx + (1 − t)y ∈ M. From definition (85), it follows that M is
also a convex subset of H. Having assumed M to be closed, it is
therefore a non-empty, closed and convex subset of H. Applying
theorem (52), there exists x∗ ∈ M such that:

‖x∗ − x0‖ = inf{‖x− x0‖ : x ∈ M}

2. Let y∗ = x0 − x∗. Since x∗ ∈ M, for all y ∈ M and α ∈ K,
x∗ + αy is also an element of M. It follows that:

‖x∗ − x0‖ ≤ ‖x∗ + αy − x0‖
or equivalently:

‖y∗‖2 ≤ ‖y∗ − αy‖2 (9)
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3. Let y ∈ M and α ∈ K. We have:

‖y∗ − αy‖2 = ‖y∗‖2 − α〈y, y∗〉 − α〈y, y∗〉 + |α|2‖y‖2

Hence, using (9), we obtain:

0 ≤ −α〈y, y∗〉 − α〈y, y∗〉 + |α|2‖y‖2 (10)

4. Given y ∈ M \ {0}, take α = 〈y, y∗〉/‖y‖2 in (10). We obtain:

0 ≤ −|〈y, y∗〉|2
‖y‖2

5. It follows from 4. that |〈y, y∗〉|2 ≤ 0 for all y ∈ M \ {0}. So
〈y∗, y〉 = 〈y, y∗〉 = 0, for all y ∈ M \ {0}. Since 〈y∗, 0〉 = 0, we
in fact have 〈y∗, y〉 = 0 for all y ∈ M, and we see that y∗ ∈ M⊥.
So x∗ ∈ M, y∗ ∈ M⊥, and since y∗ = x0−x∗, we conclude that
x0 = x∗ + y∗.

6. M and M⊥ being linear sub-spaces of H, 0 is an element of
both M and M⊥. So {0} ⊆ M ∩ M⊥. Conversely, suppose
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x ∈ M∩M⊥. From x ∈ M⊥, we have 〈x, y〉 = 0 for all y ∈ M.
From x ∈ M, we see in particular that 〈x, x〉 = 0. From (v) of
definition (81), we conclude that x = 0. So M∩M⊥ = {0}.

7. Suppose there exist x̄ ∈ M and ȳ ∈ M⊥, such that x0 = x̄+ ȳ.
Then x∗ + y∗ = x̄ + ȳ and consequently x∗ − x̄ = ȳ − y∗, while
x∗ − x̄ ∈ M and ȳ − y∗ ∈ M⊥. Since M ∩ M⊥ = {0}, we
conclude that x∗ = x̄ and y∗ = ȳ. So x∗ ∈ M and y∗ ∈ M⊥

such that x0 = x∗ + y∗ are unique. This proves theorem (53).

Exercise 23
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Exercise 24.

1. Let λ : H → K be a linear functional, which is continuous at
x0 ∈ H16. Given an open set V in K containing λ(x0), there
exists an open set U in H containing x0, such that f(U) ⊆ V .
Since the two topologies on H and K are metric, this is easily
shown to be equivalent to the property that for all ε > 0, there
exists δ > 0, such that:

∀x ∈ H , ‖x− x0‖ < δ ⇒ |λ(x) − λ(x0)| < ε

In particular, taking ε = 1 and some η > 0 strictly smaller than
the associated δ, we have:

∀x ∈ H , ‖x− x0‖ ≤ η ⇒ |λ(x) − λ(x0)| ≤ 1

Hence, given x ∈ H, x �= 0, we have:

|λ(ηx/‖x‖)| = |λ(x0 + ηx/‖x‖) − λ(x0)| ≤ 1

16Continuity at a given point is defined in what follows.
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2. If λ is continuous at some x0 ∈ H, from 1., there exists η > 0
such that |λ(ηx/‖x‖)| ≤ 1 for all x ∈ H\{0}. So |λ(x)| ≤ ‖x‖/η
for all x ∈ H \ {0}, which is obviously still valid if x = 0. We
have found M = 1/η ∈ R+, such that:

∀x ∈ H , |λ(x)| ≤M‖x‖ (11)

3. Suppose λ : H → K is a linear functional, such that (11) holds
for some M ∈ R+. Then for all x1, x2 ∈ H, we have:

|λ(x1) − λ(x2)| = |λ(x1 − x2)| ≤M‖x1 − x2‖
So λ is continuous (everywhere).

Exercise 24
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Exercise 25.

1. Let x0 ∈ H such that λ(x0) �= 0. Then x0 �∈ M = λ−1({0}).

2. M = λ−1({0}) is a linear sub-space of H. Indeed, it is not
empty (λ(0) = 0), and if λ(x1) = λ(x2) = 0 and α ∈ K, then:

λ(x1 + αx2) = λ(x1) + αλ(x2) = 0

Furthermore, λ being a bounded linear functional, is continuous,
and M = λ−1({0}) is therefore a closed subset of H. So M is
a closed linear sub-space of H. From theorem (53), there exists
x∗ ∈ M, y∗ ∈ M⊥, such that x0 = x∗ + y∗.

3. Since x∗ ∈ M, λ(y∗) = λ(x0) and therefore λ(y∗) �= 0. In
particular, y∗ �= 0. Taking z = y∗/‖y∗‖, we have found z ∈ M⊥,
such that ‖z‖ = 1.

4. Let α ∈ K \ {0}. We have 〈z, αz〉/ᾱ = 〈z, (αz)/α〉 = 〈z, z〉 = 1.
It follows that λ(x)〈z, αz〉/ᾱ = λ(x) for all x ∈ H.
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5. In order to have λ(x) = 〈x, αz〉 for all x ∈ H, we need:

0 = λ(x)−〈x, αz〉 = λ(x)〈z, αz〉/ᾱ−〈x, αz〉 = 〈λ(x)z/ᾱ−x, αz〉

Since z ∈ M⊥, it is sufficient to choose α ∈ K \ {0}, with:

∀x ∈ H ,
λ(x)z
ᾱ

− x ∈ M (12)

6. Since M = λ−1({0}), property (12) is equivalent to:

0 = λ

(
λ(x)z
ᾱ

− x

)
= λ(x)λ(z)/ᾱ − λ(x)

for all x ∈ H, which is satisfied for α = λ(z), provided λ(z) �= 0.
But if λ(z) = 0, then z ∈ M. So z ∈ M∩M⊥ and 〈z, z〉 = 0,
contradicting the fact that ‖z‖ = 1. Hence, if we take α = λ(z),
then condition (12) is satisfied, and therefore λ(x) = 〈x, αz〉 for
all x ∈ H. Taking y = αz = λ(z)z, we have found y ∈ H, with:

∀x ∈ H , λ(x) = 〈x, y〉 (13)

www.probability.net

http://www.probability.net


Solutions to Exercises 101

In case one has any doubt about (13), one can quickly check:

λ(x) − 〈x, λ(z)z〉 = λ(x)〈z, z〉 − λ(z)〈x, z〉
= 〈λ(x)z − λ(z)x, z〉
= 0

the last equality arising from λ(x)z − λ(z)x ∈ M and z ∈ M⊥.

7. Suppose ȳ ∈ H is such that λ(x) = 〈x, ȳ〉 for all x ∈ H. Then
〈x, y − ȳ〉 = 0 for all x ∈ H, and in particular ‖y − ȳ‖2 = 0,
i.e. ȳ = y. So y ∈ H satisfying (13) is unique. This proves
theorem (54) 17 .

Exercise 25

17The case λ = 0 is easy to handle.
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Exercise 26.

1. Suppose f = g μ-a.s. For all h ∈ [f ], we have h = f μ-a.s. and
therefore h = g μ-a.s., i.e. h ∈ [g]. So [f ] ⊆ [g], and similarly
[g] ⊆ [f ]. Conversely, if [f ] = [g], then in particular f ∈ [g]
and therefore f = g μ-a.s. We have proved that f = g μ-a.s. is
equivalent to [f ] = [g].

2. Suppose [f ] = [f ′] and [g] = [g′]. Then f = f ′ μ-a.s. and g = g′

μ-a.s. So f + g = f ′ + g′ μ-a.s. and [f + g] = [f ′ + g′].

3. ⊕ is defined as [f ] ⊕ [g] = [f + g]. This definition may not be
legitimate, as [f ]⊕ [g] is defined in terms of particular represen-
tatives f and g of the equivalence classes [f ] and [g]. Since such
representative are normally far from being unique, this may lead
to different values of [f + g], as f and g range over all possible
choices. However, as shown in 2., [f + g] is in fact independent
of the particular choice of f ∈ [f ] and g ∈ [g]. So [f ] ⊕ [g] is
unambiguously defined, i.e. the operator ⊕ is well-defined.
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4. Let α ∈ K. If [f ] = [f ′], then f = f ′ μ-a.s. and αf = αf ′

μ-a.s. So [αf ] = [αf ′]. It follows that [αf ] is independent of
the particular choice of f ∈ [f ]. So α ⊗ [f ] is unambiguously
defined, i.e. the operator ⊗ is well-defined.

5. For all [f ], [g], [h] ∈ H and α, β ∈ K, we have:

(i) [0] ⊕ [f ] = [0 + f ] = [f ]
(ii) [−f ] ⊕ [f ] = [−f + f ] = [0]

(iii) [f ] ⊕ ([g] ⊕ [h]) = [f + g + h] = ([f ] ⊕ [g]) ⊕ [h]
(iv) [f ] ⊕ [g] = [f + g] = [g] ⊕ [f ]
(v) 1 ⊗ [f ] = [1.f ] = [f ]

(vi) α⊗ (β ⊗ [f ]) = [αβf ] = (αβ) ⊗ [f ]
(vii) (α+ β) ⊗ [f ] = [αf + βf ] = (α⊗ [f ]) ⊕ (β ⊗ [f ])

(viii) α⊗ ([f ] ⊕ [g]) = [αf + αg] = (α ⊗ [f ]) ⊕ (α⊗ [g])

Exercise 26
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Exercise 27.

1. Suppose [f ] = [f ′] and [g] = [g′]. Then f = f ′ μ-a.s. and g = g′

μ-a.s. So f ḡ = f ′ḡ′ μ-a.s. and therefore:∫
f ḡdμ =

∫
f ′ḡ′dμ (14)

It follows that (14) is independent of the of choice of f ∈ [f ] and
g ∈ [g]. We conclude that 〈[f ], [g]〉H is unambiguously defined,
i.e. 〈·, ·〉H is well-defined.

2. Let [f ], [g] ∈ H, α ∈ K and 〈·, ·〉 = 〈·, ·〉H. We have:

(i) 〈[f ], [g]〉 =
∫
f ḡdμ = 〈[g], [f ]〉

(ii) 〈[f ] ⊕ [g], [h]〉 =
∫

(f + g)h̄dμ = 〈[f ], [h]〉 + 〈[g], [h]〉

(iii) 〈α⊗ [f ], [g]〉 =
∫

(αf)ḡdμ = α〈[f ], [g]〉
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(iv) 〈[f ], [f ]〉 =
∫

|f |2dμ ∈ R+

and finally, 〈[f ], [f ]〉 = 0 is equivalent to
∫
|f |2dμ = 0, which

is in turn equivalent to f = 0 μ-a.s., i.e. [f ] = [0]. From
definition (81), we conclude that 〈·, ·〉 is an inner-product on H.

3. H is a K-vector space, and 〈·, ·〉H is an inner-product on H.
From definition (83), to show that (H, 〈·, ·〉H) is a Hilbert space
over K, we need to prove that H is in fact complete with respect
to the metric induced by the inner-product. Let ([fn])n≥1 be a
Cauchy sequence in H. For all ε > 0, there exists n0 ≥ 1 with:

n,m ≥ n0 ⇒ ‖[fn] − [fm]‖H ≤ ε18

However, for all f ∈ L2
K(Ω,F , μ), we have:

‖[f ]‖H = (〈[f ], [f ]〉H)
1
2 =

(∫
|f |2dμ

) 1
2

= ‖f‖2

18[fn] − [fm] is a light notation to indicate [fn] ⊕ [−fm].
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It follows that (fn)n≥1 is a Cauchy sequence in L2
K(Ω,F , μ).

From theorem (46), there exists f ∈ L2
K(Ω,F , μ), such that

fn → f in L2. In other words, for all ε > 0, there exists n0 ≥ 1,
such that:

n ≥ n0 ⇒ ‖fn − f‖2 ≤ ε

Since ‖fn − f‖2 = ‖[fn] − [f ]‖H, we conclude that [fn] → [f ]
with respect to the norm topology on H. Having found a limit
for the Cauchy sequence ([fn])n≥1, we have proved that H is
complete, and (H, 〈·, ·〉H) is finally a Hilbert space over K.

4. 〈f, g〉 =
∫
f ḡdμ is not an inner-product on L2

K(Ω,F , μ), as prop-
erty (v) of definition (81) fails to be satisfied. If 〈f, f〉 = 0, then
we know for sure that f = 0 μ-a.s. There is no reason why f
should be 0 everywhere. This is the very reason why in this ex-
ercise, we go through so much trouble considering the quotient
set H = (L2

K(Ω,F , μ))|R, where R is the μ-a.s. equivalence
relation on L2

K(Ω,F , μ).

Exercise 27
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Exercise 28.

1. Since L2
K(Ω,F , μ) is not a Hilbert space, we cannot use exer-

cise (24) in its literal form. However, most of what we did then,
can be reproduced here. Let λ : L2

K(Ω,F , μ) → K be a continu-
ous linear functional. The open ball B(0, 1) = {z ∈ K : |z| < 1}
being open in K, the inverse image λ−1(B(0, 1)) is an open sub-
set of L2

K(Ω,F , μ). Since 0 ∈ λ−1(B(0, 1)), there exists δ > 0,
such that B(0, δ) ⊆ λ−1(B(0, 1)), where B(0, δ) is the open ball
in L2

K(Ω,F , μ). Taking an arbitrary η > 0, strictly smaller than
δ, for all f ∈ L2

K(Ω,F , μ), we have:

‖f‖2 ≤ η ⇒ |λ(f)| ≤ 1

It follows that |λ(ηf/‖f‖2)| ≤ 1 for all f ∈ L2
K(Ω,F , μ), f �= 0,

and finally:

∀f ∈ L2
K(Ω,F , μ) , |λ(f)| ≤ 1

η
‖f‖2 (15)

www.probability.net

http://www.probability.net


Solutions to Exercises 108

2. If [f ] = [g], then f − g = 0 μ-a.s. and ‖f − g‖2 = 0. It follows
from (15) that λ(f) = λ(g).

3. Λ : H → K is defined by Λ([f ]) = λ(f). Since λ(f) is indepen-
dent of the particular choice of f ∈ [f ], Λ([f ]) is unambiguously
defined, i.e. Λ is well-defined. For all [f ], [g] ∈ H and α ∈ K:

Λ([f ]⊕(α⊗[g])) = Λ([f+αg]) = λ(f)+αλ(g) = Λ([f ])+αΛ([g])

So Λ is a linear functional on H. Furthermore, since we have
‖[f ]‖H = ‖f‖2 for all f ∈ L2

K(Ω,F , μ), we obtain immediately
from (15) that:

∀[f ] ∈ H , |Λ([f ])| ≤ 1
η
‖[f ]‖H

and we conclude from definition (88) that Λ is a well-defined
bounded linear functional on H.

4. Let λ : L2
K(Ω,F , μ) → K be a continuous linear functional.

Then from 3., Λ : H → K defined by Λ([f ]) = λ(f) is a
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bounded linear functional on the Hilbert space H. Applying
theorem (54), there exists [g] ∈ H, such that:

∀[f ] ∈ H , Λ([f ]) = 〈[f ], [g]〉H
It follows that:

∀f ∈ L2
K(Ω,F , μ) , λ(f) =

∫
f ḡdμ

This proves theorem (55).

Exercise 28

www.probability.net

http://www.probability.net

	10 Bounded Linear Functionals in L2
	 Solutions to Exercises



