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2. Caratheodory’s Extension
In the following, Ω is a set. Whenever a union of sets is denoted � as
opposed to ∪, it indicates that the sets involved are pairwise disjoint.

Definition 6 A semi-ring on Ω is a subset S of the power set P(Ω)
with the following properties:

(i) ∅ ∈ S
(ii) A, B ∈ S ⇒ A ∩ B ∈ S

(iii) A, B ∈ S ⇒ ∃n ≥ 0, ∃Ai ∈ S : A \ B =
n⊎

i=1

Ai

The last property (iii) says that whenever A, B ∈ S, there is n ≥ 0
and A1, . . . , An in S which are pairwise disjoint, such that A \ B =
A1 � . . .�An. If n = 0, it is understood that the corresponding union
is equal to ∅, (in which case A ⊆ B).
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Definition 7 A ring on Ω is a subset R of the power set P(Ω) with
the following properties:

(i) ∅ ∈ R
(ii) A, B ∈ R ⇒ A ∪ B ∈ R

(iii) A, B ∈ R ⇒ A \ B ∈ R
Exercise 1. Show that A∩B = A\ (A\B) and therefore that a ring
is closed under pairwise intersection.

Exercise 2.Show that a ring on Ω is also a semi-ring on Ω.

Exercise 3.Suppose that a set Ω can be decomposed as Ω = A1 �
A2 � A3 where A1, A2 and A3 are distinct from ∅ and Ω. Define
S1

�
= {∅, A1, A2, A3, Ω} and S2

�
= {∅, A1, A2 � A3, Ω}. Show that S1

and S2 are semi-rings on Ω, but that S1 ∩ S2 fails to be a semi-ring
on Ω.

Exercise 4. Let (Ri)i∈I be an arbitrary family of rings on Ω, with

I �= ∅. Show that R �
= ∩i∈IRi is also a ring on Ω.
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Exercise 5. Let A be a subset of the power set P(Ω). Define:

R(A)
�
= {R ring on Ω : A ⊆ R}

Show that P(Ω) is a ring on Ω, and that R(A) is not empty. Define:

R(A) �=
⋂

R∈R(A)

R

Show that R(A) is a ring on Ω such that A ⊆ R(A), and that it is
the smallest ring on Ω with such property, (i.e. if R is a ring on Ω
and A ⊆ R then R(A) ⊆ R).

Definition 8 Let A ⊆ P(Ω). We call ring generated by A, the
ring on Ω, denoted R(A), equal to the intersection of all rings on Ω,
which contain A.

Exercise 6.Let S be a semi-ring on Ω. Define the set R of all finite
unions of pairwise disjoint elements of S, i.e.

R �
= {A : A = �n

i=1Ai for some n ≥ 0, Ai ∈ S}
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(where if n = 0, the corresponding union is empty, i.e. ∅ ∈ R). Let
A = �n

i=1Ai and B = �p
j=1Bj ∈ R:

1. Show that A ∩ B = �i,j(Ai ∩ Bj) and that R is closed under
pairwise intersection.

2. Show that if p ≥ 1 then A \ B = ∩p
j=1(�n

i=1(Ai \ Bj)).

3. Show that R is closed under pairwise difference.

4. Show that A ∪ B = (A \ B) � B and conclude that R is a ring
on Ω.

5. Show that R(S) = R.

Exercise 7. Everything being as before, define:

R′ �
= {A : A = ∪n

i=1Ai for some n ≥ 0, Ai ∈ S}
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(We do not require the sets involved in the union to be pairwise dis-
joint). Using the fact that R is closed under finite union, show that
R′ ⊆ R, and conclude that R′ = R = R(S).

Definition 9 Let A ⊆ P(Ω) with ∅ ∈ A. We call measure on A,
any map μ : A → [0, +∞] with the following properties:

(i) μ(∅) = 0

(ii) A ∈ A, An ∈ A and A =
+∞⊎
n=1

An ⇒ μ(A) =
+∞∑
n=1

μ(An)

The � indicates that we assume the An’s to be pairwise disjoint in
the l.h.s. of (ii). It is customary to say in view of condition (ii) that
a measure is countably additive.

Exercise 8.If A is a σ-algebra on Ω explain why property (ii) can
be replaced by:

(ii)′ An ∈ A and A =
+∞⊎
n=1

An ⇒ μ(A) =
+∞∑
n=1

μ(An)
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Exercise 9. Let A ⊆ P(Ω) with ∅ ∈ A and μ : A → [0, +∞] be a
measure on A.

1. Show that if A1, . . . , An ∈ A are pairwise disjoint and the union
A = �n

i=1Ai lies in A, then μ(A) = μ(A1) + . . . + μ(An).

2. Show that if A, B ∈ A, A ⊆ B and B\A ∈ A then μ(A) ≤ μ(B).

Exercise 10. Let S be a semi-ring on Ω, and μ : S → [0, +∞] be a
measure on S. Suppose that there exists an extension of μ on R(S),
i.e. a measure μ̄ : R(S) → [0, +∞] such that μ̄|S = μ.

1. Let A be an element of R(S) with representation A = �n
i=1Ai

as a finite union of pairwise disjoint elements of S. Show that
μ̄(A) =

∑n
i=1 μ(Ai)

2. Show that if μ̄′ : R(S) → [0, +∞] is another measure with
μ̄′
|S = μ, i.e. another extension of μ on R(S), then μ̄′ = μ̄.
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Exercise 11. Let S be a semi-ring on Ω and μ : S → [0, +∞] be a
measure. Let A be an element of R(S) with two representations:

A =
n⊎

i=1

Ai =
p⊎

j=1

Bj

as a finite union of pairwise disjoint elements of S.

1. For i = 1, . . . , n, show that μ(Ai) =
∑p

j=1 μ(Ai ∩ Bj)

2. Show that
∑n

i=1 μ(Ai) =
∑p

j=1 μ(Bj)

3. Explain why we can define a map μ̄ : R(S) → [0, +∞] as:

μ̄(A)
�
=

n∑
i=1

μ(Ai)

4. Show that μ̄(∅) = 0.
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Exercise 12. Everything being as before, suppose that (An)n≥1 is a
sequence of pairwise disjoint elements of R(S), each An having the
representation:

An =
pn⊎

k=1

Ak
n , n ≥ 1

as a finite union of disjoint elements of S. Suppose moreover that
A = �+∞

n=1An is an element of R(S) with representation A = �p
j=1Bj ,

as a finite union of pairwise disjoint elements of S.

1. Show that for j = 1, . . . , p, Bj = ∪+∞
n=1 ∪pn

k=1 (Ak
n ∩ Bj) and

explain why Bj is of the form Bj = �+∞
m=1Cm for some sequence

(Cm)m≥1 of pairwise disjoint elements of S.

2. Show that μ(Bj) =
∑+∞

n=1

∑pn

k=1 μ(Ak
n ∩ Bj)

3. Show that for n ≥ 1 and k = 1, . . . , pn, Ak
n = �p

j=1(A
k
n ∩ Bj)
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4. Show that μ(Ak
n) =

∑p
j=1 μ(Ak

n ∩ Bj)

5. Recall the definition of μ̄ of exercise (11) and show that it is a
measure on R(S).

Exercise 13.Prove the following theorem:

Theorem 2 Let S be a semi-ring on Ω. Let μ : S → [0, +∞] be a
measure on S. There exists a unique measure μ̄ : R(S) → [0, +∞]
such that μ̄|S = μ.

www.probability.net

http://www.probability.net


Tutorial 2: Caratheodory’s Extension 10

Definition 10 We define an outer-measure on Ω as being any
map μ∗ : P(Ω) → [0, +∞] with the following properties:

(i) μ∗(∅) = 0
(ii) A ⊆ B ⇒ μ∗(A) ≤ μ∗(B)

(iii) μ∗
(

+∞⋃
n=1

An

)
≤

+∞∑
n=1

μ∗(An)

Exercise 14. Show that μ∗(A∪B) ≤ μ∗(A)+μ∗(B), where μ∗ is an
outer-measure on Ω and A, B ⊆ Ω.

Definition 11 Let μ∗ be an outer-measure on Ω. We define:

Σ(μ∗)
�
= {A ⊆ Ω : μ∗(T ) = μ∗(T ∩ A) + μ∗(T ∩ Ac) , ∀T ⊆ Ω}

We call Σ(μ∗) the σ-algebra associated with the outer-measure μ∗.

Note that the fact that Σ(μ∗) is indeed a σ-algebra on Ω, remains to
be proved. This will be your task in the following exercises.
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Exercise 15. Let μ∗ be an outer-measure on Ω. Let Σ = Σ(μ∗) be
the σ-algebra associated with μ∗. Let A, B ∈ Σ and T ⊆ Ω

1. Show that Ω ∈ Σ and Ac ∈ Σ.

2. Show that μ∗(T ∩ A) = μ∗(T ∩ A ∩ B) + μ∗(T ∩ A ∩ Bc)

3. Show that T ∩ Ac = T ∩ (A ∩ B)c ∩ Ac

4. Show that T ∩ A ∩ Bc = T ∩ (A ∩ B)c ∩ A

5. Show that μ∗(T ∩ Ac) + μ∗(T ∩ A ∩ Bc) = μ∗(T ∩ (A ∩ B)c)

6. Adding μ∗(T∩(A∩B)) on both sides 5., conclude that A∩B ∈ Σ.

7. Show that A ∪ B and A \ B belong to Σ.

Exercise 16. Everything being as before, let An ∈ Σ, n ≥ 1. Define
B1 = A1 and Bn+1 = An+1 \ (A1 ∪ . . .∪An). Show that the Bn’s are
pairwise disjoint elements of Σ and that ∪+∞

n=1An = �+∞
n=1Bn.
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Exercise 17. Everything being as before, show that if B, C ∈ Σ and
B ∩ C = ∅, then μ∗(T ∩ (B � C)) = μ∗(T ∩ B) + μ∗(T ∩ C) for any
T ⊆ Ω.

Exercise 18.Everything being as before, let (Bn)n≥1 be a sequence

of pairwise disjoint elements of Σ, and let B
�
= �+∞

n=1Bn. Let N ≥ 1.

1. Explain why �N
n=1Bn ∈ Σ

2. Show that μ∗(T ∩ (�N
n=1Bn)) =

∑N
n=1 μ∗(T ∩ Bn)

3. Show that μ∗(T ∩ Bc) ≤ μ∗(T ∩ (�N
n=1Bn)c)

4. Show that μ∗(T ∩ Bc) +
∑+∞

n=1 μ∗(T ∩ Bn) ≤ μ∗(T ), and:

5. μ∗(T ) ≤ μ∗(T∩Bc)+μ∗(T∩B) ≤ μ∗(T∩Bc)+
∑+∞

n=1 μ∗(T∩Bn)

6. Show that B ∈ Σ and μ∗(B) =
∑+∞

n=1 μ∗(Bn).

7. Show that Σ is a σ-algebra on Ω, and μ∗
|Σ is a measure on Σ.
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Theorem 3 Let μ∗ : P(Ω) → [0, +∞] be an outer-measure on Ω.
Then Σ(μ∗), the so-called σ-algebra associated with μ∗, is indeed a
σ-algebra on Ω and μ∗

|Σ(μ∗), is a measure on Σ(μ∗).

Exercise 19. Let R be a ring on Ω and μ : R → [0, +∞] be a
measure on R. For all T ⊆ Ω, define:

μ∗(T )
�
= inf

{
+∞∑
n=1

μ(An) , (An) is an R-cover of T

}

where an R-cover of T is defined as any sequence (An)n≥1 of elements

of R such that T ⊆ ∪+∞
n=1An. By convention inf ∅ �

= +∞.

1. Show that μ∗(∅) = 0.

2. Show that if A ⊆ B then μ∗(A) ≤ μ∗(B).
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3. Let (An)n≥1 be a sequence of subsets of Ω, with μ∗(An) < +∞
for all n ≥ 1. Given ε > 0, show that for all n ≥ 1, there exists
an R-cover (Ap

n)p≥1 of An such that:
+∞∑
p=1

μ(Ap
n) < μ∗(An) + ε/2n

Why is it important to assume μ∗(An) < +∞.

4. Show that there exists an R-cover (Rk) of ∪+∞
n=1An such that:

+∞∑
k=1

μ(Rk) =
+∞∑
n=1

+∞∑
p=1

μ(Ap
n)

5. Show that μ∗(∪+∞
n=1An) ≤ ε +

∑+∞
n=1 μ∗(An)

6. Show that μ∗ is an outer-measure on Ω.
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Exercise 20. Everything being as before, Let A ∈ R. Let (An)n≥1

be an R-cover of A and put B1 = A1 ∩ A, and:

Bn+1
�
= (An+1 ∩ A) \ ((A1 ∩ A) ∪ . . . ∪ (An ∩ A))

1. Show that μ∗(A) ≤ μ(A).

2. Show that (Bn)n≥1 is a sequence of pairwise disjoint elements
of R such that A = �+∞

n=1Bn.

3. Show that μ(A) ≤ μ∗(A) and conclude that μ∗
|R = μ.

Exercise 21. Everything being as before, Let A ∈ R and T ⊆ Ω.

1. Show that μ∗(T ) ≤ μ∗(T ∩ A) + μ∗(T ∩ Ac).

2. Let (Tn) be an R-cover of T . Show that (Tn ∩A) and (Tn ∩Ac)
are R-covers of T ∩ A and T ∩ Ac respectively.

3. Show that μ∗(T ∩ A) + μ∗(T ∩ Ac) ≤ μ∗(T ).
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4. Show that R ⊆ Σ(μ∗).

5. Conclude that σ(R) ⊆ Σ(μ∗).

Exercise 22.Prove the following theorem:

Theorem 4 (Caratheodory’s extension) Let R be a ring on Ω
and μ : R → [0, +∞] be a measure on R. There exists a measure
μ′ : σ(R) → [0, +∞] such that μ′

|R = μ.

Exercise 23. Let S be a semi-ring on Ω. Show that σ(R(S)) = σ(S).

Exercise 24.Prove the following theorem:

Theorem 5 Let S be a semi-ring on Ω and μ : S → [0, +∞] be a
measure on S. There exists a measure μ′ : σ(S) → [0, +∞] such that
μ′
|S = μ.
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Solutions to Exercises
Exercise 1.

• Let x ∈ A ∩ B. Then x ∈ B. So x �∈ A \ B. It follows that
x ∈ A \ (A \ B), and A ∩ B ⊆ A \ (A \ B). Let x ∈ A \ (A \B).
Then x ∈ A and x �∈ A \ B. But x �∈ A \ B implies that either
x �∈ A or x ∈ B. Hence, x ∈ B. finally, x ∈ A ∩ B and
A \ (A \B) ⊆ A∩B. We have proved that A∩B = A \ (A \B)

• Let R be a ring and A, B ∈ R. From (iii) of definition (7),
A\B ∈ R. Hence, A\ (A\B) ∈ R. It follows from the previous
point that A ∩ B ∈ R. We have proved that a ring is closed
under pairwise intersection.

Exercise 1
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Exercise 2. Let R be ring on Ω. Then (i) of definition (6) is imme-
diately satisfied for R. From exercise (1), we know that R is closed
under finite intersection. So (ii) of definition (6) is satisfied for R.
Let A, B ∈ R. From (iii) of definition (7), A \ B ∈ R. Therefore, if
we take n = 1 and A1 = A \ B ∈ R, we see that A \ B = �n

i=1Ai and
(iii) of definition (6) is satisfied for R. Finally, having checked (i),
(ii) and (iii) of definition (6), we conclude that R is a semi-ring on
Ω. Any ring on Ω is therefore also a semi-ring on Ω.

Exercise 2
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Exercise 3.

• ∅ ∈ S1 so (i) of definition (6) is satisfied for S1. If A, B ∈ S1,
then A∩B is equal to the empty set (remember that A1, A2 and
A3 are disjoint), unless A (resp. B) is Ω itself, or A = B �= ∅,
in which case A ∩ B is equal to B (resp. A). In any case,
A ∩ B ∈ S1 and condition (ii) of definition (6) is satisfied for
S1. If A, B ∈ S1, since S1 has 5 elements, A \ B is one of 25
cases to consider. It is equal to ∅, (∅ \ ∅, ∅ \ Ai, ∅ \ Ω, Ai \ Ω,
Ai \Ai, Ω\Ω) in 12 of those cases. It is equal to A itself (Ai \∅,
Ai \ Aj , j �= i, Ω \ ∅) in 10 of those cases. The last three cases
are Ω \A1 = A2 �A3, Ω \A2 = A1 �A3 and Ω \A3 = A1 �A2.
Hence, we see that condition (iii) of definition (6) is satisfied
for S1. We have proved that S1 is indeed a semi-ring on Ω.

• If we put B1 = A1 and B2 = A2 �A3, then Ω = B1 � B2 where
B1, B2 are distinct from ∅ and Ω. Moreover, S2 = {∅, B1, B2, Ω},
and proving that S2 is a semi-ring on Ω is identical to the pre-
vious point, but is just a little bit easier...
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• S1∩S2 = {∅, A1, Ω} (remember that all Ai’s are not empty and
pairwise disjoint, so A3 �= A2 �A3 and A2 �= A2 �A3). Suppose
that S1∩S2is a semi-ring on Ω. Then from (iii) of definition (6),
there exists n ≥ 0 and B1, B2, . . . , Bn in S1 ∩ S2 such that:

Ω \ A1 = B1 � . . . � Bn

Since A1 is assumed to be distinct from Ω, Ω\A1 �= ∅. It follows
that n ≥ 1 and at least one of the Bi’s is not empty. If Bi = Ω
then Ω \ A1 = Ω and this would be a contradiction since A1

is assumed to be not empty. If Bi = A1 then Ω \ A1 ⊇ A1

would also be a contradiction. Hence, the initial assumption of
S1 ∩ S2 being a semi-ring on Ω is absurd. S1 ∩ S2 fails to be
a semi-ring on Ω. The purpose of this exercise is to show that
contrary to Dynkin systems, σ-algebras and rings (as we shall
see in the next exercise), taking intersections of semi-rings does
not necessarily create another semi-ring. Hence, no attempt will
be made to define the notion of generated semi-ring...

Exercise 3
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Exercise 4. Each Ri being a ring on Ω, ∅ ∈ Ri. This being true
for all i ∈ I, ∅ ∈ ∩i∈IRi = R, and condition (i) of definition (7) is
satisfied for R. Let A, B ∈ R. Then for all i ∈ I, A, B belong to
Ri. It follows that A \ B and A ∪ B belong to Ri. This being true
for all i ∈ I, both A \ B and A ∪ B lie in ∩i∈IRi, and conditions (ii)
and (iii) of definition (7) are satisfied for R. Having checked (i), (ii)
and (iii) of definition (7), we conclude that R is indeed a ring on Ω.
The purpose of this exercise is to show that an arbitrary (non-empty)
intersection of rings on Ω, is still a ring on Ω.

Exercise 4
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Exercise 5.

• ∅ being a subset of Ω, ∅ ∈ P(Ω) and condition (i) of definition (7)
is satisfied for P(Ω). Given two subsets A, B of Ω, A \ B and
A∪B are still subsets of Ω, i.e. A\B ∈ P(Ω) and A∪B ∈ P(Ω).
Hence, conditions (ii) and (iii) of definition (7) are satisfied for
P(Ω). It follows that P(Ω) is a ring on Ω.

• By assumption, A ⊆ P(Ω). Moreover, P(Ω) is a ring on Ω.
Therefore, P(Ω) ∈ R(A). In particular, R(A) is not empty.

• R(A) is a non-empty intersection of rings on Ω. From exer-
cise (4), it is therefore a ring on Ω.

• For all R ∈ R(A), A ⊆ R. Hence:

A ⊆
⋂

R∈R(A)

R �
= R(A)
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• Suppose R is another ring on Ω, with A ⊆ R. Then, by defini-
tion of the set R(A), R ∈ R(A). It follows that:

R(A)
�
=

⋂
R′∈R(A)

R′ ⊆ R

So R(A) is indeed the smallest ring on Ω which contains A.

Exercise 5
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Exercise 6.

1. If x ∈ Ai ∩ Bj for some i = 1, . . . , n and j = 1, . . . , p, then
x ∈ A∩B. Conversely if x ∈ A∩B, then n ≥ 1, p ≥ 1, and there
exist i ∈ {1, . . . , n} and j ∈ {1, . . . , p} such that x ∈ Ai ∩ Bj .
So A∩B = ∪i,jAi ∩Bj . Suppose (i, j) and (i′, j′) are such that
(Ai∩Bj)∩(Ai′ ∩Bj′) �= ∅. In particular, Ai∩Ai′ �= ∅. Since the
Ai’s are pairwise disjoint, we have i = i′ and similarly j = j′.
Hence, we see that the (Ai ∩ Bj)i,j ’s are pairwise disjoint, and
finally A ∩ B = �i,jAi ∩ Bj . From (ii) of definition (6), all the
Ai ∩ Bj ’s lie in the semi-ring S, and we see that A ∩ B is also
an element of R. We have proved that R is closed under finite
intersection.

2. Since the Ai’s are pairwise disjoint, for all j ∈ {1, . . . , p} being
given, the Ai \Bj i = 1, . . . , n, are also pairwise disjoint. Hence,
the union ∪n

i=1Ai\Bj can legitimately be written as �n
i=1Ai\Bj.

let x ∈ A \ B. Then x �∈ B. Thus, for all j = 1, . . . , p, x �∈ Bj .
But x ∈ A. So there exists i ∈ {1, . . . , n} such that x ∈ Ai.
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It follows that for all j ∈ {1, . . . , p}, x ∈ Ai \ Bj for some
i ∈ {1, . . . , n}. So x ∈ ∩p

j=1 �n
i=1 (Ai \Bj). Conversely, suppose

that x ∈ ∩p
j=1 �n

i=1 (Ai \ Bj). Then for all j ∈ {1, . . . , p},
there exists ij ∈ {1, . . . , n} such that x ∈ Aij \ Bj . Since we
have assumed p ≥ 1, in particular x ∈ Ai1 ⊆ A, and for all
j ∈ {1, . . . , p}, x �∈ Bj , so x �∈ B. It follows that x ∈ A \ B. We
have proved that:

A \ B = ∩p
j=1 �n

i=1 (Ai \ Bj)

3. If p = 0, then B = ∅ and A \ B = A ∈ R. We assume that
p ≥ 1. From the previous point, we know that A \ B = ∩p

j=1Cj

where Cj is defined as Cj = �n
i=1Ai \ Bj . But each Ai and Bj

is an element of the semi-ring S. From (iii) of definition (6),
each Ai \Bj can be written as a finite union of pairwise disjoint
elements of S. It follows that Cj itself can be written as a finite
union of pairwise disjoint elements of S. Hence, we see that
for all j ∈ {1, . . . , p}, Cj is an element of R. From 1. we know
that R is closed under finite intersection. We conclude that
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A \ B = ∩p
j=1Cj ∈ R. We have proved that R is closed under

pairwise difference.

4. Let x ∈ A∪B. then x ∈ A or x ∈ B. If x ∈ B then x ∈ A\B�B.
If x �∈ B then x ∈ A \ B. In any case, x ∈ A \ B � B, and
A∪B ⊆ A\B�B. Conversely, A\B ⊆ A, so A\B�B ⊆ A∪B.
Now, if A, B ∈ R, from the previous point, A\B ∈ R. It follows
that A \ B can be written as a finite union of pairwise disjoint
elements of S. But B itself (being an element of R), can be
written as a finite union of pairwise disjoint elements of S. It
follows that A \ B � B is also a finite union of pairwise disjoint
elements of S, hence an element of R. From A∪B = A\B�B,
we conclude that A ∪ B is an element of R. We have proved
that R is closed under finite union. Finally, (i), (ii), (iii) of
definition (7) being satisfied for R, R is indeed a ring on Ω.

5. Let A ∈ S. A can obviously be written as a finite union of
pairwise disjoint elements of S. (Take n = 1, A1 = A ∈ S and
A = �n

i=1Ai). Hence, A ∈ R and S ⊆ R. Consequently, from
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exercise (5) and the fact that R is a ring on Ω, R(S) ⊆ R.
Conversely, let A ∈ R. Then A = �n

i=1Ai for some n ≥ 0 and
Ai ∈ S. Since S ⊆ R(S) (see exercise (5)), each Ai lies in R(S).
But from (ii) of definition (7), R(S) being a ring is closed under
finite union. Hence, A ∈ R(S) and we have R ⊆ R(S). We have
proved that R(S) = R. The purpose of this exercise is to show
that the ring R(S) generated by a semi-ring S on Ω, is equal to
the set of all finite unions of pairwise disjoint elements of S.

Exercise 6
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Exercise 7. Any finite union of pairwise disjoint elements of S, is in
particular a finite union of elements of S . . . So R ⊆ R′. Let A ∈ R′.
There exists n ≥ 0 and Ai ∈ S for i = 1, . . . , n such that A = ∪n

i=1Ai.
If n = 0, then A = ∅ ∈ R. If n ≥ 1, since S ⊆ R = R(S), all Ai’s
are elements of R. R being closed under finite union (it is a ring on
Ω), A is itself an element of R. Hence R′ ⊆ R. We have proved that
R = R′ = R(S). The purpose of this exercise is to show that the
generated ring R(S) of a semi-ring S on Ω, is also equal to the set of
all finite unions of (not necessarily pairwise disjoint) elements of S.

Exercise 7
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Exercise 8. If A is a σ-algebra on Ω, then An ∈ A and A = �+∞
n=1An

automatically implies that A ∈ A. Hence, the l.h.s of (ii) and (ii)′

are equivalent, whenever A is a σ-algebra on Ω.
Exercise 8
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Exercise 9.

1. Define the sequence (Bn)n≥1 of elements of A, by Bi = Ai for
all i = 1, . . . , n and Bk = ∅ for all k > n. Then A = �∞

k=1Bk,
and since A ∈ A, from (ii) of definition (9), we have:

μ(A) =
+∞∑
k=1

μ(Bk)

But from (i) of definition (9), μ(Bk) = 0 for all k > n. Hence:

μ(A) = μ(A1) + . . . + μ(An)

In view of this property, it is customary to say that a measure
is finitely additive.

2. Suppose A, B ∈ A with A ⊆ B and B \ A ∈ A. Then, we have
B = A∪B = A�(B \A). From the previous point we conclude:

μ(A) ≤ μ(A) + μ(B \ A) = μ(B)

Exercise 9
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Exercise 10.

1. If A = ∅, then either n = 0 or Ai = ∅ for all i = 1, . . . , n. In
any case, μ̄(A) =

∑n
i=1 μ(Ai) is true. If A �= ∅, then n ≥ 1.

Since S ⊆ R(S), all sets involved in A = �n
i=1Ai are elements

of R(S). Since μ̄ is a measure on R(S), from exercise (9) we
have μ̄(A) =

∑n
i=1 μ̄(Ai). By assumption, μ̄|S = μ and Ai ∈ S

for all i = 1, . . . , n. Hence, μ̄(Ai) = μ(Ai) for all i = 1, . . . , n.
It follows that μ̄(A) =

∑n
i=1 μ(Ai).

2. Let A ∈ R(S). Then A has a representation A = �n
i=1Ai as a

finite union of pairwise disjoint elements of S. From the previous
point, μ̄(A) =

∑n
i=1 μ(Ai). If μ̄′ is another measure on R(S)

with μ̄′
|S = μ, then similarly we have μ̄′(A) =

∑n
i=1 μ(Ai). So

μ̄(A) = μ̄′(A). This being true for all A ∈ R(S), μ̄ = μ̄′. The
purpose of this exercise is to show that if a measure μ on a semi-
ring S can be extended to its generated ring R(S), then such
extension is unique.
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Exercise 10
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Exercise 11.

1. If p = 0, then A = ∅. Then either n = 0 and there is nothing
to prove, or n ≥ 1 with all Ai’s equal to the empty set. In any
case, μ(Ai) =

∑p
j=1 μ(Ai ∩ Bj) is true. Hence we can assume

that p ≥ 1. Since Ai ⊆ A:

Ai = Ai ∩ A =
p⊎

j=1

Ai ∩ Bj (1)

Since S is a semi-ring, it is closed under finite intersection (defi-
nition (6)), hence all sets involved in (1) are elements of S. From
exercise (9), and the fact that μ is a measure on S, we conclude
that μ(Ai) =

∑p
j=1 μ(Ai ∩ Bj).

2. Similarly to the previous point, for all j = 1, . . . , p we have
μ(Bj) =

∑n
i=1 μ(Ai ∩ Bj). It follows that:

n∑
i=1

μ(Ai) =
n∑

i=1

p∑
j=1

μ(Ai∩Bj) =
p∑

j=1

n∑
i=1

μ(Ai∩Bj) =
p∑

j=1

μ(Bj)
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3. Suppose we want to define a map μ̄ : R(S) → [0, +∞] with:

μ̄(A)
�
=

n∑
i=1

μ(Ai) (2)

where A = �n
i=1Ai is a representation of A as a finite union

of pairwise disjoint elements of S. The problem is that such
representation may not be unique. However, if A = �p

j=1Bj is
another representation of A in terms of finite union of pairwise
disjoint elements of S, then from 2.,

∑n
i=1 μ(Ai) =

∑p
j=1 μ(Bj).

It follows that whichever representation is considered, the sum
involved in (2) will still be the same. In other words, defini-
tion (2) is unambiguous, and therefore legitimate.

4. ∅ has a representation with n = 0, or n = 1 with A1 = ∅, or
n = 2 with A1 = A2 = ∅ . . . Whichever representation we choose
for ∅, definition (2) leads to μ̄(∅) = 0.

Exercise 11
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Exercise 12.

1. For all j = 1, . . . , p, since Bj ⊆ A, we have:

Bj = A ∩ Bj =
+∞⋃
n=1

(An ∩ Bj) =
+∞⋃
n=1

pn⋃
k=1

(Ak
n ∩ Bj)

Consider the set I = {(n, k) : n ≥ 1, 1 ≤ k ≤ pn}. Being a
countable union of finite sets, I is a countable set. Hence, there
exists a one-to-one map φ : {m : m ≥ 1} → I. Given m ≥ 1,
define Cm = Ak

n ∩ Bj where (n, k) = φ(m). Then we have
Bj = ∪+∞

m=1Cm. Since all Ak
n’s and Bj itself are elements of the

semi-ring S, all Cm’s are elements of S. Suppose Cm ∩Cm′ �= ∅
for some m, m′ ≥ 1. Then in particular, Ak

n ∩ Ak′
n′ �= ∅, where

we have put (n, k) = φ(m) and (n′, k′) = φ(m′). Since Ak
n ⊆ An

and Ak′
n′ ⊆ An′ , it follows that An∩An′ �= ∅, and the An’s being

pairwise disjoint, we see that n = n′. Thus, Ak
n ∩ Ak′

n �= ∅. But
the Ak

n’s for k = 1, . . . , pn are also pairwise disjoint. We con-
clude that k = k′ and φ(m) = (n, k) = (n′, k′) = φ(m′). Since
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φ is one-to-one, m = m′, and we have proved that (Cm)m≥1 is
a sequence of pairwise disjoint elements of S.

2. In the previous point, we saw that Bj = �+∞
m=1Cm. Since all sets

involved are elements of S and μ is a measure on S, from (ii) of
definition (9), we have:

μ(Bj) =
+∞∑
m=1

μ(Cm) =
∑

(n,k)∈I

μ(Ak
n ∩Bj) =

+∞∑
n=1

pn∑
k=1

μ(Ak
n ∩Bj) (3)

3. For n ≥ 1 and k ∈ {1, . . . , pn}, we have Ak
n ⊆ An ⊆ A. Hence:

Ak
n = Ak

n ∩ A =
p⊎

j=1

(Ak
n ∩ Bj)

4. From the previous point, using exercise (9), we obtain:

μ(Ak
n) =

p∑
j=1

μ(Ak
n ∩ Bj) (4)
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5. In exercise (11), we saw that the map μ̄ : R(S) → [0, +∞]
is such that μ̄(∅) = 0. Hence (i) of definition (9) is satisfied
for μ̄. Moreover, by definition, μ̄(A) =

∑p
j=1 μ(Bj). Using

equation (3), we have:

μ̄(A) =
p∑

j=1

+∞∑
n=1

pn∑
k=1

μ(Ak
n ∩ Bj) =

+∞∑
n=1

pn∑
k=1

p∑
j=1

μ(Ak
n ∩ Bj)

Using equation (4), it follows that:

μ̄(A) =
+∞∑
n=1

pn∑
k=1

μ(Ak
n)

But, for all n ≥ 1, μ̄(An) =
∑pn

k=1 μ(Ak
n), by definition of μ̄.

Hence:

μ̄(A) =
+∞∑
n=1

μ̄(An)
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It follows that (ii) of definition (9) is satisfied for μ̄. Finally, μ̄
is a measure on the ring R(S).

Exercise 12
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Exercise 13.

• Uniqueness is a consequence of exercise (10)

• Take μ̄ : R(S) → [0, +∞] as defined in exercise (11). We proved
in exercise (12) that μ̄ is indeed a measure on the ring R(S).
Moreover, given A ∈ S, if we take n = 1 and A1 = A, then
A = �n

i=1Ai is a representation of A as a finite union of pairwise
disjoint elements of S. By definition of μ̄ (see exercise (11)), it
follows that μ̄(A) = μ(A). This being true for all A ∈ S, we
have μ̄|S = μ. This shows the existence of μ̄, and theorem (2)
is proved.

Exercise 13
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Exercise 14. Let (An)n≥1 be the sequence of subsets of Ω defined
by A1 = A, A2 = B and An = ∅ for all n ≥ 3. Using (i) and (iii) of
definition (10), we obtain:

μ∗(A ∪ B) ≤ μ∗(A) + μ∗(B)

Exercise 14
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Exercise 15.

1. μ∗ being an outer measure on Ω, by (i) of definition (10), we
have μ∗(∅) = 0. It follows that given an arbitrary T ⊆ Ω,
μ∗(T ) = μ∗(T ∩Ω) + μ∗(T ∩Ωc) is obviously true. Hence, from
definition (11), Ω ∈ Σ(μ∗) = Σ. The fact that Ac ∈ Σ is an
immediate consequence of definition (11).

2. Since B ∈ Σ, using definition (11) with T ∩ A in place of T , we
obtain:

μ∗(T ∩ A) = μ∗(T ∩ A ∩ B) + μ∗(T ∩ A ∩ Bc)

3. Since A ∩ B ⊆ A, we have Ac ⊆ (A ∩ B)c, and consequently:

T ∩ Ac ⊆ T ∩ (A ∩ B)c

It follows that:

T ∩ Ac = (T ∩ (A ∩ B)c) ∩ T ∩ Ac = T ∩ (A ∩ B)c ∩ Ac
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4. From (A ∩ B)c ∩ A = (Ac ∪ Bc) ∩ A = A ∩ Bc, we obtain:

T ∩ (A ∩ B)c ∩ A = T ∩ A ∩ Bc

5. Using 3. and 4., we see that the sum μ∗(T ∩Ac)+μ∗(T ∩A∩Bc)
can be expressed as:

μ∗(T ∩ (A ∩ B)c ∩ Ac) + μ∗(T ∩ (A ∩ B)c ∩ A)

Since A ∈ Σ, using definition (11) with T ∩ (A∩B)c in place of
T , we obtain:

μ∗(T ∩ Ac) + μ∗(T ∩ A ∩ Bc) = μ∗(T ∩ (A ∩ B)c) (5)

6. Adding μ∗(T ∩(A∩B)) on both sides of equation (5), it appears
that the sum:

μ∗(T ∩ Ac) + μ∗(T ∩ A ∩ Bc) + μ∗(T ∩ A ∩ B)

is equal to:

μ∗(T ∩ (A ∩ B)c) + μ∗(T ∩ (A ∩ B))
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Since B ∈ Σ, using definition (11) with T ∩ A in place of T , we
obtain:

μ∗(T ∩ Ac) + μ∗(T ∩ A) = μ∗(T ∩ (A ∩ B)c) + μ∗(T ∩ (A ∩ B))

and finally, since A ∈ Σ:

μ∗(T ) = μ∗(T ∩ (A ∩ B)c) + μ∗(T ∩ (A ∩ B))

This being true for all T ⊆ Ω, it follows that A ∩ B ∈ Σ. We
have proved that Σ = Σ(μ∗) is closed under finite intersection.

7. From A ∪ B = (Ac ∩ Bc)c and the fact that Σ is closed under
complementation and finite intersection, we have A ∪ B ∈ Σ.
Similarly, A \ B = A ∩ Bc ∈ Σ. The purpose of this exercise is
to show that the so-called σ-algebra Σ(μ∗) associated with an
outer measure μ∗, is closed under finite intersection and union,
and closed under complementation and difference.

Exercise 15
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Exercise 16.

• Suppose n ≥ 1, p ≥ 1 and Bn ∩ Bp �= ∅. Without loss of
generality, we can assume that n ≤ p. Suppose n < p and
x ∈ Bn ∩ Bp. Since x ∈ Bn, we have x ∈ An. However, since
x ∈ Bp, x �∈ A1 ∪ . . . ∪ Ap−1. In particular, x �∈ An. This is a
contradiction. It follows that if Bn ∩ Bp �= ∅ then n = p, and
(Bn)n≥1 is a sequence of pairwise disjoint subsets of Ω.

• From exercise (15), all Bn’s are in fact elements of Σ.

• Since for all n ≥ 1, Bn ⊆ An, we have: �+∞
n=1Bn ⊆ ∪+∞

n=1An.
Conversely, suppose x ∈ ∪+∞

n=1An. Then, there exists n ≥ 1
such that x ∈ An. Consider the set:

I(x)
�
= {n ≥ 1, x ∈ An}

This set is a non-empty subset of N∗ (the set of all positive
integers). It follows that I(x) has a smallest element p. If p = 1,
then x ∈ A1 = B1. If p > 1, then x ∈ Ap\(A1∪. . .∪Ap−1) = Bp.
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In any case, x ∈ Bp ⊆ �+∞
n=1Bn. Consequently, it follows that

∪+∞
n=1An ⊆ �+∞

n=1Bn.

• We have proved that (Bn)n≥1 is a sequence of pairwise disjoint
elements of Σ, such that:

+∞⋃
n=1

An =
+∞⊎
n=1

Bn

Exercise 16
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Exercise 17. Let B, C ∈ Σ be such that B ∩ C = ∅. Since B ∈ Σ,
using definition (11) with T ∩ (B � C) in place of T , we have:

μ∗(T ∩ (B � C)) = μ∗(T ∩ (B � C) ∩ B) + μ∗(T ∩ (B � C) ∩ Bc)

From B ∩ C = ∅ and in particular C ⊆ Bc, we obtain:

μ∗(T ∩ (B � C)) = μ∗(T ∩ B) + μ∗(T ∩ C)

Note that it was not necessary to use the fact that both B and C were
elements of Σ.

Exercise 17
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Exercise 18.

1. �N
n=1Bn ∈ Σ is an immediate consequence of exercise (15).

2. Using exercise (17) with a simple induction argument, we obtain:

μ∗(T ∩ (�N
n=1Bn)) =

N∑
n=1

μ∗(T ∩ Bn)

3. Since �N
n=1Bn ⊆ B, we have T ∩ Bc ⊆ T ∩ (�N

n=1Bn)c. Using
(ii) of definition (10), we obtain:

μ∗(T ∩ Bc) ≤ μ∗(T ∩ (�N
n=1Bn)c)

4. Using 2. and 3., if we put CN = �N
n=1Bn, we have:

μ∗(T ∩ Bc) +
N∑

n=1

μ∗(T ∩ Bn) ≤ μ∗(T ∩ (CN )c) + μ∗(T ∩ CN )
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However from 1., CN ∈ Σ. Using definition (11), we obtain:

μ∗(T ∩ Bc) +
N∑

n=1

μ∗(T ∩ Bn) ≤ μ∗(T )

Taking the limit as N → +∞, we conclude:

μ∗(T ∩ Bc) +
+∞∑
n=1

μ∗(T ∩ Bn) ≤ μ∗(T )

5. Since T = (T ∩ Bc) ∪ (T ∩ B), using exercise (14):

μ∗(T ) ≤ μ∗(T ∩ Bc) + μ∗(T ∩ B)

However, T ∩ B = ∪+∞
n=1T ∩ Bn. Using (iii) of definition (10),

we have:

μ∗(T ∩ B) ≤
+∞∑
n=1

μ∗(T ∩ Bn)
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It follows that:

μ∗(T ) ≤ μ∗(T ∩Bc)+μ∗(T ∩B) ≤ μ∗(T ∩Bc)+
+∞∑
n=1

μ∗(T ∩Bn)

6. From 4. and 5., we see that μ∗(T ) = μ∗(T ∩ Bc) + μ∗(T ∩ B).
This being true for all T ⊆ Ω, it follows that B = �+∞

n=1Bn ∈ Σ.
Also, from 4. and 5., we have:

μ∗(T ) = μ∗(T ∩ Bc) +
+∞∑
n=1

μ∗(T ∩ Bn)

In particular, taking T = B, using the fact that μ∗(∅) = 0, we
obtain:

μ∗(B) =
+∞∑
n=1

μ∗(Bn)

7. We saw in exercise (15) that Σ contains Ω, and is closed un-
der complementation. If (An)n≥1 is a sequence of elements of
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Σ, then from exercise (16), there exists a sequence (Bn)n≥1 of
pairwise disjoint elements of Σ, with B = �+∞

n=1Bn = ∪+∞
n=1An.

In 6., we saw that such B is an element of Σ. It follows that
∪+∞

n=1An ∈ Σ, and Σ is closed under countable union. Hence,
we have proved that Σ is a σ-algebra on Ω. μ∗ being an outer
measure on Ω, μ∗(∅) = 0. So (i) of definition (9) is satisfied for
μ∗
|Σ. If (Bn)n≥1 is a sequence of pairwise disjoint elements of Σ,

and B = �+∞
n=1Bn, we saw in 6. that:

μ∗(B) =
+∞∑
n=1

μ∗(Bn)

It follows that (ii) of definition (9) is satisfied for μ∗
|Σ. Finally,

μ∗
|Σ is indeed a measure on Σ. The purpose of the exercise is to

prove theorem (3).

Exercise 18
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Exercise 19.

1. R being a ring on Ω, ∅ ∈ R. If we define a sequence (An)n≥1,
with An = ∅ for all n ≥ 1, then (An)n≥1 is an R-cover of the
empty set. It follows that:

μ∗(∅) ≤
+∞∑
n=1

μ(An) = 0

Moreover, μ∗(∅) being the infimum over a set of non-negative
numbers, we have μ∗(∅) ≥ 0. Finally μ∗(∅) = 0.

2. Let A ⊆ B ⊆ Ω. Let (Bn)n≥1 be an R-cover of B. Then in
particular, (Bn)n≥1 is an R-cover of A. It follows that:

μ∗(A) ≤
+∞∑
n=1

μ(Bn) (6)

Hence, μ∗(A) is a lower bound of all sums involved in (6), as
(Bn)n≥1 ranges over all R-covers of B. μ∗(B) being the infimum
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of those sums, it is the greatest of such lower bounds, from which
we conclude that μ∗(A) ≤ μ∗(B).

3. Since μ∗(An) < +∞, we have μ∗(An) < μ∗(An) + ε/2n. It
follows that μ∗(An)+ ε/2n cannot be a lower bound of all sums∑+∞

p=1 μ(Bp), as (Bp)p≥1 ranges over all R-covers of An. Hence,
there exists an R-cover (Ap

n)p≥1 of An such that:
+∞∑
p=1

μ(Ap
n) < μ∗(An) +

ε

2n

It is important to assume μ∗(An) < +∞, since otherwise the in-
equality μ∗(An) ≤ μ∗(An)+ ε/2n may not be a strict inequality,
and the above reasoning would fail.

4. N∗ being the set of positive integers, N∗ × N∗ is a countable
set. There exists a one-to-one map φ : N∗ → N∗ × N∗. Given
k ≥ 1, define Rk = Ap

n, where (n, p) = φ(k). Then (Rk)k≥1 is a
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sequence of elements of R such that:
+∞⋃
n=1

An ⊆
+∞⋃
n=1

+∞⋃
p=1

Ap
n =

+∞⋃
k=1

Rk

In other words, (Rk)k≥1 is an R-cover of ∪+∞
n=1An. Moreover:

+∞∑
k=1

μ(Rk) =
∑

(n,p)∈N∗×N∗
μ(Ap

n) =
+∞∑
n=1

+∞∑
p=1

μ(Ap
n)

5. It follows from 4. that:

μ∗(∪+∞
n=1An) ≤

+∞∑
k=1

μ(Rk) =
+∞∑
n=1

+∞∑
p=1

μ(Ap
n)

Hence, using 3.:

μ∗(∪+∞
n=1An) ≤

+∞∑
n=1

(μ∗(An) +
ε

2n
)
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and finally:

μ∗(∪+∞
n=1An) ≤ ε +

+∞∑
n=1

μ∗(An) (7)

6. From 1. and 2., we see that (i) and (ii) of definition (10) are
satisfied for μ∗. Let (An)n≥1 be a sequence of subsets of Ω. If
μ∗(An) = +∞ for some n ≥ 1, then:

μ∗(∪+∞
n=1An) ≤

+∞∑
n=1

μ∗(An) (8)

is obviously true. If μ∗(An) < +∞ for all n ≥ 1, then given
ε > 0 from 5., inequality (7) holds. Since ε is arbitrary, it follows
that inequality (8) still holds. Hence, (iii) of definition (10) is
satisfied for μ∗. Finally, μ∗ is an outer-measure on Ω.

Exercise 19

www.probability.net

http://www.probability.net


Solutions to Exercises 55

Exercise 20.

1. Since A ∈ R, the sequence (Rn)n≥1 defined by R1 = A and
Rn = ∅ for all n ≥ 2, is an R-cover of A. Hence:

μ∗(A) ≤
+∞∑
n=1

μ(Rn) = μ(A)

2. Suppose n ≥ 1, p ≥ 1 and Bn ∩ Bp �= ∅. Without loss of
generality, we can assume that n ≤ p. Suppose n < p and
x ∈ Bn∩Bp. Since x ∈ Bn, we have x ∈ An∩A. However, since
x ∈ Bp, x �∈ (A1∩A)∪. . .∪(Ap−1∩A). In particular, x �∈ An∩A.
This is a contradiction. It follows that if Bn ∩ Bp �= ∅ then
n = p, and (Bn)n≥1 is a sequence of pairwise disjoint subsets
of Ω. From exercise (1), we know that a ring is closed under
finite intersection. From (ii) and (iii) of definition (7), it is also
closed under finite union and difference. It follows that all Bn’s
are in fact elements of R. Since for all n ≥ 1, Bn ⊆ An ∩ A, we
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have:
+∞⊎
n=1

Bn ⊆
+∞⋃
n=1

An ∩ A = A ∩
+∞⋃
n=1

An = A

Conversely, suppose x ∈ A ⊆ ∪+∞
n=1An. Then, there exists n ≥ 1

such that x ∈ An ∩ A. Consider the set:

I(x)
�
= {n ≥ 1, x ∈ An ∩ A}

This set is a non-empty subset of N∗ (the set of all positive
integers). It follows that I(x) has a smallest element p. If p = 1,
then x ∈ A1∩A = B1. If p > 1, then by definition of p, we have
x ∈ (Ap ∩A) \ ((A1 ∩A) ∪ . . .∪ (Ap−1 ∩A)) = Bp. In any case,
x ∈ Bp ⊆ �+∞

n=1Bn. Consequently, it follows that A ⊆ �+∞
n=1Bn.

We have proved that (Bn)n≥1 is a sequence of pairwise disjoint
elements of R, such that: A =

⊎+∞
n=1 Bn
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3. μ being a measure on R, from 2. we obtain:

μ(A) =
+∞∑
n=1

μ(Bn)

Since for all n ≥ 1, we have Bn ⊆ An, it follows from exercise (9)
that μ(Bn) ≤ μ(An). Hence:

μ(A) ≤
+∞∑
n=1

μ(An) (9)

The R-cover (An)n≥1 of A being arbitrary, we see that μ(A) is
a lower bound of all sums involved in (9), as (An)n≥1 ranges
across all R-covers of A. μ∗(A) being the greatest of such lower
bounds, it follows that μ(A) ≤ μ∗(A). Using 1., we conclude
that μ(A) = μ∗(A). This being true for all A ∈ R, we have
proved that μ∗

|R = μ.

Exercise 20
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Exercise 21.

1. We saw in exercise (19) that μ∗ is an outer measure on Ω. From
exercise (14), and the fact that T = (T ∩ A) ∪ (T ∩ Ac), we
obtain:

μ∗(T ) ≤ μ∗(T ∩ A) + μ∗(T ∩ Ac)

2. If (Tn)n≥1 is an R-cover of T , then in particular Tn ∈ R for all
n ≥ 1. Since A ∈ R, it follows from exercise (1) that Tn∩A ∈ R,
and from (iii) of definition (7) that Tn ∩ Ac = Tn \ A ∈ R, for
all n ≥ 1. Moreover, from T ⊆ ∪+∞

n=1Tn, we have:

T ∩ A ⊆
+∞⋃
n=1

Tn ∩ A

T ∩ Ac ⊆
+∞⋃
n=1

Tn ∩ Ac

We conclude that (Tn ∩ A)n≥1 and (Tn ∩ Ac)n≥1 are R-covers
of T ∩ A and T ∩ Ac respectively.
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3. It follows from 2. that:

μ∗(T ∩ A) ≤
+∞∑
n=1

μ(Tn ∩ A)

μ∗(T ∩ Ac) ≤
+∞∑
n=1

μ(Tn ∩ Ac)

However, μ being a measure on R, from exercise (9), we have:

μ(Tn) = μ(Tn ∩ A) + μ(Tn ∩ Ac)

for all n ≥ 1. It follows that:

μ∗(T ∩ A) + μ∗(T ∩ Ac) ≤
+∞∑
n=1

μ(Tn)

This being true for all R-covers (Tn)n≥1 of T , we finally have:

μ∗(T ∩ A) + μ∗(T ∩ Ac) ≤ μ∗(T )
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4. Given A ∈ R, we see from 1. and 3. that for all T ⊆ Ω:

μ∗(T ) = μ∗(T ∩ A) + μ∗(T ∩ Ac)

Hence, from definition (11), it follows that A is an element of
Σ(μ∗), (the σ-algebra associated with the outer measure μ∗).
This being true for all A ∈ R, we have proved that R ⊆ Σ(μ∗).

5. The σ-algebra σ(R) generated by R, is the smallest σ-algebra
on Ω containing R. Thus, it follows immediately from 4. that
σ(R) ⊆ Σ(μ∗).

Exercise 21
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Exercise 22.

• Let μ′ : σ(R) → [0, +∞] be defined by μ′ = μ∗
|σ(R), where μ∗

is the outer measure on Ω defined in exercise (19). We saw in
exercise (20) that μ∗

|R = μ. Hence, since R ⊆ σ(R), we have
μ′
|R = μ∗

|R = μ.

• From theorem (3), we know that μ∗
|Σ(μ∗) is a measure on Σ(μ∗).

However, σ(R) ⊆ Σ(μ∗) (exercise (21)). It is an immediate
consequence of definition (9), that if we restrict the measure
μ∗
|Σ(μ∗) to the smaller σ-algebra σ(R), the resulting map is a

measure defined on σ(R). But the restriction of μ∗
|Σ(μ∗) to σ(R)

is nothing but μ′. It follows that μ′ is indeed a measure on σ(R).
This proves theorem (4).

Exercise 22
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Exercise 23. Let S be a semi-ring on Ω. Since S ⊆ R(S) ⊆ σ(R(S)),
we have σ(S) ⊆ σ(R(S)). However, S ⊆ σ(S). Moreover, from
exercise (7), R(S) is the set of all finite unions of elements of S. Since
the σ-algebra σ(S) is in particular closed under finite union, it follows
that R(S) ⊆ σ(S) and consequently σ(R(S)) ⊆ σ(S). Finally, we
have proved that σ(R(S)) = σ(S).

Exercise 23
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Exercise 24. From theorem (2), the measure μ : S → [0, +∞] can
be extended to the ring R(S) generated by S. In other words, there
exists a measure μ̄ : R(S) → [0, +∞] such that μ̄|S = μ. From
theorem (4), the measure μ̄ : R(S) → [0, +∞] can be extended the
σ-algebra σ(R(S)) generated by R(S). In other words, there exists
a measure μ′ : σ(R(S)) → [0, +∞], such that μ′

|R(S) = μ̄. However,
from exercise (23), σ(R(S)) = σ(S). Moreover, since S ⊆ R(S), we
have μ′

|S = μ̄|S = μ. It follows that μ′ is a measure on σ(S) such that
μ′
|S = μ. This proves theorem (5).

Exercise 24

www.probability.net

http://www.probability.net

	2 Caratheodory's Extension
	 Solutions to Exercises



