Tutorial 2: Caratheodory’s Extension 1

2. Caratheodory’s Extension

In the following, € is a set. Whenever a union of sets is denoted W as
opposed to U, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Q is a subset S of the power set P(£2)
with the following properties:

(1) hesS

(i) A BeS = AnBeS

(441 ABeS = In>0, A4, €S: A\B=[H A,
i=1
The last property (iii) says that whenever A, B € S, there is n > 0
and Aj,..., A, in § which are pairwise disjoint, such that A\ B =

A1 W...WA,. If n =0, it is understood that the corresponding union
is equal to @, (in which case A C B).
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Definition 7 A ring on Q) is a subset R of the power set P(2) with
the following properties:
(i) heRrR

(i) A/ BER = AUBEeR

0 A BeER = A\BeR
EXERCISE 1. Show that ANB = A\ (A\ B) and therefore that a ring
is closed under pairwise intersection.
EXERCISE 2.Show that a ring on 2 is also a semi-ring on €.

EXERCISE 3.Suppose that a set Q0 can be decomposed as 2 = Ay W
As W Az where Aj, As and Asz are distinct from () and €. Define

S1 2 {0, A1, Ay, A3, Q) and Sy 2 {0, Ay, Ay W A3, Q}. Show that S
and Sy are semi-rings on 2, but that &3 N Sy fails to be a semi-ring
on .

EXERCISE 4. Let (R;)iesr be an arbitrary family of rings on €2, with
I # (). Show that R = NicrR; is also a ring on .
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EXERCISE 5. Let A be a subset of the power set P (). Define:

R(A) 2 {Rringon Q: ACR}
Show that P(2) is a ring on €, and that R(A) is not empty. Define:
RAE N R
RER(A)

Show that R(A) is a ring on  such that A C R(A), and that it is
the smallest ring on Q with such property, (i.e. if R is a ring on Q
and A C R then R(A) CR).

Definition 8 Let A C P(Q). We call ring generated by A, the
ring on ), denoted R(A), equal to the intersection of all rings on €,
which contain A.

EXERCISE 6.Let S be a semi-ring on €). Define the set R of all finite
unions of pairwise disjoint elements of S, i.e.

RE{A: A=W A for some n>0,4; € S}
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(where if n = 0, the corresponding union is empty, i.e. ) € R). Let
A=l A, and B = &J?ZlBj €ER:

1. Show that AN B = W, ;(A; N B;) and that R is closed under
pairwise intersection.

2. Show that if p > 1 then A\ B = N_ (Wi, (A; \ By)).
3. Show that R is closed under pairwise difference.

4. Show that AU B = (A \ B) W B and conclude that R is a ring
on ().

5. Show that R(S) = R.

EXERCISE 7. Everything being as before, define:

R 2 {A: A=U]_ A, for somen > 0,4, € S}
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(We do not require the sets involved in the union to be pairwise dis-
joint). Using the fact that R is closed under finite union, show that
R’ C R, and conclude that R' = R = R(S).

Definition 9 Let A C P(Q) with ) € A. We call measure on A,
any map 1 : A — [0, 400] with the following properties:

@ w0 =0
+oo

—+oo
(i4) AcA A e Aand A= H Ay = p(d) =) u(An)
n=1 n=1
The W indicates that we assume the A,’s to be pairwise disjoint in
the Lh.s. of (i7). It is customary to say in view of condition (i7) that
a measure is countably additive.

EXERCISE 8.If A is a o-algebra on Q explain why property (i¢) can
be replaced by:

+o0 too
(ii) Ap € Aand A= [ A, = p(A) =D (A
n=1

n=1
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EXERCISE 9. Let A C P(Q) with ) € A and p : A — [0,400] be a
measure on A.

1. Show that if Ay,..., A, € A are pairwise disjoint and the union
A=l A; lies in A, then p(A) = p(A4y) + ...+ p(An).

2. Show that if A, B € A, A C B and B\ A € Athen u(4) < u(B).

EXERCISE 10. Let S be a semi-ring on €, and p: S — [0, +00] be a
measure on S. Suppose that there exists an extension of 1 on R(S),
i.e. a measure i : R(S) — [0, 4-o00] such that fijs = p.

1. Let A be an element of R(S) with representation A = W], A;
as a finite union of pairwise disjoint elements of S. Show that

i(A) = 307, w(Ay)
2. Show that if @’ : R(S) — [0,+oc] is another measure with
ﬁfs = i, i.e. another extension of y on R(S), then i’ = fi.
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EXERCISE 11. Let S be a semi-ring on Q and p : S — [0, +0o0] be a
measure. Let A be an element of R(S) with two representations:

n P
A=A =HB
i=1

j=1
as a finite union of pairwise disjoint elements of S.
1. Fori=1,...,n, show that u(4;) = 32%_, u(A; N By)
2. Show that > 31, pu(A;) = 35—, u(B;)
3. Explain why we can define a map i : R(S) — [0, +o0] as:
A
aA) =) u(A)
i=1

4. Show that () = 0.
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EXERCISE 12. Everything being as before, suppose that (A, ),>1 is a
sequence of pairwise disjoint elements of R(S), each A, having the
representation:

Pn
Ap=H AL n>1
k=1

as a finite union of disjoint elements of S. Suppose moreover that
A =t A, is an element of R(S) with representation A = &J’;:lBj,
as a finite union of pairwise disjoint elements of S.

1. Show that for j = 1,...,p, B; = U} U™, (AF N B;) and
explain why B; is of the form B; = Wt C,, for some sequence
(Cm)m>1 of pairwise disjoint elements of S.

+oo n
2. Show that u(B;) =Y b w(AE N By)

n=1

3. Show that for n > 1 and k =1,...,p,, A% = &)_, (A} N Bj)
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4. Show that u(Ay) = >°0_, p(A} N By)

5. Recall the definition of i of exercise (11) and show that it is a
measure on R(S).

EXERCISE 13.Prove the following theorem:

Theorem 2 Let S be a semi-ring on Q. Let p: S — [0,+0c] be a
measure on S. There exists a unique measure fi : R(S) — [0, +o<]
such that fijs = .
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Definition 10 We define an outer-measure on ) as being any
map p* : P(Q) — [0, +o0] with the following properties:

() w@=0
(i) ACB = u(A)<u(B)

+o0o +00
@ (Ua)<Swu

n=1 n=1
EXERCISE 14. Show that p* (AU B) < p*(A) + p*(B), where p* is an
outer-measure on 2 and A, B C .
Definition 11 Let p* be an outer-measure on Q. We define:

S E{ACQ: 1 (T) = p* (T NA) +p* (TNAS), VT C Q}

We call ¥(u*) the o-algebra associated with the outer-measure .

Note that the fact that X(u*) is indeed a o-algebra on 2, remains to
be proved. This will be your task in the following exercises.
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EXERCISE 15. Let u* be an outer-measure on Q. Let ¥ = X(u*) be
the o-algebra associated with p*. Let A,B € ¥ and T' C Q

1.

N o

Show that 2 € ¥ and A° € X.

Show that u*(T'NA) = p*(TNANB) + p* (TN AN B°)

Show that TN A =TnN(ANB)°N A°

Show that TNANB =T N(ANB)NA

Show that p*(T'NA°) +p*(TNANB®) =p*(T'N(ANB)°%)
Adding p* (TN(ANB)) on both sides 5., conclude that ANB € ¥.
Show that AU B and A\ B belong to X.

EXERCISE 16. Everything being as before, let A,, € ¥, n > 1. Define

By =

Ay and By = A1 \ (A1 U...UA,). Show that the B,,’s are

pairwise disjoint elements of ¥ and that U}> A,, = &> B,,.
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EXERCISE 17. Everything being as before, show that if B,C' € ¥ and
BNC =0, then p*(TN(BWC)) = p*(TNB)+ p*(TNC) for any
T CQ.

EXERCISE 18.Everything being as before, let (B, )n>1 be a sequence
of pairwise disjoint elements of ¥, and let B = Wi B,. Let N > 1.

1. Explain why W_, B, € ¥

2. Show that p*(T'N (WN_,B,)) = S0 (TN B,)

3. Show that p*(T'N B¢) < p*(T N (WY, B,)°)

4. Show that p*(T'N B®) + 3.1 y*(T' N B,) < p*(T), and:

5. u*(T) < pw(TNBS)+p*(TNB) < p*(TNB°)+ 37> u*(TNB,,)
6. Show that B € ¥ and p*(B) = 3. p*(B,).

7. Show that ¥ is a o-algebra on €2, and “TE is a measure on .
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Theorem 3 Let p* : P(2) — [0,400] be an outer-measure on .
Then Y (u*), the so-called o-algebra associated with p*, is indeed a
o-algebra on Q and ps .y, is @ measure on S(p”).

EXERCISE 19. Let R be a ring on Q and u : R — [0,400] be a
measure on R. For all T' C €, define:

+oo
w*(T) 2 inf {Z,u(An) , (Ap) is an R-cover of T}
n=1

where an R-cover of T is defined as any sequence (A4, ),>1 of elements
of R such that T C U/> A,,. By convention inf () £ .
1. Show that pu*(0) = 0.

2. Show that if A C B then p*(A) < p*(B).
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3. Let (An)n>1 be a sequence of subsets of €2, with p*(A4,) < 400
for all n > 1. Given € > 0, show that for all n > 1, there exists
an R-cover (AP)PZ1 of A,, such that:

—+oo

ST A < 1 (Ay) + /2"

p=1
Why is it important to assume p*(A4,) < +oo.
4. Show that there exists an R-cover (Ry) of U:flAn such that:

“+o0 “+o00 400
> u(Ri) =D u(Ar)
k=1

n=1p=1

5. Show that u*(UfSA,) < e+ 3212 1%(4,)

6. Show that p* is an outer-measure on 2.
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EXERCISE 20. Everything being as before, Let A € R. Let (An)n>1
be an R-cover of A and put By = A1 N A, and:

Bri1 2 (Ans1 NA)\ (AL NA)U...U(A, N A))
1. Show that p*(A) < p(A).

2. Show that (By),>1 is a sequence of pairwise disjoint elements
of R such that A = W/ > B,.

3. Show that pu(A) < p*(A) and conclude that pjz = p.

EXERCISE 21. Everything being as before, Let A € R and T' C Q).
1. Show that p*(T) < p*(T'N A) 4+ p*(T' N A°).

2. Let (T3,) be an R-cover of T'. Show that (T,,NA) and (T}, N A°)
are R-covers of T'N A and T'N A€ respectively.

3. Show that p*(T'NA) + p*(T N A°) < p*(T).
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4. Show that R C X(pu*).
5. Conclude that o(R) C X(u*).

EXERCISE 22.Prove the following theorem:

Theorem 4 (Caratheodory’s extension) Let R be a ring on 2
and 1 : R — [0,400] be a measure on R. There exists a measure
p' 2 o(R) — [0, +00] such that pij = p.

EXERCISE 23. Let S be a semi-ring on 2. Show that o(R(S)) = o(S).

EXERCISE 24.Prove the following theorem:

Theorem 5 Let S be a semi-ring on Q and p: S — [0,+00] be a
measure on S. There exists a measure u' : 0(S) — [0, 400] such that

His = H-
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Solutions to Exercises

Exercise 1.

e Let t € ANB. Then x € B. Sox ¢ A\ B. Tt follows that
x €A\ (A\B),and ANBC A\ (A\ B). Let z € A\ (A\ B).
Then x € Aand © ¢ A\ B. But ¢ A\ B implies that either
r & Aorx € B. Hence, x € B. finally, z € AN B and
A\ (A\ B) C AN B. We have proved that ANB = A\ (A\ B)

e Let R be a ring and A, B € R. From (i4i) of definition (7),
A\ B € R. Hence, A\ (A\ B) € R. Tt follows from the previous
point that AN B € R. We have proved that a ring is closed
under pairwise intersection.

Exercise 1
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Exercise 2. Let R be ring on €. Then (i) of definition (6) is imme-
diately satisfied for R. From exercise (1), we know that R is closed
under finite intersection. So (i¢) of definition (6) is satisfied for R.
Let A, B € R. From (iii) of definition (7), A\ B € R. Therefore, if
we take n =1 and A = A\ B € R, we see that A\ B =W ; A; and
(7i1) of definition (6) is satisfied for R. Finally, having checked (),
(7i) and (7i7) of definition (6), we conclude that R is a semi-ring on
Q. Any ring on 2 is therefore also a semi-ring on 2.

Exercise 2
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Exercise 3.

e ) € S so (i) of definition (6) is satisfied for ;. If A, B € &y,
then AN B is equal to the empty set (remember that Ay, A and
Ajs are disjoint), unless A (resp. B) is § itself, or A = B # (),
in which case AN B is equal to B (resp. A). In any case,
AN B € & and condition (i7) of definition (6) is satisfied for
S1. If A, B € Sy, since S; has 5 elements, A\ B is one of 25
cases to consider. It is equal to 0, (0\ 0, 0\ A;, 0\ Q, A; \ Q,
A\ A;, Q\ Q) in 12 of those cases. It is equal to A itself (A4; \ 0,
A\ Aj,7 # 1, Q\0) in 10 of those cases. The last three cases
are Q\Al = Ao ¥ Az, Q\AQ = Ay W A3 and Q\Ag = A1 ¥ As.
Hence, we see that condition (ii7) of definition (6) is satisfied
for §;. We have proved that S; is indeed a semi-ring on €.

e If we put By = A; and By = Ao W A3, then Q2 = By W By where
By, By are distinct from () and Q2. Moreover, Sy = {0}, By, B2, Q},
and proving that Ss is a semi-ring on 2 is identical to the pre-
vious point, but is just a little bit easier...
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e 51NSy = {0, A1, Q} (remember that all A;’s are not empty and
pairwise disjoint, so Az # Ao W A3 and As # Ay W As). Suppose
that &1 NSais a semi-ring on Q. Then from (i) of definition (6),
there exists n > 0 and By, Bs,..., B, in 8§ NSy such that:

Q\ A =B W...WB,

Since A; is assumed to be distinct from Q, Q\ A1 # 0. It follows
that n > 1 and at least one of the B;’s is not empty. If B; = ()
then @\ A; = Q and this would be a contradiction since A4;
is assumed to be not empty. If B; = A; then Q\ A1 D 4,
would also be a contradiction. Hence, the initial assumption of
S1 N S being a semi-ring on () is absurd. &1 N Se fails to be
a semi-ring on ). The purpose of this exercise is to show that
contrary to Dynkin systems, o-algebras and rings (as we shall
see in the next exercise), taking intersections of semi-rings does
not necessarily create another semi-ring. Hence, no attempt will
be made to define the notion of generated semi-ring...

Exercise 3
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Exercise 4. Each R; being a ring on 2, ) € R;. This being true
for all i € I, ) € NiesR; = R, and condition (i) of definition (7) is
satisfied for R. Let A, B € R. Then for all i € I, A, B belong to
R;. It follows that A\ B and AU B belong to R;. This being true
for all : € I, both A\ B and AU B lie in N;c1R;, and conditions (i4)
and (#4¢) of definition (7) are satisfied for R. Having checked (4), (i7)
and (i47) of definition (7), we conclude that R is indeed a ring on €.
The purpose of this exercise is to show that an arbitrary (non-empty)
intersection of rings on €2, is still a ring on .

Exercise 4
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Exercise 5.

e () being a subset of 2, ) € P(€2) and condition (¢) of definition (7)
is satisfied for P(). Given two subsets A, B of Q, A\ B and
AUB are still subsets of 2, i.e. A\B € P(Q2) and AUB € P(Q2).
Hence, conditions (i7) and (iii) of definition (7) are satisfied for
P(£2). It follows that P(2) is a ring on €.

e By assumption, A C P(Q2). Moreover, P(2) is a ring on €.
Therefore, P(2) € R(A). In particular, R(A) is not empty.

e R(A) is a non-empty intersection of rings on 2. From exer-
cise (4), it is therefore a ring on €.

e For all R € R(A), A CR. Hence:

AC (] RERWA
RER(A)
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e Suppose R is another ring on €2, with A C R. Then, by defini-
tion of the set R(A), R € R(A). It follows that:

RA)= [] RCR
R'ER(A)

So R(A) is indeed the smallest ring on 2 which contains A.

Exercise 5
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Exercise 6.

1. If v € A; N By for some ¢ = 1,...,n and j = 1,...,p, then
x € ANB. Converselyif € ANB, thenn > 1, p > 1, and there
exist ¢ € {1,...,n} and j € {1,...,p} such that z € 4; N B;.
So ANB = U; jA; N B;. Suppose (4, 7) and (', j') are such that
(A;NBj)N(AyNBj) # 0. In particular, A;NA; # 0. Since the
A;’s are pairwise disjoint, we have ¢ = ¢/ and similarly j = 7.
Hence, we see that the (A; N B;), ;’s are pairwise disjoint, and
finally AN B =4, ;4; N B;. From (i7) of definition (6), all the
A; N By’s lie in the semi-ring S, and we see that AN B is also
an element of R. We have proved that R is closed under finite
intersection.

2. Since the A;’s are pairwise disjoint, for all j € {1,...,p} being
given, the A;\ B; i = 1,...,n, are also pairwise disjoint. Hence,
the union U} ; A;\ B, can legitimately be written as W} | A;\ B;.
let € A\ B. Then « ¢ B. Thus, for all j =1,...,p, z ¢ B,.
But z € A. So there exists i € {1,...,n} such that z € A;.
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It follows that for all j € {1,...,p}, z € A; \ B; for some
i€{l,...,n}. Soxeni_; Wi, (A;\ Bj). Conversely, suppose
that @ € Nf_; Wi, (4; \ Bj). Then for all j € {1,...,p},
there exists i; € {1,...,n} such that € A;, \ B;. Since we
have assumed p > 1, in particular x € A;, C A, and for all
je{l,....,p}, x & Bj, so x ¢ B. It follows that z € A\ B. We
have proved that:

A\ B =i, Wily (Ai\ By)

3. Ifp=20,then B=0and A\ B = A € R. We assume that
p > 1. From the previous point, we know that A\ B = n_,C;
where Cj is defined as C; = W' | A; \ B;. But each A; and B;
is an element of the semi-ring S. From (ii:) of definition (6),
each A; \ B; can be written as a finite union of pairwise disjoint
elements of S. It follows that Cj itself can be written as a finite
union of pairwise disjoint elements of S. Hence, we see that
for all j € {1,...,p}, C; is an element of R. From 1. we know
that R is closed under finite intersection. We conclude that
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A\ B = ﬂ?lej € R. We have proved that R is closed under
pairwise difference.

4. Let x € AUB. thenx € Aorz € B. If v € Bthena € A\BWB.
If x ¢ B then x € A\ B. In any case, x € A\ BW B, and
AUB C A\ BWB. Conversely, A\B C A, so AA\BYB C AUB.
Now, if A, B € R, from the previous point, A\ B € R. It follows
that A\ B can be written as a finite union of pairwise disjoint
elements of S. But B itself (being an element of R), can be
written as a finite union of pairwise disjoint elements of S. It
follows that A\ BW B is also a finite union of pairwise disjoint
elements of S, hence an element of R. From AUB = A\ BW B,
we conclude that A U B is an element of R. We have proved
that R is closed under finite union. Finally, (¢), (ii), (i4i) of
definition (7) being satisfied for R, R is indeed a ring on €.

5. Let A € §. A can obviously be written as a finite union of
pairwise disjoint elements of S. (Take n =1, A; = A € S and
A=Wl A;). Hence, A € R and S C R. Consequently, from
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exercise (5) and the fact that R is a ring on 2, R(S) C R.
Conversely, let A € R. Then A = W} | A; for some n > 0 and
A; € 8. Since § C R(S) (see exercise (5)), each A; lies in R(S).
But from (i7) of definition (7), R(S) being a ring is closed under
finite union. Hence, A € R(S) and we have R C R(S). We have
proved that R(S) = R. The purpose of this exercise is to show
that the ring R(S) generated by a semi-ring S on €, is equal to
the set of all finite unions of pairwise disjoint elements of S.

Exercise 6
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Exercise 7. Any finite union of pairwise disjoint elements of S, is in
particular a finite union of elements of S... So R C R'. Let A € R’.
There exists n > 0 and A; € S for i = 1,...,n such that A = U}, 4,.
Ifn=0,then A=0€R. Ifn>1,since S CR =R(S), all A;’s
are elements of R. R being closed under finite union (it is a ring on
Q), A is itself an element of R. Hence R’ C R. We have proved that
R =R = R(S). The purpose of this exercise is to show that the
generated ring R(S) of a semi-ring S on €2, is also equal to the set of
all finite unions of (not necessarily pairwise disjoint) elements of S.
Exercise 7
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Exercise 8. If A is a o-algebra on Q, then 4,, € A and A = W, 4,
automatically implies that A € A. Hence, the Lh.s of (i7) and (ii)
are equivalent, whenever A is a o-algebra on ().

Exercise 8
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Exercise 9.

1. Define the sequence (B,,),>1 of elements of A, by B; = A; for
alli=1,...,n and By = 0 for all £ > n. Then A = W2, By,
and since A € A, from (ii) of definition (9), we have:

+oo
p(A) = u(Br)
k=1

But from (¢) of definition (9), u(By) = 0 for all k£ > n. Hence:
p(A) = p(A1) + ...+ p(An)

In view of this property, it is customary to say that a measure
is finitely additive.

2. Suppose A, B € A with A C B and B\ A € A. Then, we have
B=AUB = AY(B\ A). From the previous point we conclude:

p(A) < w(A) + p(B\ A) = u(B)

Exercise 9
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Exercise 10.

1. If A = (), then either n =0or A; =0 foralli=1,...,n. In
any case, i(A) = Y i, u(A;) is true. If A # 0, then n > 1.
Since § C R(S), all sets involved in A = W' | A; are elements
of R(S). Since fi is a measure on R(S), from exercise (9) we
have fi(A) = 7" | fi(A;). By assumption, fys = p and 4; € S
for all i = 1,...,n. Hence, fi(A;) = u(A;) for alli =1,...,n.
It follows that ji(A) = D" 1 u(A;).

2. Let A € R(S). Then A has a representation A = W, A; as a
finite union of pairwise disjoint elements of S. From the previous
point, g(A) = 3", p(4;). If @’ is another measure on R(S)
with fifg = g1, then similarly we have fi'(A) = 37", pu(A4;). So
f(A) = i/(A). This being true for all A € R(S), & = i’. The
purpose of this exercise is to show that if a measure p on a semi-
ring S can be extended to its generated ring R(S), then such
extension is unique.
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Exercise 10
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Exercise 11.

1. If p = 0, then A = (). Then either n = 0 and there is nothing
to prove, or n > 1 with all A;’s equal to the empty set. In any
case, u(A;) = ;’:1 1(A; N Bj) is true. Hence we can assume
that p > 1. Since A; C A:

P
Ai=AinA=4 AnB (1)
j=1
Since S is a semi-ring, it is closed under finite intersection (defi-
nition (6)), hence all sets involved in (1) are elements of S. From

exercise (9), and the fact that p is a measure on S, we conclude

2. Similarly to the previous point, for all j = 1,...,p we have
w(Bj) = >, w(A; N Bj). It follows that:

n

DAY =3 > n(AinBy) ZZu (A:NB;) = > u(B,

i=1 j=1 j=1i=1
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3. Suppose we want to define a map i : R(S) — [0, +00] with:
AN
A(A) =) plA) (2)
i=1

where A = W' A; is a representation of A as a finite union
of pairwise disjoint elements of S. The problem is that such
representation may not be unique. However, if A = L+J§’:1Bj is
another representation of A in terms of finite union of pairwise
disjoint elements of S, then from 2., 377" | u(A;) = >0, u(B;).
It follows that whichever representation is considered, the sum
involved in (2) will still be the same. In other words, defini-
tion (2) is unambiguous, and therefore legitimate.

4. 0 has a representation with n = 0, or n = 1 with A; = 0, or
n = 2 with A; = Ay = (... Whichever representation we choose
for (), definition (2) leads to () = 0.

Exercise 11
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Exercise 12.

1. Forall j =1,...,p, since B; C A, we have:
+oo +0o Pn
Bj=AnB;=|JA.nB)) =] JAnB))

n=1 n=1k=1
Consider the set I = {(n,k) : n > 1,1 < k < p,}. Being a
countable union of finite sets, I is a countable set. Hence, there
exists a one-to-one map ¢ : {m :m > 1} — I. Given m > 1,
define C,,, = A¥ N B; where (n,k) = ¢(m). Then we have
Bj = U}, Cy,. Since all AF’s and B, itself are elements of the
semi-ring S, all C,,’s are elements of S. Suppose C,,, N Cypr # 0
for some m,m’ > 1. Then in particular, A¥ N A¥, # (), where
we have put (n, k) = ¢(m) and (n', k') = ¢(m’). Since Ak C A,
and Afll/ C A, it follows that A,, N A, # 0, and the A,,’s being
pairwise disjoint, we see that n = n’. Thus, A N A¥ £ (. But
the AF’s for k = 1,...,p, are also pairwise disjoint. We con-
clude that £k = k" and ¢(m) = (n, k) = (n', k") = ¢(m'). Since
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¢ is one-to-one, m = m/, and we have proved that (C,)m>1 is
a sequence of pairwise disjoint elements of S.

2. In the previous point, we saw that B; = Wt C,,. Since all sets
involved are elements of S and p is a measure on S, from (i) of
definition (9), we have:

+oo +00 Pn
p(By) = iw(Cm) =) w(AENB;) =) Y u(AENB;) (3)
m=1 (n,k)erl n=1k=1

3. Forn>1and k€ {1,...,p,}, we have A¥ C A, C A. Hence:

P
Af = AbnA =4 AnB))
j=1
4. From the previous point, using exercise (9), we obtain:
P
=Y wArnBy) (4)
j=1
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5. In exercise (11), we saw that the map g : R(S) — [0, +o0]
is such that j1()) = 0. Hence (i) of definition (9) is satisfied
for ji. Moreover, by definition, fG(A4) = ?:1 w(Bj). Using
equation (3), we have:

P 400 Pn +00 Pn

i(A) =D > D AL N B)) ZZZN Af N By)

=1k= n=1k=1j=1
Using equation (4), it follows that:

+00 Pn

=D ulAy)

n=1k=1

But, for all n > 1, i(A,) = >_4r, u(AF), by definition of f.

Hence: N
i(A) = (A
n=1
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It follows that (i7) of definition (9) is satisfied for . Finally, i
is a measure on the ring R(S).

Exercise 12
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Exercise 13.
e Uniqueness is a consequence of exercise (10)

e Take ji : R(S) — [0, +00] as defined in exercise (11). We proved
in exercise (12) that 7 is indeed a measure on the ring R(S).
Moreover, given A € S, if we take n = 1 and A; = A, then
A =Wl A; is a representation of A as a finite union of pairwise
disjoint elements of S. By definition of i (see exercise (11)), it
follows that fi(A) = u(A). This being true for all A € S, we
have fijs = p. This shows the existence of fi, and theorem (2)
is proved.

Exercise 13
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Exercise 14. Let (A,),>1 be the sequence of subsets of {2 defined
by Ay = A, Ay = B and A,, = ) for all n > 3. Using (i) and (i) of
definition (10), we obtain:

W (AU B) < p*(A) + " (B)

Exercise 14
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Exercise 15.

1. p* being an outer measure on €2, by (i) of definition (10), we
have p*(0) = 0. Tt follows that given an arbitrary T C €,
w*(T) = p* (T NQ) + p* (T NQ is obviously true. Hence, from
definition (11), Q € X(u*) = X. The fact that A° € X is an
immediate consequence of definition (11).

2. Since B € 3, using definition (11) with 77N A in place of T, we
obtain:

wW(TNA) =p" (TNANB)+ " (TNANDB°)
3. Since AN B C A, we have A° C (AN B)¢, and consequently:
TNA°CTN(ANB)
It follows that:
TNA = (TNANB))NTNA =TN(ANB)°N A
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4. From (ANB)°NA=(A°UB°)NA= AN B° we obtain:
TN(ANB)NA=TNANB®
5. Using 3. and 4., we see that the sum p* (TNA®)+p*(TTNANBC)
can be expressed as:
wW(TNANB)NAY)+p (TN(ANB)NA)

Since A € ¥, using definition (11) with 77N (AN B)¢ in place of
T, we obtain:

W (TNA)+p (TNANBY) =pu* (TN(ANB))  (5)
6. Adding p*(T'"N(ANB)) on both sides of equation (5), it appears
that the sum:
p(TNA)+u (TNANB®) +p*(TNANB)
is equal to:

W (TNANB))+p*(TN(ANB))
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Since B € 3, using definition (11) with 7°N A in place of T, we
obtain:

p(TNA)+p (TNA) =p(TN(ANB))+ u* (TN (AN B))
and finally, since A € 3:
u*(T) = u*(T 0 (AN B)Y) + u*(T 11 (AN B))

This being true for all 7' C €, it follows that AN B € ¥. We
have proved that ¥ = X(u*) is closed under finite intersection.

7. From AU B = (A°N B°)° and the fact that ¥ is closed under
complementation and finite intersection, we have AU B € X.
Similarly, A\ B = AN B° € X. The purpose of this exercise is
to show that the so-called o-algebra ¥ (u*) associated with an
outer measure p*, is closed under finite intersection and union,
and closed under complementation and difference.

Exercise 15
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Exercise 16.

e Suppose n > 1, p > 1 and B, N B, # (. Without loss of
generality, we can assume that n < p. Suppose n < p and
x € B, N B,. Since z € B, we have v € A,,. However, since
r € By, x g Ay U...UA,_1. In particular, v ¢ A,,. This is a
contradiction. It follows that if B,, N B, # ) then n = p, and
(Br)n>1 is a sequence of pairwise disjoint subsets of €.

e From exercise (15), all B,,’s are in fact elements of 3.

e Since for all n > 1, B, C A,, we have: Lﬂzngn C UZ?& n-
Conversely, suppose = € Uiﬁ'&An. Then, there exists n > 1
such that = € A,,. Consider the set:

A
I(z)={n>1,2z€ A,}

This set is a non-empty subset of N* (the set of all positive
integers). It follows that I(x) has a smallest element p. If p = 1,
thenaz € Ay = By. If p> 1, thenz € Ap\(A1U...UA,_1) = B,,.
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In any case, z € B, C W12 B,. Consequently, it follows that
Ut 4, C Wt B,.

e We have proved that (B,,),>1 is a sequence of pairwise disjoint
elements of 3, such that:

+oo +oo
Ja=ln
n=1 n=1

Exercise 16
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Exercise 17. Let B,C € X be such that BNC = (). Since B € %,
using definition (11) with 7N (B W C) in place of T, we have:
W (TNBWCO)=p(TN(BWYC)NB)+ u*(TN(BWC)N B
From BN C = () and in particular C' C B¢, we obtain:
W (TN(BwWC)=p(TNB)+p (T'NC)

Note that it was not necessary to use the fact that both B and C' were
elements of 3.
Exercise 17
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Exercise 18.
1. Wl B, € ¥ is an immediate consequence of exercise (15).

2. Using exercise (17) with a simple induction argument, we obtain:

(TN (WM B,) Z“ (TN B,)

3. Since W_,B,, C B, we have TN B¢ C T'N (WY_,B,)¢. Using
(i) of definition (1()), we obtain:

w(T' N B°) < 1" (TN (1, B,)°)

4. Using 2. and 3., if we put Cy = W)_, B,,, we have:

N
pHT OB+ Y p*(TNB,) < p*(TN(Cx)°)+p (T NCN)

n=1

www.probability.net


http://www.probability.net

Solutions to Exercises 48

However from 1., Cy € X. Using definition (11), we obtain:

N
W(TABY)+ 3w (TN B,) < u'(T)

n=1
Taking the limit as N — 400, we conclude:

+oo
W(TNBY)+ Y w* (TN B,) < ' (T)

n=1
5. Since T = (T'N B°) U (T' N B), using exercise (14):
W (T) < u*(T' 1 BY) + (T 1 B)

However, TN B = U 2T N B,,. Using (4ii) of definition (10),
we have:

“(T' N B) Z“ (TN B,)
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It follows that:

+oo
() < @ (TAB) 4" (TNB) < (TN B+ p' (TN By)

n=1

6. From 4. and 5., we see that p*(T) = p*(T' N B¢) + p*(T' N B).
This being true for all 7 C Q, it follows that B = W,/> B,, € X.
Also, from 4. and 5., we have:

+oo
W) = W (TN B+ 3w (TN By)

n=1

In particular, taking 7' = B, using the fact that p*(0) = 0, we
obtain:

+oo
p(B) = 1 (Bn)

7. We saw in exercise (15) that ¥ contains 2, and is closed un-
der complementation. If (A, ),>1 is a sequence of elements of
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Y, then from exercise (16), there exists a sequence (By,)p>1 of
pairwise disjoint elements of ¥, with B = Wi B, = UT> A,,.
In 6., we saw that such B is an element of 3. It follows that
Ut A4, € ¥, and ¥ is closed under countable union. Hence,
we have proved that X is a o-algebra on . p* being an outer
measure on £, u*(0) = 0. So (i) of definition (9) is satisfied for
'uI*E' If (B))n>1 1s a sequence of pairwise disjoint elements of X,

and B = W!> B, we saw in 6. that:
+oo
pr(B) =Y n(Bn)
n=1
It follows that (i) of definition (9) is satisfied for yif,. Finally,

'UTE is indeed a measure on X. The purpose of the exercise is to
prove theorem (3).

Exercise 18
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Exercise 19.

1. R being a ring on Q, §) € R. If we define a sequence (A, )n>1,
with A, = 0 for all n > 1, then (A,),>1 is an R-cover of the
empty set. It follows that:

+oo
IU*(@) < Z.U(An) =0
n=1

Moreover, p*(f) being the infimum over a set of non-negative
numbers, we have p*(0) > 0. Finally p*(0) = 0.

2. Let A C B C Q. Let (Bp)n>1 be an R-cover of B. Then in
particular, (By,)n>1 is an R-cover of A. It follows that:

“+o0
pH(A) <Y u(By) (6)
n=1

Hence, p*(A) is a lower bound of all sums involved in (6), as
(Br)n>1 ranges over all R-covers of B. p*(B) being the infimum
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of those sums, it is the greatest of such lower bounds, from which
we conclude that p*(A) < p*(B).

3. Since p*(A,) < +oo, we have p*(A,) < p*(A,) +€/2". Tt
follows that p*(A,)+ €/2™ cannot be a lower bound of all sums
Zp 1 1(Bp), as (Bp)p>1 ranges over all R-covers of A,,. Hence,
there exists an R-cover (AP)PZL of A, such that:

> u(AD) < pt(An) + z—n

It is important to assume p*(A,) < 400, since otherwise the in-
equality p*(A,) < p*(4,)+€/2™ may not be a strict inequality,
and the above reasoning would fail.

4. N* being the set of positive integers, N* x N* is a countable
set. There exists a one-to-one map ¢ : N* — N* x N*. Given
k > 1, define Ry, = AP, where (n,p) = ¢(k). Then (Ry)r>1 is a
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sequence of elements of R such that:
+oo +oo

UacUUa-Un

n=1p=1

In other words, (Ry)r>1 is an R-cover of UZﬁAn. Moreover:

+oo +oo
zu R = 3 wAn) =303 p(an)
(n,p)EN" X N* n=1p=1
5. It follows from 4. that:
“+o00 400
P (U Ay) < Zu (Ri) =>_ > u(Ap)
n=1p=1
Hence, using 3.:
+oo €
PO AL <> (" (An) + )
n=1
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and finally:

WU A < e+ 3 i (An) (7)

6. From 1. and 2., we see that (i) and (i) of definition (10) are
satisfied for p*. Let (Ay)n>1 be a sequence of subsets of Q. If
w*(Ay) = +oo for some n > 1, then:

w*( U+°°A <ZM (8)

is obviously true. If p*(A,) < +oo for all n > 1, then given
€ > 0 from 5., inequality (7) holds. Since e is arbitrary, it follows
that inequality (8) still holds. Hence, (iii) of definition (10) is
satisfied for p*. Finally, u* is an outer-measure on €.

Exercise 19
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Exercise 20.

1. Since A € R, the sequence (R,),>1 defined by Ry = A and
R, = 0 for all n > 2, is an R-cover of A. Hence:

+oo
pr(A) <> p(Rn) = u(A)

2. Suppose n > 1, p > 1 and B,, N B, # (. Without loss of
generality, we can assume that n < p. Suppose n < p and
x € B,NB,. Since x € B,,, we have z € A, N A. However, since
x € By, z & (A1NA)U...U(4p—1NA). In particular, x ¢ A,,NA.
This is a contradiction. It follows that if B, N B, # 0 then
n = p, and (By,)n>1 IS a sequence of pairwise disjoint subsets
of . From exercise (1), we know that a ring is closed under
finite intersection. From (i¢) and (iii) of definition (7), it is also
closed under finite union and difference. It follows that all B,,’s
are in fact elements of R. Since for allm > 1, B, C A, N A, we
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have:
+oo +oo +oo
WB.cl|JannAa=4an|J4,=4
n=1 n=1 n=1

Conversely, suppose # € A C U2 A,,. Then, there exists n > 1
such that z € A,, N A. Consider the set:

I(x)é{nZLxeAnﬁA}

This set is a non-empty subset of N* (the set of all positive
integers). It follows that I(x) has a smallest element p. If p = 1,
then x € AN A = B;. If p > 1, then by definition of p, we have
ze (A, NA\((A1NA)U...U(A,_1NA)) = B,. In any case,
r € B, C W/ B,. Consequently, it follows that A C W' B,,.
We have proved that (By,),>1 is a sequence of pairwise disjoint
elements of R, such that: A = B,
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3. p being a measure on R, from 2. we obtain:

+oo
p(A) = u(Bn)

Since for all n > 1, we have B,, C A,,, it follows from exercise (9)
that u(B,) < u(A,). Hence:

+oo
p(A) <Y p(An) (9)

The R-cover (A,)n>1 of A being arbitrary, we see that p(A) is
a lower bound of all sums involved in (9), as (Ay)n>1 ranges
across all R-covers of A. p*(A) being the greatest of such lower
bounds, it follows that u(A) < p*(A). Using 1., we conclude
that u(A) = p*(A). This being true for all A € R, we have
proved that /1‘*72 = L.

Exercise 20
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Exercise 21.

1. We saw in exercise (19) that p* is an outer measure on 2. From
exercise (14), and the fact that 7" = (T'N A) U (T N A°), we
obtain:

p(T) < p*(T'0A) + p*(T N A9

2. If (T)n>1 is an R-cover of T', then in particular T,, € R for all
n > 1. Since A € R, it follows from exercise (1) that T,,NA € R,
and from (i4i) of definition (7) that T,, N A =T, \ A € R, for
all n > 1. Moreover, from T C UZ?&TH, we have:

+oo
TNAC UTnmA

n=1

+oo
TNA®C U T, N A°
n=1
We conclude that (T, N A),>1 and (75, N A%),>1 are R-covers
of TN A and T N A° respectively.
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3. It follows from 2. that:
+oo
W0 A) < W0 A)
n=1
+oo
WA <Y (T, 0 A%)
n=1

However, p being a measure on R, from exercise (9), we have:
w(Tn) = (T N A) + (T, N A%)
for all n > 1. It follows that:

p (T NA)+ p* (T N A Z“
This being true for all R-covers (7,),>1 of T', we finally have:

p (T NA) 4+ p™ (T NAS) < p™(T)
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4. Given A € R, we see from 1. and 3. that for all T' C Q:
p*(T) = p*(T'NA)+ p* (T NA°)

Hence, from definition (11), it follows that A is an element of
Y(u*), (the o-algebra associated with the outer measure p*).
This being true for all A € R, we have proved that R C X(u*).

5. The o-algebra o(R) generated by R, is the smallest o-algebra
on 2 containing R. Thus, it follows immediately from 4. that
o(R) C X(u*).

Exercise 21
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Exercise 22.

e Let p/ : 0(R) — [0,+00] be defined by 1 = pf, ), where p*
is the outer measure on ) defined in exercise (19). We saw in
exercise (20) that i = p- Hence, since R C o(R), we have
Mg = Mg = H-

e From theorem (3), we know that [453(,+) I8 & measure on ().
However, o(R) C 3(u*) (exercise (21)). It is an immediate
consequence of definition (9), that if we restrict the measure
Iy to the smaller o-algebra o(R), the resulting map is a
measure defined on o(R). But the restriction of yifs, ., to 0(R)

is nothing but p’. It follows that 4 is indeed a measure on o(R).
This proves theorem (4).

Exercise 22
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Exercise 23. Let S be a semi-ring on 2. Since S C R(S) C o(R(S)),
we have o(S) C o(R(S)). However, S C o(S). Moreover, from
exercise (7), R(S) is the set of all finite unions of elements of S. Since
the o-algebra o(S8) is in particular closed under finite union, it follows
that R(S) C o(S) and consequently o(R(S)) C o(S). Finally, we
have proved that o(R(S)) = o(S).

Exercise 23
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Exercise 24. From theorem (2), the measure p: § — [0, +0o0] can
be extended to the ring R(S) generated by S. In other words, there
exists a measure i : R(S) — [0,+o0] such that fijs = p. From
theorem (4), the measure fi : R(S) — [0,+0o0] can be extended the
o-algebra o(R(S)) generated by R(S). In other words, there exists
a measure 4’ : 0(R(S)) — [0,400], such that pip 5 = fi. However,
from exercise (23), 0(R(S)) = o(S). Moreover, since S C R(S), we
have ,ui s = s = p. It follows that p is a measure on o(S) such that
fjs = p- This proves theorem (5).

Exercise 24
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