Tutorial 11: Complex Measures 1
11. Complex Measures
In the following, (2, F) denotes an arbitrary measurable space.

Definition 90 Let (an)n>1 be a sequence of complex numbers. We
say that (an)n>1 has the permutation property if and only if, for
all bijections o : N* — N*, the series ZI:{ Ao (k) converges in C!

EXERCISE 1. Let (ay)n>1 be a sequence of complex numbers.

1. Show that if (an),>1 has the permutation property, then the
same is true of (Re(an))n>1 and (Im(ay))n>1-

2. Suppose a, € R for all n > 1. Show that if Ezg{ ag converges:
+oo +oo +oo
Sl =t = S0 =3 = o
k=1 k=1 k=1

Lwhich excludes +oo as limit.

www.probability.net


http://www.probability.net

Tutorial 11: Complex Measures 2

EXERCISE 2. Let (an)n>1 be a sequence in R, such that the series
ST ag converges, and 312 |ay| = +oo. Let A > 0. We define:

N*2{k>1:a,>0} , N"2{k>1: ar <0}
1. Show that NT and N~ are infinite.
2. Let 7 : N* — NT and ¢~ : N* — N~ be two bijections. Show

the existence of k1 > 1 such that:

k1
Z Qg+ (k) = A
k=1

3. Show the existence of an increasing sequence (k,),>1 such that:

kp

Z g+ (k) = A

k:k?p71+1
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for all p > 1, where kg = 0.

4. Consider the permutation o : N* — N* defined informally by:
(¢_(1)7 ¢+(1)? ) ¢+(k1)a ¢_(2)7 ¢+(k1 + 1)a ) ¢+(k2)’ s )

representing (o(1),0(2),...). More specifically, define k§ = 0
and kj =k, + p for all p > 1. For all n € N* and p > 1 with: 2

ko <n<k; (1)
we define:
[ ¢ (p) if n=k_+1
o(n) = { pt(n—p) if n>ki_,+1 (2)

Show that o : N* — N* is indeed a bijection.

2@Given an integer nm > 1, there exists a unique p > 1 such that (1) holds.
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5. Show that if Eﬁ:{ Ay (k) converges, there is N > 1, such that:

n+p

Z Qo (k)

k=n-+1

n>N,p>1 = < A

6. Explain why (an)n>1 cannot have the permutation property.

7. Prove the following theorem:

Theorem 56 Let (an)n>1 be a sequence of complex numbers such
that for all bijections o : N* — N*, the series Zziol Ao (k) CONVETgES.
Then, the series ZZ:(X{ ax converges absolutely, i.e.

—+o0
Z lak| < 400
k=1
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Definition 91 Let (2, F) be a measurable space and E € F. We
call measurable partition of E, any sequence (E,)n>1 of pairwise
disjoint elements of F, such that E = Wp>11,.

Definition 92 We call complex measure on a measurable space
(Q,F) any map p : F — C, such that for all E € F and (Ep)p>1
measurable partition of E, the series 3> u(E,) converges to u(E).
The set of all complex measures on (2, F) is denoted M*(Q, F).

Definition 93 We call signed measure on a measurable space
(2, F), any complex measure on (2, F) with values in R.>

EXERCISE 3.
1. Show that a measure on (€2, ) may not be a complex measure.

2. Show that for all p € MY(Q,F) , u(®) =0.

3In these tutorials, signed measure may not have values in {—00, +00}.
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3. Show that a finite measure on (€2, F) is a complex measure with
values in RT, and conversely.

4. Let p € MY(Q,F). Let E € F and (E,),>1 be a measurable
partition of . Show that:

Zlu )| < +oo

5. Let u be a measure on (2, F) and f € L§(Q,F, p). Define:

VE € F, u(E)é/fdu
E

Show that v is a complex measure on (£, F).
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Definition 94 Let o be a compler measure on a measurable space
(Q,F). We call total variation of u, the map |p| : F — [0, +0o0],
defined by:

VEEF, |ul(E —Supzw

where the ’sup’ is taken over all measumble partitions (Ep)p>1 of E.

EXERCISE 4. Let u be a complex measure on (€, F).
1. Show that for all E € F, |u(E)| < |u|(E).
2. Show that |u|(0) =

EXERCISE 5. Let i be a complex measure on (2, F). Let E € F and
(En)n>1 be a measurable partition of E.

1. Show that there exists (t,)n>1 in R, with ¢, < |u|(E,,) for all n.

www.probability.net


http://www.probability.net

Tutorial 11: Complex Measures 8

2. Show that for all n > 1, there exists a measurable partition
(EP)p>1 of E,, such that:

+oo
tn < |u(ER)]
p=1

3. Show that (E?), p>1 is a measurable partition of E.

4. Show that for all N > 1, we have Eﬁ;l tn < |u|(E).

5. Show that for all N > 1, we have:

N
D lul(Bn) < |ul(E)
n=1

(=]

. Suppose that (A,),>1 is another arbitrary measurable partition
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of E. Show that for all p > 1:

+oo
lu(Ap)] < Z [1(Ap N Ey)|

n=1

7. Show that for all n > 1:

+oo
Z [1(Ap N Ey)| < |ul(En)

p=1
8. Show that:
+oo +oo
Z [u(Ap)| < Z |l (En)
p=1 n=1

9. Show that || : F — [0, 400] is a measure on (£2, F).
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EXERCISE 6. Let a,b € R,a < b. Let F € C'([a,b];R), and define:
Vz € [a,b] , H() é/ F(t)dt

1. Show that H € C'([a,b];R) and H' = F’.

2. Show that: ,
F(b) — F(a) = / F(t)dt
3. Show that:
1 [t/? 1
— cos 0df = —
21 ) _x)2 s

4. Let u € R™ and 7, : R™ — R" be the translation 7, (z) = z+u.
Show that the Lebesgue measure dz on (R™, B(R™)) is invariant
by translation 7, i.e. dx({r, € B}) = dx(B) for all B € B(R").
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5. Show that for all f € L5(R", B(R"),dz), and u € R™:

flz+u)dx = f(x)dx
R R"

6. Show that for all & € R, we have:

“+ +T—
/ cos™ (o — 0)df = / cos™ 0df

—T —TT—Q

7. Let « € R and k € Z such that k < a/27 < k + 1. Show:

—rm—a< 2krn—rnm<rm—a<2kr+m

8. Show that:

—2km—m —2km+m
/ cosT 0df = / cos' 0do

—TmT— —x
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9. Show that:
+r—a —2km+m +m
/ cos™ 0dl = / cos™ 0dl = / cos™ 0do
- —2km—m -

10. Show that for all o € R:
1 [t

1
- Tl — —
o ) cos" (o — 0)db -

EXERCISE 7. Let z1,...,2zn be N complex numbers. Let o € R be
such that z; = |zgx|e’®*, for all k = 1,...,N. For all § € [—7, +7], we
define S(0) ={k=1,...,N : cos(ar — 0) > 0}.

1. Show that for all § € [—m, +], we have:

Z zi| = Z zpe” | > Z |zk| cos(ax — 0)

keS(0) keS(0) keS(0)
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2. Define ¢ : [—m,+7] — R by ¢(0) = Sp_, |z1| cost(ay — 0).
Show the existence of 6y € [—m, +] such that:
¢(0o) = sup  §(0)

oc[—m,+m]

3. Show that:

1
- ¢5 Z‘Zk‘

—T

4. Conclude that:

L
LS s ¥
k=1 ke S(00)
EXERCISE 8. Let u € M*(Q, F). Suppose that |u|(E) = +oo for some
E € F. Define t = (1 + |u(E)|) € RT.
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1. Show that there is a measurable partition (E,),>1 of E, with:
+oo
t<> (B
n=1
2. Show the existence of N > 1 such that:

N
t< > |u(E
n=1

3. Show the existence of S C {1,..., N} such that:

Zlu <> wE,

nes
. Show that |u(A)| > t/7, where A = W,esE,.

S

5. Let B = E\ A. Show that |u(B)| > |u(A)] — |u(E)|.
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6. Show that F = AW B with |u(A)| > 1 and |u(B)| > 1.
7. Show that |u|(A) = 400 or |p|(B) = 0.

EXERCISE 9. Let u € M1(Q, F). Suppose that |u|(Q) = +o0.

1. Show the existence of Ay,By € F, such that Q = A; W By,
|(Ar)| > 1 and |p|(B1) = 0.

2. Show the existence of a sequence (A, ),>1 of pairwise disjoint
elements of F, such that |u(Ay,)] > 1 for all n > 1.

3. Show that the series Z:fl 1(Ay,) does not converge to u(A)
where A = W/ A,,.

4. Conclude that |u|(Q2) < 4o0.
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Theorem 57 Let p be a complex measure on a measurable space
(Q, F). Then, its total variation |u| is a finite measure on (€, F).

EXERCISE 10. Show that M1(€2, F) is a C-vector space, with:
A+ u)(E) AE) + u(E)
(M) (E) aME)
where A\, p € MY(Q,F), a € C,and E € F.

> 1>

Definition 95 Let H be a K-vector space, where K =R or C. We
callnorm on H, any map N : H — R™, with the following properties:
(7) VeeH, (N(z)=0 <& x=0)
(i) Ve e H,Va e K, N(az) = |a|N(x)
(ii))  VayeH, Nz+y) < N)+N(y)
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EXERCISE 11.

1. Explain why ||.|[, may not be a norm on L (Q, F, u).
2. Show that [|-]| = 1/(-, ) isanorm, when (-, -) is an inner-product.

3. Show that ||| 2 |1/(Q) defines a norm on M(Q, F).

EXERCISE 12. Let u € M1(€, F) be a signed measure. Show that:
A

1
nr 5 (el + 1)
o 1
o= el =m)
are finite measures such that:
p=pt—pm o, ul=pt T

EXERCISE 13. Let p € MY(Q,F) and [ : R?> — R be a linear map.
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1. Show that [ is continuous.
2. Show that [ oy is a signed measure on (Q, F). *
3. Show that all u € M'(Q,F) can be decomposed as:

p=p1 — p2 +i(ps — pa)

where 1, po, i3, 44 are finite measures.

41 o p refers strictly speaking to I(Re(u), Im ().
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Solutions to Exercises
Exercise 1.

1. Suppose (an)n>1 has the permutation property, and let o :
N* — N* be an arbitrary bijection. Then, the series Z;:icl Ao (k)
converges to some [ € C. However, for all n > 1, we have:

Z Re aa(k) Z aa(k) —1

It follows that the series Y, Re(aq (1)) converges to Re(l), and

similarly the series ZZ;’? Im(aq 1)) converges to Im(l). We con-
clude that (Re(an))n>1 and (Im(as,))n>1 have the permutation
property.

2. Suppose that a, € R for all n > 1, and the series Z;:ml ag
converges. Since a = (|ay| + ax)/2, the series ;% a) and
SF20 Jay| are either both convergent, or both divergent. In
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particular:
+oo +oo
Z|ak| =400 = Za;ﬁ = +00
k=1 k=1

Similarly, from a, = (|ax| — ax)/2, we have:
“+o00 “+o00
Z|ak\ =400 = Za,; = 400
k=1 k=1

Exercise 1
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Exercise 2.

1. Suppose N is finite. Then N* C {1,...,ng} for some ng > 1.
It follows that a, < 0 for n > ng, and in particular we have
an = —|a,| for n > ng. This contradicts the fact that Z heq Ok

is a convergent series, whereas Zk:l |ax| is a divergent series.
We conclude that N7 is an infinite set. Similarly, if N~ is finite,
then a,, = |a,| for n large enough, leading to a contradiction.
We have proved that both Nt and N~ are infinite.

2. Since ;> ay converges and 35 |ax| = +oo, from ex. (1):

+oo +oo
—+00 ZZCL; = Z [0 :Za¢+(k)
k=1 k=1

keNt

where we have used the fact that ¢+ : N* — N7 is a bijection.
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It follows that there exists k1 > 1 such that:
k1
Z Gt (k) > A
k=1

3. Let n > 1 and suppose we have k1 < ... < k, such that:
kp
Z agry = A (3)
k?:kp71+1
for all p=1,...,n. Since Zkf,;nﬂ A+ (k) = +00, there exists
kn+1 > ky, such that:

Knt1

Z ag+y = A
k=k,+1

By induction (having found k; from 2.), we construct an in-
creasing sequence (k,),>1 such that (3) holds for all p > 1.
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4. To show that o : N* — N* is a bijection, we need to show that
it is both injective and surjective. To show that o is injective,
consider n,m € N* such that o(n) = o(m). Let p,q € N* be
such that k;_; <n <k, and k;_; <m < kj.

Case 1: suppose n = ks _; + 1 and m = k;_; + 1. From (2), we
have o(n) = ¢~ (p) and o(m) = ¢~ (q), and therefore ¢~ (p) =
¢~ (gq). Since ¢~ : N* — N~ is injective , we have p = ¢ and
consequently n =k, _; +1=4k;_; +1=m.

Case 2: suppose n = k;_; + 1 and m > kj_; + 1. From (2), we
have o(n) = ¢~ (p) € N~ and o(m) = ¢ (m —q) € N*. Since
N~ N NT =0, we conclude that this case cannot occur, having
assumed o(n) = o(m).

Case 3: suppose n > k;_; +1 and m = k;_, + 1. Similarly, this
case cannot possibly occur, having assumed o(n) = o(m).

Case 4: suppose n > k»_; + 1 and m > k;_; + 1. From (2), we
have o(n) = ¢T(n —p) and o(m) = ¢ (m — ¢), and therefore
¢ (n—p) = ¢T(m —q). Since ¢+ : N* — NT is injective, it
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follows that:

n—p=m-gq (4)
Now, if we assume that p < ¢, then n < k; <k;_; <m—1 and
therefore:

m—l—n>k;‘_1—k;=q—1—p+/€q—1—kqu—l—p

and so m —n > g — p, contradicting (4). Similarly, assuming
q < p leads to a contradiction, from which we conclude that
p = q. From (4), it follows that n = m.

Having assumed that o(n) = o(m), we have proved that nec-
essarily n = m. This shows that ¢ is injective. To show that
o is surjective, given N € N* we need to show the existence of
n € N* such that o(n) = N.

Case 1: suppose ay < 0. Then N € N™. Since ¢~ : N* - N~
is surjective, there exists p € N* such that N = ¢~ (p). Take
n = ky_,+1. From (2), we have o(n) = ¢~ (p) = N. Hence, we
have found n € N* such that o(n) = N.
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Case 2: suppose ay > 0. Then N € NT. Since ¢™ : N* — N
is surjective, there exists m € N* such that N = ¢ (m). Let
p € N* be such that k,_1 < m < k,. Then, we have:

kp—1+p<m-+p<k,+p
or equivalently:
k;,1+1<m+p§k;
From (2), it follows that:
o(m+p)=¢"(m+p—p) =¢"(m)=N
Hence, we have found n = m + p € N* such that o(n) = N.

We have proved that o : N* — N* is surjective. Having proved
that it is also injective, we conclude that it is a bijection.

5. Suppose EZ:{ aq (k) converges. There exists [ € R such that for
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all € > 0, there exists N > 1 such that:

Z ag(k) —1

n>N = <e€
k=1
Taking e = A/2, we have N > 1, with:
n>N = > aym -1 < A2 (5)
k=1
and also:
n+p
n>N,p>1= Zag(k)—l<A/2 (6)
k=1

From the inequality, where n,p > 1:

n+p n+p n
S e <D et — 1+ D o — 1
k=n+1 k=1 k=1
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Using (5) and (6), we have found N > 1 such that:

n+p

> ot

k=n-+1

n>N,p>1 = < A

6. Suppose (an)n>1 has the permutation property. From defi-
nition (90), the series E;;’Ol ar(xy converges, for all bijections
7 : N* — N*. In particular, the series 3, (k) COnVerges,
where o is the bijection defined in part 4.. From 5., there exists
N > 1 such that:

n+q

Z o (k)

k=n-+1

n>N,qg>1 = < A (7)

However, from 3., the sequence (kp)p>1 is such that:

kp k:p
D G| = D a2 A ®)
k:kp_1+1 k:k‘p_l—‘rl
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for all p > 1. Furthermore, if k,_1 +1 < k < k, then we have
kr_1+2 < k+p <k, and going back to the definition of o
in equation (2), we see that o(k +p) = ¢ (k+p—p) = o7 (k).

Hence, from (8) we obtain:

kp
D okin| > A
k:k?p71+1
or equivalently:
kp
D o] = A (9)
k=k?_,+2

Since k; 1 400, we can choose p sufficiently large so as to have
ky_1+1> N. Taking ¢ = k; — k;_; —1 > 1 and applying (7),

p—1
we obtain:
k:P
E g (k) <A
k=k:_,+2
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which contradicts (9). We conclude that the series ;5 Ao (k)
does not converge, and consequently that (a,),>1 cannot have
the permutation property.

7. Let (an)n>1 be a complex sequence which has the permutation
property. From exercise (1), both (Re(an))n>1 and (Im(ay))n>1
are real valued sequences which have the permutation prop-
erty. In particular, the series 32> Re(ay,) converges. If we had
S0 |Re(ak)| = 400, then from 6. of the present exercise, we
would conclude that (Re(ay))n>1 cannot have the permutation
property. It follows that:

—+o0

Z |Re(ag)| < 400

k=1

and similarly:
“+oo

Z [Im(a)| < +oo

k=1
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From |ag| < |Re(ar)| + |Im(ag)| for all £ > 1, we conclude that:

—+oo
Z lak| < +o0
k=1

which shows that the series Zﬁf{ ay, is absolutely convergent.
This proves theorem (56).

Exercise 2
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Exercise 3.

1. Define p : F — [0,400] by u(0) = 0 and pu(A) = +oo for all
A€ F, A# (. Then p is a measure on (2, F). However, u
is not a map with values in C. Hence it cannot be a complex
measure.

2. Let p € MY(Q,F). Let E, =0 for alln > 1. Then (E,),>1 is a
measurable partition of (. Tt follows that the series 327 1u(E,,)
converges to u(0). Since p(E,) = p(0) for all n > 1, this is only
possible if u(0) = 0.

3. Let p be a finite measure on (2, F). Then u(Q2) < +o00. Hence
for all A € F, u(4) < u(2) < +oo. So p has values in R™
and therefore in C. Let E € F and (E,),>1 be a measurable
partition of E. Then E = W!> E,, and u being a measure:

+oo
WE) =3 p(B,) (10)
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Since pu(E) < +00, the series % u(FE,) actually converges to
u(E) in C. We have proved that p is a complex measure with
values in RT. Conversely, suppose y is a complex measure with
values in R™. Then it is a map pu : F — [0, +o00] which from
2. satisfies p(0) = 0. Furthermore, if £ € F and (E),),>1 is
a measurable partition of E, then the series 3.7 u(E,) con-
verges to u(E) in C. So equation (10) holds, and p is therefore
a measure on (£, F). Since pu has values in RT, u(92) < +o0
and p is therefore a finite measure.

4. Let p € MY(Q,F). Let E € F and (E,),>1 be a measurable
partition of E. Then (E,),>1 is a sequence of pairwise disjoint
elements of F with E = &> E,,. Given ¢ : N* — N* bijective,
(Eg(n))n>1 is also a sequence of pairwise disjoint elements of 7
with E = W E,(,). In other words, (Ey(n))n>1 is a measur-
able partition of F. Since p is a complex measure, the series
S Eg(ny) converges to u(E). It follows that the series

anl (Eq(ny) converges for all bijections o : N* — N*. So

www.probability.net


http://www.probability.net

Solutions to Exercises 33

(1(Ep))n>1 is a complex sequence which has the permutation
property. Applying theorem (56), we conclude that:

Zm )| < 400

5. Since f € Lg(Q,F, ), v(E) = [, fdp is a well-defined complex
number for all £ € F. Sov : F — C is a well-defined map with
values in C. Let E € F and (E,),>1 be a measurable partition

of E. Then (E,)n>1 is a sequence of pairwise disjoint elements
of F such that E = W/ E,. For all N > 1, define:

N
gv =Y [,
n=1

From the linearity of the integral we have:

[ axiu - Z / flodn=SwE) (1)

=1
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Let w € Q. If w ¢ E then flg(w) = 0. Furthermore, w ¢ E,
for all n > 1 and consequently gy(w) = 0 for all N > 1. In
particular, gy(w) — flg(w) as N — +4oo. If w € E, then
flg(w) = f(w). Furthermore, there exists a unique ng > 1 such
that w € E,,. For all N > ng, we have gn(w) = f(w). So
gn(w) — flp(w) as N — 4o00. We have proved that for all
we Q gyw) = flp(w) as N — 4oo. Since for all N > 1,
we have |gn| < |f| € L (9, F, i), we can apply the dominated
convergence theorem (23), to obtain:

NLHEOO/ lgn — flgldp =0

and in particular, using the integral modulus inequality (24):

Nlirgm/gwdu = /flEdu =v(E) (12)
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Comparing (11) with (12) we obtain:
N

Whm nz::l v(E,) = v(E)

This shows the series 37> v/(E,,) converges to v(E). This being
true for all E € F and measurable partition (E,),>1 of E, we
have proved that v is a complex measure on (2, F).

Exercise 3

www.probability.net


http://www.probability.net

Solutions to Exercises 36

Exercise 4.

1. Let £ € F. Define £y = E and E,, = 0 for n > 2. From
definition (91), (E»)n>1 is a measurable partition of E. From
definition (94), we have 3" |u(E,)| < |u|(E). Using u(0) = 0
(see exercise (3)), we obtain |u(E)| < |u|(E).

2. From 1. we have |u(0)| < |©|(0) and therefore 0 < |u|(D). Let
(Ey)n>1 be a measurable partition of (). Then E, = () for all
n > 1. Hence, we have:

+oo
D B =0 (13)
n=1

It follows that 0 is an upper-bound of all sums involved in (13),
where (E,),>1 is a measurable partition of (). From defini-
tion (94), |u](0) being the smallest of such upper-bound, we
have |u|(0) < 0. We have proved that |u|(0) = 0.

Exercise 4
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Exercise 5.

1. From exercise (4), |u(E)| < |u|(E) for all E € F. In particular
0 < |u|(E). Hence, it is always possible to find ¢ € R such that
t < |u|(E). It follows that we can find a sequence (¢,),>1 in R,
such that ¢, < |u|(E,) for all n > 1.

2. Let n > 1. From definition (94), |u|(E,) is the smallest upper-
bound of all sums Z;ﬁ |(EP)| where (EP),>1 is a measurable
partition of E,,. Since t,, < |u|(E)), t, cannot be such upper-

bound. We conclude that there exists a measurable partition
(EP)p>1 of E,, such that:

+oo
tn < Y |u(ER)]
p=1

3. The family (E?), p>1 is indexed by the countable set N* x N*,
and is a family of measurable sets (i.e. elements of F). For all
n > 1, (E?)p>1 is a family of pairwise disjoint sets such that

www.probability.net


http://www.probability.net

Solutions to Exercises 38

E, = Wp>1EP. (Ey)p>1 is a family of pairwise disjoint sets,
such that E = W,>1E,. It follows that (E¥), ,>1 is a family of
pairwise disjoint sets such that £/ = &, ,>; 7. This shows that
(E%)pn p>1 is a measurable partition of E.

4. Let N > 1. Using 2. we have:

N +4oco “+00 400
Zt <SS IE < S (B < ul(B)  (14)
n=1p=1 n=1p=1

where the last inequality follows from definition (94) and the
fact that (ET), ,>1 is a measurable partition of E.

5. Suppose |u|(Ey) = +o0o for some k =1, ..., N. Then any choice
of t, € R is such that ¢, < |u|(E)). Since Zgﬂ tn, < |u|(E)
obtained in 4. is valid for any ti,...,txy in R such that for
all n, t, < |p|(En), we see that A < |u|(E) for any A € R
(choose te = A =3, 4 tn). 1t follows that [p|(E) = 400, and
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in particular:

Z |ul(En) < |ul(E) (15)

Suppose that |u|(E,) < +oo for all n’s. Then ZnN:]_ tn < |u|(E)
can be written as ¢(t1,...,tn) < |p|(E), where ¢ is the contin-
uous map ¢ : RY—R defined by ¢(t1,...,tx) =t1+...+tn.
Given k > 1, the assumption |u|(E),) < oo implies that we have
lu|(Er) — 1/k < |p|(Ey), and consequently:

O(lul(Er) = 1/k, .. [pul(En) = 1/k) < |u[(E)  (16)

Taking the limit as £ — +o0 in (16), from the continuity of ¢
we obtain:

O(lul(Er), - [ul(En)) < |pl(E)
which shows that inequality (15) is true. We have proved that
inequality (15) is true in all possible cases.

6. Let p > 1. (E))n>1 being a measurable partition of E, we have
E =W, 1E,. It follows that A, = W,>14, N E,. Since p is
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a complex measure, the series Ezg (A, N E,) converges to
1(A,). Taking the limit as N — 400 on both sides of:

N
<3 (4, N )|

n=1

N
S w4y N Ey)
n=1

we conclude that:
—+oo

lu(Ap)] < Z [1(Ap N Ey)|

n=1

7. Let n > 1. (A,)p>1 being a measurable partition of £, we have
E =w,>1A4,. It follows that E, = W,>1A4, N E,. The family
(Ap N Ep)p>1 is therefore a measurable partition of E,. We
conclude from definition (94) that;

+oo
D Ay N E)| < [pl(En)

p=1
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8. Using 6. and 7. we have:

+oo +o0o +oo
S (A <D0 |u(4, N E, \<Zlu\
p=1 p=1n=1

where specifically, the second inequality was obtained by first
inverting the order of summation, and then applying 7.

9. From exercise (4), |u|(?) = 0. Given E € F and (E,),>1 mea-
surable partition of F, we showed in 5. that for all N > 1:

Z |ul(En) < ul(E) (17)

Taking the limit as N — +oo in (17), we obtain:

Z |ul(En) < |ul(E) (18)
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Also, if (Ap)p>1 is a measurable partition of E, then from 8.:

+oo +oo
DA <Y |ul(E
p=1 n=1

This shows that Z:fl |¢|(Ey) is an upper-bound of all sums
;ﬁ |u(Ap)|, where (A4,)p>1 is a measurable partition of E.
||(E) being the smallest of all such upper-bounds, we have:

[ul(E) < Z 1l (B (19)

From (18) and (19) we conclude that:

|ul(E Z |ul(E

We have proved that |u| : F — [0, +0o0] is a measure on (2, F).

Exercise 5
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Exercise 6.

1. Since F' € C([a,b]; R), the derivative F” exists and is contin-
uous on [a,b]. In particular, the map F’ : [a,b] — R is Borel
measurable®. Furthermore, the interval [a,b] being a compact
topological space (theorem (34)), F’ attains its maximum and
its minimum (theorem (37)). In particular, F’ is bounded on
[a,b]. Tt follows that F’ is an element of Lk ([a, ], B([a, b)), dz),

" / Pyt 2 / Lo (0 F (8)dt

is well-defined and R-valued for all x € [a, b].

Let x¢ € [a,b]. F' being continuous on [a, b], given € > 0, there
exists 6 > 0 such that:

z€lab], |z —x0| <5 = |F'(z) — F'(z0)| <e (20)

5 See exercise (13) of Tutorial 4.
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Let h € R\ {0} be such that xg + h € [a,b]. If h > 0, we have:
H(xzo + h) — H(xo) = /1]z07m0+h] (t)F'(t)dt
and if h < 0:
H(ao +1) = H(zo) = = [ Lagine (OF (01

where we have used the linearity of the integral, and the equality
1p—14 = 1p\ 4, valid whenever A C B. The Lebesgue measure
on [a, b] of the interval |z, xo + h] being equal to h when h > 0,
it is always possible to write F'(z() as:

1

F/(l‘o) = E / l]wOJOJrh] (t)F’(l‘o)dt

when h > 0, and similarly when h < 0:

1
F/(.’I,'o) = _E/]-]mo+h,m0]F/(x0)dt
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It follows that in all cases, using theorem (24):

H(zo +h) — H(xo)
h

where A =|zg,x0 + h] if h > 0 and A =|zg + h, 0] if h < 0.
From (20), it appears that given ¢ > 0, we have found ¢ > 0
such that for all h # 0 with z9 + h € [a, b]:

H(zo +h) — H(xo)
h

This shows that for all g € [a,b], H is differentiable at z with
H'(z9) = F'(x0). We have proved that H is differentiable on
[a,b] with H" = F'. Since F’ is continuous, we see that H' is
continuous, and finally H € C'([a,b]; R).

- F’<x0>\ < o [1a0IF () = Fan)ar

|h| <6 = — F'(x0)| <€

2. Define G = F — H. Then G € C!([a,b];R), and in particular
G is continuous on [a,b] and differentiable on Ja,b[. Applying
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taylor’s theorem (39), there exists ¢ €]a, b[ such that:
G(b) — G(a) = G'(c)(b — a)

However from 1. G’(¢) = 0 for all ¢ € [a,b]. We conclude that
G(b) = G(a), or equivalently:

3. Applying 2. to F(0) = sinf on [—7/2,7/2], we obtain:

1 +7T/2

e e cos 0df = %(Sin(wﬂ) —sin(—7/2)) = %

4. u € R™ being given, let p : B(R™) — [0, +00] be the map de-
fined by p(B) = dx({r, € B}) for all B € B(R"). If (Byp)n>1
is a sequence of pairwise disjoint elements of B(R™), it follows

that (7,'(By))n>1 is also a sequence of pairwise disjoint ele-
ments of B(R™). Indeed, 7, being a continuous map, it is also
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Borel measurable. So each 7, '(B,,) is an element of B(R").
Furthermore, for all z € R™, x € 7, 1(B,) N7, }(By,) is equiva-
lent to 7,(x) € B, N By, which implies that p = ¢. If we denote
B = W,,>1 By, then 7,1 (B) = W,>17, '(B,) and we see that:

+oo
u(B) = da(r, de S(B) = u(B)

Since furthermore it is clear that u(9)) = 0, we have proved that
i is a measure on B(R™). Let a; < b; for all ¢ € N,,, and
B = [a1,b1] X ... X [an, by]. Then:

.M B) = [a1 —u1,by —u1] X ... X [ay — Un, by —u,]  (21)

u

It follows from (21) and definition (63):

n

p(laz, b1] X ... X [an, bn]) = da(r, ' (B)) = [[(bi — a:)  (22)

i=1

From definition (63), the Lebesgue measure on R™ is uniquely
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determined by property (22). We conclude that p and the
Lebesgue measure dx do in fact coincide, i.e. pu = dz. We
have proved that for all w € R™ and B € B(R"), dx({r, €
B}) = dz(B) or in other words that the Lebesgue measure on
(R™,B(R™)) is invariant by translation.

5. Let u € R™ and f € L5(R", B(R"),dz). We are aiming to
prove that:

flz+u)de = f(x)dx (23)
R" R"

If 7, : R® — R™ denotes the translation defined by 7,(z) =
x + u, then 7, is clearly continuous and therefore Borel mea-
surable. It follows that the map = — f(z + u), being equal to
f o 7w, is itself Borel measurable. Suppose equation (23) has
been established for non-negative and measurable maps. Then,
applying (23) to |f|, we obtain:

[ e+ wie = [ 5@l < oo
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which shows that z — f(z+u) is also integrable. Equation (23)
is therefore meaningful for all f € L§(R™, B(R™),dz). Further-
more, writing f = vy + ivy and applying (23) to each positive
and negative part of v; and vy, we obtain:

/nvf(az—ku)dm:/nvf(x)dx

with a similar equality for v, vy and v, . From definition (48)
of the Lebesgue integral, we have:

fdg;:/ dex—/ vfdx—i—i/ v;dx—i/ vy dx
Rn n n n n

with a similar equality involving x — f(z + u). We conclude
that equation (23) is true for all f € L5(R", B(R"),dz). We
have shown that it is sufficient to prove (23) in the case when
f: R™,B(R™)) — [0,+00] is a non-negative and measurable
map. Suppose [ is of the form f = 1p for some B € B(R").
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Using the invariance of the Lebesgue measure proved in 4.:
flz+u)dr = de({r, € B}) =dx(B) = f(x)dx
R’V'L RVL
and (23) is shown to be true. If f is a simple function, then
(23) is also true by linearity. Suppose f is a non-negative and

measurable map. From theorem (18), there exists a sequence
(Sn)n>1 of simple functions such that s, T f. Given n > 1:

/ Sn(x 4 u)dz :/ Sp(x)dx (24)
However, from the monotone convergence theorem (19):

lim Sp(x)dx = f(x)dx
R

n—-+oo R~

with a similar convergence involving s,(z + u) and f(z + u).
Taking the limit in (24) as n — 400, we obtain (23).
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6. Let o € R and define f(0) = cos™ (6 — a)1_r 4(6). Then:

/+7f cost(a — 0)df) = /+Tf cost (0 — a)df = / f(6)do
- — R

Furthermore:
+mT—a
/ f(O+a)dd = / (cos™ )1 4 (0+0)df :/ cos™ 0df
R —T—
Applying 5. to f € Ly (R, B(R),df) and u = a we obtain:

/f de_/f9+a

and we conclude that:

+m +T—«
/ cos™ (o — 0)df = / cos™ 0df

—T —TT—Q

7. Let « € R and k € Z be such that k¥ < «/27 < k+ 1. From k <
a /27 we obtain 2km < « and consequently —m — a < —2km — 7
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together with 7 — o < —2kw + 7. From «a/27 < k + 1 we obtain
a < 2k + 27 and consequently —2km — 7 < m — a. Finally:
—rm—a< 2kn—rnm<rm—a< 2kr+m

8. Define f(0) = (cos™ 0)1[_r_qa,—okr—=(f). Applying 5. to the
map f € L (R,B(R),df) and u = —27, we obtain:

—2km—T —2km+m
/ cos™t 0df :/ f(6)do :/ f(0—2m)do :/ cos™ 0df
—T—a R R T—Q

9. From 7. we have:

+r—a —2km—1 +mT—a
/ cosT 0do = / cos 0db + / cost 0df

—T— —T— —2km—T1

However, from 8., we have:

—2km—m —2km+4m
/ cost 0do = / cos™ 0d6

—TmT— —Q
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It follows that:

+rT—a —2km+m
/ cos™ 0d) = / cos™ 0df (25)

—T—a —2km—m

Define f(#) = (cost 0)1[_opr—r, —2krix](0). Applying 5. to the
map f € Ly (R,B(R),df) and u = —2km, we obtain:

—2km+m +m
/ cost 0df = / f(0)do = / (0 — 2km)do = / cos™t 0df
—2km—m R R —
Using (25), we conclude that:
+T— —+
/ cos™ 0df = / cos™ 0df
10. For all @ € R, using 6. and 9.:
+7 +m

/ cos™ (a — 0)df = / cos™ 0df

—T —1T
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However, given 0 € [—m, +|, we have cosf > 0 if and only if
0 € [—7n/2,+7/2]. It follows that:

+ +7/2
/ cosT 0do = / cos 0do

-7 —m/2

Finally, using 3. we conclude that:

1 +7 1 +7/2 1
— cost (o — 0)dh) = — / cosfdf = —
2 J_ . 2m ) 72 s

Exercise 6
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Exercise 7.

1. Let 6 € [—m,7]. Since [e=%| = 1, we have:

> af = |5 e
keS(0) keS(0)
keS(6)
> Re Z |zk|ei(o"“_9)
keS(6)
= Z |21 | cos(ay, — 0)
keS(6)

The fact that cos(ax — @) > 0 for all k € S(#) was not used.

2. The map ¢(0) = Z,ICVZI |21 | cosT(a, — @) being continuous and
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defined on the compact interval [—m, 7], from theorem (37), it
attains its maximum. In other words, there exists 0y € [—7, 7]
such that:
¢(0o) = sup o(0)
oc[—m,m)
3. Using 10. of exercise (6), for all k =1,..., N:
1 [t 1
o) cos™ (o, — 0)df = -
It follows that:
1 +7 N 1 +7 1 N
— -+ —
L sya0 = ;1 |zk|%/_7r cos™ (au, — 0)d0 — ;; 2]

2 J_,

4. Applying 1. to 6y as in 2., we have:

Z 25 > Z |21 | cos(ay, — 6p)

keS(6o) keS(6o)
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Since k € S(f) is equivalent to cos(ay — 6p) > 0, we have:

N
Z |zk| cos(ax — bp) = Z |21 cos™ (ar — 00) = ¢(6o)

keS(6o) k=1

where ¢ is defined as in 2. Furthermore, using 2. and 3.:

1t 1
B0) 2 5 | #O)d0=23 |2l
k=1
We conclude that:
| N
> =
> w213k

kES(0y) k=1

The purpose of this exercise is to provide us with a very useful

www.probability.net


http://www.probability.net

Solutions to Exercises 58

inequality. We are all familiar with the fact that:

N N
DB
k=1 k=1

and we may informally say that the modulus of Efle Zk 1S con-
trolled by the sum Zivzl |z|. By showing that:

N
Z|zk|§7r Z 2k
k=1

keS(00)

this exercise allows us to control ), _; || in terms of something

formally very close to the modulus of ij:l 2k, i.e. the modulus
of 3 ,cg 2k, for some subset S of {1,...,N}.

Exercise 7
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Exercise 8.

1. Since u(E) € C, t = w(1 4 |u(E)|) is an element of RT. In
particular, ¢ < +o0. From definition (94), |u|(E) is the smallest
upper-bound of all sums E:ﬁ |1(Ey)|, as (En)n>1 ranges over
all measurable partitions of E. Having assumed |u|(E) = 400, it
follows that t < |u|(E) and consequently ¢ cannot be such upper-
bound. We conclude that there exists a measurable partition
(En)n>1 of E, such that:

+oo
1< Y (B (26)
n=1

2. The series Z:fl |1(Ey)| being the supremum of all partial sums

25:1 |u(Ey)| for N > 1, it is the smallest upper-bound of such
partial sums. It follows from (26) that ¢ cannot be such upper-
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bound. We conclude that there exists N > 1 such that:
N
t< > (B
n=1

3. Applying 4. of exercise (7) to z1 = p(E1),...,2v = p(EnN),
there exists a subset S of {1,..., N} such that:

Zlu <> wE,

nes
4. Let A = WpeskE,. p being a complex measure, it is finitely
additive and therefore u(A) =3 g pu(Ey). Using 2. and 3. we

obtain:
Z (Bl > —
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5. Let B=FE\ A. Since A C E, we have E = AW B. It follows
that u(E) = u(A) + u(B) and consequently

[(A)] = |(E) — u(B)| < |u(E)| + |u(B)]
We conclude that |u(B)| > |u(A)| — |u(E)|.

6. Since ACEand B=FE\ A, E= AW B. From 4. we obtain:
t
BA)] > © =1+ |u(B)| 21
and from 4. and 5. we obtain:
t
(B 2 [u(A)] = |u(E)| > — — |u(B)| =1
We conclude that [u(A)] > 1 and |u(B)| > 1.

7. From exercise (5), the total variation |u| is a measure on (Q, F).
From F = AW B we obtain |u|(F) = |u|(A) + |x|(B). Since
|u|(E) = 400 we conclude that |u|(A) and |u|(B) cannot be
both finite, i.e. |u|(A) = 400 or |p|(B) = 4o00. This exercise
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shows that if E € F is such that |u|(E) = 400, then E can
be partitioned in two components A and B (i.e. E = AW B)
such that |pu(A)] > 1 and |p(B)| > 1, and with |u|(A4) = 400 or
1l (B) = +o0.

Exercise 8
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Exercise 9.

1. Since |u](€2) = 400, applying exercise (8), there exists A, B € F
such that Q@ = AW B, |u(A)] > 1, [u(B) > 1 and |p|(A) = +o0
or |p|(B) = +oo. If |u|(B) = 400, take Ay = A and By = B.
Otherwise, take Ay = B and B; = A. In any case, we have
Ay, By € F, Q= A4 By, |/1,(A1)‘ > 1 and \,u|(B1) = +00.

2. Given n > 1, let P, denote the following statement: there exist
Ay, ..., A, pairwise disjoint elements of F with |u(Ag)| > 1 for
all k € N,,, and such that if B, = (A1 W... " A4,)¢, then we
have |p|(B,) = +oo. Note that from 1., the statement P; is
true. Suppose the statement P, is true for some n > 1. Apply-
ing exercise (8), there exist A, B € F such that B, = AW B,
(A > 1, [u(B)| > 1 and [ul(A) = +oc or [u(B) = +oo.
Without loss of generality, we can assume that |u|(B) = +oo.
Define A, +1 = A. Then |u(Ap+1)] > 1 and furthermore for all
k € Ny, since Ay, C B and A, 41 C By, we have AyNA,+1 = 0.
Having assumed P, to be true, Aj,..., A, are pairwise dis-
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joint, and it follows that Ay,..., A, 41 are also pairwise disjoint
elements of F. Finally, if By,11 = (A1 W ... W A,41)¢, then
By, ,=By4 A,+1 and consequently:

B, =(A°NB)WA=(A"NB°)Y(ANB°) =B

since AN B = . Tt follows that |u|(Bpt1) = |p|(B) = +oo.
This shows that having assumed the statement P,, to be true,
the sequence Ay, ..., A, can be extended to A1, ..., A,4+1 which
satisfies the requirements of statement P,;. By induction, we
can therefore construct a sequence (A, ),>1 of pairwise disjoint
elements of F, such that |u(Ay)] > 1 for all n > 1.

3. Since |u(A,)| > 1 for all n > 1, the series 3 1(A,) cannot
be a convergent series. In particular, it does not converge to
((A) where A = W,>1A4,,. This contradicts definition (92) and
the fact that p is a complex measure.

4. The initial assumption of |u|(f2) = 4o0c in 1. has lead to the
contradiction shown in 3.. We conclude that |u|(2) < +oo for
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all complex measure . We showed on exercise (5) that the
total variation || of a complex measure p was a measure. This
exercise shows that |u| is in fact a finite measure, which proves
theorem (57).

Exercise 9
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Exercise 10. Let \,p € MY(Q,F) and E € F. Let (En)n>1
be a measurable partition of E. Then, the series Z:ﬁ A E,) and
S W(E,) converge to A(F) and u(FE) respectively. It follows that
the series Z 2N+ p)(Ey) converges to (A + p)(E) and A + p is
therefore a complex measure on (2, F). If a € C, then the series
2 () (Ey) converges to (ap)(E) and apu is therefore a complex
measure on (£, F). This shows that M'(Q,F) is a sub-vector space

over C, of the set C” of all maps p: F — C.
Exercise 10
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Exercise 11.

1. Given f € Ly (9, F, i), the condition || f||, = 0 is equivalent to
J1fIPdp = 0. In particular, it does not guarantee that f = 0,
but only that f = 0 p-almost surely. Hence, property (i) of
definition (95) is not satisfied in general, and || - ||, may fail to
be a norm on L (Q, F, p).

2. Let (-,-) be an inner-product on a K-vector space H, and let
|-l =+/{,). The fact that given z € H ||z|| = 0 is equivalent
to x = 0, is a consequence of property (v) of definition (81).
So (¢) of definition (95) is satisfied. Given « € K, using (i)
and (i4i) of definition (81), we have:

(ax, ax) = aalz,z) = |a|?(z, x)

and consequently |laz| = |al||z]|. So (ii) of definition (95) is
also satisfied. Finally, the triangle inequality:

o +yll < llzll + [yl
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has been proved in exercise (17) of Tutorial 10. So (i4i) of
definition (95) is also satisfied. We have proved that || - || is
indeed a norm on H.

3. Suppose |p|(2) = 0. Then for all E € F, we have:
[W(E)] < [ul(E) < |pl(2) =0

and consequently p = 0. Conversely, if ¢ = 0 it follows im-
mediately from definition (94) that |u| = 0 and in particular
||l = || (£2) = 0. So property () of definition (95) is satisfied.
Let a € C. Given E € F and (E,),>1 measurable partition of
E, using definition (94) we have:

—+oo

> lan(B, |—ICVIZ\M )| < lalful(E)

n=1

It follows that |a/|u|(E) is an upper-bound of all 3" |au(E,)|
as (Ey)n>1 ranges over all measurable partitions of E. From def-
inition (94), |ap|(E) being the smallest of such upper-bounds,
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we obtain |au|(E) < |a||u|(E). In the case when « # 0, replac-
ing @ by o~ ! and p by au, we have:

ol (B) = lalla™ (ap)|(B) < |of|a] ™" aul(B)

and consequently |o||u|(F) < |au|(E). This being also true for
a = 0, we have proved that |au|(E) = |a||u|(E) for all complex
measure g, F € F and a € C. Taking E = {2 we obtain:

ool = lapel (€2) = [ 2] (€2) = [l | e

and property (i¢) of definition (95) is therefore satisfied. Let p
and A be two complex measures and E € F. Let (E,),>1 be a
measurable partition of E. We have:

+oo +oo
DA+ W(EL) <D IAE, \+Z\u )< AI(E) + [ul(B)

and |A|[(E)+ |p|(E) is an upper-bound of all 325 [(A+p)(E,)|,
as (En)n>1 ranges over all measurable partitions of E. From
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definition (94), | + p|(F) being the smallest of such upper-
bounds, we obtain:
A+ pl(E) < [N(E) + |ul(E)

In particular for E = Q, we have ||A + p|| < |[A]| + ||p||. This
shows that property (iii) of definition (95) is satisfied. We have
proved that ||| = |p|(2) defines a norm on M* (2, F).

Exercise 11
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Exercise 12. Let p € M*(Q,F) and p™ = (|u| + u)/2. From the-
orem (57), the total variation || is a finite measure on (2, F), or
in other words, a complex measure with values in R™. Since u is a
signed measure, it is a complex measure with values in R. It follows
that pu* is a complex measure with values in R. Furthermore, the
fact that p is a signed measure allows us to write —u(E) < |u(FE)|
for all E € F. Since |u(E)| < |p|(E) can be seen as an easy con-
sequence of definition (94), we conclude that —u(E) < |u|(E), or
equivalently p*(E) > 0 for all E € F. So u™ is a complex mea-
sure with values in R, or in other words, it is a finite measure on
(Q,F). Since pu(E) < |w(E)| for all E € F, we obtain similarly
that u= = (Ju| — p)/2 is a finite measure on (€2, F). The fact that
w=p" —p~ and |p| = pT + p is clear.

Exercise 12
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Exercise 13.

1. Let (e1,e2) be the canonical basis of R%. For all (z,y) € R?
and (z/,y') € R?, we have:
(z,y) =" y)] = [(@—a")l(er) + (y — y)l(e2)|
< oflz =2+ ly =)
where a = max(|l(e1)],]l(e2)]). Since the metric d defined by:
d((z,y), (", 9)] = o = 2| + [y — /]
induces the product topology on R2, we conclude that [ is a

continuous mapping.

2. Let E € F and (E,)n>1 be a measurable partition of E. p being
a complex measure on (Q, F), the series Z:ﬁ w(E,) converges
to u(F) in C = R2. Since [ is a continuous mapping, the series

+ Lo u(E,) converges to [ o u(E) in R. This being true for
all E € F and (E,),>1 measurable partition of E, [ o p is a
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complex measure with values in R. In other words, [ o u is a
signed measure on (€2, F).

3. Let u € MY(Q,F). It is always possible to write:
p= Re(u) +ilm(p)
Since Re, Im : R? — R are two linear mappings, it follows from
2. that Re(p) and Im(p) are two signed measures on (£, F).
From exercise (12), Re(p) and I'm(u) can be decomposed as
Re(p) = Re(u)* — Re(p)™ and Im(p) = Im(u)* — Im(u)~.
Taking 1 = Re(p)™, pz = Re(p)™, pz = Im(p)™ and finally
wa = Im(p)~, we obtain:
po= 1 — p2 +i(p3 — pa)

where pi, po, 3 and pg are finite measures on (2, F).

Exercise 13
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