2. Caratheodory's Extension In the following, Ω is a set. Whenever a union of sets is denoted \forall as opposed to \cup , it indicates that the sets involved are pairwise disjoint. **Definition 6** A semi-ring on Ω is a subset S of the power set $\mathcal{P}(\Omega)$ with the following properties: (i) $$\emptyset \in \mathcal{S}$$ (ii) $$A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$$ (iii) $$A, B \in \mathcal{S} \implies \exists n \ge 0, \ \exists A_i \in \mathcal{S} : \ A \setminus B = \biguplus_{i=1}^{m} A_i$$ The last property (iii) says that whenever $A, B \in \mathcal{S}$, there is $n \geq 0$ and A_1, \ldots, A_n in \mathcal{S} which are pairwise disjoint, such that $A \setminus B = A_1 \uplus \ldots \uplus A_n$. If n = 0, it is understood that the corresponding union is equal to \emptyset , (in which case $A \subseteq B$). **Definition 7** A ring on Ω is a subset \mathcal{R} of the power set $\mathcal{P}(\Omega)$ with the following properties: (i) $$\emptyset \in \mathcal{R}$$ (ii) $$A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$$ $$(iii) A, B \in \mathcal{R} \Rightarrow A \setminus B \in \mathcal{R}$$ EXERCISE 1. Show that $A \cap B = A \setminus (A \setminus B)$ and therefore that a ring is closed under pairwise intersection. EXERCISE 2.Show that a ring on Ω is also a semi-ring on Ω . EXERCISE 3.Suppose that a set Ω can be decomposed as $\Omega = A_1 \uplus A_2 \uplus A_3$ where A_1, A_2 and A_3 are distinct from \emptyset and Ω . Define $\mathcal{S}_1 \stackrel{\triangle}{=} \{\emptyset, A_1, A_2, A_3, \Omega\}$ and $\mathcal{S}_2 \stackrel{\triangle}{=} \{\emptyset, A_1, A_2 \uplus A_3, \Omega\}$. Show that \mathcal{S}_1 and \mathcal{S}_2 are semi-rings on Ω , but that $\mathcal{S}_1 \cap \mathcal{S}_2$ fails to be a semi-ring on Ω . EXERCISE 4. Let $(\mathcal{R}_i)_{i\in I}$ be an arbitrary family of rings on Ω , with $I \neq \emptyset$. Show that $\mathcal{R} \stackrel{\triangle}{=} \cap_{i\in I} \mathcal{R}_i$ is also a ring on Ω . EXERCISE 5. Let \mathcal{A} be a subset of the power set $\mathcal{P}(\Omega)$. Define: $$R(\mathcal{A}) \stackrel{\triangle}{=} \{ \mathcal{R} \text{ ring on } \Omega : \mathcal{A} \subseteq \mathcal{R} \}$$ Show that $\mathcal{P}(\Omega)$ is a ring on Ω , and that $R(\mathcal{A})$ is not empty. Define: $$\mathcal{R}(\mathcal{A}) \stackrel{\triangle}{=} \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R}$$ Show that $\mathcal{R}(\mathcal{A})$ is a ring on Ω such that $\mathcal{A} \subseteq \mathcal{R}(\mathcal{A})$, and that it is the smallest ring on Ω with such property, (i.e. if \mathcal{R} is a ring on Ω and $\mathcal{A} \subseteq \mathcal{R}$ then $\mathcal{R}(\mathcal{A}) \subseteq \mathcal{R}$). **Definition 8** Let $A \subseteq \mathcal{P}(\Omega)$. We call **ring generated** by A, the ring on Ω , denoted $\mathcal{R}(A)$, equal to the intersection of all rings on Ω , which contain A. EXERCISE 6.Let S be a semi-ring on Ω . Define the set R of all finite unions of pairwise disjoint elements of S, i.e. $$\mathcal{R} \stackrel{\triangle}{=} \{A: A = \biguplus_{i=1}^{n} A_i \text{ for some } n \geq 0, A_i \in \mathcal{S}\}$$ (where if n = 0, the corresponding union is empty, i.e. $\emptyset \in \mathcal{R}$). Let $A = \bigoplus_{i=1}^{n} A_i$ and $B = \bigoplus_{j=1}^{p} B_j \in \mathcal{R}$: - 1. Show that $A \cap B = \bigcup_{i,j} (A_i \cap B_j)$ and that \mathcal{R} is closed under pairwise intersection. - 2. Show that if $p \ge 1$ then $A \setminus B = \bigcap_{i=1}^p (\bigoplus_{i=1}^n (A_i \setminus B_i))$. - 3. Show that \mathcal{R} is closed under pairwise difference. - 4. Show that $A \cup B = (A \setminus B) \uplus B$ and conclude that \mathcal{R} is a ring on Ω . - 5. Show that $\mathcal{R}(\mathcal{S}) = \mathcal{R}$. EXERCISE 7. Everything being as before, define: $$\mathcal{R}' \stackrel{\triangle}{=} \{A : A = \bigcup_{i=1}^n A_i \text{ for some } n \geq 0, A_i \in \mathcal{S}\}$$ (We do not require the sets involved in the union to be pairwise disjoint). Using the fact that \mathcal{R} is closed under finite union, show that $\mathcal{R}' \subseteq \mathcal{R}$, and conclude that $\mathcal{R}' = \mathcal{R} = \mathcal{R}(\mathcal{S})$. **Definition 9** Let $A \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in A$. We call **measure** on A, any map $\mu : A \to [0, +\infty]$ with the following properties: $$(i) \qquad \mu(\emptyset) = 0$$ (ii) $$A \in \mathcal{A}, A_n \in \mathcal{A} \text{ and } A = \biguplus_{n=1}^{+\infty} A_n \Rightarrow \mu(A) = \sum_{n=1}^{+\infty} \mu(A_n)$$ The \oplus indicates that we assume the A_n 's to be pairwise disjoint in the l.h.s. of (ii). It is customary to say in view of condition (ii) that a measure is *countably additive*. EXERCISE 8.If \mathcal{A} is a σ -algebra on Ω explain why property (ii) can be replaced by: $$(ii)'$$ $A_n \in \mathcal{A}$ and $A = \biguplus^{+\infty} A_n \Rightarrow \mu(A) = \sum_{n=1}^{+\infty} \mu(A_n)$ EXERCISE 9. Let $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ with $\emptyset \in \mathcal{A}$ and $\mu : \mathcal{A} \to [0, +\infty]$ be a measure on \mathcal{A} . - 1. Show that if $A_1, \ldots, A_n \in \mathcal{A}$ are pairwise disjoint and the union $A = \bigoplus_{i=1}^n A_i$ lies in \mathcal{A} , then $\mu(A) = \mu(A_1) + \ldots + \mu(A_n)$. - 2. Show that if $A, B \in \mathcal{A}, A \subseteq B$ and $B \setminus A \in \mathcal{A}$ then $\mu(A) \leq \mu(B)$. EXERCISE 10. Let S be a semi-ring on Ω , and $\mu : S \to [0, +\infty]$ be a measure on S. Suppose that there exists an extension of μ on $\mathcal{R}(S)$, i.e. a measure $\bar{\mu} : \mathcal{R}(S) \to [0, +\infty]$ such that $\bar{\mu}_{|S} = \mu$. - 1. Let A be an element of $\mathcal{R}(\mathcal{S})$ with representation $A = \bigoplus_{i=1}^{n} A_i$ as a finite union of pairwise disjoint elements of \mathcal{S} . Show that $\bar{\mu}(A) = \sum_{i=1}^{n} \mu(A_i)$ - 2. Show that if $\bar{\mu}': \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ is another measure with $\bar{\mu}'_{\mathsf{LS}} = \mu$, i.e. another extension of μ on $\mathcal{R}(\mathcal{S})$, then $\bar{\mu}' = \bar{\mu}$. EXERCISE 11. Let S be a semi-ring on Ω and $\mu: S \to [0, +\infty]$ be a measure. Let A be an element of $\mathcal{R}(S)$ with two representations: $$A = \biguplus_{i=1}^{n} A_i = \biguplus_{j=1}^{p} B_j$$ as a finite union of pairwise disjoint elements of S. - 1. For i = 1, ..., n, show that $\mu(A_i) = \sum_{i=1}^{p} \mu(A_i \cap B_j)$ - 2. Show that $\sum_{i=1}^n \mu(A_i) = \sum_{j=1}^p \mu(B_j)$ - 3. Explain why we can define a map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ as: $$\bar{\mu}(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} \mu(A_i)$$ 4. Show that $\bar{\mu}(\emptyset) = 0$. EXERCISE 12. Everything being as before, suppose that $(A_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{R}(\mathcal{S})$, each A_n having the representation: $$A_n = \biguplus_{k=1}^{p_n} A_n^k \ , \ n \ge 1$$ as a finite union of disjoint elements of S. Suppose moreover that $A = \bigoplus_{n=1}^{+\infty} A_n$ is an element of $\mathcal{R}(S)$ with representation $A = \bigoplus_{j=1}^{p} B_j$, as a finite union of pairwise disjoint elements of S. - 1. Show that for $j=1,\ldots,p,\ B_j=\bigcup_{n=1}^{+\infty}\bigcup_{k=1}^{p_n}(A_n^k\cap B_j)$ and explain why B_j is of the form $B_j=\bigoplus_{m=1}^{+\infty}C_m$ for some sequence $(C_m)_{m\geq 1}$ of pairwise disjoint elements of \mathcal{S} . - 2. Show that $\mu(B_j) = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \mu(A_n^k \cap B_j)$ - 3. Show that for $n \geq 1$ and $k = 1, \ldots, p_n, A_n^k = \bigoplus_{j=1}^p (A_n^k \cap B_j)$ - 4. Show that $\mu(A_n^k) = \sum_{j=1}^p \mu(A_n^k \cap B_j)$ - 5. Recall the definition of $\bar{\mu}$ of exercise (11) and show that it is a measure on $\mathcal{R}(\mathcal{S})$. ### EXERCISE 13. Prove the following theorem: **Theorem 2** Let S be a semi-ring on Ω . Let $\mu: S \to [0, +\infty]$ be a measure on S. There exists a unique measure $\bar{\mu}: \mathcal{R}(S) \to [0, +\infty]$ such that $\bar{\mu}_{|S} = \mu$. **Definition 10** We define an **outer-measure** on Ω as being any $map \ \mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$ with the following properties: (i) $$\mu^*(\emptyset) = 0$$ (ii) $A \subseteq B \Rightarrow \mu^*(A) \le \mu^*(B)$ (iii) $\mu^*\left(\bigcup_{i=1}^{+\infty} A_i\right) \le \sum_{i=1}^{+\infty} \mu^*(A_i)$ EXERCISE 14. Show that $\mu^*(A \cup B) \leq \mu^*(A) + \mu^*(B)$, where μ^* is an outer-measure on Ω and $A, B \subseteq \Omega$. **Definition 11** Let μ^* be an outer-measure on Ω . We define: $$\Sigma(\mu^*) \stackrel{\triangle}{=} \{ A \subseteq \Omega : \ \mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c) \ , \ \forall T \subseteq \Omega \}$$ We call $\Sigma(\mu^*)$ the σ -algebra associated with the outer-measure μ^* . Note that the fact that $\Sigma(\mu^*)$ is indeed a σ -algebra on Ω , remains to be proved. This will be your task in the following exercises. EXERCISE 15. Let μ^* be an outer-measure on Ω . Let $\Sigma = \Sigma(\mu^*)$ be the σ -algebra associated with μ^* . Let $A, B \in \Sigma$ and $T \subseteq \Omega$ - 1. Show that $\Omega \in \Sigma$ and $A^c \in \Sigma$. - 2. Show that $\mu^*(T \cap A) = \mu^*(T \cap A \cap B) + \mu^*(T \cap A \cap B^c)$ - 3. Show that $T \cap A^c = T \cap (A \cap B)^c \cap A^c$ - 4. Show that $T \cap A \cap B^c = T \cap (A \cap B)^c \cap A$ - 5. Show that $\mu^*(T \cap A^c) + \mu^*(T \cap A \cap B^c) = \mu^*(T \cap (A \cap B)^c)$ - 6. Adding $\mu^*(T \cap (A \cap B))$ on both sides 5., conclude that $A \cap B \in \Sigma$. - 7. Show that $A \cup B$ and $A \setminus B$ belong to Σ . EXERCISE 16. Everything being
as before, let $A_n \in \Sigma, n \geq 1$. Define $B_1 = A_1$ and $B_{n+1} = A_{n+1} \setminus (A_1 \cup \ldots \cup A_n)$. Show that the B_n 's are pairwise disjoint elements of Σ and that $\bigcup_{n=1}^{+\infty} A_n = \bigcup_{n=1}^{+\infty} B_n$. EXERCISE 17. Everything being as before, show that if $B, C \in \Sigma$ and $B \cap C = \emptyset$, then $\mu^*(T \cap (B \uplus C)) = \mu^*(T \cap B) + \mu^*(T \cap C)$ for any $T \subseteq \Omega$. EXERCISE 18.Everything being as before, let $(B_n)_{n\geq 1}$ be a sequence of pairwise disjoint elements of Σ , and let $B \stackrel{\triangle}{=} \bigcup_{n=1}^{+\infty} B_n$. Let $N \geq 1$. - 1. Explain why $\biguplus_{n=1}^{N} B_n \in \Sigma$ - 2. Show that $\mu^*(T \cap (\uplus_{n=1}^N B_n)) = \sum_{n=1}^N \mu^*(T \cap B_n)$ - 3. Show that $\mu^*(T \cap B^c) \leq \mu^*(T \cap (\bigcup_{n=1}^N B_n)^c)$ - 4. Show that $\mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n) \le \mu^*(T)$, and: - 5. $\mu^*(T) \le \mu^*(T \cap B^c) + \mu^*(T \cap B) \le \mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n)$ - 6. Show that $B \in \Sigma$ and $\mu^*(B) = \sum_{n=1}^{+\infty} \mu^*(B_n)$. - 7. Show that Σ is a σ -algebra on Ω , and $\mu_{|\Sigma}^*$ is a measure on Σ . **Theorem 3** Let $\mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$ be an outer-measure on Ω . Then $\Sigma(\mu^*)$, the so-called σ -algebra associated with μ^* , is indeed a σ -algebra on Ω and $\mu^*_{|\Sigma(\mu^*)}$, is a measure on $\Sigma(\mu^*)$. EXERCISE 19. Let \mathcal{R} be a ring on Ω and $\mu : \mathcal{R} \to [0, +\infty]$ be a measure on \mathcal{R} . For all $T \subseteq \Omega$, define: $$\mu^*(T) \stackrel{\triangle}{=} \inf \left\{ \sum_{n=1}^{+\infty} \mu(A_n) , (A_n) \text{ is an } \mathcal{R}\text{-cover of } T \right\}$$ where an \mathcal{R} -cover of T is defined as any sequence $(A_n)_{n\geq 1}$ of elements of \mathcal{R} such that $T\subseteq \bigcup_{n=1}^{+\infty}A_n$. By convention inf $\emptyset \stackrel{\triangle}{=} +\infty$. - 1. Show that $\mu^*(\emptyset) = 0$. - 2. Show that if $A \subseteq B$ then $\mu^*(A) \le \mu^*(B)$. 3. Let $(A_n)_{n\geq 1}$ be a sequence of subsets of Ω , with $\mu^*(A_n) < +\infty$ for all $n \geq 1$. Given $\epsilon > 0$, show that for all $n \geq 1$, there exists an \mathbb{R} -cover $(A_n^p)^{p\geq 1}$ of A_n such that: $$\sum_{p=1}^{+\infty} \mu(A_n^p) < \mu^*(A_n) + \epsilon/2^n$$ Why is it important to assume $\mu^*(A_n) < +\infty$. 4. Show that there exists an \mathcal{R} -cover (R_k) of $\bigcup_{n=1}^{+\infty} A_n$ such that: $$\sum_{k=1}^{+\infty} \mu(R_k) = \sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu(A_n^p)$$ - 5. Show that $\mu^*(\bigcup_{n=1}^{+\infty} A_n) \le \epsilon + \sum_{n=1}^{+\infty} \mu^*(A_n)$ - 6. Show that μ^* is an outer-measure on Ω . EXERCISE 20. Everything being as before, Let $A \in \mathcal{R}$. Let $(A_n)_{n \geq 1}$ be an \mathcal{R} -cover of A and put $B_1 = A_1 \cap A$, and: $$B_{n+1} \stackrel{\triangle}{=} (A_{n+1} \cap A) \setminus ((A_1 \cap A) \cup \ldots \cup (A_n \cap A))$$ - 1. Show that $\mu^*(A) \leq \mu(A)$. - 2. Show that $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R} such that $A=\bigoplus_{n=1}^{+\infty}B_n$. - 3. Show that $\mu(A) \leq \mu^*(A)$ and conclude that $\mu_{|\mathcal{R}|}^* = \mu$. EXERCISE 21. Everything being as before, Let $A \in \mathcal{R}$ and $T \subseteq \Omega$. - 1. Show that $\mu^*(T) \le \mu^*(T \cap A) + \mu^*(T \cap A^c)$. - 2. Let (T_n) be an \mathcal{R} -cover of T. Show that $(T_n \cap A)$ and $(T_n \cap A^c)$ are \mathcal{R} -covers of $T \cap A$ and $T \cap A^c$ respectively. - 3. Show that $\mu^*(T \cap A) + \mu^*(T \cap A^c) \le \mu^*(T)$. - 4. Show that $\mathcal{R} \subseteq \Sigma(\mu^*)$. - 5. Conclude that $\sigma(\mathcal{R}) \subseteq \Sigma(\mu^*)$. ## Exercise 22. Prove the following theorem: Theorem 4 (Caratheodory's extension) Let \mathcal{R} be a ring on Ω and $\mu: \mathcal{R} \to [0, +\infty]$ be a measure on \mathcal{R} . There exists a measure $\mu': \sigma(\mathcal{R}) \to [0, +\infty]$ such that $\mu'_{|\mathcal{R}} = \mu$. EXERCISE 23. Let S be a semi-ring on Ω . Show that $\sigma(\mathcal{R}(S)) = \sigma(S)$. EXERCISE 24. Prove the following theorem: **Theorem 5** Let S be a semi-ring on Ω and $\mu: S \to [0, +\infty]$ be a measure on S. There exists a measure $\mu': \sigma(S) \to [0, +\infty]$ such that $\mu'_{|S} = \mu$. ## Solutions to Exercises #### Exercise 1. - Let $x \in A \cap B$. Then $x \in B$. So $x \notin A \setminus B$. It follows that $x \in A \setminus (A \setminus B)$, and $A \cap B \subseteq A \setminus (A \setminus B)$. Let $x \in A \setminus (A \setminus B)$. Then $x \in A$ and $x \notin A \setminus B$. But $x \notin A \setminus B$ implies that either $x \notin A$ or $x \in B$. Hence, $x \in B$. finally, $x \in A \cap B$ and $A \setminus (A \setminus B) \subseteq A \cap B$. We have proved that $A \cap B = A \setminus (A \setminus B)$ - Let \mathcal{R} be a ring and $A, B \in \mathcal{R}$. From (iii) of definition (7), $A \setminus B \in \mathcal{R}$. Hence, $A \setminus (A \setminus B) \in \mathcal{R}$. It follows from the previous point that $A \cap B \in \mathcal{R}$. We have proved that a ring is closed under pairwise intersection. Exercise 2. Let \mathcal{R} be ring on Ω . Then (i) of definition (6) is immediately satisfied for \mathcal{R} . From exercise (1), we know that \mathcal{R} is closed under finite intersection. So (ii) of definition (6) is satisfied for \mathcal{R} . Let $A, B \in \mathcal{R}$. From (iii) of definition (7), $A \setminus B \in \mathcal{R}$. Therefore, if we take n = 1 and $A_1 = A \setminus B \in \mathcal{R}$, we see that $A \setminus B = \biguplus_{i=1}^n A_i$ and (iii) of definition (6) is satisfied for \mathcal{R} . Finally, having checked (i), (ii) and (iii) of definition (6), we conclude that \mathcal{R} is a semi-ring on Ω . Any ring on Ω is therefore also a semi-ring on Ω . #### Exercise 3. then $A \cap B$ is equal to the empty set (remember that A_1 , A_2 and A_3 are disjoint), unless A (resp. B) is Ω itself, or $A=B\neq\emptyset$, in which case $A \cap B$ is equal to B (resp. A). In any case, $A \cap B \in \mathcal{S}_1$ and condition (ii) of definition (6) is satisfied for S_1 . If $A, B \in S_1$, since S_1 has 5 elements, $A \setminus B$ is one of 25 cases to consider. It is equal to \emptyset , $(\emptyset \setminus \emptyset, \emptyset \setminus A_i, \emptyset \setminus \Omega, A_i \setminus \Omega,$ $A_i \setminus A_i$, $\Omega \setminus \Omega$ in 12 of those cases. It is equal to A itself $(A_i \setminus \emptyset,$ $A_i \setminus A_i, j \neq i, \Omega \setminus \emptyset$ in 10 of those cases. The last three cases are $\Omega \setminus A_1 = A_2 \uplus A_3$, $\Omega \setminus A_2 = A_1 \uplus A_3$ and $\Omega \setminus A_3 = A_1 \uplus A_2$. Hence, we see that condition (iii) of definition (6) is satisfied for S_1 . We have proved that S_1 is indeed a semi-ring on Ω . • $\emptyset \in \mathcal{S}_1$ so (i) of definition (6) is satisfied for \mathcal{S}_1 . If $A, B \in \mathcal{S}_1$, • If we put $B_1 = A_1$ and $B_2 = A_2 \uplus A_3$, then $\Omega = B_1 \uplus B_2$ where B_1, B_2 are distinct from \emptyset and Ω . Moreover, $S_2 = {\emptyset, B_1, B_2, \Omega}$, and proving that S_2 is a semi-ring on Ω is identical to the previous point, but is just a little bit easier... • $S_1 \cap S_2 = \{\emptyset, A_1, \Omega\}$ (remember that all A_i 's are not empty and pairwise disjoint, so $A_3 \neq A_2 \uplus A_3$ and $A_2 \neq A_2 \uplus A_3$). Suppose that $S_1 \cap S_2$ is a semi-ring on Ω . Then from (iii) of definition (6), there exists $n \geq 0$ and B_1, B_2, \ldots, B_n in $S_1 \cap S_2$ such that: $$\Omega \setminus A_1 = B_1 \uplus \ldots \uplus B_n$$ Since A_1 is assumed to be distinct from Ω , $\Omega \setminus A_1 \neq \emptyset$. It follows that $n \geq 1$ and at least one of the B_i 's is not empty. If $B_i = \Omega$ then $\Omega \setminus A_1 = \Omega$ and this would be a contradiction since A_1 is assumed to be not empty. If $B_i = A_1$ then $\Omega \setminus A_1 \supseteq A_1$ would also be a contradiction. Hence, the initial assumption of $S_1 \cap S_2$ being a semi-ring on Ω is absurd. $S_1 \cap S_2$ fails to be a semi-ring on Ω . The purpose of this exercise is to show that contrary to Dynkin systems, σ -algebras and rings (as we shall see in the next exercise), taking intersections of semi-rings does not necessarily create another semi-ring. Hence, no attempt will be made to define the notion of generated semi-ring... Exercise 4. Each \mathcal{R}_i being a ring on Ω , $\emptyset \in \mathcal{R}_i$. This being true for all $i \in I$, $\emptyset \in \cap_{i \in I} \mathcal{R}_i = \mathcal{R}$, and condition (i) of definition (7) is satisfied for \mathcal{R} . Let $A, B \in \mathcal{R}$. Then for all $i \in I$, A, B belong to \mathcal{R}_i . It follows that $A \setminus B$ and $A \cup B$ belong to \mathcal{R}_i . This being true for all $i \in I$, both $A \setminus B$ and $A \cup B$ lie in $\cap_{i \in I} \mathcal{R}_i$, and conditions (ii) and (iii) of definition (7) are satisfied for \mathcal{R} . Having checked (i), (ii) and (iii) of definition (7), we conclude that \mathcal{R} is indeed a ring on Ω . The purpose of this exercise is to show that an arbitrary (non-empty) intersection of rings on Ω , is still a ring on Ω . #### Exercise 5. - Ø being a subset of Ω, Ø ∈ P(Ω) and condition (i) of definition (7) is satisfied for P(Ω). Given two subsets A, B of Ω, A \ B and A∪B are still subsets of Ω, i.e. A\B ∈ P(Ω) and A∪B ∈ P(Ω).
Hence, conditions (ii) and (iii) of definition (7) are satisfied for P(Ω). It follows that P(Ω) is a ring on Ω. - By assumption, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. Moreover, $\mathcal{P}(\Omega)$ is a ring on Ω . Therefore, $\mathcal{P}(\Omega) \in R(\mathcal{A})$. In particular, $R(\mathcal{A})$ is not empty. - $\mathcal{R}(\mathcal{A})$ is a non-empty intersection of rings on Ω . From exercise (4), it is therefore a ring on Ω . - For all $\mathcal{R} \in R(\mathcal{A})$, $\mathcal{A} \subseteq \mathcal{R}$. Hence: $$\mathcal{A} \subseteq \bigcap_{\mathcal{R} \in R(\mathcal{A})} \mathcal{R} \stackrel{\triangle}{=} \mathcal{R}(\mathcal{A})$$ • Suppose \mathcal{R} is another ring on Ω , with $\mathcal{A} \subseteq \mathcal{R}$. Then, by definition of the set $R(\mathcal{A})$, $\mathcal{R} \in R(\mathcal{A})$. It follows that: $$\mathcal{R}(\mathcal{A}) \stackrel{\triangle}{=} \bigcap_{\mathcal{R}' \in R(\mathcal{A})} \mathcal{R}' \subseteq \mathcal{R}$$ So $\mathcal{R}(\mathcal{A})$ is indeed the *smallest ring* on Ω which contains \mathcal{A} . #### Exercise 6. - 1. If $x \in A_i \cap B_j$ for some i = 1, ..., n and j = 1, ..., p, then $x \in A \cap B$. Conversely if $x \in A \cap B$, then $n \geq 1$, $p \geq 1$, and there exist $i \in \{1, ..., n\}$ and $j \in \{1, ..., p\}$ such that $x \in A_i \cap B_j$. So $A \cap B = \bigcup_{i,j} A_i \cap B_j$. Suppose (i,j) and (i',j') are such that $(A_i \cap B_j) \cap (A_{i'} \cap B_{j'}) \neq \emptyset$. In particular, $A_i \cap A_{i'} \neq \emptyset$. Since the A_i 's are pairwise disjoint, we have i = i' and similarly j = j'. Hence, we see that the $(A_i \cap B_j)_{i,j}$'s are pairwise disjoint, and finally $A \cap B = \biguplus_{i,j} A_i \cap B_j$. From (ii) of definition (6), all the $A_i \cap B_j$'s lie in the semi-ring S, and we see that $A \cap B$ is also an element of R. We have proved that R is closed under finite intersection. - 2. Since the A_i 's are pairwise disjoint, for all $j \in \{1, ..., p\}$ being given, the $A_i \setminus B_j$ i = 1, ..., n, are also pairwise disjoint. Hence, the union $\bigcup_{i=1}^n A_i \setminus B_j$ can legitimately be written as $\bigcup_{i=1}^n A_i \setminus B_j$. let $x \in A \setminus B$. Then $x \notin B$. Thus, for all j = 1, ..., p, $x \notin B_j$. But $x \in A$. So there exists $i \in \{1, ..., n\}$ such that $x \in A_i$. It follows that for all $j \in \{1, \ldots, p\}$, $x \in A_i \setminus B_j$ for some $i \in \{1, \ldots, n\}$. So $x \in \cap_{j=1}^p \biguplus_{i=1}^n (A_i \setminus B_j)$. Conversely, suppose that $x \in \cap_{j=1}^p \biguplus_{i=1}^n (A_i \setminus B_j)$. Then for all $j \in \{1, \ldots, p\}$, there exists $i_j \in \{1, \ldots, n\}$ such that $x \in A_{i_j} \setminus B_j$. Since we have assumed $p \geq 1$, in particular $x \in A_{i_1} \subseteq A$, and for all $j \in \{1, \ldots, p\}$, $x \notin B_j$, so $x \notin B$. It follows that $x \in A \setminus B$. We have proved that: $$A \setminus B = \cap_{j=1}^p \uplus_{i=1}^n (A_i \setminus B_j)$$ 3. If p = 0, then $B = \emptyset$ and $A \setminus B = A \in \mathcal{R}$. We assume that $p \geq 1$. From the previous point, we know that $A \setminus B = \bigcap_{j=1}^p C_j$ where C_j is defined as $C_j = \bigoplus_{i=1}^n A_i \setminus B_j$. But each A_i and B_j is an element of the semi-ring \mathcal{S} . From (iii) of definition (6), each $A_i \setminus B_j$ can be written as a finite union of pairwise disjoint elements of \mathcal{S} . It follows that C_j itself can be written as a finite union of pairwise disjoint elements of \mathcal{S} . Hence, we see that for all $j \in \{1, \ldots, p\}$, C_j is an element of \mathcal{R} . From 1. we know that \mathcal{R} is closed under finite intersection. We conclude that $A \setminus B = \bigcap_{j=1}^p C_j \in \mathcal{R}$. We have proved that \mathcal{R} is closed under pairwise difference. 4. Let $x \in A \cup B$. then $x \in A$ or $x \in B$. If $x \in B$ then $x \in A \setminus B \uplus B$. - If $x \notin B$ then $x \in A \setminus B$. In any case, $x \in A \setminus B \uplus B$, and $A \cup B \subseteq A \setminus B \uplus B$. Conversely, $A \setminus B \subseteq A$, so $A \setminus B \uplus B \subseteq A \cup B$. Now, if $A, B \in \mathcal{R}$, from the previous point, $A \setminus B \in \mathcal{R}$. It follows that $A \setminus B$ can be written as a finite union of pairwise disjoint elements of S. But B itself (being an element of R), can be written as a finite union of pairwise disjoint elements of \mathcal{S} . It follows that $A \setminus B \uplus B$ is also a finite union of pairwise disjoint elements of \mathcal{S} , hence an element of \mathcal{R} . From $A \cup B = A \setminus B \uplus B$, we conclude that $A \cup B$ is an element of \mathcal{R} . We have proved that \mathcal{R} is closed under finite union. Finally, (i), (ii), (iii) of definition (7) being satisfied for \mathcal{R} , \mathcal{R} is indeed a ring on Ω . - 5. Let $A \in \mathcal{S}$. A can obviously be written as a finite union of pairwise disjoint elements of \mathcal{S} . (Take n = 1, $A_1 = A \in \mathcal{S}$ and $A = \bigoplus_{i=1}^{n} A_i$). Hence, $A \in \mathcal{R}$ and $\mathcal{S} \subseteq \mathcal{R}$. Consequently, from exercise (5) and the fact that \mathcal{R} is a ring on Ω , $\mathcal{R}(\mathcal{S}) \subseteq \mathcal{R}$. Conversely, let $A \in \mathcal{R}$. Then $A = \bigoplus_{i=1}^n A_i$ for some $n \geq 0$ and $A_i \in \mathcal{S}$. Since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S})$ (see exercise (5)), each A_i lies in $\mathcal{R}(\mathcal{S})$. But from (ii) of definition (7), $\mathcal{R}(\mathcal{S})$ being a ring is closed under finite union. Hence, $A \in \mathcal{R}(\mathcal{S})$ and we have $\mathcal{R} \subseteq \mathcal{R}(\mathcal{S})$. We have proved that $\mathcal{R}(\mathcal{S}) = \mathcal{R}$. The purpose of this exercise is to show that the ring $\mathcal{R}(\mathcal{S})$ generated by a semi-ring \mathcal{S} on Ω , is equal to the set of all finite unions of pairwise disjoint elements of \mathcal{S} . Exercise 7. Any finite union of pairwise disjoint elements of S, is in particular a finite union of elements of S... So $R \subseteq R'$. Let $A \in R'$. There exists $n \geq 0$ and $A_i \in S$ for i = 1, ..., n such that $A = \bigcup_{i=1}^n A_i$. If n = 0, then $A = \emptyset \in R$. If $n \geq 1$, since $S \subseteq R = R(S)$, all A_i 's are elements of R. R being closed under finite union (it is a ring on Ω), A is itself an element of R. Hence $R' \subseteq R$. We have proved that R = R' = R(S). The purpose of this exercise is to show that the generated ring R(S) of a semi-ring S on Ω , is also equal to the set of all finite unions of (not necessarily pairwise disjoint) elements of S. **Exercise 8.** If \mathcal{A} is a σ -algebra on Ω , then $A_n \in \mathcal{A}$ and $A = \bigoplus_{n=1}^{+\infty} A_n$ automatically implies that $A \in \mathcal{A}$. Hence, the l.h.s of (ii) and (ii)' are equivalent, whenever \mathcal{A} is a σ -algebra on Ω . #### Exercise 9. 1. Define the sequence $(B_n)_{n\geq 1}$ of elements of \mathcal{A} , by $B_i=A_i$ for all $i=1,\ldots,n$ and $B_k=\emptyset$ for all k>n. Then $A= \bigoplus_{k=1}^{\infty} B_k$, and since $A\in \mathcal{A}$, from (ii) of definition (9), we have: $$\mu(A) = \sum_{k=1}^{+\infty} \mu(B_k)$$ But from (i) of definition (9), $\mu(B_k) = 0$ for all k > n. Hence: $$\mu(A) = \mu(A_1) + \ldots + \mu(A_n)$$ In view of this property, it is customary to say that a measure is *finitely additive*. 2. Suppose $A, B \in \mathcal{A}$ with $A \subseteq B$ and $B \setminus A \in \mathcal{A}$. Then, we have $B = A \cup B = A \uplus (B \setminus A)$. From the previous point we conclude: $$\mu(A) \le \mu(A) + \mu(B \setminus A) = \mu(B)$$ #### Exercise 10. - 1. If $A = \emptyset$, then either n = 0 or $A_i = \emptyset$ for all i = 1, ..., n. In any case, $\bar{\mu}(A) = \sum_{i=1}^n \mu(A_i)$ is true. If $A \neq \emptyset$, then $n \geq 1$. Since $S \subseteq \mathcal{R}(S)$, all sets involved in $A = \biguplus_{i=1}^n A_i$ are elements of $\mathcal{R}(S)$. Since $\bar{\mu}$ is a measure on $\mathcal{R}(S)$, from exercise (9) we have $\bar{\mu}(A) = \sum_{i=1}^n \bar{\mu}(A_i)$. By assumption, $\bar{\mu}_{|S} = \mu$ and $A_i \in S$ for all i = 1, ..., n. Hence, $\bar{\mu}(A_i) = \mu(A_i)$ for all i = 1, ..., n. It follows that $\bar{\mu}(A) = \sum_{i=1}^n \mu(A_i)$. - 2. Let $A \in \mathcal{R}(\mathcal{S})$. Then A has a representation $A = \bigoplus_{i=1}^n A_i$ as a finite union of pairwise disjoint elements of \mathcal{S} . From the previous point, $\bar{\mu}(A) = \sum_{i=1}^n \mu(A_i)$. If $\bar{\mu}'$ is another measure on $\mathcal{R}(\mathcal{S})$ with $\bar{\mu}'_{|\mathcal{S}} = \mu$, then similarly we have $\bar{\mu}'(A) = \sum_{i=1}^n \mu(A_i)$. So $\bar{\mu}(A) = \bar{\mu}'(A)$. This being true for all $A \in \mathcal{R}(\mathcal{S})$, $\bar{\mu} = \bar{\mu}'$. The purpose of this exercise is to show that if a measure μ on a semiring \mathcal{S} can be extended to its generated ring $\mathcal{R}(\mathcal{S})$, then such extension is unique. #### Exercise 11. 1. If p=0, then $A=\emptyset$. Then either n=0 and there is nothing to prove, or $n\geq 1$ with all A_i 's equal to the empty set. In any case, $\mu(A_i)=\sum_{j=1}^p\mu(A_i\cap B_j)$ is true. Hence we can assume that $p\geq 1$. Since $A_i\subseteq A$: $$A_i = A_i \cap A = \biguplus_{j=1}^p A_i \cap B_j \tag{1}$$ Since S is a semi-ring, it is closed under finite intersection (definition (6)), hence all sets involved in (1) are elements of S. From exercise (9), and the fact that μ is a measure on S, we conclude that $\mu(A_i) = \sum_{j=1}^p \mu(A_i \cap B_j)$. 2. Similarly to the previous point, for all
$j=1,\ldots,p$ we have $\mu(B_j)=\sum_{i=1}^n \mu(A_i\cap B_j)$. It follows that: $$\sum_{i=1}^{n} \mu(A_i) = \sum_{i=1}^{n} \sum_{j=1}^{p} \mu(A_i \cap B_j) = \sum_{j=1}^{p} \sum_{i=1}^{n} \mu(A_i \cap B_j) = \sum_{j=1}^{p} \mu(B_j)$$ 3. Suppose we want to define a map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ with: $$\bar{\mu}(A) \stackrel{\triangle}{=} \sum_{i=1}^{n} \mu(A_i) \tag{2}$$ where $A = \bigcup_{i=1}^n A_i$ is a representation of A as a finite union of pairwise disjoint elements of S. The problem is that such representation may not be unique. However, if $A = \bigcup_{j=1}^p B_j$ is another representation of A in terms of finite union of pairwise disjoint elements of S, then from $2, \sum_{i=1}^n \mu(A_i) = \sum_{j=1}^p \mu(B_j)$. It follows that whichever representation is considered, the sum involved in (2) will still be the same. In other words, definition (2) is unambiguous, and therefore legitimate. 4. \emptyset has a representation with n=0, or n=1 with $A_1=\emptyset$, or n=2 with $A_1=A_2=\emptyset$... Whichever representation we choose for \emptyset , definition (2) leads to $\bar{\mu}(\emptyset)=0$. #### Exercise 12. 1. For all j = 1, ..., p, since $B_i \subseteq A$, we have: $$B_j = A \cap B_j = \bigcup_{n=1}^{+\infty} (A_n \cap B_j) = \bigcup_{n=1}^{+\infty} \bigcup_{k=1}^{p_n} (A_n^k \cap B_j)$$ Consider the set $I = \{(n, k) : n \ge 1, 1 \le k \le p_n\}$. Being a countable union of finite sets, I is a countable set. Hence, there exists a one-to-one map $\phi: \{m: m \geq 1\} \rightarrow I$. Given $m \geq 1$, define $C_m = A_n^k \cap B_i$ where $(n,k) = \phi(m)$. Then we have $B_i = \bigcup_{m=1}^{+\infty} C_m$. Since all A_n^k 's and B_i itself are elements of the semi-ring \mathcal{S} , all C_m 's are elements of \mathcal{S} . Suppose $C_m \cap C_{m'} \neq \emptyset$ for some $m, m' \geq 1$. Then in particular, $A_n^k \cap A_{n'}^{k'} \neq \emptyset$, where we have put $(n,k) = \phi(m)$ and $(n',k') = \phi(m')$. Since $A_n^k \subseteq A_n$ and $A_{n'}^{k'} \subseteq A_{n'}$, it follows that $A_n \cap A_{n'} \neq \emptyset$, and the A_n 's being pairwise disjoint, we see that n=n'. Thus, $A_n^k \cap A_n^{k'} \neq \emptyset$. But the A_n^k 's for $k=1,\ldots,p_n$ are also pairwise disjoint. We conclude that k = k' and $\phi(m) = (n, k) = (n', k') = \phi(m')$. Since - ϕ is one-to-one, m = m', and we have proved that $(C_m)_{m \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{S} . - 2. In the previous point, we saw that $B_j = \bigoplus_{m=1}^{+\infty} C_m$. Since all sets involved are elements of \mathcal{S} and μ is a measure on \mathcal{S} , from (ii) of definition (9), we have: $$\mu(B_j) = \sum_{m=1}^{+\infty} \mu(C_m) = \sum_{(n,k)\in I} \mu(A_n^k \cap B_j) = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \mu(A_n^k \cap B_j)$$ (3) 3. For $n \ge 1$ and $k \in \{1, \ldots, p_n\}$, we have $A_n^k \subseteq A_n \subseteq A$. Hence: $$A_n^k = A_n^k \cap A = \biguplus_{j=1}^p (A_n^k \cap B_j)$$ 4. From the previous point, using exercise (9), we obtain: $$\mu(A_n^k) = \sum_{i=1}^p \mu(A_n^k \cap B_j) \tag{4}$$ 5. In exercise (11), we saw that the map $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ is such that $\bar{\mu}(\emptyset) = 0$. Hence (i) of definition (9) is satisfied for $\bar{\mu}$. Moreover, by definition, $\bar{\mu}(A) = \sum_{j=1}^{p} \mu(B_j)$. Using equation (3), we have: $$\bar{\mu}(A) = \sum_{j=1}^{p} \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \mu(A_n^k \cap B_j) = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \sum_{j=1}^{p} \mu(A_n^k \cap B_j)$$ Using equation (4), it follows that: $$\bar{\mu}(A) = \sum_{n=1}^{+\infty} \sum_{k=1}^{p_n} \mu(A_n^k)$$ But, for all $n \geq 1$, $\bar{\mu}(A_n) = \sum_{k=1}^{p_n} \mu(A_n^k)$, by definition of $\bar{\mu}$. Hence: $$\bar{\mu}(A) = \sum_{n=1}^{+\infty} \bar{\mu}(A_n)$$ It follows that (ii) of definition (9) is satisfied for $\bar{\mu}$. Finally, $\bar{\mu}$ is a measure on the ring $\mathcal{R}(\mathcal{S})$. ## Exercise 13. - Uniqueness is a consequence of exercise (10) - Take $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ as defined in exercise (11). We proved in exercise (12) that $\bar{\mu}$ is indeed a measure on the ring $\mathcal{R}(\mathcal{S})$. Moreover, given $A \in \mathcal{S}$, if we take n = 1 and $A_1 = A$, then $A = \bigoplus_{i=1}^n A_i$ is a representation of A as a finite union of pairwise disjoint elements of \mathcal{S} . By definition of $\bar{\mu}$ (see exercise (11)), it follows that $\bar{\mu}(A) = \mu(A)$. This being true for all $A \in \mathcal{S}$, we have $\bar{\mu}_{|\mathcal{S}} = \mu$. This shows the existence of $\bar{\mu}$, and theorem (2) is proved. **Exercise 14.** Let $(A_n)_{n\geq 1}$ be the sequence of subsets of Ω defined by $A_1=A,\ A_2=B$ and $A_n=\emptyset$ for all $n\geq 3$. Using (i) and (iii) of definition (10), we obtain: $$\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$$ # Exercise 15. - 1. μ^* being an outer measure on Ω , by (i) of definition (10), we have $\mu^*(\emptyset) = 0$. It follows that given an arbitrary $T \subseteq \Omega$, $\mu^*(T) = \mu^*(T \cap \Omega) + \mu^*(T \cap \Omega^c)$ is obviously true. Hence, from definition (11), $\Omega \in \Sigma(\mu^*) = \Sigma$. The fact that $A^c \in \Sigma$ is an immediate consequence of definition (11). - 2. Since $B \in \Sigma$, using definition (11) with $T \cap A$ in place of T, we obtain: $$\mu^*(T \cap A) = \mu^*(T \cap A \cap B) + \mu^*(T \cap A \cap B^c)$$ 3. Since $A \cap B \subseteq A$, we have $A^c \subseteq (A \cap B)^c$, and consequently: $$T \cap A^c \subseteq T \cap (A \cap B)^c$$ It follows that: $$T \cap A^c = (T \cap (A \cap B)^c) \cap T \cap A^c = T \cap (A \cap B)^c \cap A^c$$ 4. From $(A \cap B)^c \cap A = (A^c \cup B^c) \cap A = A \cap B^c$, we obtain: $$T\cap (A\cap B)^c\cap A=T\cap A\cap B^c$$ 5. Using 3. and 4., we see that the sum $\mu^*(T \cap A^c) + \mu^*(T \cap A \cap B^c)$ can be expressed as: $$\mu^*(T \cap (A \cap B)^c \cap A^c) + \mu^*(T \cap (A \cap B)^c \cap A)$$ Since $A \in \Sigma$, using definition (11) with $T \cap (A \cap B)^c$ in place of T, we obtain: $$\mu^*(T \cap A^c) + \mu^*(T \cap A \cap B^c) = \mu^*(T \cap (A \cap B)^c)$$ (5) 6. Adding $\mu^*(T \cap (A \cap B))$ on both sides of equation (5), it appears that the sum: $$\mu^*(T \cap A^c) + \mu^*(T \cap A \cap B^c) + \mu^*(T \cap A \cap B)$$ is equal to: $$\mu^*(T \cap (A \cap B)^c) + \mu^*(T \cap (A \cap B))$$ Since $B \in \Sigma$, using definition (11) with $T \cap A$ in place of T, we obtain: $$\mu^*(T\cap A^c) + \mu^*(T\cap A) = \mu^*(T\cap (A\cap B)^c) + \mu^*(T\cap (A\cap B))$$ and finally, since $A\in \Sigma$: $$\mu^*(T) = \mu^*(T \cap (A \cap B)^c) + \mu^*(T \cap (A \cap B))$$ This being true for all $T \subseteq \Omega$, it follows that $A \cap B \in \Sigma$. We have proved that $\Sigma = \Sigma(\mu^*)$ is closed under finite intersection. 7. From $A \cup B = (A^c \cap B^c)^c$ and the fact that Σ is closed under complementation and finite intersection, we have $A \cup B \in \Sigma$. Similarly, $A \setminus B = A \cap B^c \in \Sigma$. The purpose of this exercise is to show that the so-called σ -algebra $\Sigma(\mu^*)$ associated with an outer measure μ^* , is closed under finite intersection and union, and closed under complementation and difference. ## Exercise 16. - Suppose $n \geq 1$, $p \geq 1$ and $B_n \cap B_p \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose n < p and $x \in B_n \cap B_p$. Since $x \in B_n$, we have $x \in A_n$. However, since $x \in B_p$, $x \notin A_1 \cup \ldots \cup A_{p-1}$. In particular, $x \notin A_n$. This is a contradiction. It follows that if $B_n \cap B_p \neq \emptyset$ then n = p, and $(B_n)_{n \geq 1}$ is a sequence of pairwise disjoint subsets of Ω . - From exercise (15), all B_n 's are in fact elements of Σ . - Since for all $n \geq 1$, $B_n \subseteq A_n$, we have: $\biguplus_{n=1}^{+\infty} B_n \subseteq \bigcup_{n=1}^{+\infty} A_n$. Conversely, suppose $x \in \bigcup_{n=1}^{+\infty} A_n$. Then, there exists $n \geq 1$ such that $x \in A_n$. Consider the set: $$I(x) \stackrel{\triangle}{=} \{ n \ge 1, x \in A_n \}$$ This set is a non-empty subset of \mathbb{N}^* (the set of all positive integers). It follows that I(x) has a smallest element p. If p = 1, then $x \in A_1 = B_1$. If p > 1, then $x \in A_p \setminus (A_1 \cup \ldots \cup A_{p-1}) = B_p$. In any case, $x \in B_p \subseteq \bigoplus_{n=1}^{+\infty} B_n$. Consequently, it follows that $\bigcup_{n=1}^{+\infty} A_n \subseteq \bigoplus_{n=1}^{+\infty} B_n$. • We have proved that $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of Σ , such that: $$\bigcup_{n=1}^{+\infty} A_n = \biguplus_{n=1}^{+\infty} B_n$$ **Exercise 17.** Let $B, C \in \Sigma$ be such that $B \cap C = \emptyset$. Since $B \in \Sigma$, using definition (11) with $T \cap (B \uplus C)$ in place of T, we have: $$\mu^*(T\cap (B\uplus C))=\mu^*(T\cap (B\uplus C)\cap B)+\mu^*(T\cap (B\uplus C)\cap B^c)$$ From $B \cap C = \emptyset$ and in particular $C \subseteq B^c$, we obtain: $$\mu^*(T \cap (B \uplus C)) = \mu^*(T \cap B) + \mu^*(T \cap C)$$ Note that it was not necessary to use the fact that both B and C were elements of Σ . ## Exercise 18. - 1. $\biguplus_{n=1}^{N} B_n \in \Sigma$ is an immediate consequence of exercise (15). - 2. Using exercise (17) with a simple induction argument, we obtain: $$\mu^*(T \cap (\bigcup_{n=1}^N B_n)) = \sum_{n=1}^N \mu^*(T \cap B_n)$$ 3. Since $\bigcup_{n=1}^{N} B_n \subseteq B$, we have $T \cap B^c \subseteq T \cap (\bigcup_{n=1}^{N} B_n)^c$. Using (ii) of definition (10), we obtain: $$\mu^*(T \cap B^c) \le \mu^*(T \cap (\uplus_{n=1}^N B_n)^c)$$ 4. Using 2. and 3., if we put $C_N = \bigcup_{n=1}^N B_n$, we have: $$\mu^*(T \cap B^c) + \sum_{n=1}^N \mu^*(T \cap B_n) \le \mu^*(T \cap (C_N)^c)
+ \mu^*(T \cap C_N)$$ However from 1., $C_N \in \Sigma$. Using definition (11), we obtain: $$\mu^*(T \cap B^c) + \sum_{n=1}^N \mu^*(T \cap B_n) \le \mu^*(T)$$ Taking the limit as $N \to +\infty$, we conclude: $$\mu^*(T \cap B^c) + \sum_{r=1}^{+\infty} \mu^*(T \cap B_r) \le \mu^*(T)$$ 5. Since $T = (T \cap B^c) \cup (T \cap B)$, using exercise (14): $$\mu^*(T) \le \mu^*(T \cap B^c) + \mu^*(T \cap B)$$ However, $T \cap B = \bigcup_{n=1}^{+\infty} T \cap B_n$. Using (iii) of definition (10), we have: $$\mu^*(T \cap B) \le \sum_{n=1}^{+\infty} \mu^*(T \cap B_n)$$ It follows that: $$\mu^*(T) \le \mu^*(T \cap B^c) + \mu^*(T \cap B) \le \mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n)$$ 6. From 4. and 5., we see that $\mu^*(T) = \mu^*(T \cap B^c) + \mu^*(T \cap B)$. This being true for all $T \subseteq \Omega$, it follows that $B = \bigcup_{n=1}^{+\infty} B_n \in \Sigma$. Also, from 4. and 5., we have: $$\mu^*(T) = \mu^*(T \cap B^c) + \sum_{n=1}^{+\infty} \mu^*(T \cap B_n)$$ In particular, taking T=B, using the fact that $\mu^*(\emptyset)=0$, we obtain: $$\mu^*(B) = \sum_{n=1}^{+\infty} \mu^*(B_n)$$ 7. We saw in exercise (15) that Σ contains Ω , and is closed under complementation. If $(A_n)_{n\geq 1}$ is a sequence of elements of Σ , then from exercise (16), there exists a sequence $(B_n)_{n\geq 1}$ of pairwise disjoint elements of Σ , with $B= \displaystyle \uplus_{n=1}^{+\infty} B_n = \displaystyle \cup_{n=1}^{+\infty} A_n$. In 6., we saw that such B is an element of Σ . It follows that $\displaystyle \cup_{n=1}^{+\infty} A_n \in \Sigma$, and Σ is closed under countable union. Hence, we have proved that Σ is a σ -algebra on Ω . μ^* being an outer measure on Ω , $\mu^*(\emptyset)=0$. So (i) of definition (9) is satisfied for $\mu^*_{|\Sigma}$. If $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of Σ , and $B= \uplus_{n=1}^{+\infty} B_n$, we saw in 6. that: $$\mu^*(B) = \sum_{n=1}^{+\infty} \mu^*(B_n)$$ It follows that (ii) of definition (9) is satisfied for $\mu_{|\Sigma}^*$. Finally, $\mu_{|\Sigma}^*$ is indeed a measure on Σ . The purpose of the exercise is to prove theorem (3). # Exercise 19. 1. \mathcal{R} being a ring on Ω , $\emptyset \in \mathcal{R}$. If we define a sequence $(A_n)_{n\geq 1}$, with $A_n = \emptyset$ for all $n \geq 1$, then $(A_n)_{n\geq 1}$ is an \mathcal{R} -cover of the empty set. It follows that: $$\mu^*(\emptyset) \le \sum_{n=1}^{+\infty} \mu(A_n) = 0$$ Moreover, $\mu^*(\emptyset)$ being the infimum over a set of non-negative numbers, we have $\mu^*(\emptyset) \geq 0$. Finally $\mu^*(\emptyset) = 0$. 2. Let $A \subseteq B \subseteq \Omega$. Let $(B_n)_{n\geq 1}$ be an \mathcal{R} -cover of B. Then in particular, $(B_n)_{n\geq 1}$ is an \mathcal{R} -cover of A. It follows that: $$\mu^*(A) \le \sum_{n=1}^{+\infty} \mu(B_n) \tag{6}$$ Hence, $\mu^*(A)$ is a lower bound of all sums involved in (6), as $(B_n)_{n>1}$ ranges over all \mathcal{R} -covers of B. $\mu^*(B)$ being the infimum of those sums, it is the greatest of such lower bounds, from which we conclude that $\mu^*(A) < \mu^*(B)$. 3. Since $\mu^*(A_n) < +\infty$, we have $\mu^*(A_n) < \mu^*(A_n) + \epsilon/2^n$. It follows that $\mu^*(A_n) + \epsilon/2^n$ cannot be a lower bound of all sums $\sum_{p=1}^{+\infty} \mu(B_p)$, as $(B_p)_{p\geq 1}$ ranges over all \mathcal{R} -covers of A_n . Hence, there exists an \mathcal{R} -cover $(A_p^n)^{p\geq 1}$ of A_n such that: $$\sum_{p=1}^{+\infty} \mu(A_n^p) < \mu^*(A_n) + \frac{\epsilon}{2^n}$$ It is important to assume $\mu^*(A_n) < +\infty$, since otherwise the inequality $\mu^*(A_n) \leq \mu^*(A_n) + \epsilon/2^n$ may not be a strict inequality, and the above reasoning would fail. 4. \mathbf{N}^* being the set of positive integers, $\mathbf{N}^* \times \mathbf{N}^*$ is a countable set. There exists a one-to-one map $\phi : \mathbf{N}^* \to \mathbf{N}^* \times \mathbf{N}^*$. Given $k \geq 1$, define $R_k = A_n^p$, where $(n, p) = \phi(k)$. Then $(R_k)_{k \geq 1}$ is a sequence of elements of \mathcal{R} such that: $$\bigcup_{n=1}^{+\infty} A_n \subseteq \bigcup_{n=1}^{+\infty} \bigcup_{p=1}^{+\infty} A_n^p = \bigcup_{k=1}^{+\infty} R_k$$ In other words, $(R_k)_{k\geq 1}$ is an \mathcal{R} -cover of $\bigcup_{n=1}^{+\infty} A_n$. Moreover: $$\sum_{k=1}^{+\infty} \mu(R_k) = \sum_{(n,p) \in \mathbf{N}^* \times \mathbf{N}^*} \mu(A_n^p) = \sum_{n=1}^{+\infty} \sum_{p=1}^{+\infty} \mu(A_n^p)$$ 5. It follows from 4. that: $$\mu^*(\cup_{n=1}^{+\infty} A_n) \le \sum_{k=1}^{+\infty} \mu(R_k) = \sum_{n=1}^{+\infty} \sum_{n=1}^{+\infty} \mu(A_n^p)$$ Hence, using 3.: $$\mu^*(\bigcup_{n=1}^{+\infty} A_n) \le \sum_{n=1}^{+\infty} (\mu^*(A_n) + \frac{\epsilon}{2^n})$$ and finally: $$\mu^*(\bigcup_{n=1}^{+\infty} A_n) \le \epsilon + \sum_{n=1}^{+\infty} \mu^*(A_n)$$ (7) 6. From 1. and 2., we see that (i) and (ii) of definition (10) are satisfied for μ^* . Let $(A_n)_{n\geq 1}$ be a sequence of subsets of Ω . If $\mu^*(A_n) = +\infty$ for some $n \geq 1$, then: $$\mu^*(\cup_{n=1}^{+\infty} A_n) \le \sum_{n=1}^{+\infty} \mu^*(A_n)$$ (8) is obviously true. If $\mu^*(A_n) < +\infty$ for all $n \geq 1$, then given $\epsilon > 0$ from 5., inequality (7) holds. Since ϵ is arbitrary, it follows that inequality (8) still holds. Hence, (iii) of definition (10) is satisfied for μ^* . Finally, μ^* is an outer-measure on Ω . ## Exercise 20. 1. Since $A \in \mathcal{R}$, the sequence $(R_n)_{n\geq 1}$ defined by $R_1 = A$ and $R_n = \emptyset$ for all $n \geq 2$, is an \mathcal{R} -cover of A. Hence: $$\mu^*(A) \le \sum_{n=1}^{+\infty} \mu(R_n) = \mu(A)$$ 2. Suppose $n \geq 1$, $p \geq 1$ and $B_n \cap B_p \neq \emptyset$. Without loss of generality, we can assume that $n \leq p$. Suppose n < p and $x \in B_n \cap B_p$. Since $x \in B_n$, we have $x \in A_n \cap A$. However, since $x \in B_p$, $x \notin (A_1 \cap A) \cup \ldots \cup (A_{p-1} \cap A)$. In particular, $x \notin A_n \cap A$. This is a contradiction. It follows that if $B_n \cap B_p \neq \emptyset$ then n = p, and $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint subsets of Ω . From exercise (1), we know that a ring is closed under finite intersection. From (ii) and (iii) of definition (7), it is also closed under finite union and difference. It follows that all B_n 's are in fact elements of \mathcal{R} . Since for all $n \geq 1$, $B_n \subseteq A_n \cap A$, we have: $$\biguplus_{n=1}^{+\infty} B_n \subseteq \bigcup_{n=1}^{+\infty} A_n \cap A = A \cap \bigcup_{n=1}^{+\infty} A_n = A$$ Conversely, suppose $x \in A \subseteq \bigcup_{n=1}^{+\infty} A_n$. Then, there exists $n \ge 1$ such that $x \in A_n \cap A$. Consider the set: $$I(x) \stackrel{\triangle}{=} \{ n \ge 1, x \in A_n \cap A \}$$ This set is a non-empty subset of \mathbb{N}^* (the set of all positive integers). It follows that I(x) has a smallest element p. If p = 1, then $x \in A_1 \cap A = B_1$. If p > 1, then by definition of p, we have $x \in (A_p \cap A) \setminus ((A_1 \cap A) \cup \ldots \cup (A_{p-1} \cap A)) = B_p$. In any case, $x \in B_p \subseteq \bigoplus_{n=1}^{+\infty} B_n$. Consequently, it follows that $A \subseteq \bigoplus_{n=1}^{+\infty} B_n$. We have proved that $(B_n)_{n\geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{R} , such that: $A = \bigoplus_{n=1}^{+\infty} B_n$ 3. μ being a measure on \mathcal{R} , from 2. we obtain: $$\mu(A) = \sum_{n=1}^{+\infty} \mu(B_n)$$ Since for all $n \ge 1$, we have $B_n \subseteq A_n$, it follows from exercise (9) that $\mu(B_n) \le \mu(A_n)$. Hence: $$\mu(A) \le \sum_{n=1}^{+\infty} \mu(A_n) \tag{9}$$ The \mathcal{R} -cover $(A_n)_{n\geq 1}$ of A being arbitrary, we see that $\mu(A)$ is a lower bound of all sums involved in (9), as $(A_n)_{n\geq 1}$ ranges across all \mathcal{R} -covers of A. $\mu^*(A)$ being the greatest of such lower bounds, it follows that $\mu(A) \leq \mu^*(A)$. Using 1., we conclude that $\mu(A) = \mu^*(A)$. This being true for all $A \in \mathcal{R}$, we have proved that $\mu_{|\mathcal{R}|}^* = \mu$. ## Exercise 21. 1. We saw in exercise (19) that μ^* is an outer measure on Ω . From exercise (14), and the fact that $T=(T\cap A)\cup (T\cap A^c)$, we obtain: $$\mu^*(T) \leq \mu^*(T \cap A) + \mu^*(T \cap A^c)$$ 2. If $(T_n)_{n\geq 1}$ is an \mathcal{R} -cover of T, then in particular $T_n \in \mathcal{R}$ for all $n\geq 1$. Since $A\in \mathcal{R}$, it follows from exercise (1) that $T_n\cap A\in \mathcal{R}$, and from (iii) of definition (7) that $T_n\cap A^c=T_n\setminus A\in \mathcal{R}$, for all $n\geq 1$. Moreover, from $T\subseteq \bigcup_{n=1}^{+\infty} T_n$, we have: $$T \cap A \subseteq \bigcup_{n=1}^{+\infty} T_n \cap A$$ $$T \cap A^c \subseteq \bigcup_{n=1}^{+\infty} T_n \cap A^c$$ We conclude that $(T_n \cap A)_{n\geq 1}$ and $(T_n \cap A^c)_{n\geq 1}$ are \mathcal{R} -covers of $T \cap A$ and $T \cap A^c$ respectively. 3. It follows from 2. that: $$\mu^*(T \cap A) \le \sum_{n=1}^{+\infty} \mu(T_n \cap A)$$ $$\mu^*(T \cap A^c) \le \sum_{n=1}^{+\infty} \mu(T_n \cap A^c)$$ However, μ being a measure on \mathcal{R} , from exercise (9), we have: $$\mu(T_n) = \mu(T_n \cap A) + \mu(T_n \cap A^c)$$ for all $n \geq 1$. It follows that: $$\mu^*(T \cap A) + \mu^*(T \cap A^c) \le \sum_{n=0}^{+\infty} \mu(T_n)$$ This being true for all \mathcal{R} -covers $(T_n)_{n\geq 1}$ of T, we finally have: $$\mu^*(T \cap A) + \mu^*(T \cap A^c) \le \mu^*(T)$$ 4. Given $A \in \mathcal{R}$, we see from 1. and 3. that for all $T \subseteq \Omega$: $$\mu^*(T) = \mu^*(T \cap A) + \mu^*(T \cap A^c)$$ Hence, from definition (11), it follows that A is an element of $\Sigma(\mu^*)$, (the σ -algebra associated with the outer measure μ^*). This being true for all $A \in \mathcal{R}$, we have proved that
$\mathcal{R} \subseteq \Sigma(\mu^*)$. 5. The σ -algebra $\sigma(\mathcal{R})$ generated by \mathcal{R} , is the smallest σ -algebra on Ω containing \mathcal{R} . Thus, it follows immediately from 4. that $\sigma(\mathcal{R}) \subseteq \Sigma(\mu^*)$. # Exercise 22. - Let $\mu': \sigma(\mathcal{R}) \to [0, +\infty]$ be defined by $\mu' = \mu^*_{|\sigma(\mathcal{R})}$, where μ^* is the outer measure on Ω defined in exercise (19). We saw in exercise (20) that $\mu^*_{|\mathcal{R}} = \mu$. Hence, since $\mathcal{R} \subseteq \sigma(\mathcal{R})$, we have $\mu'_{|\mathcal{R}} = \mu^*_{|\mathcal{R}} = \mu$. - From theorem (3), we know that $\mu_{|\Sigma(\mu^*)}^*$ is a measure on $\Sigma(\mu^*)$. However, $\sigma(\mathcal{R}) \subseteq \Sigma(\mu^*)$ (exercise (21)). It is an immediate consequence of definition (9), that if we restrict the measure $\mu_{|\Sigma(\mu^*)}^*$ to the smaller σ -algebra $\sigma(\mathcal{R})$, the resulting map is a measure defined on $\sigma(\mathcal{R})$. But the restriction of $\mu_{|\Sigma(\mu^*)}^*$ to $\sigma(\mathcal{R})$ is nothing but μ' . It follows that μ' is indeed a measure on $\sigma(\mathcal{R})$. This proves theorem (4). **Exercise 23.** Let S be a semi-ring on Ω . Since $S \subseteq \mathcal{R}(S) \subseteq \sigma(\mathcal{R}(S))$, we have $\sigma(S) \subseteq \sigma(\mathcal{R}(S))$. However, $S \subseteq \sigma(S)$. Moreover, from exercise (7), $\mathcal{R}(S)$ is the set of all finite unions of elements of S. Since the σ -algebra $\sigma(S)$ is in particular closed under finite union, it follows that $\mathcal{R}(S) \subseteq \sigma(S)$ and consequently $\sigma(\mathcal{R}(S)) \subseteq \sigma(S)$. Finally, we have proved that $\sigma(\mathcal{R}(S)) = \sigma(S)$. **Exercise 24.** From theorem (2), the measure $\mu: \mathcal{S} \to [0, +\infty]$ can be extended to the ring $\mathcal{R}(\mathcal{S})$ generated by \mathcal{S} . In other words, there exists a measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ such that $\bar{\mu}_{|\mathcal{S}} = \mu$. From theorem (4), the measure $\bar{\mu}: \mathcal{R}(\mathcal{S}) \to [0, +\infty]$ can be extended the σ -algebra $\sigma(\mathcal{R}(\mathcal{S}))$ generated by $\mathcal{R}(\mathcal{S})$. In other words, there exists a measure $\mu': \sigma(\mathcal{R}(\mathcal{S})) \to [0, +\infty]$, such that $\mu'_{|\mathcal{R}(\mathcal{S})} = \bar{\mu}$. However, from exercise (23), $\sigma(\mathcal{R}(\mathcal{S})) = \sigma(\mathcal{S})$. Moreover, since $\mathcal{S} \subseteq \mathcal{R}(\mathcal{S})$, we have $\mu'_{|\mathcal{S}} = \bar{\mu}_{|\mathcal{S}} = \mu$. It follows that μ' is a measure on $\sigma(\mathcal{S})$ such that $\mu'_{|\mathcal{S}} = \mu$. This proves theorem (5).