Tutorial 16: Differentiation 1

16. Differentiation

Definition 115 Let (Q,7) be a topological space. A map f:Q — R
is said to be lower-semi-continuous (1.s.c), if and only if:

VAXe R, {A< [} is open
We say that [ is upper-semi-continuous (u.s.c), if and only if:

YAeR, {f <A} is open

EXERCISE 1. Let f : © — R be a map, where  is a topological space.
1. Show that f is L.s.c if and only if {\ < f} is open for all A € R.
2. Show that f is u.s.c if and only if {f < A} is open for all A € R.
3. Show that every open set U in R can be written:

U=vruv-ulJla, s

iel
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© 0 N

10.

for some index set I, a;,3; € R, VT = 0 or VT =], +o0],
(eeR)and V- =0 or V- =[-0c0, 8], (B € R).

. Show that f is continuous if and only if it is both l.s.c and u.s.c.

CLetw:Q —Rand v:Q — R. Let A € R. Show that:

A<utv}= U A <uln{x <v}
()\1,)\2)ER2
A+ A=A

Show that if both v and v are l.s.c, then u + v is also l.s.c.
Show that if both u and v are u.s.c, then u + v is also u.s.c.
Show that if f is Ls.c, then af is Ls.c, for all « € R*.
Show that if f is u.s.c, then af is u.s.c, for all « € R™T.

Show that if f is l.s.c, then —f is u.s.c.
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11. Show that if f is u.s.c, then —f is L.s.c.
12. Show that if V' is open in 2, then f = 1y is Ls.c.
13. Show that if F'is closed in €2, then f = 1p is w.s.c.

EXERCISE 2. Let (f;)ier be an a arbitrary family of maps f; : Q — R,
defined on a topological space ().

1. Show that if all f;’s are Ls.c, then f = sup,c; fi is Ls.c.

2. Show that if all f;’s are u.s.c, then f =inf;c; f; is u.s.c.

EXERCISE 3. Let (22,7) be a metrizable and o-compact topological
space. Let p be a locally finite measure on (€2, 5(€2)). Let f be an
element of L (2, B(2), i), such that f > 0.
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1.

Let (sn)n>1 be a sequence of simple functions on (£2, B(€2)) such
that s, T f. Define t; = sy and t,, = s,, — s,—1 for all n > 2.
Show that ¢, is a simple function on (2, B(2)), for all n > 1.

. Show that f can be written as:

+oo
f=2 onla,
n=1

where a,, € RT\ {0} and 4,, € B(Q), for all n > 1.

. Show that u(A,) < 400, for all n > 1.

. Show that there exist K, compact and V,, open in €2 such that:

€

foralle >0and n > 1.

www.probability.net


http://www.probability.net

Tutorial 16: Differentiation

5.

10.
11.

Show the existence of N > 1 such that:
“+o0

> omp(An) <

n=N+1

N

. Define u = 25:1 apnlg, . Show that u is u.s.c.

Define v = 3°,° a1y, Show that v is Ls.c.

. Show that we have 0 < u < f < v.

. Show that we have:

—+oo +oo
v=u-+ E onlg, + E anly\x,
n=N+1 n=1

Show that [vdp < [udp+ e < +oo.
Show that u € Lk (€, B(£2), u).
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12. Explain why v may fail to be in L (2, B(2), u).
13. Show that v is p-a.s. equal to an element of Lk (2, B(Q), ).
14. Show that [(v —u)dp <e.

15. Prove the following;:

Theorem 94 (Vitali-Caratheodory) Let (Q,7) be a metrizable
and o-compact topological space. Let p be a locally finite measure on
(2, B(Q)) and f be an element of L (Q, B(Q), 1). Then, for alle > 0,
there exist measurable maps u,v : Q — R, which are p-a.s. equal to
elements of L (92, B(Q), 1), such that u < f < wv, u is u.s.c, v is l.s.c,
and furthermore:

/(v—u)d,uge
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Definition 116 Let (Q,7) be a topological space. We say that
(Q,7) is connected, if and only if the only subsets of Q0 which are
both open and closed are 0 and (.

EXERCISE 4. Let (2,7) be a topological space.

1. Show that (2, 7) is connected if and only if whenever Q = AWB
where A, B are disjoint open sets, we have A = () or B = {).

2. Show that (€2, 7) is connected if and only if whenever Q = AW B
where A, B are disjoint closed sets, we have A = () or B = ().

Definition 117 Let (Q,7) be a topological space, and A C Q. We
say that A is a connected subset of ), if and only if the induced
topological space (A,7|4) is connected.

EXERCISE 5. Let A be open and closed in R, with A # () and A€ # 0).
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1. Let x € A°. Show that ANz, +o0[ or AN]— o0, z] is non-empty.

2. Suppose B = AN [z,+0o0[# (. Show that B is closed and that
we have B = ANz, +o00[. Conclude that B is also open.

3. Let b = inf B. Show that b € B (and in particular b € R).
4. Show the existence of € > 0 such that [b —€,b+ €[C B.

5. Conclude with the following;:

Theorem 95 The topological space (R, TR) is connected.

EXERCISE 6. Let (§2,7) be a topological space and A C €2 be a con-
nected subset of . Let B be a subset of 2 such that A C B C A.
We assume that B = Vi W V5 where V3, V5 are disjoint open sets in B.

1. Show there is Uy, Us open in 2, with V;, = BNUy, Vo = BNUs.
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2. Show that ANU; =0 or ANUs = 0.

. Suppose that A NU; = ). Show that A C Uf.

V]

. Show then that Vi = BNU; = 0.

ot

. Conclude that B and A are both connected subsets of €.

EXERCISE 7. Prove the following:

Theorem 96 Let (,7), (Q,7') be two topological spaces, and f
be a continuous map, f: Q — Q' . If (2, T) is connected, then f(Q)
is a connected subset of .

Definition 118 Let A C R. We say that A is an interval, if and
only if for all z,y € A with x <y, we have [x,y] C A, where:

[x,y]é{zelft s <z<y}
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EXERCISE 8. Let A C R.
1. If A is an interval, and o = inf A, § = sup A, show that:
Ja, BIC A C [ov, ]

2. Show that A is an interval if and only if, it is of the form [« 5],
[a, B, ], 8] or ]a, 5], for some «, 5 € R.

3. Show that an interval of the form | — oo, af, where a € R, is
homeomorphic to | — 1, o[, for some o’ € R.

4. Show that an interval of the form ]a, +oo[, where a € R, is
homeomorphic to |o/, 1], for some o’ € R.

5. Show that an interval of the form ]a, 5[, where o, 8 € R and
a < 3, is homeomorphic to | — 1, 1].

6. Show that | — 1, 1] is homeomorphic to R.

7. Show an non-empty open interval in R, is homeomorphic to R.
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8. Show that an open interval in R, is a connected subset of R.

9. Show that an interval in R, is a connected subset of R.

EXERCISE 9. Let A C R be a non-empty connected subset of R, and
a =1inf A, 8 = sup A. We assume there exists xg € A°N]a, ]

1. Show that ANz, +oo] or AN] — 0o, x| is empty.
2. Show that AN|zg, +o00[= 0 leads to a contradiction.

3. Show that ], 5[C A C [o, G].

=~

. Show the following:

Theorem 97 For all A C R, A is a connected subset of R, if and
only if A is an interval.
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EXERCISE 10. Prove the following:

Theorem 98 Let [ : Q@ — R be a continuous map, where (Q,7)
is a connected topological space. Let a,b € Q such that f(a) < f(b).
Then, for all z € [f(a), f(b)], there exists x € Q such that z = f(x).

EXERCISE 11. Let a,b € R, a < b, and f : [a,b] — R be a map such
that f’(x) exists for all z € [a, b].

1. Show that f’: ([a, b], B([a,b])) — (R, B(R)) is measurable.

2. Show that f’ € Lk ([a,b], B([a,b]),dz) is equivalent to:
b
/ |f(t)]dt < 400

3. We assume from now on that f" € L ([a, 0], B([a,b]), dz). Given
€ > 0, show the existence of g : [a,b] — R, almost surely equal
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to an element of Lk ([a,b], B(]a,b]),dx), such that f’ < g and g
is Ls.c, with:

/abg(t)dt < /ab F(t)dt + e

4. By considering g + a for some « > 0, show that without loss of
generality, we can assume that f’ < g with the above inequality
still holding.

5. We define the complex measure v = [ gdz € M*([a,b], B([a,b])).
Show that:

Ve >0, 36 >0, VE € B([a,b]) , de(E) <d§ = |[v(E)| <€

6. For all n > 0 and = € [a, b], we define:

R 2 [ " g0yt — f(@) + fla) + e — a)

Show that F, : [a,b] — R is a continuous map.
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7.

10.
11.
12.

13.

7 being fixed, let = sup F, '({0}). Show that = € [a,b] and
F,(z) =0.

. We assume that = € [a,b]. Show the existence of 6 > 0 such
[

that for all ¢ €]z, z + §[N[a, b], we have:

f(t) = f(z)

t—a

f'(x) <g(t) and < fl(x) +n

. Show that for all ¢ €]z, z+d[N[a, b], we have F, (t) > F,(x) = 0.

Show that there exists tg such that @ <ty < b and F,(t9) > 0.
Show that F;,(b) < 0 leads to a contradiction.

Conclude that F,,(b) > 0, even if 2 = b.

Show that f(b) — f(a) < [ f'(t)dt, and conclude:
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Theorem 99 (Fundamental Calculus) Leta,b € R, a < b, and

f:[a,b] — R be a map which is differentiable at every point of [a,b],
and such that:

b
/ |f/(t)|dt < +o0

Then, we have:
b
£0) = s = [ s

EXERCISE 12. Let @ > 0, and k,, : R™ — R™ defined by k,(z) = ax.
1. Show that k. : (R™, B(R")) — (R™, B(R"™)) is measurable.
2. Show that for all B € B(R"), we have:

1
dz({ko € B}) = —dz(B)
«
3. Show that for all ¢ > 0 and z € R"™:

dz(B(z, €)) = e"dz(B(0,1))
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Definition 119 Let u be a complex measure on (R™, B(R"™)), n > 1,
with total variation |p|. We call maximal function of p, the map
Mp:R" — [0, +00], defined by:

§ s |ul(B(,e))
Ve €R", (Mp)(r) = sup- o omr s

where B(x,¢€) is the open ball in R™, of center x and radius €, with
respect to the usual metric of R™.

EXERCISE 13. Let p be a complex measure on (R™, B(R")).
1. Let A € R. Show that if A < 0, then {\ < Mu} = R"™.

2. Show that if A = 0, then {N < Mu} = R™ if p # 0, and
{\ < Mu} is the empty set if © = 0.

3. Suppose A > 0. Let z € {\ < Mpu}. Show the existence of € > 0
such that |u|(B(x,¢€)) = tdx(B(z,€)), for some t > A.
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4. Show the existence of § > 0 such that (e +J)" < €"t/A.
5. Show that if y € B(x,0), then B(z,¢e) C B(y, e+ 9).
6. Show that if y € B(x,¢), then:

ul(B(y, e +6)) > (ei—wdw@,e +6)) > Mz (B(y, ¢ + )
7. Conclude that B(z,d) € {A < Mu}, and that the maximal
function My : R™ — [0, +0o0] is L.s.c, and therefore measurable.

EXERCISE 14. Let B; = B(z;,¢€;), i = 1,...,N, N > 1, be a finite
collection of open balls in R™. Assume without loss of generality that
en < ...<e. We define a sequence (Ji) of sets by Jo = {1,...,N}

and for all £ > 1:

Jé Jk,1ﬂ{j:j>ik,BjﬁBik=@} if J_1#0
k= 0 if Ju_1 =0
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where we have put 4, = min Jy_1, whenever J,_; # (.

1.

- w

Show that if Ji_1 # () then Jj, C Jx—1 (strict inclusion), k > 1.
Let p = min{k > 1: J, = 0}. Show that p is well-defined.

Let S = {i1,...,4p}. Explain why S is well defined.

Suppose that 1 < k < k¥’ < p. Show that iy € J.

Show that (B;);es is a family of pairwise disjoint open balls.

. Letie{l,...,N}\ S, and define kg to be the minimum of the

set {k € N, : ¢ € Ji}. Explain why k¢ is well-defined.

Show that i € Ji,—1 and i, <.

. Show that B; N Biko #* 0.
. Show that B, g B({L‘iko s 36ik0 )
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10. Conclude that there exists a subset S of {1,..., N} such that
(Bi)ies is a family of pairwise disjoint balls, and:

N

U (x4, €) UB!L‘,,3Q

=1 €S
11. Show that:

N
dx (U B(x;,€;) ) < 3"2(13: (zi,€))

i=1 €S

EXERCISE 15. Let o be a complex measure on R™. Let A > 0 and K
be a non-empty compact subset of {\ < Mpu}.

1. Show that K can be covered by a finite collection B; = B(x;, €;),
i=1,...,N of open balls, such that:

Vi=1,....N, Max(B;) < |u|(B:)
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2. Show the existence of S C {1,..., N} such that:
dz(K) < 3"\ ul (U B(%Gi))
=
3. Show that dz(K) < 3"\~ 1|ull

4. Conclude with the following:

Theorem 100 Let p be a complex measure on (R™, B(R™)), n > 1,
with mazimal function Mu. Then, for all A € R\ {0}, we have:

dr({A < Mu}) < 3°A71 ]
Definition 120 Let f € L&(R",B(R"),dx), and p be the complex

measure = [ fdz on R™, n > 1. We call maximal function of f,
denoted M f, the mazximal function M of .
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EXERCISE 16. Let f € LE(R™, B(R"),dz), n > 1.
1. Show that for all x € R™:

1
(M P)(a) = s1p s /B W

2. Show that for all A > 0, dz({\ < M f}) < 3"A71|| f]1.

Definition 121 Let f € L5(R",B(R"),dx), n > 1. We say that
z € R" is a Lebesgue point of f, if and only if we have:

. 1 -
lim ) /B W = sy =0

EXERCISE 17. Let f € L&(R™, B(R"),dx), n > 1.

1. Show that if f is continuous at z € R", then z is a Lebesgue
point of f.

www.probability.net


http://www.probability.net

Tutorial 16: Differentiation 22

2. Show that if x € R™ is a Lebesgue point of f, then:

. 1
flz) = lﬁ% m /B(m) f(y)dy

EXERCISE 18. Let n > 1 and f € L&(R™, B(R"),dx). For all € > 0
and z € R"™, we define:

A 1

TN 2 5y o VO @y
and we put, for all z € R™:

(Tf)(x) £ limsup(T.f)(z) £ inf sup (T..f)(x)
€ll0 €0 4,€]0,¢[

1. Given 1 > 0, show the existence of g € C&(R™) such that:
1f =gl <n
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2.

© 0 N

10.

Let h = f — g. Show that for all ¢ > 0 and 2 € R™

1
W) < gy [ i+ )

. Show that Th < Mh + |hl.

Show that for all € > 0, we have T, f < T.g + T.h.

Show that Tf < Tg+ Th.

Using the continuity of g, show that T'g = 0.

Show that T'f < Mh + |h|.

Show that for all & > 0, {2a < Tf} C {o < Mh}U{a < |h|}.
Show that dz({a < |h|}) < a7 t|A1.

Conclude that for all @ > 0 and 1 > 0, there is N, , € B(R")
such that {2a < Tf} C N, and dz(Ny) < 7.
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11. Show that for all & > 0, there exists N, € B(R"™) such that
{2a < Tf} C N, and dz(N,) = 0.

12. Show there is N € B(R"), dz(N) = 0, such that {Tf > 0} C N.
13. Conclude that Tf =0, dr—a.s.
14. Conclude with the following:

Theorem 101 Let f € L5(R", B(R"),dz), n > 1. Then, dz-almost
surely, any x € R™ is a Lebesgue points of f, i.e.

1
dz-a.s. , lim

c110 dz(B(z,€)) /B(“) |f(y) — f(z)ldy =0

EXERCISE 19. Let (Q,F,u) be a measure space and Q' € F. We
define 7/ = Flo and p/ = pyz. For all maps f : Q' — [0, +o0] (or
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C), we define f : Q — [0, +00] (or C), by:

oo flw) if wed
0 if weg

25

1. Show that 7' C F and conclude that p' is therefore a well-

defined measure on (', F').

2. Let A € F' and 1/; be the characteristic function of A defined
on . Let 14 be the characteristic function of A defined on .

Show that 1/, = 1.

3. Let f : (Q,F') — [0,+00] be a non-negative and measurable
map. Show that f: (2, F) — [0, +o0] is also non-negative and

measurable, and that we have:

[ o = /Q Fdu
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4. Let f € LL(Y, F', /). Show that f € LL(Q, F, ), and:

[y = | Fan

Definition 122 b : RT — C is absolutely continuous, if and
only if b is right-continuous of finite variation, and b is absolutely
continuous with respect to a(t) = t.

EXERCISE 20. Let b: Rt — C be a map.

1. Show that b is absolutely continuous, if and only if there is
fe Léloc( t) such that b(t fo s)ds, for all t € RT.

2. Show that b absolutely continuous = b continuous with 5(0) = 0.

EXERCISE 21. Let b : Rt — C be an absolutely continuous map.
Let f € Léloc(t) be such that b = f.t. For all n > 1, we define
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fn: R — C by:

o f@)lgn(t) if teRT
f”(t)_{o T 1<

1. Let n > 1. Show f, € L§(R, B(R),dx) and for all t € [0, n]:
t
b(t) = / fndz
0

2. Show the existence of N,, € B(R) such that dx(N,) = 0, and
for all t € Nf, t is a Lebesgue point of f,.

3. Show that for all ¢ € R, and € > 0:

1 t+e
[ i - s <

2
€ (B(t:€))
4. Show that for all t € N;;, we have:

t+e

.1
gﬁ%g ; fa(s)ds = fu(t)

/ Fa(s) — fu(t)]ds
B(t,e)
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5. Show similarly that for all ¢ € N, we have:

1t
lim — fn(s)ds = fn(t)

ello € Ji_e
6. Show that for all t € NS N [0,n[, b'(t) exists and b'(t) = f(¢).!
7. Show the existence of N € B(R™), such that dz(N) = 0, and:
Vt e N°, V'(t) exists with b'(t) = f(t)

8. Conclude with the following:

1%/(0) being a r.h.s derivative only.
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Theorem 102 A map b: RT — C is absolutely continuous, if and

only if there exists f € Lé’loc(t) such that:

Ve RY, b(t) = /0 " ()ds

in which case, b is almost surely differentiable with b’ = f dz-a.s.
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Solutions to Exercises

Exercise 1.

1. Let f : @ — R be a map, where Q is a topological space.
Suppose that {\ < f} is open for all A € R. Then in particular,
{A < f}isopen for all A € R. So f is l.s.c. Conversely, suppose
fis Ls.c. Then {\ < f} is open for all A € R, and since:

{—o<ft=J<r
AER

it follows that {—oo < f} is also open. Furthermore, {+0co < f}
is the empty set, and in particular, {+o00 < f} is open. We
conclude that {\ < f} is open for all A € R. We have proved
that f is Ls.c if and only if {\ < f} is open for all A € R.

2. Similarly to 1. we have:

{f <400} = [J{F <A}

AER
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and {f < —oo} = ) which is open. We conclude that f is u.s.c
if and only if {f < A} is open for all A € R.

3. Let U be open in R. If +00 € U, let VT =]a, +00] where a € R
is such that Ja, +00] C U. Otherwise, let V' = 0. If —oco € U,
let V7 = [~o0, ], where 8 € R is such that [—o0,5[C U.
Otherwise, let V™~ = (). Then, we have:

U=VTuV-u(UnR)

and U N R is an open subset of R (possibly empty). For all
x € UNR, let ay, B, € R be such that « €]ay, ;€ UNR.
Then, we have:
UnR= [ Jaw Bl
zcUNR
where it is understood that if U N R = (), the corresponding
union is the empty set. Taking I = U N R, we conclude that:

U=vruv-ulJle, s
i€l
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4. Suppose that f is continuous. For all A € R, the interval |\, +00]
is an open subset of R. It follows that {\ < f} = f~1(]\, +o0])
is open. This being true for all A € R, f is Ls.c. Similarly,
the interval [—oo, A[ is an open subset of R. It follows that
{f <A} = f~Y([~o0, A]) is open. This being true for all A € R,
f is w.s.c. Hence, if f is continuous, it is both l.s.c and u.s.c.
Conversely, suppose f is both l.s.c. and u.s.c. Let U be an open
subset of R. Using the decomposition obtained in 3. we have:

oy = ! (VJFUV_UU}O%@‘[)

icl

v u v ol e 8iD)

el

rvHut v u e < finir <6
el

Since f~1(VT) is either {« < f} or 0, and f~1(V ™) is either

{f < B} or 0, it follows that f~1(U) is a union of open sets in
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(2, and is therefore open. Having proved that f~1(U) is open
for all U open in R, we conclude that f is continuous. So f is
continuous, if and only if it is both L.s.c and u.s.c.

5. Let u: Q — Randv:Q — R. Let A € R. Note that having
restricted the range of v to be a subset of R, the map u + v is
well defined, as there can be no occurrence of (+00) + (—00).
We claim that:

A<u+o}= U A <u}n{x <o}
()\1,/\2)6R2
AL+ A=A

It is clear that if w € 2 is such that A\ < u(w) and Ay < v(w) for
some A1, A2 € R with A; + A2 = A, then A < u(w) + v(w). This
shows the inclusion D. To show the reverse inclusion, suppose
that w € Q is such that A < w(w) + v(w). Then, we have
A —u(w) < v(w), and there exists A2 € R such that:

A —u(w) < A < v(w)
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Define A\ = A — A3, Then Ay < v(w) and A\; < u(w) where
A1, Ag are elements of R such that Ay + Ao = A. This shows the
inclusion C.

6. Suppose that both u and v are l.s.c. Then for all A\;, A\s € R,
{M1 < u} and {3 < v} are open subsets of 2. It follows from
5. that {\ < u+ v} is also an open subset of Q, for all A € R.
So u+wv is Ls.c.

7. Suppose that both v and v are u.s.c. Similarly to 5. we have:

{u+v<A}= U {u < M}n{v <A}
()\1,/\2) ER2
A+ A=A

and consequently {u + v < A} is an open subset of Q, for all
A€ R. So u+wis us.c. Anticipating on questions 10. and 11.,
an alternative proof goes as follows: if v and v are u.s.c, then
—u and —v are l.s.c. so —u —v is L.s.c. and finally v+ v is u.s.c.
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8.

10.

11.

Suppose f is l.s.c and let @« € RT. If « = 0, then af = 0
and consequently «f is continuous and in particular l.s.c. We
assume that o > 0. Then for allw € Q, A < af(w) is equivalent
to A/a < f(w) (this is certainly true when f(w) € R, and one
can easily check that it is still true when f(w) € {—o0, +00}). It
follows that {\ < af} = {\a < f} and consequently {\ < af}
is an open subset of €2. This being true for all A € R, we
conclude that af is l.s.c.

. Suppose that f is u.s.c and o € R*. If @ = 0 then of is u.s.c.

We assume that o > 0. Then {af < A} = {f < Ma} and
consequently {af < A} is open for all A € R. So af is u.s.c.

Suppose that f is Ls.c. Then {—f < A} = {=\ < f} for all
A € R, and consequently {—f < A} is an open subset of . So
—fis us.c.

Suppose that f is ws.c. Then {\ < —f} = {f < —A} for all
A € R, and consequently {\ < —f} is an open subset of 2. So
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12.

13.

—fis Ls.c.

Let V' be an open subset of Q and f =1y. Let A€ R. If A <0
we have (A < f} =Q. f0< A< lwehave (A< f} =V. If
1 < X we have {\ < f} = 0. In any case, {\ < f} is an open
subset of 2. So f is l.s.c. The characteristic function of an open
subset of 2 is lower-semi-continuous

Let F be a closed subset of Q. Let A € R. Then {f < A} is
either (), F¢ or Q, depending respectively on whether A < 0,
0<A<Tand 1< X Inany case, {f < A} is an open subset of
Q. So f is u.s.c. The characteristic function of a closed subset
of € is upper-semi-continuous.

Exercise 1

www.probability.net


http://www.probability.net

Solutions to Exercises 37

Exercise 2.

1. Let (f;)ier be a family of maps f; : @ — R, where Q is a
topological space. Let f = sup;c; f;. We assume that all f;’s
are l.s.c. For all A € R, we claim that:

P<n=Ubr<r} (1)
il

Indeed, suppose that w € Q is such that A < f(w). Since f(w)
is the lowest upper-bound of all f;(w)’s, A cannot be such an
upper-bound. Hence, there exists ¢ € I such that A < f;(w).
This shows the inclusion C. To show the reverse inclusion, sup-
pose w € € is such that A < f;(w) for some ¢ € I. Since
filw) < f(w), in particular we have A < f(w). This shows the
inclusion D. Having proved equation (1) and since all f;’s are
Ls.c, {\ < f} is an open subset of Q for all A € R. It follows
that f is l.s.c. The supremum of l.s.c functions is Ls.c.
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2. Suppose that all f;’s are u.s.c and f = inf;c; f;. Given A € R:

{(r<x=Ur<n

iel
and consequently {f < A} is an open subset of Q. It follows
that f is u.s.c. The infimum of u.s.c functions is u.s.c.

Exercise 2
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Exercise 3.

1. Let (£2,7) be a metrizable and o-compact topological space. Let
f € LE(Q,B(Q), ), f >0, where u is a locally finite measure on
(Q,B(€2)). From theorem (18), there exists a sequence (sp)n>1
of simple functions on (2, B(2)) such that s, T f (i.e. $p < Spt1
for all n > 1 and s, — [ pointwise). We define t; = s; and
tn = Sn— Sp—1 for all n > 2. In order to show that ¢,, is a simple
function for all n > 1, we need to show that if s,¢ are simple
functions on (€2, B(£)) with s < ¢, then ¢t — s is also a simple
function on (£2, B(?)). Since s and ¢ are measurable with values
in R*, and s < ¢, the map t — s is also measurable with values

in RT. From:
t—s= Z al{tfs:a}
aE(t—s)(R)

we conclude that t — s is a simple function on (€2, B(2)).

2. Since each t,, is a simple function on (2, B(Q2)), for all n > 1
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there exists an integer p, > 1 and some a),...,af» € Rt and
Al,... AP € B(Q) such that:

Pn

tn=> afla
k=1

Note that it is always possible to assume af # 0, by setting
AF = () if necessary. Since sy = 25:1 t, for all N > 1, from
sy — [ we obtain:

+oo +0o Pn
— § _ E E k
f = tn = anlAﬁ
n=1 n=1k=1

This last sum having a countable number of (non-negative)
terms, it can be re-expressed as:

+oo
f=2 oula,
n=1
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where a,, € RT\ {0} and 4,, € B(Q) for all n > 1.
3. Since f € LE(Q,B(Q),u) and f > 0, from 2. we have:

“+o0 “+o0
Zanu(An) Z@n/lAndﬂ
n=1 n=1

= /fd,u < 400

where the second equality is obtained from the linearity of the
integral and an immediate application of the monotone conver-
gence theorem (19). Since for all n > 1 we have «a,, > 0, we
conclude that p(A,) < +oo.

4. Let ¢ > 0 and n > 1. Define ¢ = ¢/(a,2"2). Since (Q,7) is
metrizable and o-compact, while  is a locally finite measure on
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(Q,B(2)), from theorem (73) y is a regular measure. Hence:
w(Ay) = sup{u(K): K C A, , K compact}
= inf{u(V): A, CV, V open}

Since p(A,) < +oo, we have u(A,) < u(A4,) + €, and p(A,)
being the greatest lower-bound of all u(V)’s as V runs through
the set of all open subsets of Q with A, CV, u(A,)+ € cannot
be such a lower-bound. There exists V,, open subset of 2 such
that A,, C V,, and:

1(Va) < p(Ap) + €

Similarly, from the fact that u(A,) — € < u(Ay), there exists
K, compact subset of € such that K, C A,,, and:

1(An) — € < p(Ky)
From K,, C A, note in particular that u(K,) < 400, and con-
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sequently we have K, C A,, C V,, with:

_ r_ €
1V \ Kn) = p(Ver) — p(Kp) < 2€" = PRDTESE

5. Having proved in 3. that > -, a,u(A,) < 400, given € > 0
there exists N > 1 such that:

Zanu Zanu

or equivalently:

l\DIm

—+oo

> omp(An) <

n=N+1

N

6. Let u = Zivzl anlg, . Since (2,7) is metrizable, in particu-
lar it is a Hausdorff topological space. Since K, is a compact
subset of 2, from theorem (35) K, is a closed subset of . It fol-
lows from 13. of exercise (1) that 1k, is upper-semi-continuous.
Using 7. and 9. of exercise (1), we conclude that u is also u.s.c.
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7. Let v = Z:iol oy ly, . Since V,, is an open subset of €2, from
12. of exercise (1) the map ly, is lower-semi-continuous. It
follows from 6. and 8. of this same exercise that every partial
sum 22:1 aply, is itself 1.s.c. Since v is the supremum of these
partial sums, we conclude from exercise (2) that v is Ls.c.

8. Since K,, C A,, CV,, and o, € R for all n > 1:

N
0 < Zaann =u
n=1

N
S Z OanAn
n=1
+oo
S Z OanAn - f
n=1
<

+oo
E oply, =v
n=1
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We conclude that 0 < u < f < wv.

9. Since K,, CV,, for all n > 1, we have:

+00 too
v= Z aply, = Z an(lk, + lv,\k,,)
n=1 n=1

+o00 +oo
= Zaan" +Z@n1Vn\Kn
= u-+ Z anlgk, +Z@n1vn\Kn

n=N+1

10. Since K,, C A, for all n > 1, using 5. we have:

—+o0 —+o0
€
W) < apt(An) < <
> anp(Kn) <Y app(An) < 5
n=N+1 n=N+1
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Hence, using 9. and 4. we obtain:

+oo +oo
Joa = [ (st 3 ot Tontuae. ) o
n=1

n=N+1
+oo —+oo
n=N+1 n=1
—+oo —+oo
= /ud,u + Z o (Kn) + Z (Vi \ Kn)
n=N+1 n=1

IN

“+o0
€ €
/udu+§+ng_1an'm

= /ud,u—l—e

where the second equality stems from the linearity of the integral
and an application of the monotone convergence theorem (19).
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Note that since u(K,) < +oo for all n > 1, in particular:

/ud,u Zan,u ) < 400

Hence, we conclude that:
/vdug/udu+e<+oo

11. The map u is R-valued, Borel measurable with:

/\u|d,u /udu < +00

Sou € Ly (Q,B(Q), 1

12. The map v is Borel measurable with:
/|U|d,u = /vd,u < 400
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13.

However, it has values in [0, +o0], i.e. v(w) = 400 is possible
for some w € Q. The condition [vdu < +oo does imply that
v(w) < +oo for p-almost every w € Q. As we shall see in the
next question, v is therefore py-almost surely equal to an element
of L% (9, B(Q), ). But strictly speaking, it may not be itself an
element of this space, because its range v(€) may fail to be a
subset of R.

Since [ vdu < +oo, we have v < +00 p-a.s since:
(+00) - u({v = +o0}) = / vdp < /Udu < +oo
v=+o0}

Hence, if N = {v = 400}, we have N € B(Q) and pu(N) = 0.
Let v* = vlye. Then v* has values in R, is Borel measurable

and:
/\v*\du:/leCdu:/vdu < 400

So v* € L (9, B(2), ). Since v* = v p-a.s. we conclude that v
is p-almost surely equal to an element of Li (92, B(2), u).
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14.

15.

Note that from 8. we have 0 < u < v and consequently v — u is
non-negative and measurable, and the integral [(v—u)dp makes
sense. In fact, even if u < v did not hold, since u € L' and v is
almost surely equal to an element of L', it would be possible to
give meaning to [(v — u)dp in the obvious way. Now from 10.

we have:
/ud,u—l—/(v—u)d,u = /vdu
/ud,u +€

and since [ udp < +oo we conclude that [(v —u)dp < e.

IN

Having considered a metrizable and o-compact topological space
(©,7) and a locally finite measure p on (€2, B(Q)), given ¢ > 0
and f € LL(Q,B(Q), 1) with f > 0, we have found two measur-
able maps u, v : Q — [0, +00] (where in fact u has values in R),
which are p-almost surely equal to elements of L (Q, B(Q2), 1)
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(in fact u is itself an element of L') and such that u < f < v, u
is w.s.c, v is Ls.c. and:

J@-wduze

Now let f € Lk (€Q,B(2), 1) which we no longer assume to be
non-negative. Let fT and f~ be respectively the positive and
negative parts of f. Then f = fT— f~ and given € > 0, it is pos-
sible to apply the result of this exercise to f* and f~ separately,
with €/2 instead of e. Hence, there exist four measurable maps
u™, v, 4~ and v~ where ut, u~ have values in R™ and v*, v~
have values in [0, +00], which are u-almost surely equal elements
of L', and satisfy the conditions u™ < f+ <ovt,u= < f~ <o,
ut,u~ are u.s.c, v, v~ are Ls.c, and:

/(UJr —uM)dp <

[N e
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together with:

Jo —wauss

We define u = u™ — v~ and v = vT —u~. Since u™,u~ have
values in R, given w € Q, the differences u™(w) — v~ (w) and
vT(w) —u~ (w) are always well-defined elements of R.. It follows
that u,v : Q@ — R are well-defined measurable maps. Further-
more, it is clear that both uw and v are p-almost surely equal to
an element of L'. From vt < f+ <ot = < f~ < v~ and
f=fT—f weobtain u < f < v. Furthermore, since u™ is R-
valued and u.s.c while v~ is Ls.c, from exercise (1) u = ut—v~ is
w.s.c, and similarly v = v —u ™ is Ls.c. Finally, since u < f <wv
and f is R-valued, given w € Q the difference v(w) — u(w) is al-
ways a well-defined element of [0, +00]. So v—u is a well-defined
non-negative and measurable map, and the integral [(v —u)du
is meaningful. We have:

/(v—u)d,u = /(vJr —u” —ut +v7)du
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= /(v+ —ut +vT —uT)dp

= ot —ahdnt [ -

€ €
— 4+ - =€

2 2

This completes the proof of theorem (94).

52

Exercise 3
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Exercise 4.

1. Let (22,7) be a topological space. Suppose it is connected and
Q = Aw B where A, B are disjoint open sets. Then A° = B so
A is closed and consequently A is both open and closed. Hence,
Q being connected, we have A = ) or A = Q, i.e. A =0 or
B = (). Conversely, suppose 2 = AW B with A, B disjoint open
sets implies that A = () or B = (). Then if A is both open and
closed in €2, with have 2 = AW A° where A, A¢ are disjoint open
sets. So A =0 or A°=0,i.e. A=0or A= Q. This shows that
Q) is connected. We have proved that €2 is connected if and only
if whenever 2 = Aw B with A, B disjoint open sets, we have
A=0or B=4.

2. If Q = Aw B with A, B disjoint open sets, then Q@ = AW B¢
with A¢, B¢ disjoint closed sets, and conversely if ) = AW B
with A, B disjoint closed sets, then Q = AW B¢ with A€, B¢
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disjoint open sets. Hence, the statements:
(i) Q=AW B, A, B disjoint and open = A =0 or B=
(i1) Q= Aw B, A, B disjoint and closed = A=0or B=10

are equivalent. We conclude from 1. that {2 is connected, if and
only if whenever Q@ = AW B with A, B disjoint closed sets, we
have A =0 or B = 0.

Exercise 4
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Exercise 5.

1. Let A be an open and closed subset of R, with A # ) and
A £ ). Let & € A°. We have:

A= (AN] — o0, x]) U (AN [z, +00])
and since A # (), we have AN| — oo, z] # 0 or AN [x, +o00[#£ 0.
2. Let B = AN [z,+0o0[ and suppose B # (). Both A and [z, 400

are closed subsets of R. So B is a closed subset of R. However,
since x € A°, we have:
B = ANz, +oo|
= (An{z}) U (AN]x, +o0[)
= ANz, 4o0|
and since both A and |z, +oo[ are open subsets of R, B is also

an open subset of R. Note that the assumption B # () has not
been used so far.
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3. Let b = inf B. We have proved in exercise (9) (part 5) of
Tutorial 8 that if B is a non-empty closed subset of R, then
inf B € B. Unfortunately, this result does not apply to non-
empty closed subsets of R (indeed R, is a non-empty closed
subset of R and inf R = —oco ¢ R). So we cannot apply exer-
cise (9) of Tutorial 8, at least not without a little bit of care.
However, the following can be done: since B # (), there exists
y € B = AnN{[z,+o0[. Then it is clear that B* = AN [z,y]
is a non-empty closed subset of R, and consequently since b =
inf B*, applying exercise (9) of Tutorial 8, we have b € B*. So
b € B C R. For those who wish to have a more detailed ar-
gument, the following can be said: the fact that B* # ) is a
consequence of y € B*. If we define b* = inf B*, the fact that
b* = b can be shown as follows: since B* C B, any lower-bound
of B is also a lower-bound of B*, and consequently b is a lower-
bound of B* which shows that b < b*. To show the reverse
inequality, consider v € B. Then if u < y we have u € B* and
therefore b* < w. But if y < u, then b* < y < uw and we see
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that b* < u is true in all cases. So b* is a lower-bound of B
which shows that b* < b. We have proved that b = b*. To show
that B* is a closed subset of R, we first argue that it is a closed
subset of R since A is closed and [z,y] is closed. However, the
topology of R is induced by the topology of R. It is a simple
exercise to show that any closed subset of R can be written as
FNR where F is a closed subset of R. Hence, there is a closed
subset F of R such that B* = F N R. But then:

B* = AN[z,y]
= An[z,y|Nlz,y]
= B*N[z,y]
= (FNR)N[z,y]
= Fnlzy

and since L:v, y] is also closed in R, we conclude that B* is indeed
closed in R. This concludes our proof that b € B. All this may
seem like a lot of work, made necessary by our desperate attempt
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to apply exercise (9) of Tutorial 8. For those who believe that
a direct proof is more convenient, here is the following: Since
B = AN [z, 400, it is clear that x is a lower bound of B and
consequently x < b. To show that b € B, we only need to show
that b € A. Since B # (), there exist y € B C R and from b < y
we obtain in particular b < +o0o. Hence, there exists a sequence
(tn)n>1 in R such that ¢, || b (le. t, — b with b < 41 <1,
for all n > 1). Since b < t,, it is impossible that ¢,, be a lower-
bound of B. Hence, for all n > 1 there exists some z,, € BC A
such that b < z,, < t,,. From t,, — b we see that z,, — b and
since z,, € A while A is a closed subset of R, we conclude that
b € A. This completes our second proof of b € B.

4. Having proved in 2. that B is an open subset of R, since b € B
there exists € > 0 such that |b — €, + ¢[C B.

5. To show that (R, 7gr) is connected, we need to show that if A is
an open and closed subset of R, then A = () or A = R. Suppose
this is not the case and A # () together with A¢ # (). We have
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shown in 2. that AN[z, +00[# 0 or AN]—o0, x| # 0. If we assume
that B = AN [x,+oo] and B # (0, then b = inf B € R and we
have proved in 4. that there exists e > 0 such that |b—e, b+¢[C B.
This is a contradiction. Indeed , since b —¢/2 < b, the fact that
b —¢/2 € B contradicts the fact that b is a lower-bound of B.
So the only possible case is that C' # () where C' = AN| — oo, ].
However, if ¢ = sup C, then a similar proof to that of 3. will show
that ¢ € C (in particular ¢ € R) and C being open in R, there
exists € > 0 with Jc — €,¢ + €[C C, leading to a contradiction.
Hence, we see that all possible cases lead to a contradiction. We
conclude that the initial assumption is absurd, i.e. that A = ()
or A =R. So (R,7r) is a connected topological space, which
completes the proof of theorem (95).

Exercise 5
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Exercise 6.

60

1. Let (£2,7) be a topological space and A C € be a connected

subset of . Let B be a subset of €2 such that A C B C A,
where A is the closure of A in Q. Let Vi, V5 be disjoint open
subsets of B such that B = V; W V5. From definition (23) of the
induced topology 7|, there exist Uy, Uz open subsets of {2 such
that Vi = BNU; and Vo = BN Us.

2. Since A C B, using 1. we have:

A

ANB

AN (V1Y Vh)
AN[(BNUL)W(BNU)
(ANBNU))W(ANBNUs)
(ANUL) W (ANUs)

Now since Uy, Uy are open subsets of Q, ANU; and AN Us are
open subsets of A. Furthermore, since V; and V5 are disjoint,
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we have V1 NVo = BNU; NU; = (. and in particular since
AC B, AnNULNU; = 0. So ANU; and ANUs are disjoint open
subsets of A with A = (ANU;) W (ANUsy). Having assumed
that A is a connected subset of €2, the topological space (A4,7|4)
is connected and consequently using exercise (4), it follows that
ANU =0 or ANUsy = 0.

3. Suppose that ANU; = 0. Let + € A. Then for all U open
subsets of Q with z € U, we have ANU # (). Hence, since U; is
an open subset of Q and ANU; = (, it is necessary that x ¢ U;.
So z € Uf and we have proved that A C Uf.

4. Having assumed that B C A, it follows from 3. that B C U¥,
ie. Vi=BnU =0.

5. From 3. and 4. we have seen that if ANU; = 0, then V; = 0.
Similarly, if AN Us = (0, then Vo = (). However, we have shown
in 2. that ANU; =0 or ANUs =0. So Vi =0 or Vo = 0.

Having considered B C €2 such that A C B C A, and V1,14
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disjoint open subsets of B such that B = V; W V,, we have
proved that Vi = @ or V5 = (). From exercise (4), this shows
that the topological space (B, 7)) is connected, or equivalently
that B is a connected subset of 2. Hence, if A is a connected
subset of Q and A C B C A, then B is also a connected subset
of Q. In particular, A is a connected subset of .

Exercise 6
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Exercise 7. Let (©,7) and (€2, 7") be two topological spaces, and f
be a continuous map f : 2 — Q. We assume that (2, 7) is connected.
We claim that f(£2) is a connected subset of Q', or equivalently that
the topological space (f (Q),T‘}(Q)) is connected. In order to prove
this, we shall use exercise (4) and consider A, B two disjoint open
subsets of f(2) such that f(2) = AW B. There exist U’, V' open
subsets of ' such that A = f(Q)NU’ and B = f(Q)NV’. Since f is
continuous, f~1(U’) and f~1(V') are open subsets of . Furthermore,
it is clear that:

FFHU) = @) = f71(4)
and similarly f~1(V’) = f~Y(B). So f~*(A) and f~!(B) are open
subsets of . Since A and B are disjoint, f~*(A) and f~1(B) are
also disjoint. Since f(Q) = AW B, for all x € Q we have f(z) €
Aor f(x) € B. Sox € f~1(A) or z € f~3(B). It follows that
f7Y(A) and f~1(B) are two disjoint open subsets of €2, such that
Q= f"YA)w f1(B). Since Q is connected, from exercise (4) it
follows that f~1(A) = 0 or f~!(B) = (). Suppose that f~(A) = 0.
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We claim that A = (). Otherwise there exists y € A C f(Q). Let
x € Q be such that y = f(x). Then f(z) € A and consequently
x € f~1(A) which contradicts f=1(A4) = 0. So f~*(A) = 0 implies
that A = (), and similarly f~!(B) = () implies that B = (). It follows
that A = 0 or B = (). Having assumed that f(Q2) = AW B where
A, B are disjoint open subsets of f(€), we have proved that A = ()
or B = (). From exercise (4), this shows that the topological space
(f (Q),’Tl’fm)) is connected, or equivalently that f(Q) is a connected
subset of ©'. This completes the proof of theorem (96).

Exercise 7
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Exercise 8.

1. Let A C R and suppose that A is an interval. Let o = inf A
and 8 = sup A. We claim that:

Jo, BIC A C [, 3]

If A =0, then « = +o00 and 8 = —oo0, so there is nothing to
prove. So we assume that A # (). Then there is z € A, and
we have a < x as well as ¢ < . In particular, a < (§. Let
z € A. Since « is a lower-bound of A, a < z. Since [ is an
upper-bound of A4, z < 3. So z € [, 3] and we have proved
that A C [a, 8]. Suppose z €]a, 8. From a < z we see that z
cannot be a lower-bound of A (« is the greatest of such lower-
bounds). There exists x € A such that a < x < 2. From z < 8
we see that z cannot be an upper-bound of A. There exists
y € A such that z < y < . From z < z < y we obtain in
particular z € [z,y]. Since z,y € A and A is assumed to be an
interval, it follows from definition (118) that z € A. We have
proved that o, S[C A.
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2. Let A C R. Suppose that A is of the form [a, 5], [, B[, ], 5]
or Ja, ([ for some «, 3 € R. Suppose there exist z,y € A with
x < y. Then for all z € [z,y] wehave z < z < y. Ifa <z
then o < z. If @ < x then o < z. If y < 3 then z < 3. If
y < [ then z < . In any case, we see that z € A. This shows
that [x,y] C A for all 2,y € A, x < y, and consequently from
definition (118), A is an interval. Note that A can be the empty
set without anything being flawed in the argument just given.
Conversely, suppose that A is an interval. From 1. we have:

Jo, BIC A C o, 0]

where o = inf A and 8 = sup A. We shall distinguish four cases:
suppose a € A and § € A. Then:

[, 8] =la, BlU{a} U{B} S A C [, f]
and consequently A = [, 5]. Suppose a € A and § € A. Then:

[, B[=]a, BlU{a} € A C o, I\ {B} = [, B
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and consequently A = [o, B[. Suppose a € A and 3 € A. Then:
Jo, B =], BIU{B} C A C [a, B] \ {a} =], 5]
and consequently A =|a, §]. Finally suppose o ¢ A and 3 ¢ A:
Jo, BIC A € la, ]\ {a, A} =la, 5]

and consequently A =]«, 3[. Hence, we have proved that A is of
the form [«, 8], [, B[, o, B] or |, B]. Note that if A = (), there
is nothing flawed in the argument just given.

3. Let A =]—o00,af where @ € R. Consider ¢ : R —]|—1, 1] defined
by ¢(z) = x/(1 + |z|). Then ¢ is a bijection with ¢~1(y) =
y/(1 = |y|). Let » = ¢4 be the restriction of ¢ to A. Then 1)
is injective, and it is therefore a bijection from A to ¥(A). We
claim that ¢¥(A) =] — 1, ¢(a)[. Since |p(z)| < 1 for all x € R,
it is clear that (A) C] — 1,1[. Since ¢(z) = 1 — 1/(1 + z)
for x > 0 and ¢(z) =1+ 1/(1 — z) for = < 0, it is clear that
¢ is increasing. So ¥(A) C] — 1,¢(a)[. To show the reverse
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inclusion, consider y €] — 1, ¢(a)[. Since ¢~ is also increasing,
from y < ¢(a) we obtain ¢~1(y) < a. Hence, ¢~ 1(y) € A and
y=1(¢"1(y)) € ¥ (A). We have proved that )(A) =] — 1, ¢(a)]
and 1 is consequently a bijection from A to]—1, ¢(«)[. Since ¢ is
continuous, ¥ = ¢4 is also continuous. Since ¢~ is continuous,
Pl = (qﬁ’l)W(A) is also continuous. We conclude that ¢ : A —
] = 1,¢(c)[ is a homeomorphism. We have proved that for all
a € R, | — o0, af is homeomorphic to | — 1, /[ for some o/ € R.

4. Let A =]a, +oo[ where @« € R. Then if ¢ : R —]—,1,1] is
defined as in 3. and ¢ = ¢4, then ¥(A) =|¢(a), 1] and ¢ is
a homeomorphism from A to |¢(a),1[. Hence, for all @ € R,
Jev, +00[ is homeomorphic to |o/, 1| for some o’ € R.

5. Let A =]o, 8], a, f € R, a < 3. Define ¢ :] — 1, 1[—]a, [ by:

08—«

¢(r) = a+ (z+1)

Then it is easy to show that ¢ is a continuous bijection, and that
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¢~1 is continuous. So ¢ :] — 1, 1[—]a, B[ is a homeomorphism.
6. ¢(z) = x/(1+|z|) is a homeomorphism between R and | — 1, 1[.

7. Let A be a non-empty open interval in R, i.e. a non-empty
interval of R which is an open subset of R. Being an interval,
from 2. it is of the form [, 5], [, O], Ja, f] or ]a, 5] for some
a,3 € R. Suppose A is of the form [a, 8]. Being non-empty
with have a < . So a € [, 8] C R. Being an open subset of
R, there exists € > 0 such that Jo — €, + €[C [, 5]. This is a
contradiction since @ € R. So A cannot be of the form [a, f]
and we prove similarly that it cannot be of the form [«, 5] and
], B] either. So A is of the form ]a, B[ for some o, 3 € R, a < 3.
Suppose a« = —oc0 and 3 = 400. Then A = R which is clearly
homeomorphic to R. Suppose a = —oco and 8 € R. Then from
3. A is homeomorphic to | — 1, /[ for some o' € R, which is
itself homeomorphic to | — 1, 1[, as we have proved in 5. Having
proved in 6. that | — 1,1[ is homeomorphic to R, we conclude
that A is homeomorphic to R. Suppose @ € R and § = +oc.
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Then from 4. 5. and 6. we see that A is homeomorphic to R.
Suppose a € R and 8 € R. Then from 5. and 6. we see that A
is homeomorphic to R. Hence, in all possible cases, we see that
A is homeomorphic to R. We have proved that any non-empty
open interval in R is homeomorphic to R.

8. Let A be an open interval of R. If A = (), then the induced
topology on A is reduced to {0}, and (0, {0}) is a connected
topological space. So A is a connected subset of R. If A # (),
then from 7. A is homeomorphic to R. In particular, there
exists f : R — A which is continuous and surjective. From
theorem (95), R is connected. Since f is continuous, from theo-
rem (96) f(R) is a connected subset of A. Since f is surjective,
f(R) = A and consequently A is connected. We have proved
that any open interval of R is a connected subset of R.

9. Let A be an interval of R, i.e. an interval of R with A C R. If
A = () then A is connected. So we assume that A # (). From 1.

www.probability.net


http://www.probability.net

Solutions to Exercises 71

there exist a, 3 € R such that:
Ja, B[C A C o, §]

and since A # () we have o < 3. Since |a, ] is an open interval
in R, from 8. it is a connected subset of R. Suppose a = —o0
and = +o00. Then A = R and:

Jo, BIC A Ca, = o, 5]
Suppose a = —oo and [ € R. Since A C R we have:
Jo, BIC A Cla, f] = Jo, A
Suppose a € R and # = +oo. Then:
Jo, BIC A C [a, f[= Jov, B
And finally suppose that «, 5 € R. Then:
Jo, BIC€ A C o, B] = v, B
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It follows that Ja, B[C A C Ja, 8] in all possible cases, where
Ja, B[ denotes the closure of Jo, B[ in R. Having proved that
Jae, B[ is a connected subset of R, from exercise (6) we conclude
that A is a connected subset of R. We have proved that any
interval in R is a connected subset of R.

Exercise 8
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Exercise 9.

1. Let A C R be a non-empty connected subset of R. Let o = inf A
and 8 = sup A. We assume that there exists zo € A°N]a, f]. In
particular, we have xy € A° and consequently, since A C R:

A = (AN] = 00, z0]) & (A0, +00]) (2)

However, | — 0o, 2g[ and |zg, +00[ being open subsets of R, the
sets AN] — oo, xp[ and AN]zg, +00[ are open in A, and they are
clearly disjoint. Since A is connected, it follows from exercise (4)
that AN] — oo, zo[= 0 or AN]zg, +-00[= 0.

2. Suppose AN]xg, +oo[= 0. From (2) we have A = AN] — oo, z¢],
and consequently xg is an upper-bound of A. Since g is the
smallest of such upper-bounds, we obtain 8 < x( contradicting

xo €la, .

3. Similarly, if AN]— o0, xo[= 0, then zy is a lower-bound of A and
consequently xo < « contradicting z¢ €]a, . We have seen
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in 1. that AN] — o0, 20[= 0 or AN]zg, +oo[= 0. However, both of
these cases lead to a contradiction. We conclude that our initial
assumption was absurd, i.e. that there exists no z¢ in A°N]a;, G[.
In other words, A°N]a, B[= 0 or equivalently ], 3[C A. The fact
that A C [«, 8] follows immediately from the fact that o and 3
are respectively a lower-bound and an upper-bound of A. We
have proved that Ja, 5[C A C [«, 5].

4. Let A C R. Suppose that A is a connected subset of R. If
A = 0 then in particular A is an interval, as can be seen from
definition (118). If A # @, then A is a non-empty connected
subset of R, and we have just proved that Jo, 5[C A C [«, (]
where o = inf A and § = supA. In a similar fashion to 2.
of exercise (8) (depending on whether «, 8 lie in A or not), we
conclude that A is of the form [«, 5], [, 5], |, 5] or Ja, B]. From
this same exercise, this is equivalent to A being an interval. So
any connected subset of R is an interval. Conversely, suppose
that A is an interval of R. Then from exercise (8), A is a
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connected subset of R. We have proved that for all A C R, A
is connected, if and only if A is an interval. This completes the
proof of theorem (97).

Exercise 9

www.probability.net


http://www.probability.net

Solutions to Exercises 76

Exercise 10. Let f : Q@ — R be a continuous map, where (2,7) is
a connected topological space. Let a,b € Q with f(a) < f(b). From
theorem (96), f(Q) is a connected subset of R. From theorem (97),
f(Q) is therefore an interval of R. Since f(a), f(b) are elements of
f(Q) and f(a) < f(b), it follows from definition (118) that for all
z € [f(a), f(b)] we have z € f(£2). So there exists z € € such that
z = f(x). This completes the proof of theorem (98).

Exercise 10
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Exercise 11.

1. Let a,b € R, a <b. Let f : [a,b] — R be a map such that f'(z)
exists for all z € [a,b]. Note in particular that f is continuous
and therefore measurable. For all n > 1, let ¢y, : [a,b] — [a, b]:

e+ 82 ifre e,

v:ce[a,b},%(:v):{b_@ if 2 =b

Then ¢, is well-defined on [a, b] and has indeed values in [a, b].
The particular definition of ¢,, is however not very important.
What we need to note is that ¢, is Borel measurable, satisfies
¢n(x) — x while ¢, (z) # = for all x € [a,b]. Given n > 1, we
now define g, : [a,0] — R as:

fodn(z) - fz)
On(z) —

Then g, : ([a,b], B([a,b])) — (R, B(R)) is well-defined and mea-
surable, and furthermore g, (z) — f/(z) for all z € [a,b]. It fol-

Vo € [a,b] , gn(z) =
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lows that f’ is the pointwise limit of the sequence (g, )n>1, and
we conclude from theorem (17) that f” is itself Borel measurable.

2. Since f’ is measurable and R-valued, the condition:

b
/ |f(t)]dt < 400
is equivalent to f’' € L} ([a,b], B([a,b]), dx).

3. We assume that f' € Lk([a,b], B([a,b]),dx). Let e > 0. The
topological space [a, b] is metrizable and compact, and in partic-
ular o-compact. The Lebesgue measure dx on [a, b] is finite, and
in particular locally finite. Since f’ € L ([a,b], B([a, b)), dx), we
can apply Vitali-Caratheodory theorem (94): there exists mea-
surable maps u,v : [a,b] — R which are almost surely equal to
elements of L', such that u < f’ < v, u is u.s.c, v is Ls.c and
furthermore:

b
/ (v(t) — u(t))dt < e
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In particular, denoting g = v, we have found g : [a,b] — R

almost surely equal to an element of L', such that f’ < g and g
is 1.s.c. Note that the integral f; g(t)dt is meaningful, and:

b b
/“mwﬁ - /Xf@»+mw—fﬁ»ﬁ

b b
/f@ﬁ+/@m—fww

IN

b b
/f’(t)dt—i—/ (v(t) — u(t))dt
< /bf’(t)dt-i-e

4. Let o > 0. Since f’ < g we have ' < g+ a. Indeed, suppose
f'(x) = g(z) + a, x € [a,b]. Then f'(x) = g(x) = g(x) + o and
consequently g(z) € {—o0, +o0} contradicting the fact that f’
is R-valued. Having proved that f’ < ¢ + «, note that g + « is
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also a lower-semi-continuous map, which furthermore is almost

surely equal to an element of L!, since the Lebesgue measure
on [a,b] is finite. Furthermore, we have:

b b
/ (9+a)t)dt = / g(t)dt + a(b — a)

< /bf’(t)dt +e+alb—a)
Hence, taking o > 0 small enotjgh, it is possible to achieve:
/b(g +a)(t)dt < /b F(t)dt + 2¢
Replacing g by g+, we have found g : [a,b] — R almost surely

equal to an element of L', which is l.s.c. and satisfies f' < g
together with:

/abg(t)dt < /ab F(t)dt + 2¢
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Since € > 0 was arbitrary, it is possible to find g such that:

/abg(t)dt < /ab F(t)dt + e

In other words, without loss of generality, we have been able to
find a map ¢ as in 3., with the additional condition f’ < g.

5. Let v be the complex measure defined by v = [ gdx. Note that
strictly speaking, ¢ is not an element of L' (it may have values
in {—o0, +00}). If h is an element of Lg ([a, b], B([a, b]), dz) such
that ¢ = h da-almost surely, then for all E € B([a,b]), v(FE) is
defined as:

v(E) :/Eh(x)dx

Note that v is in fact a signed measure (i.e. a complex mea-
sure with values in R). Since dz(E) = 0 implies v(E) = 0, the
measure v is absolutely continuous with respect to the Lebesgue
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measure on [a,b]. From theorem (58), we have:

Ve >0, 36 >0, VE € B([a,b]) , de(E) <d§ = |[v(E)| <€

6. Let n > 0 and z € [a,b]. We define:

Fya) = [ " g0yt — f(@) + fla) + e — a)

Then F), : [a,b] — R is well-defined, and we claim that it is con-
tinuous. It is sufficient to show that x — faz g(t)dt is continuous.
Let ¢ > 0 be given, and consider § > 0 such that the state-
ment of 5. is satisfied. Let u,u’ € [a,b] such that |u' — u| < .
Without loss of generality, we may assume that v < u/. Then
dz(Ju,u']) < § and consequently from 5., |v(Ju,v'])| < €. So:

/ g(t)dt — / g(t)dt
la,u’] la,u]

/

/au g(t)dt — /aug(t)dt
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/ g(t)dt
Ju,u/]

This shows that z — [ g(t)dt is indeed continuous on [a,b]
(in fact uniformly continuous), and F;, : [a,b] — R is indeed a
continuous map.

= v(u,u)[ < ¢

7. Given n > 0, let = sup F, ' ({0}). It is clear that F,(a) = 0
and consequently a € F,"'({0}). So a < z. Since F, '({0}) C
[a,b], in particular b is an upper-bound of F,"'({0}). So « < b.
We have proved that x € [a,b]. In particular, 2 € R and for all
n > 1 we have x — 1/n < x. Since x is the lowest upper-bound
of F; ' ({0}), £ — 1/n cannot be such an upper-bound. There
exists z,, € F; ' ({0}) such that 2—1/n < x,, < z. We have thus
constructed a sequence (y,)n>1 in F, '({0}) such that z,, —
asn — +o00. Since F,(x,) = 0 for all n > 1, from the continuity
of F, we obtain F,(x) = 0.

8. Suppose x € [a, b[. Having proved in 4. that f’ < g, in particular
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f'(x) < g(x). Since g is ls.c, the set {f'(z) < g} is an open
subset of [a,b], which contains z. Hence, there exists d; > 0
such that:

Jz — 61,2+ d1[N[a, 0] € {f'(z) < g}
In particular we have:
t €|z, x + 61[N[a,b] = f'(z) < g(t)

Furthermore, by definition of the derivative f’(z), since n > 0,
there exists do > 0 such that:

t €]z — 02,2 + 02[N[a,b],t #z = w —fl(z)| <n
In particular, we have:
t €]z, z + d2[N[a,b] = f(ti : i(:}:) < f'(z)+n
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Taking ¢ = min(dy,dz), for all ¢ €]z, z + 6[N[a, b] we have:
f(t) = f(x)

f'(x) <g(t) and < f'(x) +n

Note that this conclusion is not very interesting if x = b, which
is why we have assumed z € [a, b].

9. Let ¢ €]z, x + d[N[a,b]. Using 8. we have:
nw = f gu)du— £(2) + Fla) +nft — a)
- R+ g+ £(z) — F(8) + (e )
> )+ [ g(wdu— (@)t~ 2)

> Fy()+ / £ (@)du — f(x)(t - )
Fy(x) =0
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10.

11.

12.

From 9. we have found 6 > 0 such that F;(t) > 0 for all ¢ in
the set |z, z + §[N[a, b]. Having assumed in 8. that x € [a, [, in
particular @ < b. So it is possible to find ¢y €]z, b[ such that
to €]z, + 6[N[a,b]. In particular F (tg) > 0. We have proved
the existence of ¢y €|z, b[ such that F, (to) > 0.

Suppose F,(b) < 0. From 10. we have ¢y €|z, b[ such that
F,(to) > 0. From 6. the map F), : [a,b] — R is continuous.
Let h = (F;)|it,,5) be the restriction of F;, to the interval [to, b].
Then h is also continuous. From theorem (97), [to,b] is a con-
nected topological space. Since 0 € [F,(b), F,(to)], from the-
orem (98) there exists u € [to,b] such that F;(u) = 0. Since
x = sup F,'({0}), in particular u < z. Hence, we obtain the
contradiction x < tg < u < x.

From 11. we see that F;(b) > 0 must be true when z € [a, b[.
Having proved in 7. that F,(z) =0, if z = b, F;;(b) = 0 and in
particular F),(b) > 0 is still true. So F,(b) > 0 in all cases.
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13. From F;(b) > 0 we obtain:

b
/"mmﬁ—ﬂw+ﬂ@+nw—@zo

This being true for all n > 0, we have:

b
f@—ﬂ@é/g@ﬁ

Hence, using 3. we obtain:

b
f@-ﬂ@ﬁ/f@ﬁﬂ

and this being true for all € > 0, we have proved that:

b
f@—ﬂ@é/ﬁ@ﬁ (3)

Having considered a,b € R, a < b and f : [a,b] — R a map
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such that f’(z) exists for all z € [a, b] and:

b
/ F(O)|dt < +o0

we have been able to prove inequality (3). Applying this result
to —f instead of f, we obtain:

b
/j%Wﬁgﬂ@—f@)

and finally we conclude that:

b
£0) - f(@) = [ £
This completes the proof of theorem (99).

Exercise 11
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Exercise 12.

1. Let @ > 0 and k,, : R — R" defined by k,(z) = az. Then k,
is continuous, and in particular Borel measurable.

2. Let p: B(R") — [0, +00] be defined by:

VB e B(R"), u(B)=a"dz({ks € B})

where dz is the Lebesgue measure on R". Note that u is well-
defined since {ko, € B} is a Borel set for all B € B(R"), kq
being measurable. It is clear that () = 0 and furthermore, if
(Bp)p>1 is sequence of pairwise disjoint elements of B(R™) and
B = Wy>1 B, we have:
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= a'dzx L—ﬂk;l(Bp)

p>1
“+o0
= a" (Z dx(k;1<Bp>>>
p=1
“+o0
= Za”dw({ka € B,})
p=1

“+o0
= Z 1(Bp)

So p is a measure on R”. Let a;,0; € R, a; < b; for : € N,,.
For all z = (x1,...,2,) € R" the inequality a; < az; < b; is
equivalent to a;/a < x; < b;/a. Hence:

p(la,b1] X ... X [an,by]) = o"dx ({aaz € H[ai,bi]}>
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91

From the uniqueness property of definition (63) we conclude
that p = dx. Hence, we have proved that for all B € B(R"):

dr({ka € BY) = ——p(B) = ~-dx(B)

3. Let € > 0 and z € R"™. Let B(z,¢€) be the open ball:

B(z,e) ={y e R": [lz —y| < ¢}

where || - || denotes the usual Euclidean norm on R™. Given
u € R™ we consider 7, : R™ — R"™ the translation mapping of
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vector u defined by 7, (z) = u+z. Then 7, is clearly continuous,
hence Borel measurable. Furthermore, for all a,b € R™ such
that a; < b; for all 1 € N,,, we have:

dx ({Tu S H[ai,bi}}> dx (H[ai —ui, b — uJ)

i=1
and in a similar fashion to 2. we conclude from the uniqueness
property of definition (63) that for all B € B(R"):

dz({r, € B}) = dx(B)

This equality expresses the idea that the Lebesgue measure is
invariant by translation. We shall see more on the subject in
Tutorial 17. In the meantime, using 2. we obtain:

dz(B(z,€)) = dx({r—s € B(0,¢)})
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dx(B(0,€))

dx({k1/e € B(0,1)})
e"dx(B(0,1))

So we have proved that dz(B(z,€)) = €"dz(B(0,1)).

Exercise 12
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Exercise 13.

1. Let 1 be a complex measure on R™. Let A € R and suppose that
A< 0. Let z € R™ and € > 0. Since B(xz, €) is an open subset of
R"™, in particular it is a Borel subset of R™. So |u|(B(x,€)) and
dz(B(z,€)) are well-defined quantities of [0, +o00]. In fact, from
theorem (57), the total variation |u| is a finite measure on R",
so |u|(B(z,¢€)) is an element of R (this is not relevant to the
present question, but the fact that |u| is a finite measure should
not be forgotten). From the inclusions:

[—1/2v/, 1/2v/A]" € B(0,1) C [-1,1]"

we obtain the crude estimates:

() <mtsto <=

N

and it follows from 3. of exercise (12) that dz(B(z,¢)) is an
element of |0, +oo[. Hence, we see that |u|(B(z,¢€))/dx(B(x,€))
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is a well-defined element of R". Since (Mu)(z) is an upper-
bound of all such ratios for € > 0, we have:

[l (B(z,€))
A<0< m S(M,u)(x)

So x € {\ < Mu}. This being true for all z € R™, we conclude
that {A < Mu} =R™

2. Suppose A = 0 and p # 0. There exists E € B(R"™) such that
w(E) # 0. Since |u(E)| < |p|(E), in particular |u|(E) > 0. Let
x € R™. Since B(z,p) T R™ as p — 400, from theorem (7):

0 <|ul(E) = lim_|ul(ENB(z,p))

In particular, there exists p > 1 such that |u|[(E N B(z,p)) > 0
and consequently |u|(B(z,p)) > 0. Hence, we have:

1l (B(z,p))

0< & (Bz.p))

< (Mp)(x)
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and we have proved that x € {A < Mu} = {0 < Mu}. This
being true for all z € R™, we have {\ < Mu} = R"™. Suppose
now that A\ = 0 with g = 0. Then |u| = 0 and it is clear that
(Mp)(xz) =0 for all z € R™. So {\ < Mu} =0.

3. Suppose A > 0. Let € {\ < Mpu}. Then A\ < (Mp)(x). Since
(M p)(z) is the smallest upper-bound of all ratios:

|ul(B(x, €))/dz(B(x, €))

as € > 0, A cannot be such an upper-bound. There exists € > 0
such that A < |u|(B(z,¢€))/dx(B(x,€)). Defining:

t = |ul(B(z,€))/dx(B(z, €))
we have t > X and |u|(B(x,¢€)) = tdz(B(z,¢€)).

4. Since 1 < /X we have €" < €"t/). Furthermore, it is clear that
lims (e + 0)™ = €. Hence, we have (e + )" < €"t/\, for 6 >0
small enough.
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5. Suppose y € B(z,0) and let z € B(x,€). Then:

lz—yll < llz =zl +llz—yll <e+6
So z € B(y,e+0) and we have proved that B(x,¢) C B(y,e+9).

6. Let y € B(x,0). Since B(z,€) C B(y, e+ 0), we have:

ul(B(y,e+0)) = |ul(B(x,
= tdz(B(x,

€))
€))

= "tdz(B(0,1))

B €t

(e+0)"

dz(B(y,e+9))

> Mdz(B(y,e+0))

where the second and third equalities stem from exercise (12).

7. For all y € B(x,9), from 6. we have:

A<

ul(Bly.e +0) _

dx(B(y,e+9)) —

(Mp)(y)
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So in particular y € {A < My} and we have proved that
B(z,0) C {A < Mpu}. Having considered x € {\ < Mpu} we
have found § > 0 such that B(x,0) C {\ < Mu}. This shows
that {\ < Mu} is an open subset of R", for all A € R with
A > 0. In fact, it follows from 1. and 2. that {\ < My} is
also open if A < 0. We conclude that {\ < Mu} is open for
all A € R, i.e. that the maximal function My is lower-semi-
continuous. In particular, {\ < My} is a Borel subset of R"
for all A € R and from theorem (15), My is measurable.

Exercise 13
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Exercise 14.

1. Let B; = B(x;,¢;), i = 1,..., N, be a finite collection of open
balls in R™ where we have assumed that ey < ... < ¢;. We
define Jo = {1,..., N} and for all k > I:

Jké{ J—1N{j: j>ix, BjNB;, =0} if Jy_1 #0

0 if Jo_1 =10
where i, = min Jy_1 if J,_1 # (0. Suppose k > 1 and J;,_1 # ().
The fact that J, C Ji_1 is clear. However, the inclusion is strict.
Indeed, since iy = min Jj_1, in particular i € Jp_,. However,
it is clear that iy & Ji. We have proved that Ji C Ji_1.

2. Since (Ji)k>0 is a strictly decreasing sequence (in the inclusion
sense) and Jy is a finite set, there exists k > 1 such that J = 0.
It follows that p = min{k > 1: J; = 0}, as the smallest element
of a non-empty subset of N, is well-defined.

3. Let S = {i1,...,4p} where i = minJy_ for all k£ > 1 with
Ji_1 # (0. In order to show that S is well-defined, we need to

www.probability.net


http://www.probability.net

Solutions to Exercises 100

ensure that 75 is meaningful for k¥ € N, i.e. that Jy_1 # 0.
But if £ € N, and J;—; = (), since p is the smallest element of
{k>1:J, =0} we obtain p < k — 1 and k¥ < p which is a
contradiction. So S is well-defined.

4. Suppose 1 <k <k’ <p. Wehave iy € Jy_1 C Ji. Soip € Jp.

5. The family (B;);cs is a family of open balls. Suppose i,j € S
with i < j. There exist 1 < k < k' < p such that i = 75, and
j = i}r. From 4. we have j € J,. This implies in particular
that B; N B;, = 0. So B; N B; =0, and (B;)cs is a family of
pairwise disjoint open balls.

6. Let ¢ € {1,...,N}\ S and ky = min{k € N, : i & Ji}. In
order to show that kg is well-defined, we need to check that
{k € N, : i & Ji} is not empty. This is clear from the fact that
Jp = 0. So ko is well-defined. Note that this conclusion holds
for any i € {1,...,N}.
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7. ko being the smallest element of {k € N, : i & Ji}, ko — 1 does
not lie in this set. So either kg — 1 = 0 or ¢ € Jy,—1. Since
Jo = {1,..., N}, in any case we have i € Ji,_1. In particular
Jko—1 # 0. So iy, is defined as the smallest element of Jg,_1.
From ¢ € Jy,—1 we obtain iy, <.

8. Since Ji,—1 # 0, we have:
Jio = Jkg—1 N {j 17> ikO,Bj N Biko = (Z)}

ko being the smallest element of {k € N, : i & Ji }, in particular
it is an element of this set and consequently we know that i &
Jr,. However, we have proved in 7. that ¢ € Ji,_1. Furthermore,
we know that ix, < ¢ and since by assumptioni € {1,..., N}\S,
in particular ¢ is not an element of S. So @ # iy, and therefore
i, < 4. Since i & Ji, we conclude that B; N Bi,, # (.

9. From 8. we have B; N B;, = B(x;, €;) ﬂB(:cikO , e%) # (. Let x
be an arbitrary element of B; N B;, . Then for all y € B;, since
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ig, <t and ey <...< e, we have:

< ly =l + o — =l + |z — @, |l
< € +Ei+6ik0
<

36ik0

1y = @i, |

So y € B(w,,,3¢€;,,) and we have proved B; C B(;, , 36, )-

10. For all ¢ € {1,...,N}\ S, we found ky € N, such that B; C
B(zi,,,3¢€i,, ). In other words, if we denote j(i) = ik,, there
exists some j(i) € S such that we have B; C B(x;x),3¢;x:))-
Hence:

N
UB(Z‘Z',GZ') = UB(qu‘)U UB(xi7€i)

i€S igSs

N

U Bl e) U | U B, 3€;0))

= igSs
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- UB({L‘i,Ei)U (U B(LL'“?)Q))
€S €S

= U B(;L‘i,3€i)
€S

So S = {i1,....4p} is a subset of {1,..., N} such that (B;);cs
is a family of pairwise disjoint open balls, and:

N
U B({,Ci,ﬁi) - U B({L'l,361)
i=1 icS

11. Using 10. and exercise (12), we have:

N

i=1 €S

< de (24, 3€;))

€S
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> 3"erdx(B(0,1))

i€S

= 3”Zdac (z4,€:))

€S

where the second inequality stems from the fact that a mea-
sure is always sub-additive, as can be seen from exercise (13) of
Tutorial 5.

Exercise 14
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Exercise 15.

1. Let p be a complex measure on R™. Let A > 0 and K be a
non-empty compact subset of {\ < Mu}. Let © € K. Then
x € {N < Mu}, ie. A < (Mp)(x). Since (Mp)(z) is the
smallest upper-bound of all ratios:

|1l (B(z, €))/dz(B(x, €))

as € > 0, it is impossible for A to be such an upper-bound. There
exists €, > 0 such that:

|| (B(z, €x))
do(B(z,en)) 4)

Now it is clear that K C UyecxB(x,¢€;). Since K is compact,
there exist N > 1 and z1,...,z5y € K such that:

A<

K C B(x1,€4,)U...UB(zN,€y)

Defining ¢; = €, and B; = B(xy,€;), the collection (B;)ieNy
is therefore a covering of K. From (4), for alli = 1,..., N we
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have Adx(B;) < |pl(B;).

2. By re-indexing the B;’s if necessary, without loss of generality
we can assume that ey < ... < ¢;. From exercise (14), there
exists a subset S of {1,..., N} such that the B;’s for i € S are
pairwise disjoint, and furthermore:

N
dx (U B(x;,€;) ) < 3”2(13: (zi,€))

i=1 €S

Hence, since K C UY | B;, using 1. we obtain:

N
dx(K) < dx (U B xza@))

< 3”de (zi,€))

€S

< 3 Slrl(Blase)

i€S
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- S (U B(xi,e»)

ics
where the last equality stems from the fact that all the B;’s,
i € S, are pairwise disjoint. We have effectively obtained a
strict inequality, when only a large inequality was required.

3. Let ||p]] = |p|(R™) < 400 be the total mass of |u|. From 2.:
dz(K) < 3" X7yl (U B(u,q)) < 3"l
i€s

4. Having considered a complex measure p on R", with maximal
function My, given A € R\ {0}, for all K non-empty compact
subset of {A < Mpu}, we have proved that:

dr(K) < 3" A7
Note that this inequality is still valid if K = (). The Lebesgue

measure on R™ being locally finite, from theorem (74) it is inner-

www.probability.net


http://www.probability.net

Solutions to Exercises 108

regular. In particular, we have:
dex({\ < Mpu}) =sup{dz(K): K C {\ < Mu}, K compact}

In other words, dz({\ < Mu}) is the smallest upper-bound of
all dz(K)’s, as K runs through the set of all compact subsets
of {\ < Mp}. Having proved that 3"A~1||u|| is one of those
upper-bounds, we conclude that:

dr({A < Mu}) < 3" 271 ul|
This completes the proof of theorem (100).

Exercise 15
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Exercise 16.

1. Let f € L5(R",B(R"),dz), n > 1. From theorem (63), u =
J fdz is a well-defined complex measure on R™, and its total
variation |p| is given by |u| = [|f|dz. From definition (120),
the maximal function M f of f is exactly the maximal function
My of p. Hence, for all z € R™

(M) = (Mp)(a)
g B )
26 dz(B(, )

— swp flde

=,
e>0 dJ?(B(J?, E)) B(x,e€)

2. If p= [ fdx then |u| = [ |f|dz and consequently:

Il = 1l ®) = [ 111z = 111
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Applying theorem (100) to u, for all A > 0 we obtain:
da({A < Mf}) = da({r< Mp})

3"ATH |

3" AT £l

IA

Exercise 16
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Exercise 17.

1. Let f € LE(R™,B(R"),dz), n > 1. Let x € R™. We assume
that f is continuous at x. Let n > 0. There is § > 0 such that:

VyeR", [z —yl|<d = [f(2) - fW)<n
Suppose € > 0 is such that 0 < € < §. Then:

1 1
dx(B(x,9) /Bw ) = F@ldy < B o) /B(m,ﬁidy =

We conclude that:

. 1 -
lim /B W~ sy =0

and x is therefore a Lebesgue point of f.

2. Let x € R™. We assume that x is a Lebesgue point of f. For
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all € > 0, denoting B, = B(z, €) we have:

1
W/Ezef(y)dy_ﬂx)

IN
—
S
=
<
~
|
=
&
=
<

Hence, from:

. 1

we conclude that:

. 1
J@) = B /B(m) F(y)dy

Exercise 17
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Exercise 18.

1. Given f € L5(R™, B(R"™),dz), for all € > 0 and z € R™, let:

1
TN = 5y o, VO @y

(Tf)(x) = inf sup (T..f)(w)
€>04€]0,¢[

From theorem (79), the space C&(R™) of continuous C-valued
functions defined on R™ with compact support, is dense in L'.
Given n > 0, there exists g € C&(R™) such that || f — g[1 <7.

and:

2. Let h=f —g. For all ¢ >0 and = € R™ we have:

1
BB oy )
1
m/ﬂw’e)(lh(y) + |h(x)])dy
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1

M/Bw) |h(y)|dy + [h(z)]
1

TG o, P )

3. Let x € R™. From exercise (16) we have:

1
Mh)(x) = su 7/ hldx
( )( ) e>lg dx(B(x,e)) B(z,e)‘ |
In particular, for all € > 0, from 2. we obtain:
(Teh)(z) < (MR)(x) + [h(z)]|

Hence, if € > 0 is given, (Mh)(z) + |h(x)| is an upper-bound of
all (Tyh)(x) as u €]0, ¢[. It follows that:

sup (T,h)(x) < (Mh)(z) + [h(z)]

u€]0,¢|
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and we have:

(Th)(z) =
<

<

115

inf sup (Tyuh)(z)
€'>0 uwel0,e’[

sup (Tyh)(x)
u€]0,¢|

(Mh)(z) + [h(z)|

This being true for all z € R™, Th < Mh + |h/|.

4. Let z € R"™ and € > 0. Let B = B(x,¢€). Then:

(Tef)()

=5 L o
@/ l9(y)

=5 ( 9ty

z)|dy
h(y) — h(z)|dy

oy -+ 1hy) - <x>|dy)

(Teg)(x) + (Teh)( )
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This being true for all x € R", T.f < T.g + Tch.

5. Let x € R™. Let €1,€2 > 0 be given and € = min(ey, €2). For all
u €]0, €[, using 4. we have:

(Tuf)(=) (Tug)(x) + (Tuh)(x)

sup (Tug)(z) + sup (Tuh)(z)
u€]0,€e1 ] u€]0,e2]

IAIA

Hence, the right-hand-side of this inequality is an upper-bound
of all (T, f)(x)’s as u €0, ¢[. Tt follows that:

T =l s (1)@

< sup (T f) ()
u€]0,€|

< sup (Tug)(z) + sup (Tuh)(x)
u€]0,€e1 ] u€]0,e2]

Suppose sup,¢jo.,[(Tug)(z) < +00. Then this quantity can be
safely subtracted from both sides of the previous inequality, to
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obtain:

(Tf)(x) = sup (Tug)(z) < sup (Tuh)(z)
u€l0,e1] u€l0,e2]
Hence, €1 > 0 being given, we see that the left-hand-side of
this inequality is a lower-bound of all sup,¢jo ,((Tuh)(2)’s, as
€a > 0. Since (Th)(z) is the greatest of such lower-bounds, we
obtain:

(Tf)(x) = sup (Tug)(x) < (Th)(x)

u€]0,€e1 ]
or equivalently:
(Tf)(x) < sup [(Tug)(x) + (Th)(z)
ue|0,e1

which is still valid when sup,eq ¢, [(Tug)(7) = +00. Suppose
now that (Th)(z) < 4+oo. Then (Th)(xz) can be safely sub-
tracted from both sides of the previous inequality, to obtain:

(Tf)(@) = (Th)(z) < sup (Tug)(x)

u€]0,e1
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This being established for all ¢; > 0, (T'f)(x) — (Th)(z) is a
lower-bound of all sup,,¢jo ., (Tug)(z)’s, as e1 > 0. Since (T'g)(z
is the greatest of such lower-bounds, we obtain:

(Tf)(x) = (Th)(z) < (Tg)(x)
or equivalently:

(TF)(x) < (Tg)(x) + (Th)(x)
This being true for all x € R®, T'f <Tg+ Th.

6. Let z € R™. Since g € C&(R™), g is a continuous element of L.
From exercise (17), x is therefore a Lebesgue point of g. Hence,
from definition (121):

1
lim(T.g)(x) = lim ——— —g(z)|dy =0
() @) = i oy [ o) gy

Let 6 > 0. There exists € > 0 such that:
u €0, e[ = (Tug)(x) <0
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So ¢ is an upper-bound of all (T,,g)(x)’s as u €]0, €[, and conse-
quently sup,¢jo ((Tug)(z) < 0. Hence:

(Tg)(z) = inf sup (Tug)(x)
e>0u€]0’€/[

sup (Tug)(x)
u€]0,€[

< 40

IN

This being true for all 6 > 0, we conclude that (Tg)(x) = 0.
This being true for all z € R", we have proved that T'g = 0.

7. Using 3. and 5. together with Tg = 0, we obtain:
Tf<Tg+Th=Th< Mh+ |h|

8. Let a > 0. Let € R™ and suppose that (Mh)(xz) < « together
with |h|(z) < . Using 7. we obtain:

(Tf)(x) < (Mh)(z) + [h](z) < 20
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Hence, we have shown the inclusion:
{Mh < a} N {|h] < a} C {Tf < 2}
from which we conclude that:
{20 <Tf}C{a<Mh}U{a<|hl}
9. We have:
dz({a < |h[})

at /al{a<|h‘}daz

a_1/|h\l{a<‘h|}dm‘

oz_l/|h\dx

= o 'kl

IN

IN

10. Let @« > 0 and n > 0. From 1. we have the existence of g €
C&(R™) such that ||h]jy < n where h = f — g. Define M, , =
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{a < Mh} U{a < |h|}. From exercise (13) applied to the
complex measure p = [ hdz, Mh is a Borel measurable map.
Since |h| is also Borel measurable, we see that M, , € B(R").
Furthermore from 8. we have {2a < T'f} C M,,. Finally,
using 9. and exercise (16), we obtain:

da(Ma ) dx({a < Mh}U{a < |h|})

< dx({a < Mh}) +dx({a < |h|})
< 3" YA+ a7

= 3"+ 1a Y hlh

< (B"+Daly

Hence, given a > 0 and n > 0, we have found M, , € B(R")
such that {2a < Tf} C M, , and dz(M,,) < (3" + 1)a~1n.
Take No, = My,» where n* = (3" + 1)~ tan. Then N,, €
B(R"), {2a < Tf} C N,y and dz(Ng,,) < n, which is exactly

what we want.
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11. Let a > 0. With an obvious change of notation, given n > 1,
from 10. there exists N, € B(R") such that we have {2a <
Tf} € Nup and dz(Nay,) < 1/n. Let Ny = Np>1Nqn. Then
N, € B(R"), {2a < Tf} C N, and furthermore for all n > 1:

1
dz(Ny) = dz(Np>1Nan) < dz(Nyjp) < -
So dz(N,) = 0.

12. Let n > 1. With an obvious change of notation, from 11. there
exists N, € B(R™) such that {2/n < T'f} C N,, together with
dx(N,) = 0. Define N = Up>1N,. Then N € B(R") and
dx(N) = 0. Furthermore:

{Tf>0} = [J{2/n<Tf}
C ONn:N
n>1
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13. From 12. there exists N € B(R"™) with dx(N) = 0 such that
{Tf > 0} € N. Hence, for all x € R", we have z € N¢ =
(Tf)(x) =0. We conclude that Tf = 0 dz-a.s.

14. Let f € L&(R",B(R"),dz). Let z € R" and suppose that
(Tf)(x) =0. Let 6 > 0. Then (Tf)(x) < d. Since (Tf)(x) is
the greatest lower-bound of all sup,,¢jo (7w f)(2)’s as € > 0,
d cannot be such a lower-bound. There exists € > 0 such that
supyejo,er[(Tuf)(x) < 0. Hence for all € €]0, €[, we have:

! /B @)~ f@ldy = (T.f)a)

dx(B(x.¢) Jpa.e;
< sup (Tuf)(z)<$é
u€]0,e’[
We have proved that:
1
im —— B _
eﬁ% dr(B(z,€)) /B(w’e) [f(y) — f(x)|dy =0
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i.e. that x is a Lebesgue point of f. So every x € R" such that
(Tf)(x) = 0 is a Lebesgue point of f. Since T'f = 0 dz-almost
surely, we conclude that dz-almost all x € R™ are Lebesgue
points of f. This completes the proof of theorem (101).

Exercise 18
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Exercise 19.

1. Let (Q,F, ) be a measure space and ' € F. Let F' = Fo
and p/ = . Let A € F'. Since F' is the trace of F on (',
from definition (22) there exists A € F such that A’ = AN Q.
Since Q' € F, we see that A’ € F. This shows that ' C F and
the restriction p/ = pz is a well-defined measure on (', 7).

2. For all maps f defined on ' with values in C or [0, +oc], we
define an extension of f on €, denoted f, by setting f(w) =0 for
allw e Q\ Q. Let A€ F and 14 be the indicator function of
Aon €. Ais also a subset of 2, and we denote 14 its indicator
function on Q. Let w € Q. If w € A C )/, then:

(@) 2 15(w) =1 =14(w)
If we Q' \ A, then:

[>

Iy (w) = 1%(w) = 0=14(w)
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if we Q\Q, then:
~ A
y(w) =0=14(w)
In any case we have 1;\((,‘1) = 14(w). So 1, =14.

3. Let f: (', F") — [0,+00] be a non-negative and measurable
map. For all B € B([0, +00]) we have:

{feB} = ({feBInQ)w({feB}n(\Q))
= {feBty({0eB}N(Q\Q))

where {0 € B} denotes Q if 0 € B and §) if 0 ¢ B. Since [ is
measurable, we have {f € B} € F/ C F. Since Q' € F, it is
clear that {0 € B} N (Q\ Q') € F. It follows that {f € B} € F,

and we have proved that f is a non-negative and measurable
map. Suppose f is of the form 1/, for some A € F’. Then:

[ st =p) = ) = [ Lt = [ Tpa
/ Q Q
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Suppose now that f = 7" a;1); is a simple function on

(', F"). To make our proof clearer, let us denote ¢(g) the
extension § of any map ¢ defined on €. Then:

| = [ (gailgjdu'
_ i:a/ﬂ v, dyf
_ §_ja [ ot yan
-/ (gmugi)) n
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- /Q o(f)dp

= /Qfdu

Finally, if f : (@, F") — [0,400] is an arbitrary non-negative
and measurable map, from theorem (18) there exists a sequence
(8n)n>1 of simple functions on (', F’) such that s, T f, i.e. for
all w € Q' 5,(w) < spp1(w) for all n > 1, and s, (w) — f(w).
It is clear that s, T f , and from the monotone convergence
theorem (19) we obtain:

fdy' = lim Spdp’
QO n—-+oo Q
= lim Spdp

n—-+4o0o O
= /fdu
Q
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4. Let f € LE(Q,F,u'). Let u = Re(f) and v = Im(f). To
make our proof clearer, we shall denote ¢(g) the extension g of
any map ¢ defined on Q. From f = u™ —u~ +i(vt —v7)
we obtain ¢(f) = ¢(u™) — ¢p(u™) +i(d(vt) — p(v7)). From 3.
each ¢(u®) and ¢(v?) is measurable, and consequently ¢(f) is
itself measurable. Note that given B € B(C), it is not difficult
to show directly that {f € B} € F just like we did in 3. with
B € B(|0,+o0]). It is clear that |¢(f)| = ¢(|f]), and applying
3. to the non-negative and measurable map |f| we obtain:

ot [ o= [ il <+

Hence, we have proved that f = o(f) € LE(Q, F,p). Finally,
using 3. once more together with the linearity of the integral:

/fd,u/ = /uﬂlu’—/ u”dy
Q/ ’ ’
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i </Q/ vhdp' — /Q/ U_d,u’)
[ ety [ oty

v i ([ otrida [ otin)

- /Q [Bt) — g(u) + (o) — S ))]dp

/gzaﬁ(f)du:/gfdu

+

Exercise 19
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Exercise 20.

1. Let b: RT — C be a map. Suppose b is absolutely continuous.
From definition (122), b is right-continuous of finite variation,
and furthermore it is absolutely continuous with respect to the
right-continuous and non-decreasing map a : R™ — RT with
a(0) > 0, defined by a(t) = t. From theorem (89), there exists

fe Léloc( t) such that b(¢ fo s)ds for all t € RT. Con-
versely, suppose such an f ex1sts From theorem (88), b = f.a
is a right-continuous map of finite variation, and from theo-
rem (89), it is in fact absolutely continuous with respect to
a(t) = t. So b is absolutely continuous. We have proved that b
is absolutely contmuous if and only if there exists f € L& 1Oc(t)
such that b(t) = [} f(s)ds for all t € R*.

2. Suppose bis absolutely continuous and let f € Ll’loc( t) be such

that b(t fo s)ds for all t € RT. From theorem (88), we
have Ab = fAt = O Since b is right-continuous of finite varia-
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tion, in particular it is cadlag. We conclude from exercise (29)
(part 1) of Tutorial 14 that b is in fact continuous with (0) = 0.

Exercise 20
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Exercise 21.

1. Let b: RT — C be absolutely continuous. Let f € Léloc(t)

be such that b(t fo s)ds for all t € RT. For alln > 1, we
define f,, : R — C by:

o f®)lon(t) if teR*
fn(t)—{o o if t<0

Applying exercise (19) to (2,9) = (R,R7), bearing in mind
that B(R") = B(R)r+, we have f, = &(flj,,)) where ¢(g)
denotes the extension g on R, of any map ¢ defined on R*.
Since f € Lg 1OC( t), we have flj,) € L&(RY, B(RT),dz) and
consequently f, = ¢(fljn) € Le(R,B(R),dx). Note that
we are using the same notation dx to denote successively the
Lebesgue measure on R* and the Lebesgue measure on R, the
former being the restriction of the latter to B(R*) C B(R). Let
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n>1and ¢ € [0,n]. Using exercise (19) once more:

/fndx = /fnl[O,t]dx
R

/¢(f1[o,n]1[o,t])d$
R
/ fLomlnde
R+

/ fl[o,t]d.%'
R+
/0 F(s)ds = b(1)

Note that we use the same notations 1jg 4 and 1jg,) to denote
characteristic functions defined successively on R and R*.

2. Since f, € LE(R,B(R),dx), from theorem (101), dz-almost
every t € R is a Lebesgue point of f,,. Hence, there exists
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N, € B(R) with dz(N,) = 0 such that for all t € N, tis a
Lebesgue point of f,,.

3. Let t € R and € > 0. Since B(t,€) =]t — €,t + €[, we have:

1 t+e 2 t+e
! / uls) = Fal0lds = s / Fuls) — Fult)lds

€ dx
2 t+e
< Ty ) = Falds
dx

(B(t,e)) J,—
2

(B(t:€))

4. Let t € Nf. Then t is a Lebesgue point of f,. From the in-
equality obtained in 3. we have:

t+e

1
elﬁ%g ] ‘fn(s)_fn(t)‘dszo

/ Fnls) — Fu(t)lds
B(t,e)
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Furthermore, since:

136

t+e t+e
L[ oo = 1[0 - nous
t+e
< 1/ Fals) = Fu(®)lds
We conclude that:
t+e
lim — fn(s)ds = fn(t)

ell0 € t

5. Similarly to 3. and 4. we have:

2

€ Ji—

Fles = £,(0)

IN

N[ ) = patepas
% . ‘fn(s) - fn(t)‘ds
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2
< BB Jo 0 IO

Hence for all t € NS, t being a Lebesgue point of f,:

1/t
lim — fn(s)ds = fn(t)

ell0 € t—e

6. Let ¢ € NS N [0,n[. From 1. we have b(t fo fn(s)ds. Fur-
thermore, for € > 0 small enough we have t+ee€ [O,n], and

consequently b(t + €) = ft+e fn(s)ds. Hence:

. b(t+e)—Db(t

mT e 615%6/ Inls)ds = It
Moreover, assuming ¢t > 0, t — € € [0, n] for € > 0 small enough,

and consequently b(t — €) = Ot_e fn(s)ds. Hence:

b)) —b(t—e) 1 [T -
!ﬂ%f = elﬁ%g/t_efn(S)dS = fnl(t)

www.probability.net


http://www.probability.net

Solutions to Exercises 138

We conclude that for all t € NS N[0, n], if ¢ = 0, the right-hand-
side derivative 0’(0) exists and is equal to f,,(0). If ¢ > 0, the
derivative b'(t) exists and is equal to f,,(t). However if t € [0, n],
fu(t) = f(t). So for all t € NN [0,n], b'(t) = f(t).

7. Define N = (U,>1N,)NRT. Then N € B(R*) and dz(N) = 0.
Let t € N°¢. Choosing n > 1 such that t € [0,n], from ¢t ¢ N
we obtain ¢ ¢ N, and consequently t € NS N [0,n][. From 6.
it follows that o'(t) exists and is equal to f(t). We have found
N € B(R") with dx(N) = 0, such that for all t € N¢, V/(t)
exists and is equal to f(t).

8. We have shown in exercise (20) that a map b is absolutely contin-

uous, if and only if there exists f € Léloc(t) such that b = f.t.

Furthermore, it follows from 7. that if b is absolutely continuous,
it is almost surely differentiable with ' = f dz-almost surely.
This completes the proof of theorem (102).

Exercise 21
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