
Tutorial 16: Differentiation 1

16. Differentiation
Definition 115 Let (Ω, T ) be a topological space. A map f : Ω → R̄
is said to be lower-semi-continuous (l.s.c), if and only if:

∀λ ∈ R , {λ < f} is open

We say that f is upper-semi-continuous (u.s.c), if and only if:

∀λ ∈ R , {f < λ} is open

Exercise 1. Let f : Ω → R̄ be a map, where Ω is a topological space.

1. Show that f is l.s.c if and only if {λ < f} is open for all λ ∈ R̄.

2. Show that f is u.s.c if and only if {f < λ} is open for all λ ∈ R̄.

3. Show that every open set U in R̄ can be written:

U = V + ∪ V − ∪
⋃
i∈I

]αi, βi[
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for some index set I, αi, βi ∈ R, V + = ∅ or V + =]α,+∞],
(α ∈ R) and V − = ∅ or V − = [−∞, β[, (β ∈ R).

4. Show that f is continuous if and only if it is both l.s.c and u.s.c.

5. Let u : Ω → R and v : Ω → R̄. Let λ ∈ R. Show that:

{λ < u+ v} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{λ1 < u} ∩ {λ2 < v}

6. Show that if both u and v are l.s.c, then u+ v is also l.s.c.

7. Show that if both u and v are u.s.c, then u+ v is also u.s.c.

8. Show that if f is l.s.c, then αf is l.s.c, for all α ∈ R+.

9. Show that if f is u.s.c, then αf is u.s.c, for all α ∈ R+.

10. Show that if f is l.s.c, then −f is u.s.c.

www.probability.net

http://www.probability.net


Tutorial 16: Differentiation 3

11. Show that if f is u.s.c, then −f is l.s.c.

12. Show that if V is open in Ω, then f = 1V is l.s.c.

13. Show that if F is closed in Ω, then f = 1F is u.s.c.

Exercise 2. Let (fi)i∈I be an a arbitrary family of maps fi : Ω → R̄,
defined on a topological space Ω.

1. Show that if all fi’s are l.s.c, then f = supi∈I fi is l.s.c.

2. Show that if all fi’s are u.s.c, then f = infi∈I fi is u.s.c.

Exercise 3. Let (Ω, T ) be a metrizable and σ-compact topological
space. Let μ be a locally finite measure on (Ω,B(Ω)). Let f be an
element of L1

R(Ω,B(Ω), μ), such that f ≥ 0.
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1. Let (sn)n≥1 be a sequence of simple functions on (Ω,B(Ω)) such
that sn ↑ f . Define t1 = s1 and tn = sn − sn−1 for all n ≥ 2.
Show that tn is a simple function on (Ω,B(Ω)), for all n ≥ 1.

2. Show that f can be written as:

f =
+∞∑
n=1

αn1An

where αn ∈ R+ \ {0} and An ∈ B(Ω), for all n ≥ 1.

3. Show that μ(An) < +∞, for all n ≥ 1.

4. Show that there exist Kn compact and Vn open in Ω such that:

Kn ⊆ An ⊆ Vn , μ(Vn \Kn) ≤
ε

αn2n+1

for all ε > 0 and n ≥ 1.
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5. Show the existence of N ≥ 1 such that:
+∞∑

n=N+1

αnμ(An) ≤ ε

2

6. Define u =
∑N

n=1 αn1Kn . Show that u is u.s.c.

7. Define v =
∑+∞
n=1 αn1Vn . Show that v is l.s.c.

8. Show that we have 0 ≤ u ≤ f ≤ v.

9. Show that we have:

v = u+
+∞∑

n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

10. Show that
∫
vdμ ≤

∫
udμ+ ε < +∞.

11. Show that u ∈ L1
R(Ω,B(Ω), μ).
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12. Explain why v may fail to be in L1
R(Ω,B(Ω), μ).

13. Show that v is μ-a.s. equal to an element of L1
R(Ω,B(Ω), μ).

14. Show that
∫
(v − u)dμ ≤ ε.

15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Ω, T ) be a metrizable
and σ-compact topological space. Let μ be a locally finite measure on
(Ω,B(Ω)) and f be an element of L1

R(Ω,B(Ω), μ). Then, for all ε > 0,
there exist measurable maps u, v : Ω → R̄, which are μ-a.s. equal to
elements of L1

R(Ω,B(Ω), μ), such that u ≤ f ≤ v, u is u.s.c, v is l.s.c,
and furthermore: ∫

(v − u)dμ ≤ ε
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Definition 116 Let (Ω, T ) be a topological space. We say that
(Ω, T ) is connected, if and only if the only subsets of Ω which are
both open and closed are Ω and ∅.

Exercise 4. Let (Ω, T ) be a topological space.

1. Show that (Ω, T ) is connected if and only if whenever Ω = A
B
where A,B are disjoint open sets, we have A = ∅ or B = ∅.

2. Show that (Ω, T ) is connected if and only if whenever Ω = A
B
where A,B are disjoint closed sets, we have A = ∅ or B = ∅.

Definition 117 Let (Ω, T ) be a topological space, and A ⊆ Ω. We
say that A is a connected subset of Ω, if and only if the induced
topological space (A, T|A) is connected.

Exercise 5. Let A be open and closed in R, with A �= ∅ and Ac �= ∅.
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1. Let x ∈ Ac. Show that A∩ [x,+∞[ or A∩]−∞, x] is non-empty.

2. Suppose B = A ∩ [x,+∞[�= ∅. Show that B is closed and that
we have B = A∩]x,+∞[. Conclude that B is also open.

3. Let b = inf B. Show that b ∈ B (and in particular b ∈ R).

4. Show the existence of ε > 0 such that ]b− ε, b+ ε[⊆ B.

5. Conclude with the following:

Theorem 95 The topological space (R, TR) is connected.

Exercise 6. Let (Ω, T ) be a topological space and A ⊆ Ω be a con-
nected subset of Ω. Let B be a subset of Ω such that A ⊆ B ⊆ Ā.
We assume that B = V1 
V2 where V1, V2 are disjoint open sets in B.

1. Show there is U1, U2 open in Ω, with V1 = B ∩U1, V2 = B ∩U2.
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2. Show that A ∩ U1 = ∅ or A ∩ U2 = ∅.

3. Suppose that A ∩ U1 = ∅. Show that Ā ⊆ U c1 .

4. Show then that V1 = B ∩ U1 = ∅.

5. Conclude that B and Ā are both connected subsets of Ω.

Exercise 7. Prove the following:

Theorem 96 Let (Ω, T ), (Ω′, T ′) be two topological spaces, and f
be a continuous map, f : Ω → Ω′ . If (Ω, T ) is connected, then f(Ω)
is a connected subset of Ω′.

Definition 118 Let A ⊆ R̄. We say that A is an interval, if and
only if for all x, y ∈ A with x ≤ y, we have [x, y] ⊆ A, where:

[x, y]
�
= {z ∈ R̄ : x ≤ z ≤ y}
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Exercise 8. Let A ⊆ R̄.

1. If A is an interval, and α = inf A, β = supA, show that:

]α, β[⊆ A ⊆ [α, β]

2. Show that A is an interval if and only if, it is of the form [α, β],
[α, β[, ]α, β] or ]α, β[, for some α, β ∈ R̄.

3. Show that an interval of the form ] − ∞, α[, where α ∈ R, is
homeomorphic to ] − 1, α′[, for some α′ ∈ R.

4. Show that an interval of the form ]α,+∞[, where α ∈ R, is
homeomorphic to ]α′, 1[, for some α′ ∈ R.

5. Show that an interval of the form ]α, β[, where α, β ∈ R and
α < β, is homeomorphic to ] − 1, 1[.

6. Show that ] − 1, 1[ is homeomorphic to R.

7. Show an non-empty open interval in R, is homeomorphic to R.
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8. Show that an open interval in R, is a connected subset of R.

9. Show that an interval in R, is a connected subset of R.

Exercise 9. Let A ⊆ R be a non-empty connected subset of R, and
α = inf A, β = supA. We assume there exists x0 ∈ Ac∩]α, β[.

1. Show that A∩]x0,+∞[ or A∩] −∞, x0[ is empty.

2. Show that A∩]x0,+∞[= ∅ leads to a contradiction.

3. Show that ]α, β[⊆ A ⊆ [α, β].

4. Show the following:

Theorem 97 For all A ⊆ R, A is a connected subset of R , if and
only if A is an interval.
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Exercise 10. Prove the following:

Theorem 98 Let f : Ω → R be a continuous map, where (Ω, T )
is a connected topological space. Let a, b ∈ Ω such that f(a) ≤ f(b).
Then, for all z ∈ [f(a), f(b)], there exists x ∈ Ω such that z = f(x).

Exercise 11. Let a, b ∈ R, a < b, and f : [a, b] → R be a map such
that f ′(x) exists for all x ∈ [a, b].

1. Show that f ′ : ([a, b],B([a, b])) → (R,B(R)) is measurable.

2. Show that f ′ ∈ L1
R([a, b],B([a, b]), dx) is equivalent to:∫ b

a

|f ′(t)|dt < +∞

3. We assume from now on that f ′ ∈ L1
R([a, b],B([a, b]), dx). Given

ε > 0, show the existence of g : [a, b] → R̄, almost surely equal
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to an element of L1
R([a, b],B([a, b]), dx), such that f ′ ≤ g and g

is l.s.c, with: ∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt+ ε

4. By considering g + α for some α > 0, show that without loss of
generality, we can assume that f ′ < g with the above inequality
still holding.

5. We define the complex measure ν =
∫
gdx ∈M1([a, b],B([a, b])).

Show that:

∀ε′ > 0 , ∃δ > 0 , ∀E ∈ B([a, b]) , dx(E) ≤ δ ⇒ |ν(E)| < ε′

6. For all η > 0 and x ∈ [a, b], we define:

Fη(x)
�
=
∫ x

a

g(t)dt− f(x) + f(a) + η(x− a)

Show that Fη : [a, b] → R is a continuous map.
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7. η being fixed, let x = supF−1
η ({0}). Show that x ∈ [a, b] and

Fη(x) = 0.

8. We assume that x ∈ [a, b[. Show the existence of δ > 0 such
that for all t ∈]x, x + δ[∩[a, b], we have:

f ′(x) < g(t) and
f(t) − f(x)

t− x
< f ′(x) + η

9. Show that for all t ∈]x, x+ δ[∩[a, b], we have Fη(t) > Fη(x) = 0.

10. Show that there exists t0 such that x < t0 < b and Fη(t0) > 0.

11. Show that Fη(b) < 0 leads to a contradiction.

12. Conclude that Fη(b) ≥ 0, even if x = b.

13. Show that f(b) − f(a) ≤
∫ b
a
f ′(t)dt, and conclude:
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Theorem 99 (Fundamental Calculus) Let a, b ∈ R, a < b, and
f : [a, b] → R be a map which is differentiable at every point of [a, b],
and such that: ∫ b

a

|f ′(t)|dt < +∞

Then, we have:

f(b) − f(a) =
∫ b

a

f ′(t)dt

Exercise 12. Let α > 0, and kα : Rn → Rn defined by kα(x) = αx.

1. Show that kα : (Rn,B(Rn)) → (Rn,B(Rn)) is measurable.

2. Show that for all B ∈ B(Rn), we have:

dx({kα ∈ B}) =
1
αn

dx(B)

3. Show that for all ε > 0 and x ∈ Rn:

dx(B(x, ε)) = εndx(B(0, 1))
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Definition 119 Let μ be a complex measure on (Rn,B(Rn)), n ≥ 1,
with total variation |μ|. We call maximal function of μ, the map
Mμ : Rn → [0,+∞], defined by:

∀x ∈ Rn , (Mμ)(x)
�
= sup

ε>0

|μ|(B(x, ε))
dx(B(x, ε))

where B(x, ε) is the open ball in Rn, of center x and radius ε, with
respect to the usual metric of Rn.

Exercise 13. Let μ be a complex measure on (Rn,B(Rn)).

1. Let λ ∈ R. Show that if λ < 0, then {λ < Mμ} = Rn.

2. Show that if λ = 0, then {λ < Mμ} = Rn if μ �= 0, and
{λ < Mμ} is the empty set if μ = 0.

3. Suppose λ > 0. Let x ∈ {λ < Mμ}. Show the existence of ε > 0
such that |μ|(B(x, ε)) = tdx(B(x, ε)), for some t > λ.
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4. Show the existence of δ > 0 such that (ε+ δ)n < εnt/λ.

5. Show that if y ∈ B(x, δ), then B(x, ε) ⊆ B(y, ε+ δ).

6. Show that if y ∈ B(x, δ), then:

|μ|(B(y, ε+ δ)) ≥ εnt

(ε+ δ)n
dx(B(y, ε+ δ)) > λdx(B(y, ε+ δ))

7. Conclude that B(x, δ) ⊆ {λ < Mμ}, and that the maximal
function Mμ : Rn → [0,+∞] is l.s.c, and therefore measurable.

Exercise 14. Let Bi = B(xi, εi), i = 1, . . . , N , N ≥ 1, be a finite
collection of open balls in Rn. Assume without loss of generality that
εN ≤ . . . ≤ ε1. We define a sequence (Jk) of sets by J0 = {1, . . . , N}
and for all k ≥ 1:

Jk
�
=
{
Jk−1 ∩ {j : j > ik , Bj ∩Bik = ∅} if Jk−1 �= ∅
∅ if Jk−1 = ∅
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where we have put ik = minJk−1, whenever Jk−1 �= ∅.

1. Show that if Jk−1 �= ∅ then Jk ⊂ Jk−1 (strict inclusion), k ≥ 1.

2. Let p = min{k ≥ 1 : Jk = ∅}. Show that p is well-defined.

3. Let S = {i1, . . . , ip}. Explain why S is well defined.

4. Suppose that 1 ≤ k < k′ ≤ p. Show that ik′ ∈ Jk.

5. Show that (Bi)i∈S is a family of pairwise disjoint open balls.

6. Let i ∈ {1, . . . , N} \ S, and define k0 to be the minimum of the
set {k ∈ Np : i �∈ Jk}. Explain why k0 is well-defined.

7. Show that i ∈ Jk0−1 and ik0 ≤ i.

8. Show that Bi ∩Bik0
�= ∅.

9. Show that Bi ⊆ B(xik0
, 3εik0

).
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10. Conclude that there exists a subset S of {1, . . . , N} such that
(Bi)i∈S is a family of pairwise disjoint balls, and:

N⋃
i=1

B(xi, εi) ⊆
⋃
i∈S

B(xi, 3εi)

11. Show that:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ 3n

∑
i∈S

dx(B(xi, εi))

Exercise 15. Let μ be a complex measure on Rn. Let λ > 0 and K
be a non-empty compact subset of {λ < Mμ}.

1. Show that K can be covered by a finite collection Bi = B(xi, εi),
i = 1, . . . , N of open balls, such that:

∀i = 1, . . . , N , λdx(Bi) < |μ|(Bi)
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2. Show the existence of S ⊆ {1, . . . , N} such that:

dx(K) ≤ 3nλ−1|μ|
(⋃
i∈S

B(xi, εi)

)

3. Show that dx(K) ≤ 3nλ−1‖μ‖

4. Conclude with the following:

Theorem 100 Let μ be a complex measure on (Rn,B(Rn)), n ≥ 1,
with maximal function Mμ. Then, for all λ ∈ R+ \ {0}, we have:

dx({λ < Mμ}) ≤ 3nλ−1‖μ‖

Definition 120 Let f ∈ L1
C(Rn,B(Rn), dx), and μ be the complex

measure μ =
∫
fdx on Rn, n ≥ 1. We call maximal function of f ,

denoted Mf , the maximal function Mμ of μ.
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Exercise 16. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that for all x ∈ Rn:

(Mf)(x) = sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|f |dx

2. Show that for all λ > 0, dx({λ < Mf}) ≤ 3nλ−1‖f‖1.

Definition 121 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. We say that

x ∈ Rn is a Lebesgue point of f , if and only if we have:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = 0

Exercise 17. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1.

1. Show that if f is continuous at x ∈ Rn, then x is a Lebesgue
point of f .
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2. Show that if x ∈ Rn is a Lebesgue point of f , then:

f(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

f(y)dy

Exercise 18. Let n ≥ 1 and f ∈ L1
C(Rn,B(Rn), dx). For all ε > 0

and x ∈ Rn, we define:

(Tεf)(x)
�
=

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy

and we put, for all x ∈ Rn:

(Tf)(x)
�
= lim sup

ε↓↓0
(Tεf)(x)

�
= inf

ε>0
sup
u∈]0,ε[

(Tuf)(x)

1. Given η > 0, show the existence of g ∈ CcC(Rn) such that:

‖f − g‖1 ≤ η
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2. Let h = f − g. Show that for all ε > 0 and x ∈ Rn:

(Tεh)(x) ≤ 1
dx(B(x, ε))

∫
B(x,ε)

|h|dx+ |h(x)|

3. Show that Th ≤Mh+ |h|.

4. Show that for all ε > 0, we have Tεf ≤ Tεg + Tεh.

5. Show that Tf ≤ Tg + Th.

6. Using the continuity of g, show that Tg = 0.

7. Show that Tf ≤Mh+ |h|.

8. Show that for all α > 0, {2α < Tf} ⊆ {α < Mh} ∪ {α < |h|}.

9. Show that dx({α < |h|}) ≤ α−1‖h‖1.

10. Conclude that for all α > 0 and η > 0, there is Nα,η ∈ B(Rn)
such that {2α < Tf} ⊆ Nα,η and dx(Nα,η) ≤ η.
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11. Show that for all α > 0, there exists Nα ∈ B(Rn) such that
{2α < Tf} ⊆ Nα and dx(Nα) = 0.

12. Show there is N ∈ B(Rn), dx(N) = 0, such that {Tf > 0} ⊆ N .

13. Conclude that Tf = 0 , dx−a.s.

14. Conclude with the following:

Theorem 101 Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. Then, dx-almost

surely, any x ∈ Rn is a Lebesgue points of f , i.e.

dx-a.s. , lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = 0

Exercise 19. Let (Ω,F , μ) be a measure space and Ω′ ∈ F . We
define F ′ = F|Ω′ and μ′ = μ|F ′ . For all maps f : Ω′ → [0,+∞] (or
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C), we define f̃ : Ω → [0,+∞] (or C), by:

f̃(ω)
�
=
{
f(ω) if ω ∈ Ω′

0 if ω �∈ Ω′

1. Show that F ′ ⊆ F and conclude that μ′ is therefore a well-
defined measure on (Ω′,F ′).

2. Let A ∈ F ′ and 1′A be the characteristic function of A defined
on Ω′. Let 1A be the characteristic function of A defined on Ω.
Show that 1̃′A = 1A.

3. Let f : (Ω′,F ′) → [0,+∞] be a non-negative and measurable
map. Show that f̃ : (Ω,F) → [0,+∞] is also non-negative and
measurable, and that we have:∫

Ω′
fdμ′ =

∫
Ω

f̃dμ
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4. Let f ∈ L1
C(Ω′,F ′, μ′). Show that f̃ ∈ L1

C(Ω,F , μ), and:∫
Ω′
fdμ′ =

∫
Ω

f̃dμ

Definition 122 b : R+ → C is absolutely continuous, if and
only if b is right-continuous of finite variation, and b is absolutely
continuous with respect to a(t) = t.

Exercise 20. Let b : R+ → C be a map.

1. Show that b is absolutely continuous, if and only if there is
f ∈ L1,loc

C (t) such that b(t) =
∫ t
0
f(s)ds, for all t ∈ R+.

2. Show that b absolutely continuous ⇒ b continuous with b(0) = 0.

Exercise 21. Let b : R+ → C be an absolutely continuous map.
Let f ∈ L1,loc

C (t) be such that b = f.t. For all n ≥ 1, we define
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fn : R → C by:

fn(t)
�
=
{
f(t)1[0,n](t) if t ∈ R+

0 if t < 0

1. Let n ≥ 1. Show fn ∈ L1
C(R,B(R), dx) and for all t ∈ [0, n]:

b(t) =
∫ t

0

fndx

2. Show the existence of Nn ∈ B(R) such that dx(Nn) = 0, and
for all t ∈ N c

n, t is a Lebesgue point of fn.

3. Show that for all t ∈ R, and ε > 0:

1
ε

∫ t+ε

t

|fn(s) − fn(t)|ds ≤
2

dx(B(t, ε))

∫
B(t,ε)

|fn(s) − fn(t)|ds

4. Show that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)
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5. Show similarly that for all t ∈ N c
n, we have:

lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)

6. Show that for all t ∈ N c
n ∩ [0, n[, b′(t) exists and b′(t) = f(t).1

7. Show the existence of N ∈ B(R+), such that dx(N) = 0, and:

∀t ∈ N c , b′(t) exists with b′(t) = f(t)

8. Conclude with the following:

1b′(0) being a r.h.s derivative only.
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Theorem 102 A map b : R+ → C is absolutely continuous, if and
only if there exists f ∈ L1,loc

C (t) such that:

∀t ∈ R+ , b(t) =
∫ t

0

f(s)ds

in which case, b is almost surely differentiable with b′ = f dx-a.s.
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Solutions to Exercises
Exercise 1.

1. Let f : Ω → R̄ be a map, where Ω is a topological space.
Suppose that {λ < f} is open for all λ ∈ R̄. Then in particular,
{λ < f} is open for all λ ∈ R. So f is l.s.c. Conversely, suppose
f is l.s.c. Then {λ < f} is open for all λ ∈ R, and since:

{−∞ < f} =
⋃
λ∈R

{λ < f}

it follows that {−∞ < f} is also open. Furthermore, {+∞ < f}
is the empty set, and in particular, {+∞ < f} is open. We
conclude that {λ < f} is open for all λ ∈ R̄. We have proved
that f is l.s.c if and only if {λ < f} is open for all λ ∈ R̄.

2. Similarly to 1. we have:

{f < +∞} =
⋃
λ∈R

{f < λ}
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and {f < −∞} = ∅ which is open. We conclude that f is u.s.c
if and only if {f < λ} is open for all λ ∈ R̄.

3. Let U be open in R̄. If +∞ ∈ U , let V + =]α,+∞] where α ∈ R
is such that ]α,+∞] ⊆ U . Otherwise, let V + = ∅. If −∞ ∈ U ,
let V − = [−∞, β[, where β ∈ R is such that [−∞, β[⊆ U .
Otherwise, let V − = ∅. Then, we have:

U = V + ∪ V − ∪ (U ∩ R)

and U ∩ R is an open subset of R (possibly empty). For all
x ∈ U ∩ R, let αx, βx ∈ R be such that x ∈]αx, βx[⊆ U ∩ R.
Then, we have:

U ∩ R =
⋃

x∈U∩R

]αx, βx[

where it is understood that if U ∩ R = ∅, the corresponding
union is the empty set. Taking I = U ∩ R, we conclude that:

U = V + ∪ V − ∪
⋃
i∈I

]αi, βi[
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4. Suppose that f is continuous. For all λ ∈ R, the interval ]λ,+∞]
is an open subset of R̄. It follows that {λ < f} = f−1(]λ,+∞])
is open. This being true for all λ ∈ R, f is l.s.c. Similarly,
the interval [−∞, λ[ is an open subset of R̄. It follows that
{f < λ} = f−1([−∞, λ[) is open. This being true for all λ ∈ R,
f is u.s.c. Hence, if f is continuous, it is both l.s.c and u.s.c.
Conversely, suppose f is both l.s.c. and u.s.c. Let U be an open
subset of R̄. Using the decomposition obtained in 3. we have:

f−1(U) = f−1

(
V + ∪ V − ∪

⋃
i∈I

]αi, βi[

)

= f−1(V +) ∪ f−1(V −) ∪
⋃
i∈I

f−1(]αi, βi[)

= f−1(V +) ∪ f−1(V −) ∪
⋃
i∈I

{αi < f} ∩ {f < βi}

Since f−1(V +) is either {α < f} or ∅, and f−1(V −) is either
{f < β} or ∅, it follows that f−1(U) is a union of open sets in
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Ω, and is therefore open. Having proved that f−1(U) is open
for all U open in R̄, we conclude that f is continuous. So f is
continuous, if and only if it is both l.s.c and u.s.c.

5. Let u : Ω → R and v : Ω → R̄. Let λ ∈ R. Note that having
restricted the range of u to be a subset of R, the map u + v is
well defined, as there can be no occurrence of (+∞) + (−∞).
We claim that:

{λ < u+ v} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{λ1 < u} ∩ {λ2 < v}

It is clear that if ω ∈ Ω is such that λ1 < u(ω) and λ2 < v(ω) for
some λ1, λ2 ∈ R with λ1 + λ2 = λ, then λ < u(ω) + v(ω). This
shows the inclusion ⊇. To show the reverse inclusion, suppose
that ω ∈ Ω is such that λ < u(ω) + v(ω). Then, we have
λ− u(ω) < v(ω), and there exists λ2 ∈ R such that:

λ− u(ω) < λ2 < v(ω)
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Define λ1 = λ − λ2. Then λ2 < v(ω) and λ1 < u(ω) where
λ1, λ2 are elements of R such that λ1 + λ2 = λ. This shows the
inclusion ⊆.

6. Suppose that both u and v are l.s.c. Then for all λ1, λ2 ∈ R,
{λ1 < u} and {λ2 < v} are open subsets of Ω. It follows from
5. that {λ < u + v} is also an open subset of Ω, for all λ ∈ R.
So u+ v is l.s.c.

7. Suppose that both u and v are u.s.c. Similarly to 5. we have:

{u+ v < λ} =
⋃

(λ1, λ2) ∈ R2

λ1 + λ2 = λ

{u < λ1} ∩ {v < λ2}

and consequently {u + v < λ} is an open subset of Ω, for all
λ ∈ R. So u+ v is u.s.c. Anticipating on questions 10. and 11.,
an alternative proof goes as follows: if u and v are u.s.c, then
−u and −v are l.s.c. so −u− v is l.s.c. and finally u+ v is u.s.c.
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8. Suppose f is l.s.c and let α ∈ R+. If α = 0, then αf = 0
and consequently αf is continuous and in particular l.s.c. We
assume that α > 0. Then for all ω ∈ Ω, λ < αf(ω) is equivalent
to λ/α < f(ω) (this is certainly true when f(ω) ∈ R, and one
can easily check that it is still true when f(ω) ∈ {−∞,+∞}). It
follows that {λ < αf} = {λ/α < f} and consequently {λ < αf}
is an open subset of Ω. This being true for all λ ∈ R, we
conclude that αf is l.s.c.

9. Suppose that f is u.s.c and α ∈ R+. If α = 0 then αf is u.s.c.
We assume that α > 0. Then {αf < λ} = {f < λ/α} and
consequently {αf < λ} is open for all λ ∈ R. So αf is u.s.c.

10. Suppose that f is l.s.c. Then {−f < λ} = {−λ < f} for all
λ ∈ R, and consequently {−f < λ} is an open subset of Ω. So
−f is u.s.c.

11. Suppose that f is u.s.c. Then {λ < −f} = {f < −λ} for all
λ ∈ R, and consequently {λ < −f} is an open subset of Ω. So
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−f is l.s.c.

12. Let V be an open subset of Ω and f = 1V . Let λ ∈ R. If λ < 0
we have {λ < f} = Ω. If 0 ≤ λ < 1 we have {λ < f} = V . If
1 ≤ λ we have {λ < f} = ∅. In any case, {λ < f} is an open
subset of Ω. So f is l.s.c. The characteristic function of an open
subset of Ω is lower-semi-continuous

13. Let F be a closed subset of Ω. Let λ ∈ R. Then {f < λ} is
either ∅, F c or Ω, depending respectively on whether λ ≤ 0,
0 < λ ≤ 1 and 1 < λ. In any case, {f < λ} is an open subset of
Ω. So f is u.s.c. The characteristic function of a closed subset
of Ω is upper-semi-continuous.

Exercise 1

www.probability.net

http://www.probability.net


Solutions to Exercises 37

Exercise 2.

1. Let (fi)i∈I be a family of maps fi : Ω → R̄, where Ω is a
topological space. Let f = supi∈I fi. We assume that all fi’s
are l.s.c. For all λ ∈ R, we claim that:

{λ < f} =
⋃
i∈I

{λ < fi} (1)

Indeed, suppose that ω ∈ Ω is such that λ < f(ω). Since f(ω)
is the lowest upper-bound of all fi(ω)’s, λ cannot be such an
upper-bound. Hence, there exists i ∈ I such that λ < fi(ω).
This shows the inclusion ⊆. To show the reverse inclusion, sup-
pose ω ∈ Ω is such that λ < fi(ω) for some i ∈ I. Since
fi(ω) ≤ f(ω), in particular we have λ < f(ω). This shows the
inclusion ⊇. Having proved equation (1) and since all fi’s are
l.s.c, {λ < f} is an open subset of Ω for all λ ∈ R. It follows
that f is l.s.c. The supremum of l.s.c functions is l.s.c.
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2. Suppose that all fi’s are u.s.c and f = infi∈I fi. Given λ ∈ R:

{f < λ} =
⋃
i∈I

{fi < λ}

and consequently {f < λ} is an open subset of Ω. It follows
that f is u.s.c. The infimum of u.s.c functions is u.s.c.

Exercise 2
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Exercise 3.

1. Let (Ω, T ) be a metrizable and σ-compact topological space. Let
f ∈ L1

R(Ω,B(Ω), μ), f ≥ 0, where μ is a locally finite measure on
(Ω,B(Ω)). From theorem (18), there exists a sequence (sn)n≥1

of simple functions on (Ω,B(Ω)) such that sn ↑ f (i.e. sn ≤ sn+1

for all n ≥ 1 and sn → f pointwise). We define t1 = s1 and
tn = sn−sn−1 for all n ≥ 2. In order to show that tn is a simple
function for all n ≥ 1, we need to show that if s, t are simple
functions on (Ω,B(Ω)) with s ≤ t, then t − s is also a simple
function on (Ω,B(Ω)). Since s and t are measurable with values
in R+, and s ≤ t, the map t− s is also measurable with values
in R+. From:

t− s =
∑

α∈(t−s)(Ω)

α1{t−s=α}

we conclude that t− s is a simple function on (Ω,B(Ω)).

2. Since each tn is a simple function on (Ω,B(Ω)), for all n ≥ 1
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there exists an integer pn ≥ 1 and some α1
n, . . . , α

pn
n ∈ R+ and

A1
n, . . . , A

pn
n ∈ B(Ω) such that:

tn =
pn∑
k=1

αkn1Ak
n

Note that it is always possible to assume αkn �= 0, by setting
Akn = ∅ if necessary. Since sN =

∑N
n=1 tn for all N ≥ 1, from

sN → f we obtain:

f =
+∞∑
n=1

tn =
+∞∑
n=1

pn∑
k=1

αkn1Ak
n

This last sum having a countable number of (non-negative)
terms, it can be re-expressed as:

f =
+∞∑
n=1

αn1An
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where αn ∈ R+ \ {0} and An ∈ B(Ω) for all n ≥ 1.

3. Since f ∈ L1
R(Ω,B(Ω), μ) and f ≥ 0, from 2. we have:
+∞∑
n=1

αnμ(An) =
+∞∑
n=1

αn

∫
1Andμ

=
∫ (+∞∑

n=1

αn1An

)
dμ

=
∫
fdμ < +∞

where the second equality is obtained from the linearity of the
integral and an immediate application of the monotone conver-
gence theorem (19). Since for all n ≥ 1 we have αn > 0, we
conclude that μ(An) < +∞.

4. Let ε > 0 and n ≥ 1. Define ε′ = ε/(αn2n+2). Since (Ω, T ) is
metrizable and σ-compact, while μ is a locally finite measure on
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(Ω,B(Ω)), from theorem (73) μ is a regular measure. Hence:

μ(An) = sup{μ(K) : K ⊆ An , K compact}
= inf{μ(V ) : An ⊆ V , V open}

Since μ(An) < +∞, we have μ(An) < μ(An) + ε′, and μ(An)
being the greatest lower-bound of all μ(V )’s as V runs through
the set of all open subsets of Ω with An ⊆ V , μ(An)+ ε′ cannot
be such a lower-bound. There exists Vn open subset of Ω such
that An ⊆ Vn, and:

μ(Vn) < μ(An) + ε′

Similarly, from the fact that μ(An) − ε′ < μ(An), there exists
Kn compact subset of Ω such that Kn ⊆ An, and:

μ(An) − ε′ < μ(Kn)

From Kn ⊆ An note in particular that μ(Kn) < +∞, and con-
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sequently we have Kn ⊆ An ⊆ Vn with:

μ(Vn \Kn) = μ(Vn) − μ(Kn) < 2ε′ =
ε

αn2n+1

5. Having proved in 3. that
∑

n≥1 αnμ(An) < +∞, given ε > 0
there exists N ≥ 1 such that:∣∣∣∣∣

+∞∑
n=1

αnμ(An) −
N∑
n=1

αnμ(An)

∣∣∣∣∣ ≤ ε

2

or equivalently:
+∞∑

n=N+1

αnμ(An) ≤ ε

2

6. Let u =
∑N

n=1 αn1Kn . Since (Ω, T ) is metrizable, in particu-
lar it is a Hausdorff topological space. Since Kn is a compact
subset of Ω, from theorem (35) Kn is a closed subset of Ω. It fol-
lows from 13. of exercise (1) that 1Kn is upper-semi-continuous.
Using 7. and 9. of exercise (1), we conclude that u is also u.s.c.
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7. Let v =
∑+∞

n=1 αn1Vn . Since Vn is an open subset of Ω, from
12. of exercise (1) the map 1Vn is lower-semi-continuous. It
follows from 6. and 8. of this same exercise that every partial
sum

∑k
n=1 αn1Vn is itself l.s.c. Since v is the supremum of these

partial sums, we conclude from exercise (2) that v is l.s.c.

8. Since Kn ⊆ An ⊆ Vn and αn ∈ R+ for all n ≥ 1:

0 ≤
N∑
n=1

αn1Kn = u

≤
N∑
n=1

αn1An

≤
+∞∑
n=1

αn1An = f

≤
+∞∑
n=1

αn1Vn = v
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We conclude that 0 ≤ u ≤ f ≤ v.

9. Since Kn ⊆ Vn for all n ≥ 1, we have:

v =
+∞∑
n=1

αn1Vn =
+∞∑
n=1

αn(1Kn + 1Vn\Kn
)

=
+∞∑
n=1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

= u+
+∞∑

n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

10. Since Kn ⊆ An for all n ≥ 1, using 5. we have:
+∞∑

n=N+1

αnμ(Kn) ≤
+∞∑

n=N+1

αnμ(An) ≤ ε

2
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Hence, using 9. and 4. we obtain:∫
vdμ =

∫ (
u+

+∞∑
n=N+1

αn1Kn +
+∞∑
n=1

αn1Vn\Kn

)
dμ

=
∫
udμ+

+∞∑
n=N+1

αn

∫
1Kndμ+

+∞∑
n=1

αn

∫
1Vn\Kn

dμ

=
∫
udμ+

+∞∑
n=N+1

αnμ(Kn) +
+∞∑
n=1

αnμ(Vn \Kn)

≤
∫
udμ+

ε

2
+

+∞∑
n=1

αn · ε

αn2n+1

=
∫
udμ+ ε

where the second equality stems from the linearity of the integral
and an application of the monotone convergence theorem (19).
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Note that since μ(Kn) < +∞ for all n ≥ 1, in particular:∫
udμ =

N∑
n=1

αnμ(Kn) < +∞

Hence, we conclude that:∫
vdμ ≤

∫
udμ+ ε < +∞

11. The map u is R-valued, Borel measurable with:∫
|u|dμ =

∫
udμ < +∞

So u ∈ L1
R(Ω,B(Ω), μ).

12. The map v is Borel measurable with:∫
|v|dμ =

∫
vdμ < +∞
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However, it has values in [0,+∞], i.e. v(ω) = +∞ is possible
for some ω ∈ Ω. The condition

∫
vdμ < +∞ does imply that

v(ω) < +∞ for μ-almost every ω ∈ Ω. As we shall see in the
next question, v is therefore μ-almost surely equal to an element
of L1

R(Ω,B(Ω), μ). But strictly speaking, it may not be itself an
element of this space, because its range v(Ω) may fail to be a
subset of R.

13. Since
∫
vdμ < +∞, we have v < +∞ μ-a.s since:

(+∞) · μ({v = +∞}) =
∫
{v=+∞}

vdμ ≤
∫
vdμ < +∞

Hence, if N = {v = +∞}, we have N ∈ B(Ω) and μ(N) = 0.
Let v∗ = v1Nc . Then v∗ has values in R, is Borel measurable
and: ∫

|v∗|dμ =
∫
v1Ncdμ =

∫
vdμ < +∞

So v∗ ∈ L1
R(Ω,B(Ω), μ). Since v∗ = v μ-a.s. we conclude that v

is μ-almost surely equal to an element of L1
R(Ω,B(Ω), μ).

www.probability.net

http://www.probability.net


Solutions to Exercises 49

14. Note that from 8. we have 0 ≤ u ≤ v and consequently v − u is
non-negative and measurable, and the integral

∫
(v−u)dμ makes

sense. In fact, even if u ≤ v did not hold, since u ∈ L1 and v is
almost surely equal to an element of L1, it would be possible to
give meaning to

∫
(v − u)dμ in the obvious way. Now from 10.

we have: ∫
udμ+

∫
(v − u)dμ =

∫
vdμ

≤
∫
udμ+ ε

and since
∫
udμ < +∞ we conclude that

∫
(v − u)dμ ≤ ε.

15. Having considered a metrizable and σ-compact topological space
(Ω, T ) and a locally finite measure μ on (Ω,B(Ω)), given ε > 0
and f ∈ L1

R(Ω,B(Ω), μ) with f ≥ 0, we have found two measur-
able maps u, v : Ω → [0,+∞] (where in fact u has values in R+),
which are μ-almost surely equal to elements of L1

R(Ω,B(Ω), μ)
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(in fact u is itself an element of L1) and such that u ≤ f ≤ v, u
is u.s.c, v is l.s.c. and: ∫

(v − u)dμ ≤ ε

Now let f ∈ L1
R(Ω,B(Ω), μ) which we no longer assume to be

non-negative. Let f+ and f− be respectively the positive and
negative parts of f . Then f = f+−f− and given ε > 0, it is pos-
sible to apply the result of this exercise to f+ and f− separately,
with ε/2 instead of ε. Hence, there exist four measurable maps
u+, v+, u− and v− where u+, u− have values in R+ and v+, v−

have values in [0,+∞], which are μ-almost surely equal elements
of L1, and satisfy the conditions u+ ≤ f+ ≤ v+, u− ≤ f− ≤ v−,
u+, u− are u.s.c, v+, v− are l.s.c, and:∫

(v+ − u+)dμ ≤ ε

2
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together with: ∫
(v− − u−)dμ ≤ ε

2
We define u = u+ − v− and v = v+ − u−. Since u+, u− have
values in R, given ω ∈ Ω, the differences u+(ω) − v−(ω) and
v+(ω)−u−(ω) are always well-defined elements of R̄. It follows
that u, v : Ω → R̄ are well-defined measurable maps. Further-
more, it is clear that both u and v are μ-almost surely equal to
an element of L1. From u+ ≤ f+ ≤ v+, u− ≤ f− ≤ v− and
f = f+ − f− we obtain u ≤ f ≤ v. Furthermore, since u+ is R-
valued and u.s.c while v− is l.s.c, from exercise (1) u = u+−v− is
u.s.c, and similarly v = v+−u− is l.s.c. Finally, since u ≤ f ≤ v
and f is R-valued, given ω ∈ Ω the difference v(ω)− u(ω) is al-
ways a well-defined element of [0,+∞]. So v−u is a well-defined
non-negative and measurable map, and the integral

∫
(v − u)dμ

is meaningful. We have:∫
(v − u)dμ =

∫
(v+ − u− − u+ + v−)dμ
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=
∫

(v+ − u+ + v− − u−)dμ

=
∫

(v+ − u+)dμ+
∫

(v− − u−)dμ

≤ ε

2
+
ε

2
= ε

This completes the proof of theorem (94).

Exercise 3
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Exercise 4.

1. Let (Ω, T ) be a topological space. Suppose it is connected and
Ω = A 
 B where A,B are disjoint open sets. Then Ac = B so
A is closed and consequently A is both open and closed. Hence,
Ω being connected, we have A = ∅ or A = Ω, i.e. A = ∅ or
B = ∅. Conversely, suppose Ω = A 
B with A,B disjoint open
sets implies that A = ∅ or B = ∅. Then if A is both open and
closed in Ω, with have Ω = A
Ac where A,Ac are disjoint open
sets. So A = ∅ or Ac = ∅, i.e. A = ∅ or A = Ω. This shows that
Ω is connected. We have proved that Ω is connected if and only
if whenever Ω = A 
 B with A,B disjoint open sets, we have
A = ∅ or B = ∅.

2. If Ω = A 
 B with A,B disjoint open sets, then Ω = Ac 
 Bc
with Ac, Bc disjoint closed sets, and conversely if Ω = A 
 B
with A,B disjoint closed sets, then Ω = Ac 
 Bc with Ac, Bc
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disjoint open sets. Hence, the statements:

(i) Ω = A 
B , A,B disjoint and open ⇒ A = ∅ or B = ∅
(ii) Ω = A 
B , A,B disjoint and closed ⇒ A = ∅ or B = ∅
are equivalent. We conclude from 1. that Ω is connected, if and
only if whenever Ω = A 
 B with A,B disjoint closed sets, we
have A = ∅ or B = ∅.

Exercise 4
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Exercise 5.

1. Let A be an open and closed subset of R, with A �= ∅ and
Ac �= ∅. Let x ∈ Ac. We have:

A = (A∩] −∞, x]) ∪ (A ∩ [x,+∞[)

and since A �= ∅, we have A∩] −∞, x] �= ∅ or A ∩ [x,+∞[�= ∅.

2. Let B = A ∩ [x,+∞[ and suppose B �= ∅. Both A and [x,+∞[
are closed subsets of R. So B is a closed subset of R. However,
since x ∈ Ac, we have:

B = A ∩ [x,+∞[
= (A ∩ {x}) ∪ (A∩]x,+∞[)
= A∩]x,+∞[

and since both A and ]x,+∞[ are open subsets of R, B is also
an open subset of R. Note that the assumption B �= ∅ has not
been used so far.

www.probability.net

http://www.probability.net


Solutions to Exercises 56

3. Let b = inf B. We have proved in exercise (9) (part 5) of
Tutorial 8 that if B is a non-empty closed subset of R̄, then
inf B ∈ B. Unfortunately, this result does not apply to non-
empty closed subsets of R (indeed R, is a non-empty closed
subset of R and inf R = −∞ �∈ R). So we cannot apply exer-
cise (9) of Tutorial 8, at least not without a little bit of care.
However, the following can be done: since B �= ∅, there exists
y ∈ B = A ∩ [x,+∞[. Then it is clear that B∗ = A ∩ [x, y]
is a non-empty closed subset of R̄, and consequently since b =
inf B∗, applying exercise (9) of Tutorial 8, we have b ∈ B∗. So
b ∈ B ⊆ R. For those who wish to have a more detailed ar-
gument, the following can be said: the fact that B∗ �= ∅ is a
consequence of y ∈ B∗. If we define b∗ = inf B∗, the fact that
b∗ = b can be shown as follows: since B∗ ⊆ B, any lower-bound
of B is also a lower-bound of B∗, and consequently b is a lower-
bound of B∗ which shows that b ≤ b∗. To show the reverse
inequality, consider u ∈ B. Then if u ≤ y we have u ∈ B∗ and
therefore b∗ ≤ u. But if y < u, then b∗ ≤ y < u and we see
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that b∗ ≤ u is true in all cases. So b∗ is a lower-bound of B
which shows that b∗ ≤ b. We have proved that b = b∗. To show
that B∗ is a closed subset of R̄, we first argue that it is a closed
subset of R since A is closed and [x, y] is closed. However, the
topology of R is induced by the topology of R̄. It is a simple
exercise to show that any closed subset of R can be written as
F ∩R where F is a closed subset of R̄. Hence, there is a closed
subset F of R̄ such that B∗ = F ∩ R. But then:

B∗ = A ∩ [x, y]
= A ∩ [x, y] ∩ [x, y]
= B∗ ∩ [x, y]
= (F ∩R) ∩ [x, y]
= F ∩ [x, y]

and since [x, y] is also closed in R̄, we conclude that B∗ is indeed
closed in R̄. This concludes our proof that b ∈ B. All this may
seem like a lot of work, made necessary by our desperate attempt
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to apply exercise (9) of Tutorial 8. For those who believe that
a direct proof is more convenient, here is the following: Since
B = A ∩ [x,+∞[, it is clear that x is a lower bound of B and
consequently x ≤ b. To show that b ∈ B, we only need to show
that b ∈ A. Since B �= ∅, there exist y ∈ B ⊆ R and from b ≤ y
we obtain in particular b < +∞. Hence, there exists a sequence
(tn)n≥1 in R such that tn ↓↓ b (i.e. tn → b with b < tn+1 ≤ tn
for all n ≥ 1). Since b < tn, it is impossible that tn be a lower-
bound of B. Hence, for all n ≥ 1 there exists some xn ∈ B ⊆ A
such that b ≤ xn < tn. From tn → b we see that xn → b and
since xn ∈ A while A is a closed subset of R, we conclude that
b ∈ A. This completes our second proof of b ∈ B.

4. Having proved in 2. that B is an open subset of R, since b ∈ B
there exists ε > 0 such that ]b− ε, b+ ε[⊆ B.

5. To show that (R, TR) is connected, we need to show that if A is
an open and closed subset of R, then A = ∅ or A = R. Suppose
this is not the case and A �= ∅ together with Ac �= ∅. We have
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shown in 2. that A∩[x,+∞[�= ∅ orA∩]−∞, x] �= ∅. If we assume
that B = A ∩ [x,+∞[ and B �= ∅, then b = inf B ∈ R and we
have proved in 4. that there exists ε > 0 such that ]b−ε, b+ε[⊆ B.
This is a contradiction. Indeed , since b− ε/2 < b, the fact that
b − ε/2 ∈ B contradicts the fact that b is a lower-bound of B.
So the only possible case is that C �= ∅ where C = A∩]−∞, x].
However, if c = supC, then a similar proof to that of 3. will show
that c ∈ C (in particular c ∈ R) and C being open in R, there
exists ε > 0 with ]c − ε, c + ε[⊆ C, leading to a contradiction.
Hence, we see that all possible cases lead to a contradiction. We
conclude that the initial assumption is absurd, i.e. that A = ∅
or A = R. So (R, TR) is a connected topological space, which
completes the proof of theorem (95).

Exercise 5
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Exercise 6.

1. Let (Ω, T ) be a topological space and A ⊆ Ω be a connected
subset of Ω. Let B be a subset of Ω such that A ⊆ B ⊆ Ā,
where Ā is the closure of A in Ω. Let V1, V2 be disjoint open
subsets of B such that B = V1 
 V2. From definition (23) of the
induced topology T|B, there exist U1, U2 open subsets of Ω such
that V1 = B ∩ U1 and V2 = B ∩ U2.

2. Since A ⊆ B, using 1. we have:

A = A ∩B
= A ∩ (V1 
 V2)
= A ∩ [(B ∩ U1) 
 (B ∩ U2)]
= (A ∩B ∩ U1) 
 (A ∩B ∩ U2)
= (A ∩ U1) 
 (A ∩ U2)

Now since U1, U2 are open subsets of Ω, A ∩ U1 and A ∩ U2 are
open subsets of A. Furthermore, since V1 and V2 are disjoint,
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we have V1 ∩ V2 = B ∩ U1 ∩ U2 = ∅. and in particular since
A ⊆ B, A∩U1∩U2 = ∅. So A∩U1 and A∩U2 are disjoint open
subsets of A with A = (A ∩ U1) 
 (A ∩ U2). Having assumed
that A is a connected subset of Ω, the topological space (A, T|A)
is connected and consequently using exercise (4), it follows that
A ∩ U1 = ∅ or A ∩ U2 = ∅.

3. Suppose that A ∩ U1 = ∅. Let x ∈ Ā. Then for all U open
subsets of Ω with x ∈ U , we have A∩U �= ∅. Hence, since U1 is
an open subset of Ω and A∩U1 = ∅, it is necessary that x �∈ U1.
So x ∈ U c1 and we have proved that Ā ⊆ U c1 .

4. Having assumed that B ⊆ Ā, it follows from 3. that B ⊆ U c1 ,
i.e. V1 = B ∩ U1 = ∅.

5. From 3. and 4. we have seen that if A ∩ U1 = ∅, then V1 = ∅.
Similarly, if A ∩ U2 = ∅, then V2 = ∅. However, we have shown
in 2. that A ∩ U1 = ∅ or A ∩ U2 = ∅. So V1 = ∅ or V2 = ∅.
Having considered B ⊆ Ω such that A ⊆ B ⊆ Ā, and V1, V2
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disjoint open subsets of B such that B = V1 
 V2, we have
proved that V1 = ∅ or V2 = ∅. From exercise (4), this shows
that the topological space (B, T|B) is connected, or equivalently
that B is a connected subset of Ω. Hence, if A is a connected
subset of Ω and A ⊆ B ⊆ Ā, then B is also a connected subset
of Ω. In particular, Ā is a connected subset of Ω.

Exercise 6
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Exercise 7. Let (Ω, T ) and (Ω′, T ′) be two topological spaces, and f
be a continuous map f : Ω → Ω′. We assume that (Ω, T ) is connected.
We claim that f(Ω) is a connected subset of Ω′, or equivalently that
the topological space (f(Ω), T ′

|f(Ω)) is connected. In order to prove
this, we shall use exercise (4) and consider A,B two disjoint open
subsets of f(Ω) such that f(Ω) = A 
 B. There exist U ′, V ′ open
subsets of Ω′ such that A = f(Ω) ∩U ′ and B = f(Ω)∩ V ′. Since f is
continuous, f−1(U ′) and f−1(V ′) are open subsets of Ω. Furthermore,
it is clear that:

f−1(U ′) = f−1(f(Ω) ∩ U ′) = f−1(A)

and similarly f−1(V ′) = f−1(B). So f−1(A) and f−1(B) are open
subsets of Ω. Since A and B are disjoint, f−1(A) and f−1(B) are
also disjoint. Since f(Ω) = A 
 B, for all x ∈ Ω we have f(x) ∈
A or f(x) ∈ B. So x ∈ f−1(A) or x ∈ f−1(B). It follows that
f−1(A) and f−1(B) are two disjoint open subsets of Ω, such that
Ω = f−1(A) 
 f−1(B). Since Ω is connected, from exercise (4) it
follows that f−1(A) = ∅ or f−1(B) = ∅. Suppose that f−1(A) = ∅.
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We claim that A = ∅. Otherwise there exists y ∈ A ⊆ f(Ω). Let
x ∈ Ω be such that y = f(x). Then f(x) ∈ A and consequently
x ∈ f−1(A) which contradicts f−1(A) = ∅. So f−1(A) = ∅ implies
that A = ∅, and similarly f−1(B) = ∅ implies that B = ∅. It follows
that A = ∅ or B = ∅. Having assumed that f(Ω) = A 
 B where
A,B are disjoint open subsets of f(Ω), we have proved that A = ∅
or B = ∅. From exercise (4), this shows that the topological space
(f(Ω), T ′

|f(Ω)) is connected, or equivalently that f(Ω) is a connected
subset of Ω′. This completes the proof of theorem (96).

Exercise 7
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Exercise 8.

1. Let A ⊆ R̄ and suppose that A is an interval. Let α = inf A
and β = supA. We claim that:

]α, β[⊆ A ⊆ [α, β]

If A = ∅, then α = +∞ and β = −∞, so there is nothing to
prove. So we assume that A �= ∅. Then there is x ∈ A, and
we have α ≤ x as well as x ≤ β. In particular, α ≤ β. Let
z ∈ A. Since α is a lower-bound of A, α ≤ z. Since β is an
upper-bound of A, z ≤ β. So z ∈ [α, β] and we have proved
that A ⊆ [α, β]. Suppose z ∈]α, β[. From α < z we see that z
cannot be a lower-bound of A (α is the greatest of such lower-
bounds). There exists x ∈ A such that α ≤ x < z. From z < β
we see that z cannot be an upper-bound of A. There exists
y ∈ A such that z < y ≤ β. From x < z < y we obtain in
particular z ∈ [x, y]. Since x, y ∈ A and A is assumed to be an
interval, it follows from definition (118) that z ∈ A. We have
proved that ]α, β[⊆ A.
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2. Let A ⊆ R̄. Suppose that A is of the form [α, β], [α, β[, ]α, β]
or ]α, β[ for some α, β ∈ R̄. Suppose there exist x, y ∈ A with
x ≤ y. Then for all z ∈ [x, y] we have x ≤ z ≤ y. If α ≤ x
then α ≤ z. If α < x then α < z. If y ≤ β then z ≤ β. If
y < β then z < β. In any case, we see that z ∈ A. This shows
that [x, y] ⊆ A for all x, y ∈ A, x ≤ y, and consequently from
definition (118), A is an interval. Note that A can be the empty
set without anything being flawed in the argument just given.
Conversely, suppose that A is an interval. From 1. we have:

]α, β[⊆ A ⊆ [α, β]

where α = inf A and β = supA. We shall distinguish four cases:
suppose α ∈ A and β ∈ A. Then:

[α, β] =]α, β[∪{α} ∪ {β} ⊆ A ⊆ [α, β]

and consequently A = [α, β]. Suppose α ∈ A and β �∈ A. Then:

[α, β[=]α, β[∪{α} ⊆ A ⊆ [α, β] \ {β} = [α, β[
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and consequently A = [α, β[. Suppose α �∈ A and β ∈ A. Then:

]α, β] =]α, β[∪{β} ⊆ A ⊆ [α, β] \ {α} =]α, β]

and consequently A =]α, β]. Finally suppose α �∈ A and β �∈ A:

]α, β[⊆ A ⊆ [α, β] \ {α, β} =]α, β[

and consequently A =]α, β[. Hence, we have proved that A is of
the form [α, β], [α, β[, ]α, β] or ]α, β[. Note that if A = ∅, there
is nothing flawed in the argument just given.

3. Let A =]−∞, α[ where α ∈ R. Consider φ : R →]−1, 1[ defined
by φ(x) = x/(1 + |x|). Then φ is a bijection with φ−1(y) =
y/(1 − |y|). Let ψ = φ|A be the restriction of φ to A. Then ψ
is injective, and it is therefore a bijection from A to ψ(A). We
claim that ψ(A) =] − 1, φ(α)[. Since |φ(x)| < 1 for all x ∈ R,
it is clear that ψ(A) ⊆] − 1, 1[. Since φ(x) = 1 − 1/(1 + x)
for x > 0 and φ(x) = 1 + 1/(1 − x) for x < 0, it is clear that
φ is increasing. So ψ(A) ⊆] − 1, φ(α)[. To show the reverse
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inclusion, consider y ∈] − 1, φ(α)[. Since φ−1 is also increasing,
from y < φ(α) we obtain φ−1(y) < α. Hence, φ−1(y) ∈ A and
y = ψ(φ−1(y)) ∈ ψ(A). We have proved that ψ(A) =]−1, φ(α)[
and ψ is consequently a bijection from A to ]−1, φ(α)[. Since φ is
continuous, ψ = φ|A is also continuous. Since φ−1 is continuous,
ψ−1 = (φ−1)|ψ(A) is also continuous. We conclude that ψ : A→
] − 1, φ(α)[ is a homeomorphism. We have proved that for all
α ∈ R, ]−∞, α[ is homeomorphic to ]− 1, α′[ for some α′ ∈ R.

4. Let A =]α,+∞[ where α ∈ R. Then if φ : R →]−, 1, 1[ is
defined as in 3. and ψ = φ|A, then ψ(A) =]φ(α), 1[ and ψ is
a homeomorphism from A to ]φ(α), 1[. Hence, for all α ∈ R,
]α,+∞[ is homeomorphic to ]α′, 1[ for some α′ ∈ R.

5. Let A =]α, β[, α, β ∈ R, α < β. Define φ :] − 1, 1[→]α, β[ by:

φ(x) = α+
β − α

2
(x+ 1)

Then it is easy to show that φ is a continuous bijection, and that
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φ−1 is continuous. So φ :] − 1, 1[→]α, β[ is a homeomorphism.

6. φ(x) = x/(1+ |x|) is a homeomorphism between R and ]−1, 1[.

7. Let A be a non-empty open interval in R, i.e. a non-empty
interval of R̄ which is an open subset of R. Being an interval,
from 2. it is of the form [α, β], [α, β[, ]α, β] or ]α, β[ for some
α, β ∈ R̄. Suppose A is of the form [α, β]. Being non-empty
with have α ≤ β. So α ∈ [α, β] ⊆ R. Being an open subset of
R, there exists ε > 0 such that ]α − ε, α+ ε[⊂ [α, β]. This is a
contradiction since α ∈ R. So A cannot be of the form [α, β]
and we prove similarly that it cannot be of the form [α, β[ and
]α, β] either. So A is of the form ]α, β[ for some α, β ∈ R̄, α < β.
Suppose α = −∞ and β = +∞. Then A = R which is clearly
homeomorphic to R. Suppose α = −∞ and β ∈ R. Then from
3. A is homeomorphic to ] − 1, α′[ for some α′ ∈ R, which is
itself homeomorphic to ]− 1, 1[, as we have proved in 5. Having
proved in 6. that ] − 1, 1[ is homeomorphic to R, we conclude
that A is homeomorphic to R. Suppose α ∈ R and β = +∞.
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Then from 4. 5. and 6. we see that A is homeomorphic to R.
Suppose α ∈ R and β ∈ R. Then from 5. and 6. we see that A
is homeomorphic to R. Hence, in all possible cases, we see that
A is homeomorphic to R. We have proved that any non-empty
open interval in R is homeomorphic to R.

8. Let A be an open interval of R. If A = ∅, then the induced
topology on A is reduced to {∅}, and (∅, {∅}) is a connected
topological space. So A is a connected subset of R. If A �= ∅,
then from 7. A is homeomorphic to R. In particular, there
exists f : R → A which is continuous and surjective. From
theorem (95), R is connected. Since f is continuous, from theo-
rem (96) f(R) is a connected subset of A. Since f is surjective,
f(R) = A and consequently A is connected. We have proved
that any open interval of R is a connected subset of R.

9. Let A be an interval of R, i.e. an interval of R̄ with A ⊆ R. If
A = ∅ then A is connected. So we assume that A �= ∅. From 1.
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there exist α, β ∈ R̄ such that:

]α, β[⊆ A ⊆ [α, β]

and since A �= ∅ we have α ≤ β. Since ]α, β[ is an open interval
in R, from 8. it is a connected subset of R. Suppose α = −∞
and β = +∞. Then A = R and:

]α, β[⊆ A ⊆]α, β[= ]α, β[

Suppose α = −∞ and β ∈ R. Since A ⊆ R we have:

]α, β[⊆ A ⊆]α, β] = ]α, β[

Suppose α ∈ R and β = +∞. Then:

]α, β[⊆ A ⊆ [α, β[= ]α, β[

And finally suppose that α, β ∈ R. Then:

]α, β[⊆ A ⊆ [α, β] = ]α, β[
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It follows that ]α, β[⊆ A ⊆ ]α, β[ in all possible cases, where
]α, β[ denotes the closure of ]α, β[ in R. Having proved that
]α, β[ is a connected subset of R, from exercise (6) we conclude
that A is a connected subset of R. We have proved that any
interval in R is a connected subset of R.

Exercise 8
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Exercise 9.

1. LetA ⊆ R be a non-empty connected subset of R. Let α = inf A
and β = supA. We assume that there exists x0 ∈ Ac∩]α, β[. In
particular, we have x0 ∈ Ac and consequently, since A ⊆ R:

A = (A∩] −∞, x0[) 
 (A∩]x0,+∞[) (2)

However, ] −∞, x0[ and ]x0,+∞[ being open subsets of R, the
sets A∩] −∞, x0[ and A∩]x0,+∞[ are open in A, and they are
clearly disjoint. Since A is connected, it follows from exercise (4)
that A∩] −∞, x0[= ∅ or A∩]x0,+∞[= ∅.

2. Suppose A∩]x0,+∞[= ∅. From (2) we have A = A∩] −∞, x0[,
and consequently x0 is an upper-bound of A. Since β is the
smallest of such upper-bounds, we obtain β ≤ x0 contradicting
x0 ∈]α, β[.

3. Similarly, if A∩]−∞, x0[= ∅, then x0 is a lower-bound of A and
consequently x0 ≤ α contradicting x0 ∈]α, β[. We have seen
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in 1. that A∩]−∞, x0[= ∅ or A∩]x0,+∞[= ∅. However, both of
these cases lead to a contradiction. We conclude that our initial
assumption was absurd, i.e. that there exists no x0 in Ac∩]α, β[.
In other words, Ac∩]α, β[= ∅ or equivalently ]α, β[⊆ A. The fact
that A ⊆ [α, β] follows immediately from the fact that α and β
are respectively a lower-bound and an upper-bound of A. We
have proved that ]α, β[⊆ A ⊆ [α, β].

4. Let A ⊆ R. Suppose that A is a connected subset of R. If
A = ∅ then in particular A is an interval, as can be seen from
definition (118). If A �= ∅, then A is a non-empty connected
subset of R, and we have just proved that ]α, β[⊆ A ⊆ [α, β]
where α = inf A and β = supA. In a similar fashion to 2.
of exercise (8) (depending on whether α, β lie in A or not), we
conclude that A is of the form [α, β], [α, β[, ]α, β] or ]α, β[. From
this same exercise, this is equivalent to A being an interval. So
any connected subset of R is an interval. Conversely, suppose
that A is an interval of R. Then from exercise (8), A is a
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connected subset of R. We have proved that for all A ⊆ R, A
is connected, if and only if A is an interval. This completes the
proof of theorem (97).

Exercise 9
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Exercise 10. Let f : Ω → R be a continuous map, where (Ω, T ) is
a connected topological space. Let a, b ∈ Ω with f(a) ≤ f(b). From
theorem (96), f(Ω) is a connected subset of R. From theorem (97),
f(Ω) is therefore an interval of R. Since f(a), f(b) are elements of
f(Ω) and f(a) ≤ f(b), it follows from definition (118) that for all
z ∈ [f(a), f(b)] we have z ∈ f(Ω). So there exists x ∈ Ω such that
z = f(x). This completes the proof of theorem (98).

Exercise 10
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Exercise 11.

1. Let a, b ∈ R, a < b. Let f : [a, b] → R be a map such that f ′(x)
exists for all x ∈ [a, b]. Note in particular that f is continuous
and therefore measurable. For all n ≥ 1, let φn : [a, b] → [a, b]:

∀x ∈ [a, b] , φn(x) =

{
x+ (b−x)

n , if x ∈ [a, b[
b− (b−a)

n , if x = b

Then φn is well-defined on [a, b] and has indeed values in [a, b].
The particular definition of φn is however not very important.
What we need to note is that φn is Borel measurable, satisfies
φn(x) → x while φn(x) �= x for all x ∈ [a, b]. Given n ≥ 1, we
now define gn : [a, b] → R as:

∀x ∈ [a, b] , gn(x) =
f ◦ φn(x) − f(x)

φn(x) − x

Then gn : ([a, b],B([a, b])) → (R,B(R)) is well-defined and mea-
surable, and furthermore gn(x) → f ′(x) for all x ∈ [a, b]. It fol-
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lows that f ′ is the pointwise limit of the sequence (gn)n≥1, and
we conclude from theorem (17) that f ′ is itself Borel measurable.

2. Since f ′ is measurable and R-valued, the condition:∫ b

a

|f ′(t)|dt < +∞

is equivalent to f ′ ∈ L1
R([a, b],B([a, b]), dx).

3. We assume that f ′ ∈ L1
R([a, b],B([a, b]), dx). Let ε > 0. The

topological space [a, b] is metrizable and compact, and in partic-
ular σ-compact. The Lebesgue measure dx on [a, b] is finite, and
in particular locally finite. Since f ′ ∈ L1

R([a, b],B([a, b]), dx), we
can apply Vitali-Caratheodory theorem (94): there exists mea-
surable maps u, v : [a, b] → R̄ which are almost surely equal to
elements of L1, such that u ≤ f ′ ≤ v, u is u.s.c, v is l.s.c and
furthermore: ∫ b

a

(v(t) − u(t))dt ≤ ε
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In particular, denoting g = v, we have found g : [a, b] → R̄
almost surely equal to an element of L1, such that f ′ ≤ g and g
is l.s.c. Note that the integral

∫ b
a
g(t)dt is meaningful, and:∫ b

a

g(t)dt =
∫ b

a

(f ′(t) + g(t) − f ′(t))dt

=
∫ b

a

f ′(t)dt+
∫ b

a

(g(t) − f ′(t))dt

≤
∫ b

a

f ′(t)dt+
∫ b

a

(v(t) − u(t))dt

≤
∫ b

a

f ′(t)dt+ ε

4. Let α > 0. Since f ′ ≤ g we have f ′ < g + α. Indeed, suppose
f ′(x) = g(x) + α, x ∈ [a, b]. Then f ′(x) = g(x) = g(x) + α and
consequently g(x) ∈ {−∞,+∞} contradicting the fact that f ′

is R-valued. Having proved that f ′ < g + α, note that g + α is
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also a lower-semi-continuous map, which furthermore is almost
surely equal to an element of L1, since the Lebesgue measure
on [a, b] is finite. Furthermore, we have:∫ b

a

(g + α)(t)dt =
∫ b

a

g(t)dt+ α(b − a)

≤
∫ b

a

f ′(t)dt+ ε+ α(b − a)

Hence, taking α > 0 small enough, it is possible to achieve:∫ b

a

(g + α)(t)dt ≤
∫ b

a

f ′(t)dt + 2ε

Replacing g by g+α, we have found g : [a, b] → R̄ almost surely
equal to an element of L1, which is l.s.c. and satisfies f ′ < g
together with: ∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt+ 2ε
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Since ε > 0 was arbitrary, it is possible to find g such that:∫ b

a

g(t)dt ≤
∫ b

a

f ′(t)dt+ ε

In other words, without loss of generality, we have been able to
find a map g as in 3., with the additional condition f ′ < g.

5. Let ν be the complex measure defined by ν =
∫
gdx. Note that

strictly speaking, g is not an element of L1 (it may have values
in {−∞,+∞}). If h is an element of L1

R([a, b],B([a, b]), dx) such
that g = h dx-almost surely, then for all E ∈ B([a, b]), ν(E) is
defined as:

ν(E) =
∫
E

h(x)dx

Note that ν is in fact a signed measure (i.e. a complex mea-
sure with values in R). Since dx(E) = 0 implies ν(E) = 0, the
measure ν is absolutely continuous with respect to the Lebesgue
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measure on [a, b]. From theorem (58), we have:

∀ε′ > 0 , ∃δ > 0 , ∀E ∈ B([a, b]) , dx(E) ≤ δ ⇒ |ν(E)| ≤ ε′

6. Let η > 0 and x ∈ [a, b]. We define:

Fη(x) =
∫ x

a

g(t)dt− f(x) + f(a) + η(x− a)

Then Fη : [a, b] → R is well-defined, and we claim that it is con-
tinuous. It is sufficient to show that x→

∫ x
a g(t)dt is continuous.

Let ε′ > 0 be given, and consider δ > 0 such that the state-
ment of 5. is satisfied. Let u, u′ ∈ [a, b] such that |u′ − u| ≤ δ.
Without loss of generality, we may assume that u ≤ u′. Then
dx(]u, u′]) ≤ δ and consequently from 5., |ν(]u, u′])| ≤ ε′. So:∣∣∣∣∣
∫ u′

a

g(t)dt−
∫ u

a

g(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫

[a,u′]
g(t)dt−

∫
[a,u]

g(t)dt

∣∣∣∣∣
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=

∣∣∣∣∣
∫

]u,u′]
g(t)dt

∣∣∣∣∣ = |ν(]u, u′])| ≤ ε′

This shows that x →
∫ x
a g(t)dt is indeed continuous on [a, b]

(in fact uniformly continuous), and Fη : [a, b] → R is indeed a
continuous map.

7. Given η > 0, let x = supF−1
η ({0}). It is clear that Fη(a) = 0

and consequently a ∈ F−1
η ({0}). So a ≤ x. Since F−1

η ({0}) ⊆
[a, b], in particular b is an upper-bound of F−1

η ({0}). So x ≤ b.
We have proved that x ∈ [a, b]. In particular, x ∈ R and for all
n ≥ 1 we have x− 1/n < x. Since x is the lowest upper-bound
of F−1

η ({0}), x − 1/n cannot be such an upper-bound. There
exists xn ∈ F−1

η ({0}) such that x−1/n < xn ≤ x. We have thus
constructed a sequence (xn)n≥1 in F−1

η ({0}) such that xn → x
as n→ +∞. Since Fη(xn) = 0 for all n ≥ 1, from the continuity
of Fη we obtain Fη(x) = 0.

8. Suppose x ∈ [a, b[. Having proved in 4. that f ′ < g, in particular
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f ′(x) < g(x). Since g is l.s.c, the set {f ′(x) < g} is an open
subset of [a, b], which contains x. Hence, there exists δ1 > 0
such that:

]x− δ1, x+ δ1[∩[a, b] ⊆ {f ′(x) < g}

In particular we have:

t ∈]x, x + δ1[∩[a, b] ⇒ f ′(x) < g(t)

Furthermore, by definition of the derivative f ′(x), since η > 0,
there exists δ2 > 0 such that:

t ∈]x − δ2, x+ δ2[∩[a, b], t �= x ⇒
∣∣∣∣f(t) − f(x)

t− x
− f ′(x)

∣∣∣∣ < η

In particular, we have:

t ∈]x, x + δ2[∩[a, b] ⇒ f(t) − f(x)
t− x

< f ′(x) + η
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Taking δ = min(δ1, δ2), for all t ∈]x, x + δ[∩[a, b] we have:

f ′(x) < g(t) and
f(t) − f(x)

t− x
< f ′(x) + η

Note that this conclusion is not very interesting if x = b, which
is why we have assumed x ∈ [a, b[.

9. Let t ∈]x, x + δ[∩[a, b]. Using 8. we have:

Fη(t) =
∫ t

a

g(u)du− f(t) + f(a) + η(t− a)

= Fη(x) +
∫ t

x

g(u)du+ f(x) − f(t) + η(t− x)

> Fη(x) +
∫ t

x

g(u)du− f ′(x)(t − x)

≥ Fη(x) +
∫ t

x

f ′(x)du − f ′(x)(t − x)

= Fη(x) = 0
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10. From 9. we have found δ > 0 such that Fη(t) > 0 for all t in
the set ]x, x+ δ[∩[a, b]. Having assumed in 8. that x ∈ [a, b[, in
particular x < b. So it is possible to find t0 ∈]x, b[ such that
t0 ∈]x, x + δ[∩[a, b]. In particular Fη(t0) > 0. We have proved
the existence of t0 ∈]x, b[ such that Fη(t0) > 0.

11. Suppose Fη(b) < 0. From 10. we have t0 ∈]x, b[ such that
Fη(t0) > 0. From 6. the map Fη : [a, b] → R is continuous.
Let h = (Fη)|[t0,b] be the restriction of Fη to the interval [t0, b].
Then h is also continuous. From theorem (97), [t0, b] is a con-
nected topological space. Since 0 ∈ [Fη(b), Fη(t0)], from the-
orem (98) there exists u ∈ [t0, b] such that Fη(u) = 0. Since
x = supF−1

η ({0}), in particular u ≤ x. Hence, we obtain the
contradiction x < t0 ≤ u ≤ x.

12. From 11. we see that Fη(b) ≥ 0 must be true when x ∈ [a, b[.
Having proved in 7. that Fη(x) = 0, if x = b, Fη(b) = 0 and in
particular Fη(b) ≥ 0 is still true. So Fη(b) ≥ 0 in all cases.
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13. From Fη(b) ≥ 0 we obtain:∫ b

a

g(t)dt− f(b) + f(a) + η(b − a) ≥ 0

This being true for all η > 0, we have:

f(b) − f(a) ≤
∫ b

a

g(t)dt

Hence, using 3. we obtain:

f(b) − f(a) ≤
∫ b

a

f ′(t)dt+ ε

and this being true for all ε > 0, we have proved that:

f(b) − f(a) ≤
∫ b

a

f ′(t)dt (3)

Having considered a, b ∈ R, a < b and f : [a, b] → R a map
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such that f ′(x) exists for all x ∈ [a, b] and:∫ b

a

|f ′(t)|dt < +∞

we have been able to prove inequality (3). Applying this result
to −f instead of f , we obtain:∫ b

a

f ′(t)dt ≤ f(b) − f(a)

and finally we conclude that:

f(b) − f(a) =
∫ b

a

f ′(t)dt

This completes the proof of theorem (99).

Exercise 11
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Exercise 12.

1. Let α > 0 and kα : Rn → Rn defined by kα(x) = αx. Then kα
is continuous, and in particular Borel measurable.

2. Let μ : B(Rn) → [0,+∞] be defined by:

∀B ∈ B(Rn) , μ(B) = αndx({kα ∈ B})
where dx is the Lebesgue measure on Rn. Note that μ is well-
defined since {kα ∈ B} is a Borel set for all B ∈ B(Rn), kα
being measurable. It is clear that μ(∅) = 0 and furthermore, if
(Bp)p≥1 is sequence of pairwise disjoint elements of B(Rn) and
B = 
p≥1Bp, we have:

μ(B) = αndx

⎛
⎝k−1

α

⎛
⎝⊎
p≥1

Bp

⎞
⎠
⎞
⎠
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= αndx

⎛
⎝⊎
p≥1

k−1
α (Bp)

⎞
⎠

= αn

(
+∞∑
p=1

dx(k−1
α (Bp))

)

=
+∞∑
p=1

αndx({kα ∈ Bp})

=
+∞∑
p=1

μ(Bp)

So μ is a measure on Rn. Let ai, bi ∈ R, ai ≤ bi for i ∈ Nn.
For all x = (x1, . . . , xn) ∈ Rn the inequality ai ≤ αxi ≤ bi is
equivalent to ai/α ≤ xi ≤ bi/α. Hence:

μ([a1, b1] × . . .× [an, bn]) = αndx

({
αx ∈

n∏
i=1

[ai, bi]

})
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= αndx

(
n∏
i=1

[
ai
α
,
bi
α

])

= αn
n∏
i=1

(
bi
α

− ai
α

)

=
n∏
i=1

(bi − ai)

From the uniqueness property of definition (63) we conclude
that μ = dx. Hence, we have proved that for all B ∈ B(Rn):

dx({kα ∈ B}) =
1
αn

μ(B) =
1
αn

dx(B)

3. Let ε > 0 and x ∈ Rn. Let B(x, ε) be the open ball:

B(x, ε) = {y ∈ Rn : ‖x− y‖ < ε}
where ‖ · ‖ denotes the usual Euclidean norm on Rn. Given
u ∈ Rn we consider τu : Rn → Rn the translation mapping of
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vector u defined by τu(x) = u+x. Then τu is clearly continuous,
hence Borel measurable. Furthermore, for all a, b ∈ Rn such
that ai ≤ bi for all i ∈ Nn, we have:

dx

({
τu ∈

n∏
i=1

[ai, bi]

})
= dx

(
n∏
i=1

[ai − ui, bi − ui]

)

=
n∏
i=1

(bi − ai)

and in a similar fashion to 2. we conclude from the uniqueness
property of definition (63) that for all B ∈ B(Rn):

dx({τu ∈ B}) = dx(B)

This equality expresses the idea that the Lebesgue measure is
invariant by translation. We shall see more on the subject in
Tutorial 17. In the meantime, using 2. we obtain:

dx(B(x, ε)) = dx({τ−x ∈ B(0, ε)})
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= dx(B(0, ε))
= dx({k1/ε ∈ B(0, 1)})
= εndx(B(0, 1))

So we have proved that dx(B(x, ε)) = εndx(B(0, 1)).

Exercise 12
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Exercise 13.

1. Let μ be a complex measure on Rn. Let λ ∈ R and suppose that
λ < 0. Let x ∈ Rn and ε > 0. Since B(x, ε) is an open subset of
Rn, in particular it is a Borel subset of Rn. So |μ|(B(x, ε)) and
dx(B(x, ε)) are well-defined quantities of [0,+∞]. In fact, from
theorem (57), the total variation |μ| is a finite measure on Rn,
so |μ|(B(x, ε)) is an element of R+ (this is not relevant to the
present question, but the fact that |μ| is a finite measure should
not be forgotten). From the inclusions:

[−1/2
√
n, 1/2

√
n]n ⊆ B(0, 1) ⊆ [−1, 1]n

we obtain the crude estimates:(
1√
n

)n
≤ dx(B(0, 1)) ≤ 2n

and it follows from 3. of exercise (12) that dx(B(x, ε)) is an
element of ]0,+∞[. Hence, we see that |μ|(B(x, ε))/dx(B(x, ε))
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is a well-defined element of R+. Since (Mμ)(x) is an upper-
bound of all such ratios for ε > 0, we have:

λ < 0 ≤ |μ|(B(x, ε))
dx(B(x, ε))

≤ (Mμ)(x)

So x ∈ {λ < Mμ}. This being true for all x ∈ Rn, we conclude
that {λ < Mμ} = Rn.

2. Suppose λ = 0 and μ �= 0. There exists E ∈ B(Rn) such that
μ(E) �= 0. Since |μ(E)| ≤ |μ|(E), in particular |μ|(E) > 0. Let
x ∈ Rn. Since B(x, p) ↑ Rn as p→ +∞, from theorem (7):

0 < |μ|(E) = lim
p→+∞ |μ|(E ∩B(x, p))

In particular, there exists p ≥ 1 such that |μ|(E ∩B(x, p)) > 0
and consequently |μ|(B(x, p)) > 0. Hence, we have:

0 <
|μ|(B(x, p))
dx(B(x, p))

≤ (Mμ)(x)
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and we have proved that x ∈ {λ < Mμ} = {0 < Mμ}. This
being true for all x ∈ Rn, we have {λ < Mμ} = Rn. Suppose
now that λ = 0 with μ = 0. Then |μ| = 0 and it is clear that
(Mμ)(x) = 0 for all x ∈ Rn. So {λ < Mμ} = ∅.

3. Suppose λ > 0. Let x ∈ {λ < Mμ}. Then λ < (Mμ)(x). Since
(Mμ)(x) is the smallest upper-bound of all ratios:

|μ|(B(x, ε))/dx(B(x, ε))

as ε > 0, λ cannot be such an upper-bound. There exists ε > 0
such that λ < |μ|(B(x, ε))/dx(B(x, ε)). Defining:

t = |μ|(B(x, ε))/dx(B(x, ε))

we have t > λ and |μ|(B(x, ε)) = tdx(B(x, ε)).

4. Since 1 < t/λ we have εn < εnt/λ. Furthermore, it is clear that
limδ↓0(ε+ δ)n = εn. Hence, we have (ε+ δ)n < εnt/λ, for δ > 0
small enough.
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5. Suppose y ∈ B(x, δ) and let z ∈ B(x, ε). Then:

‖z − y‖ ≤ ‖z − x‖ + ‖x− y‖ < ε+ δ

So z ∈ B(y, ε+δ) and we have proved that B(x, ε) ⊆ B(y, ε+δ).

6. Let y ∈ B(x, δ). Since B(x, ε) ⊆ B(y, ε+ δ), we have:

|μ|(B(y, ε+ δ)) ≥ |μ|(B(x, ε))
= tdx(B(x, ε))
= εntdx(B(0, 1))

=
εnt

(ε+ δ)n
dx(B(y, ε+ δ))

> λdx(B(y, ε + δ))

where the second and third equalities stem from exercise (12).

7. For all y ∈ B(x, δ), from 6. we have:

λ <
|μ|(B(y, ε+ δ))
dx(B(y, ε+ δ))

≤ (Mμ)(y)
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So in particular y ∈ {λ < Mμ} and we have proved that
B(x, δ) ⊆ {λ < Mμ}. Having considered x ∈ {λ < Mμ} we
have found δ > 0 such that B(x, δ) ⊆ {λ < Mμ}. This shows
that {λ < Mμ} is an open subset of Rn, for all λ ∈ R with
λ > 0. In fact, it follows from 1. and 2. that {λ < Mμ} is
also open if λ ≤ 0. We conclude that {λ < Mμ} is open for
all λ ∈ R, i.e. that the maximal function Mμ is lower-semi-
continuous. In particular, {λ < Mμ} is a Borel subset of Rn

for all λ ∈ R and from theorem (15), Mμ is measurable.

Exercise 13
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Exercise 14.

1. Let Bi = B(xi, εi), i = 1, . . . , N , be a finite collection of open
balls in Rn where we have assumed that εN ≤ . . . ≤ ε1. We
define J0 = {1, . . . , N} and for all k ≥ 1:

Jk
�
=
{
Jk−1 ∩ {j : j > ik , Bj ∩Bik = ∅} if Jk−1 �= ∅
∅ if Jk−1 = ∅

where ik = minJk−1 if Jk−1 �= ∅. Suppose k ≥ 1 and Jk−1 �= ∅.
The fact that Jk ⊆ Jk−1 is clear. However, the inclusion is strict.
Indeed, since ik = minJk−1, in particular ik ∈ Jk−1. However,
it is clear that ik �∈ Jk. We have proved that Jk ⊂ Jk−1.

2. Since (Jk)k≥0 is a strictly decreasing sequence (in the inclusion
sense) and J0 is a finite set, there exists k ≥ 1 such that Jk = ∅.
It follows that p = min{k ≥ 1 : Jk = ∅}, as the smallest element
of a non-empty subset of N, is well-defined.

3. Let S = {i1, . . . , ip} where ik = min Jk−1 for all k ≥ 1 with
Jk−1 �= ∅. In order to show that S is well-defined, we need to

www.probability.net

http://www.probability.net


Solutions to Exercises 100

ensure that ik is meaningful for k ∈ Np, i.e. that Jk−1 �= ∅.
But if k ∈ Np and Jk−1 = ∅, since p is the smallest element of
{k ≥ 1 : Jk = ∅} we obtain p ≤ k − 1 and k ≤ p which is a
contradiction. So S is well-defined.

4. Suppose 1 ≤ k < k′ ≤ p. We have ik′ ∈ Jk′−1 ⊆ Jk. So ik′ ∈ Jk.

5. The family (Bi)i∈S is a family of open balls. Suppose i, j ∈ S
with i < j. There exist 1 ≤ k < k′ ≤ p such that i = ik and
j = ik′ . From 4. we have j ∈ Jk. This implies in particular
that Bj ∩ Bik = ∅. So Bj ∩ Bi = ∅, and (Bi)i∈S is a family of
pairwise disjoint open balls.

6. Let i ∈ {1, . . . , N} \ S and k0 = min{k ∈ Np : i �∈ Jk}. In
order to show that k0 is well-defined, we need to check that
{k ∈ Np : i �∈ Jk} is not empty. This is clear from the fact that
Jp = ∅. So k0 is well-defined. Note that this conclusion holds
for any i ∈ {1, . . . , N}.
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7. k0 being the smallest element of {k ∈ Np : i �∈ Jk}, k0 − 1 does
not lie in this set. So either k0 − 1 = 0 or i ∈ Jk0−1. Since
J0 = {1, . . . , N}, in any case we have i ∈ Jk0−1. In particular
Jk0−1 �= ∅. So ik0 is defined as the smallest element of Jk0−1.
From i ∈ Jk0−1 we obtain ik0 ≤ i.

8. Since Jk0−1 �= ∅, we have:

Jk0 = Jk0−1 ∩ {j : j > ik0 , Bj ∩Bik0
= ∅}

k0 being the smallest element of {k ∈ Np : i �∈ Jk}, in particular
it is an element of this set and consequently we know that i �∈
Jk0 . However, we have proved in 7. that i ∈ Jk0−1. Furthermore,
we know that ik0 ≤ i and since by assumption i ∈ {1, . . . , N}\S,
in particular i is not an element of S. So i �= ik0 and therefore
ik0 < i. Since i �∈ Jk0 we conclude that Bi ∩Bik0

�= ∅.

9. From 8. we have Bi ∩Bik0
= B(xi, εi)∩B(xik0

, εik0
) �= ∅. Let x

be an arbitrary element of Bi ∩Bik0
. Then for all y ∈ Bi, since
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ik0 < i and εN ≤ . . . ≤ ε1, we have:

‖y − xik0
‖ ≤ ‖y − xi‖ + ‖xi − x‖ + ‖x− xik0

‖
< εi + εi + εik0

≤ 3εik0

So y ∈ B(xik0
, 3εik0

) and we have proved Bi ⊆ B(xik0
, 3εik0

).

10. For all i ∈ {1, . . . , N} \ S, we found k0 ∈ Np such that Bi ⊆
B(xik0

, 3εik0
). In other words, if we denote j(i) = ik0 , there

exists some j(i) ∈ S such that we have Bi ⊆ B(xj(i), 3εj(i)).
Hence:

N⋃
i=1

B(xi, εi) =
⋃
i∈S

B(xi, εi) ∪

⎛
⎝⋃
i�∈S

B(xi, εi)

⎞
⎠

⊆
⋃
i∈S

B(xi, εi) ∪

⎛
⎝⋃
i�∈S

B(xj(i), 3εj(i))

⎞
⎠
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⊆
⋃
i∈S

B(xi, εi) ∪
(⋃
i∈S

B(xi, 3εi)

)

=
⋃
i∈S

B(xi, 3εi)

So S = {i1, . . . , ip} is a subset of {1, . . . , N} such that (Bi)i∈S
is a family of pairwise disjoint open balls, and:

N⋃
i=1

B(xi, εi) ⊆
⋃
i∈S

B(xi, 3εi)

11. Using 10. and exercise (12), we have:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ dx

(⋃
i∈S

B(xi, 3εi)

)

≤
∑
i∈S

dx(B(xi, 3εi))
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=
∑
i∈S

3nεni dx(B(0, 1))

= 3n
∑
i∈S

dx(B(xi, εi))

where the second inequality stems from the fact that a mea-
sure is always sub-additive, as can be seen from exercise (13) of
Tutorial 5.

Exercise 14
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Exercise 15.

1. Let μ be a complex measure on Rn. Let λ > 0 and K be a
non-empty compact subset of {λ < Mμ}. Let x ∈ K. Then
x ∈ {λ < Mμ}, i.e. λ < (Mμ)(x). Since (Mμ)(x) is the
smallest upper-bound of all ratios:

|μ|(B(x, ε))/dx(B(x, ε))

as ε > 0, it is impossible for λ to be such an upper-bound. There
exists εx > 0 such that:

λ <
|μ|(B(x, εx))
dx(B(x, εx))

(4)

Now it is clear that K ⊆ ∪x∈KB(x, εx). Since K is compact,
there exist N ≥ 1 and x1, . . . , xN ∈ K such that:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xN , εxN )

Defining εi = εxi and Bi = B(xi, εi), the collection (Bi)i∈NN

is therefore a covering of K. From (4), for all i = 1, . . . , N we
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have λdx(Bi) < |μ|(Bi).

2. By re-indexing the Bi’s if necessary, without loss of generality
we can assume that εN ≤ . . . ≤ ε1. From exercise (14), there
exists a subset S of {1, . . . , N} such that the Bi’s for i ∈ S are
pairwise disjoint, and furthermore:

dx

(
N⋃
i=1

B(xi, εi)

)
≤ 3n

∑
i∈S

dx(B(xi, εi))

Hence, since K ⊆ ∪Ni=1Bi, using 1. we obtain:

dx(K) ≤ dx

(
N⋃
i=1

B(xi, εi)

)

≤ 3n
∑
i∈S

dx(B(xi, εi))

< 3n
∑
i∈S

1
λ
|μ|(B(xi, εi))
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=
3n

λ
|μ|
(⋃
i∈S

B(xi, εi)

)

where the last equality stems from the fact that all the Bi’s,
i ∈ S, are pairwise disjoint. We have effectively obtained a
strict inequality, when only a large inequality was required.

3. Let ‖μ|| = |μ|(Rn) < +∞ be the total mass of |μ|. From 2.:

dx(K) ≤ 3nλ−1|μ|
(⋃
i∈S

B(xi, εi)

)
≤ 3nλ−1‖μ||

4. Having considered a complex measure μ on Rn, with maximal
function Mμ, given λ ∈ R+ \ {0}, for all K non-empty compact
subset of {λ < Mμ}, we have proved that:

dx(K) ≤ 3nλ−1‖μ‖
Note that this inequality is still valid if K = ∅. The Lebesgue
measure on Rn being locally finite, from theorem (74) it is inner-
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regular. In particular, we have:

dx({λ < Mμ}) = sup{dx(K) : K ⊆ {λ < Mμ},K compact}

In other words, dx({λ < Mμ}) is the smallest upper-bound of
all dx(K)’s, as K runs through the set of all compact subsets
of {λ < Mμ}. Having proved that 3nλ−1‖μ‖ is one of those
upper-bounds, we conclude that:

dx({λ < Mμ}) ≤ 3nλ−1‖μ‖
This completes the proof of theorem (100).

Exercise 15
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Exercise 16.

1. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. From theorem (63), μ =∫

fdx is a well-defined complex measure on Rn, and its total
variation |μ| is given by |μ| =

∫
|f |dx. From definition (120),

the maximal function Mf of f is exactly the maximal function
Mμ of μ. Hence, for all x ∈ Rn:

(Mf)(x) = (Mμ)(x)

= sup
ε>0

|μ|(B(x, ε))
dx(B(x, ε))

= sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|f |dx

2. If μ =
∫
fdx then |μ| =

∫
|f |dx and consequently:

‖μ‖ = |μ|(Rn) =
∫
Rn

|f |dx = ‖f‖1
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Applying theorem (100) to μ, for all λ > 0 we obtain:

dx({λ < Mf}) = dx({λ < Mμ})
≤ 3nλ−1‖μ‖
= 3nλ−1‖f‖1

Exercise 16
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Exercise 17.

1. Let f ∈ L1
C(Rn,B(Rn), dx), n ≥ 1. Let x ∈ Rn. We assume

that f is continuous at x. Let η > 0. There is δ > 0 such that:

∀y ∈ Rn , ‖x− y‖ ≤ δ ⇒ |f(x) − f(y)| ≤ η

Suppose ε > 0 is such that 0 < ε < δ. Then:

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy ≤ 1
dx(B(x, ε))

∫
B(x,ε)

ηdy = η

We conclude that:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = 0

and x is therefore a Lebesgue point of f .

2. Let x ∈ Rn. We assume that x is a Lebesgue point of f . For
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all ε > 0, denoting Bε = B(x, ε) we have:∣∣∣∣ 1
dx(Bε)

∫
Bε

f(y)dy − f(x)
∣∣∣∣ =

∣∣∣∣ 1
dx(Bε)

∫
Bε

(f(y) − f(x))dy
∣∣∣∣

≤ 1
dx(Bε)

∫
Bε

|f(y) − f(x)|dy

Hence, from:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = 0

we conclude that:

f(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

f(y)dy

Exercise 17
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Exercise 18.

1. Given f ∈ L1
C(Rn,B(Rn), dx), for all ε > 0 and x ∈ Rn, let:

(Tεf)(x) =
1

dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy

and:
(Tf)(x) = inf

ε>0
sup
u∈]0,ε[

(Tuf)(x)

From theorem (79), the space CcC(Rn) of continuous C-valued
functions defined on Rn with compact support, is dense in L1.
Given η > 0, there exists g ∈ CcC(Rn) such that ‖f − g‖1 ≤ η.

2. Let h = f − g. For all ε > 0 and x ∈ Rn we have:

(Tεh)(x) =
1

dx(B(x, ε))

∫
B(x,ε)

|h(y) − h(x)|dy

≤ 1
dx(B(x, ε))

∫
B(x,ε)

(|h(y)| + |h(x)|)dy
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=
1

dx(B(x, ε))

∫
B(x,ε)

|h(y)|dy + |h(x)|

=
1

dx(B(x, ε))

∫
B(x,ε)

|h|dx+ |h(x)|

3. Let x ∈ Rn. From exercise (16) we have:

(Mh)(x) = sup
ε>0

1
dx(B(x, ε))

∫
B(x,ε)

|h|dx

In particular, for all ε > 0, from 2. we obtain:

(Tεh)(x) ≤ (Mh)(x) + |h(x)|

Hence, if ε > 0 is given, (Mh)(x) + |h(x)| is an upper-bound of
all (Tuh)(x) as u ∈]0, ε[. It follows that:

sup
u∈]0,ε[

(Tuh)(x) ≤ (Mh)(x) + |h(x)|
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and we have:

(Th)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tuh)(x)

≤ sup
u∈]0,ε[

(Tuh)(x)

≤ (Mh)(x) + |h(x)|
This being true for all x ∈ Rn, Th ≤Mh+ |h|.

4. Let x ∈ Rn and ε > 0. Let Bε = B(x, ε). Then:

(Tεf)(x) =
1

dx(Bε)

∫
Bε

|f(y) − f(x)|dy

=
1

dx(Bε)

∫
Bε

|g(y) − g(x) + h(y) − h(x)|dy

≤ 1
dx(Bε)

(∫
Bε

|g(y) − g(x)|dy +
∫
Bε

|h(y) − h(x)|dy
)

= (Tεg)(x) + (Tεh)(x)
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This being true for all x ∈ Rn, Tεf ≤ Tεg + Tεh.

5. Let x ∈ Rn. Let ε1, ε2 > 0 be given and ε = min(ε1, ε2). For all
u ∈]0, ε[, using 4. we have:

(Tuf)(x) ≤ (Tug)(x) + (Tuh)(x)
≤ sup

u∈]0,ε1[

(Tug)(x) + sup
u∈]0,ε2[

(Tuh)(x)

Hence, the right-hand-side of this inequality is an upper-bound
of all (Tuf)(x)’s as u ∈]0, ε[. It follows that:

(Tf)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tuf)(x)

≤ sup
u∈]0,ε[

(Tuf)(x)

≤ sup
u∈]0,ε1[

(Tug)(x) + sup
u∈]0,ε2[

(Tuh)(x)

Suppose supu∈]0,ε1[(Tug)(x) < +∞. Then this quantity can be
safely subtracted from both sides of the previous inequality, to
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obtain:

(Tf)(x) − sup
u∈]0,ε1[

(Tug)(x) ≤ sup
u∈]0,ε2[

(Tuh)(x)

Hence, ε1 > 0 being given, we see that the left-hand-side of
this inequality is a lower-bound of all supu∈]0,ε2[(Tuh)(x)’s, as
ε2 > 0. Since (Th)(x) is the greatest of such lower-bounds, we
obtain:

(Tf)(x) − sup
u∈]0,ε1[

(Tug)(x) ≤ (Th)(x)

or equivalently:

(Tf)(x) ≤ sup
u∈]0,ε1[

(Tug)(x) + (Th)(x)

which is still valid when supu∈]0,ε1[(Tug)(x) = +∞. Suppose
now that (Th)(x) < +∞. Then (Th)(x) can be safely sub-
tracted from both sides of the previous inequality, to obtain:

(Tf)(x) − (Th)(x) ≤ sup
u∈]0,ε1[

(Tug)(x)
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This being established for all ε1 > 0, (Tf)(x) − (Th)(x) is a
lower-bound of all supu∈]0,ε1[(Tug)(x)’s, as ε1 > 0. Since (Tg)(x)
is the greatest of such lower-bounds, we obtain:

(Tf)(x) − (Th)(x) ≤ (Tg)(x)

or equivalently:

(Tf)(x) ≤ (Tg)(x) + (Th)(x)

This being true for all x ∈ Rn, Tf ≤ Tg + Th.

6. Let x ∈ Rn. Since g ∈ CcC(Rn), g is a continuous element of L1.
From exercise (17), x is therefore a Lebesgue point of g. Hence,
from definition (121):

lim
ε↓↓0

(Tεg)(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|g(y) − g(x)|dy = 0

Let δ > 0. There exists ε > 0 such that:

u ∈]0, ε[ ⇒ (Tug)(x) ≤ δ
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So δ is an upper-bound of all (Tug)(x)’s as u ∈]0, ε[, and conse-
quently supu∈]0,ε[(Tug)(x) ≤ δ. Hence:

(Tg)(x) = inf
ε′>0

sup
u∈]0,ε′[

(Tug)(x)

≤ sup
u∈]0,ε[

(Tug)(x)

≤ δ

This being true for all δ > 0, we conclude that (Tg)(x) = 0.
This being true for all x ∈ Rn, we have proved that Tg = 0.

7. Using 3. and 5. together with Tg = 0, we obtain:

Tf ≤ Tg + Th = Th ≤Mh+ |h|

8. Let α > 0. Let x ∈ Rn and suppose that (Mh)(x) ≤ α together
with |h|(x) ≤ α. Using 7. we obtain:

(Tf)(x) ≤ (Mh)(x) + |h|(x) ≤ 2α
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Hence, we have shown the inclusion:

{Mh ≤ α} ∩ {|h| ≤ α} ⊆ {Tf ≤ 2α}

from which we conclude that:

{2α < Tf} ⊆ {α < Mh} ∪ {α < |h|}

9. We have:

dx({α < |h|}) = α−1

∫
α1{α<|h|}dx

≤ α−1

∫
|h|1{α<|h|}dx

≤ α−1

∫
|h|dx

= α−1‖h‖1

10. Let α > 0 and η > 0. From 1. we have the existence of g ∈
CcC(Rn) such that ‖h‖1 ≤ η where h = f − g. Define Mα,η =
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{α < Mh} ∪ {α < |h|}. From exercise (13) applied to the
complex measure μ =

∫
hdx, Mh is a Borel measurable map.

Since |h| is also Borel measurable, we see that Mα,η ∈ B(Rn).
Furthermore from 8. we have {2α < Tf} ⊆ Mα,η. Finally,
using 9. and exercise (16), we obtain:

dx(Mα,η) = dx({α < Mh} ∪ {α < |h|})
≤ dx({α < Mh}) + dx({α < |h|})
≤ 3nα−1‖h‖1 + α−1‖h‖1

= (3n + 1)α−1‖h‖1

≤ (3n + 1)α−1η

Hence, given α > 0 and η > 0, we have found Mα,η ∈ B(Rn)
such that {2α < Tf} ⊆ Mα,η and dx(Mα,η) ≤ (3n + 1)α−1η.
Take Nα,η = Mα,η∗ where η∗ = (3n + 1)−1αη. Then Nα,η ∈
B(Rn), {2α < Tf} ⊆ Nα,η and dx(Nα,η) ≤ η, which is exactly
what we want.
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11. Let α > 0. With an obvious change of notation, given n ≥ 1,
from 10. there exists Nα,n ∈ B(Rn) such that we have {2α <
Tf} ⊆ Nα,n and dx(Nα,n) ≤ 1/n. Let Nα = ∩n≥1Nα,n. Then
Nα ∈ B(Rn), {2α < Tf} ⊆ Nα and furthermore for all n ≥ 1:

dx(Nα) = dx(∩n≥1Nα,n) ≤ dx(Nα,n) ≤ 1
n

So dx(Nα) = 0.

12. Let n ≥ 1. With an obvious change of notation, from 11. there
exists Nn ∈ B(Rn) such that {2/n < Tf} ⊆ Nn together with
dx(Nn) = 0. Define N = ∪n≥1Nn. Then N ∈ B(Rn) and
dx(N) = 0. Furthermore:

{Tf > 0} =
⋃
n≥1

{2/n < Tf}

⊆
⋃
n≥1

Nn = N
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13. From 12. there exists N ∈ B(Rn) with dx(N) = 0 such that
{Tf > 0} ⊆ N . Hence, for all x ∈ Rn, we have x ∈ N c ⇒
(Tf)(x) = 0. We conclude that Tf = 0 dx-a.s.

14. Let f ∈ L1
C(Rn,B(Rn), dx). Let x ∈ Rn and suppose that

(Tf)(x) = 0. Let δ > 0. Then (Tf)(x) < δ. Since (Tf)(x) is
the greatest lower-bound of all supu∈]0,ε′[(Tuf)(x)’s as ε′ > 0,
δ cannot be such a lower-bound. There exists ε′ > 0 such that
supu∈]0,ε′[(Tuf)(x) < δ. Hence for all ε ∈]0, ε′[, we have:

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = (Tεf)(x)

≤ sup
u∈]0,ε′[

(Tuf)(x) < δ

We have proved that:

lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

|f(y) − f(x)|dy = 0

www.probability.net

http://www.probability.net


Solutions to Exercises 124

i.e. that x is a Lebesgue point of f . So every x ∈ Rn such that
(Tf)(x) = 0 is a Lebesgue point of f . Since Tf = 0 dx-almost
surely, we conclude that dx-almost all x ∈ Rn are Lebesgue
points of f . This completes the proof of theorem (101).

Exercise 18
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Exercise 19.

1. Let (Ω,F , μ) be a measure space and Ω′ ∈ F . Let F ′ = F|Ω′

and μ′ = μ|F ′ . Let A ∈ F ′. Since F ′ is the trace of F on Ω′,
from definition (22) there exists A ∈ F such that A′ = A ∩ Ω′.
Since Ω′ ∈ F , we see that A′ ∈ F . This shows that F ′ ⊆ F and
the restriction μ′ = μ|F ′ is a well-defined measure on (Ω′,F ′).

2. For all maps f defined on Ω′ with values in C or [0,+∞], we
define an extension of f on Ω, denoted f̃ , by setting f̃(ω) = 0 for
all ω ∈ Ω \ Ω′. Let A ∈ F ′ and 1′A be the indicator function of
A on Ω′. A is also a subset of Ω, and we denote 1A its indicator
function on Ω. Let ω ∈ Ω. If ω ∈ A ⊆ Ω′, then:

1̃′A(ω)
�
= 1′A(ω) = 1 = 1A(ω)

If ω ∈ Ω′ \A, then:

1̃′A(ω)
�
= 1′A(ω) = 0 = 1A(ω)
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if ω ∈ Ω \ Ω′, then:

1̃′A(ω)
�
= 0 = 1A(ω)

In any case we have 1̃′A(ω) = 1A(ω). So 1̃′A = 1A.

3. Let f : (Ω′,F ′) → [0,+∞] be a non-negative and measurable
map. For all B ∈ B([0,+∞]) we have:

{f̃ ∈ B} = ({f̃ ∈ B} ∩ Ω′) 
 ({f̃ ∈ B} ∩ (Ω \ Ω′))
= {f ∈ B} 
 ({0 ∈ B} ∩ (Ω \ Ω′))

where {0 ∈ B} denotes Ω if 0 ∈ B and ∅ if 0 �∈ B. Since f is
measurable, we have {f ∈ B} ∈ F ′ ⊆ F . Since Ω′ ∈ F , it is
clear that {0 ∈ B} ∩ (Ω \Ω′) ∈ F . It follows that {f̃ ∈ B} ∈ F ,
and we have proved that f̃ is a non-negative and measurable
map. Suppose f is of the form 1′A for some A ∈ F ′. Then:∫

Ω′
1′Adμ

′ = μ′(A) = μ(A) =
∫

Ω

1Adμ =
∫

Ω

1̃′Adμ
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Suppose now that f =
∑n

i=1 αi1
′
Ai

is a simple function on
(Ω′,F ′). To make our proof clearer, let us denote φ(g) the
extension g̃ of any map g defined on Ω′. Then:∫

Ω′
fdμ′ =

∫
Ω′

(
n∑
i=1

αi1′Ai

)
dμ′

=
n∑
i=1

αi

∫
Ω′

1′Ai
dμ′

=
n∑
i=1

αi

∫
Ω

φ(1′Ai
)dμ

=
∫

Ω

(
n∑
i=1

αiφ(1′Ai
)

)
dμ

=
∫

Ω

φ

(
n∑
i=1

αi1′Ai

)
dμ

www.probability.net

http://www.probability.net


Solutions to Exercises 128

=
∫

Ω

φ(f)dμ

=
∫

Ω

f̃dμ

Finally, if f : (Ω′,F ′) → [0,+∞] is an arbitrary non-negative
and measurable map, from theorem (18) there exists a sequence
(sn)n≥1 of simple functions on (Ω′,F ′) such that sn ↑ f , i.e. for
all ω ∈ Ω′, sn(ω) ≤ sn+1(ω) for all n ≥ 1, and sn(ω) → f(ω).
It is clear that s̃n ↑ f̃ , and from the monotone convergence
theorem (19) we obtain:∫

Ω′
fdμ′ = lim

n→+∞

∫
Ω′
sndμ

′

= lim
n→+∞

∫
Ω

s̃ndμ

=
∫

Ω

f̃dμ
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4. Let f ∈ L1
C(Ω′,F ′, μ′). Let u = Re(f) and v = Im(f). To

make our proof clearer, we shall denote φ(g) the extension g̃ of
any map g defined on Ω′. From f = u+ − u− + i(v+ − v−)
we obtain φ(f) = φ(u+) − φ(u−) + i(φ(v+) − φ(v−)). From 3.
each φ(u±) and φ(v±) is measurable, and consequently φ(f) is
itself measurable. Note that given B ∈ B(C), it is not difficult
to show directly that {f̃ ∈ B} ∈ F just like we did in 3. with
B ∈ B([0,+∞]). It is clear that |φ(f)| = φ(|f |), and applying
3. to the non-negative and measurable map |f | we obtain:∫

Ω

|φ(f)|dμ =
∫

Ω

φ(|f |)dμ =
∫

Ω′
|f |dμ′ < +∞

Hence, we have proved that f̃ = φ(f) ∈ L1
C(Ω,F , μ). Finally,

using 3. once more together with the linearity of the integral:∫
Ω′
fdμ′ =

∫
Ω′
u+dμ′ −

∫
Ω′
u−dμ′
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+ i

(∫
Ω′
v+dμ′ −

∫
Ω′
v−dμ′

)

=
∫

Ω

φ(u+)dμ−
∫

Ω

φ(u−)dμ

+ i

(∫
Ω

φ(v+)dμ−
∫

Ω

φ(v−)dμ
)

=
∫

Ω

[φ(u+) − φ(u−) + i(φ(v+) − φ(v−))]dμ

=
∫

Ω

φ(f)dμ =
∫

Ω

f̃dμ

Exercise 19
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Exercise 20.

1. Let b : R+ → C be a map. Suppose b is absolutely continuous.
From definition (122), b is right-continuous of finite variation,
and furthermore it is absolutely continuous with respect to the
right-continuous and non-decreasing map a : R+ → R+ with
a(0) ≥ 0, defined by a(t) = t. From theorem (89), there exists
f ∈ L1,loc

C (t) such that b(t) =
∫ t
0
f(s)ds for all t ∈ R+. Con-

versely, suppose such an f exists. From theorem (88), b = f.a
is a right-continuous map of finite variation, and from theo-
rem (89), it is in fact absolutely continuous with respect to
a(t) = t. So b is absolutely continuous. We have proved that b

is absolutely continuous, if and only if there exists f ∈ L1,loc
C (t)

such that b(t) =
∫ t
0 f(s)ds for all t ∈ R+.

2. Suppose b is absolutely continuous and let f ∈ L1,loc
C (t) be such

that b(t) =
∫ t
0
f(s)ds for all t ∈ R+. From theorem (88), we

have Δb = fΔt = 0. Since b is right-continuous of finite varia-
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tion, in particular it is cadlag. We conclude from exercise (29)
(part 1) of Tutorial 14 that b is in fact continuous with b(0) = 0.

Exercise 20
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Exercise 21.

1. Let b : R+ → C be absolutely continuous. Let f ∈ L1,loc
C (t)

be such that b(t) =
∫ t
0 f(s)ds for all t ∈ R+. For all n ≥ 1, we

define fn : R → C by:

fn(t)
�
=
{
f(t)1[0,n](t) if t ∈ R+

0 if t < 0

Applying exercise (19) to (Ω,Ω′) = (R,R+), bearing in mind
that B(R+) = B(R)|R+, we have fn = φ(f1[0,n]) where φ(g)
denotes the extension g̃ on R, of any map g defined on R+.
Since f ∈ L1,loc

C (t), we have f1[0,n] ∈ L1
C(R+,B(R+), dx) and

consequently fn = φ(f1[0,n]) ∈ L1
C(R,B(R), dx). Note that

we are using the same notation dx to denote successively the
Lebesgue measure on R+ and the Lebesgue measure on R, the
former being the restriction of the latter to B(R+) ⊆ B(R). Let
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n ≥ 1 and t ∈ [0, n]. Using exercise (19) once more:∫ t

0

fndx =
∫
R

fn1[0,t]dx

=
∫
R

φ(f1[0,n]1[0,t])dx

=
∫
R+

f1[0,n]1[0,t]dx

=
∫
R+

f1[0,t]dx

=
∫ t

0

f(s)ds = b(t)

Note that we use the same notations 1[0,t] and 1[0,n] to denote
characteristic functions defined successively on R and R+.

2. Since fn ∈ L1
C(R,B(R), dx), from theorem (101), dx-almost

every t ∈ R is a Lebesgue point of fn. Hence, there exists
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Nn ∈ B(R) with dx(Nn) = 0 such that for all t ∈ N c
n, t is a

Lebesgue point of fn.

3. Let t ∈ R and ε > 0. Since B(t, ε) =]t− ε, t+ ε[, we have:

1
ε

∫ t+ε

t

|fn(s) − fn(t)|ds =
2

dx(B(t, ε))

∫ t+ε

t

|fn(s) − fn(t)|ds

≤ 2
dx(B(t, ε))

∫ t+ε

t−ε
|fn(s) − fn(t)|ds

=
2

dx(B(t, ε))

∫
B(t,ε)

|fn(s) − fn(t)|ds

4. Let t ∈ N c
n. Then t is a Lebesgue point of fn. From the in-

equality obtained in 3. we have:

lim
ε↓↓0

1
ε

∫ t+ε

t

|fn(s) − fn(t)|ds = 0
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Furthermore, since:∣∣∣∣1ε
∫ t+ε

t

fn(s)ds− fn(t)
∣∣∣∣ =

1
ε

∣∣∣∣
∫ t+ε

t

(fn(s) − fn(t))ds
∣∣∣∣

≤ 1
ε

∫ t+ε

t

|fn(s) − fn(t)|ds

We conclude that:

lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

5. Similarly to 3. and 4. we have:∣∣∣∣1ε
∫ t

t−ε
fn(s)ds− fn(t)

∣∣∣∣ =
1
ε

∣∣∣∣
∫ t

t−ε
(fn(s) − fn(t))ds

∣∣∣∣
≤ 1

ε

∫ t

t−ε
|fn(s) − fn(t)|ds
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≤ 2
dx(B(t, ε))

∫
B(t,ε)

|fn(s) − fn(t)|ds

Hence for all t ∈ N c
n, t being a Lebesgue point of fn:

lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)

6. Let t ∈ N c
n ∩ [0, n[. From 1. we have b(t) =

∫ t
0
fn(s)ds. Fur-

thermore, for ε > 0 small enough we have t + ε ∈ [0, n], and
consequently b(t+ ε) =

∫ t+ε
0 fn(s)ds. Hence:

lim
ε↓↓0

b(t+ ε) − b(t)
ε

= lim
ε↓↓0

1
ε

∫ t+ε

t

fn(s)ds = fn(t)

Moreover, assuming t > 0, t− ε ∈ [0, n] for ε > 0 small enough,
and consequently b(t− ε) =

∫ t−ε
0

fn(s)ds. Hence:

lim
ε↓↓0

b(t) − b(t− ε)
ε

= lim
ε↓↓0

1
ε

∫ t

t−ε
fn(s)ds = fn(t)
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We conclude that for all t ∈ N c
n ∩ [0, n[, if t = 0, the right-hand-

side derivative b′(0) exists and is equal to fn(0). If t > 0, the
derivative b′(t) exists and is equal to fn(t). However if t ∈ [0, n[,
fn(t) = f(t). So for all t ∈ N c

n ∩ [0, n[, b′(t) = f(t).

7. Define N = (∪n≥1Nn)∩R+. Then N ∈ B(R+) and dx(N) = 0.
Let t ∈ N c. Choosing n ≥ 1 such that t ∈ [0, n[, from t �∈ N
we obtain t �∈ Nn and consequently t ∈ N c

n ∩ [0, n[. From 6.
it follows that b′(t) exists and is equal to f(t). We have found
N ∈ B(R+) with dx(N) = 0, such that for all t ∈ N c, b′(t)
exists and is equal to f(t).

8. We have shown in exercise (20) that a map b is absolutely contin-

uous, if and only if there exists f ∈ L1,loc
C (t) such that b = f.t.

Furthermore, it follows from 7. that if b is absolutely continuous,
it is almost surely differentiable with b′ = f dx-almost surely.
This completes the proof of theorem (102).

Exercise 21
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