16. Differentiation

Definition 115 Let (Ω, \mathcal{T}) be a topological space. A map $f: \Omega \rightarrow \overline{\mathbf{R}}$ is said to be lower-semi-continuous (l.s.c), if and only if:

$$
\forall \lambda \in \mathbf{R}, \quad\{\lambda<f\} \text { is open }
$$

We say that f is upper-semi-continuous (u.s.c), if and only if:

$$
\forall \lambda \in \mathbf{R}, \quad\{f<\lambda\} \text { is open }
$$

EXERCISE 1 . Let $f: \Omega \rightarrow \overline{\mathbf{R}}$ be a map, where Ω is a topological space.

1. Show that f is l.s.c if and only if $\{\lambda<f\}$ is open for all $\lambda \in \overline{\mathbf{R}}$.
2. Show that f is u.s.c if and only if $\{f<\lambda\}$ is open for all $\lambda \in \overline{\mathbf{R}}$.
3. Show that every open set U in $\overline{\mathbf{R}}$ can be written:

$$
\left.U=V^{+} \cup V^{-} \cup \bigcup_{i \in I}\right] \alpha_{i}, \beta_{i}[
$$

for some index set $I, \alpha_{i}, \beta_{i} \in \mathbf{R}, V^{+}=\emptyset$ or $\left.\left.V^{+}=\right] \alpha,+\infty\right]$, $(\alpha \in \mathbf{R})$ and $V^{-}=\emptyset$ or $V^{-}=[-\infty, \beta[,(\beta \in \mathbf{R})$.
4. Show that f is continuous if and only if it is both l.s.c and u.s.c.
5. Let $u: \Omega \rightarrow \mathbf{R}$ and $v: \Omega \rightarrow \overline{\mathbf{R}}$. Let $\lambda \in \mathbf{R}$. Show that:

$$
\begin{aligned}
\{\lambda<u+v\}= & \bigcup^{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{R}^{2}}\{ \\
& \left.\lambda_{1}<u\right\} \cap\left\{\lambda_{2}<v\right\} \\
& \lambda_{2}=\lambda
\end{aligned}
$$

6. Show that if both u and v are l.s.c, then $u+v$ is also l.s.c.
7. Show that if both u and v are u.s.c, then $u+v$ is also u.s.c.
8. Show that if f is l.s.c, then αf is l.s.c, for all $\alpha \in \mathbf{R}^{+}$.
9. Show that if f is u.s.c, then αf is u.s.c, for all $\alpha \in \mathbf{R}^{+}$.
10. Show that if f is l.s.c, then $-f$ is u.s.c.
11. Show that if f is u.s.c, then $-f$ is l.s.c.
12. Show that if V is open in Ω, then $f=1_{V}$ is l.s.c.
13. Show that if F is closed in Ω, then $f=1_{F}$ is u.s.c.

EXERCISE 2. Let $\left(f_{i}\right)_{i \in I}$ be an a arbitrary family of maps $f_{i}: \Omega \rightarrow \overline{\mathbf{R}}$, defined on a topological space Ω.

1. Show that if all f_{i} 's are l.s.c, then $f=\sup _{i \in I} f_{i}$ is l.s.c.
2. Show that if all f_{i} 's are u.s.c, then $f=\inf _{i \in I} f_{i}$ is u.s.c.

Exercise 3. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let f be an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$, such that $f \geq 0$.

1. Let $\left(s_{n}\right)_{n \geq 1}$ be a sequence of simple functions on $(\Omega, \mathcal{B}(\Omega))$ such that $s_{n} \uparrow f$. Define $t_{1}=s_{1}$ and $t_{n}=s_{n}-s_{n-1}$ for all $n \geq 2$. Show that t_{n} is a simple function on $(\Omega, \mathcal{B}(\Omega))$, for all $n \geq 1$.
2. Show that f can be written as:

$$
f=\sum_{n=1}^{+\infty} \alpha_{n} 1_{A_{n}}
$$

where $\alpha_{n} \in \mathbf{R}^{+} \backslash\{0\}$ and $A_{n} \in \mathcal{B}(\Omega)$, for all $n \geq 1$.
3. Show that $\mu\left(A_{n}\right)<+\infty$, for all $n \geq 1$.
4. Show that there exist K_{n} compact and V_{n} open in Ω such that:

$$
K_{n} \subseteq A_{n} \subseteq V_{n} \quad, \quad \mu\left(V_{n} \backslash K_{n}\right) \leq \frac{\epsilon}{\alpha_{n} 2^{n+1}}
$$

for all $\epsilon>0$ and $n \geq 1$.
5. Show the existence of $N \geq 1$ such that:

$$
\sum_{n=N+1}^{+\infty} \alpha_{n} \mu\left(A_{n}\right) \leq \frac{\epsilon}{2}
$$

6. Define $u=\sum_{n=1}^{N} \alpha_{n} 1_{K_{n}}$. Show that u is u.s.c.
7. Define $v=\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n}}$. Show that v is l.s.c.
8. Show that we have $0 \leq u \leq f \leq v$.
9. Show that we have:

$$
v=u+\sum_{n=N+1}^{+\infty} \alpha_{n} 1_{K_{n}}+\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n} \backslash K_{n}}
$$

10. Show that $\int v d \mu \leq \int u d \mu+\epsilon<+\infty$.
11. Show that $u \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$.
12. Explain why v may fail to be in $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$.
13. Show that v is μ-a.s. equal to an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$.
14. Show that $\int(v-u) d \mu \leq \epsilon$.
15. Prove the following:

Theorem 94 (Vitali-Caratheodory) Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ and f be an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$. Then, for all $\epsilon>0$, there exist measurable maps $u, v: \Omega \rightarrow \overline{\mathbf{R}}$, which are μ-a.s. equal to elements of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$, such that $u \leq f \leq v$, u is u.s.c, v is l.s.c, and furthermore:

$$
\int(v-u) d \mu \leq \epsilon
$$

Definition 116 Let (Ω, \mathcal{T}) be a topological space. We say that (Ω, \mathcal{T}) is connected, if and only if the only subsets of Ω which are both open and closed are Ω and \emptyset.

Exercise 4. Let (Ω, \mathcal{T}) be a topological space.

1. Show that (Ω, \mathcal{T}) is connected if and only if whenever $\Omega=A \uplus B$ where A, B are disjoint open sets, we have $A=\emptyset$ or $B=\emptyset$.
2. Show that (Ω, \mathcal{T}) is connected if and only if whenever $\Omega=A \uplus B$ where A, B are disjoint closed sets, we have $A=\emptyset$ or $B=\emptyset$.

Definition 117 Let (Ω, \mathcal{T}) be a topological space, and $A \subseteq \Omega$. We say that A is a connected subset of Ω, if and only if the induced topological space $\left(A, \mathcal{T}_{\mid A}\right)$ is connected.

Exercise 5. Let A be open and closed in \mathbf{R}, with $A \neq \emptyset$ and $A^{c} \neq \emptyset$.

1. Let $x \in A^{c}$. Show that $A \cap[x,+\infty[$ or $A \cap]-\infty, x]$ is non-empty.
2. Suppose $B=A \cap[x,+\infty[\neq \emptyset$. Show that B is closed and that we have $B=A \cap] x,+\infty[$. Conclude that B is also open.
3. Let $b=\inf B$. Show that $b \in B$ (and in particular $b \in \mathbf{R}$).
4. Show the existence of $\epsilon>0$ such that $] b-\epsilon, b+\epsilon[\subseteq B$.
5. Conclude with the following:

Theorem 95 The topological space $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$ is connected.

Exercise 6 . Let (Ω, \mathcal{T}) be a topological space and $A \subseteq \Omega$ be a connected subset of Ω. Let B be a subset of Ω such that $A \subseteq B \subseteq \bar{A}$. We assume that $B=V_{1} \uplus V_{2}$ where V_{1}, V_{2} are disjoint open sets in B.

1. Show there is U_{1}, U_{2} open in Ω, with $V_{1}=B \cap U_{1}, V_{2}=B \cap U_{2}$.
2. Show that $A \cap U_{1}=\emptyset$ or $A \cap U_{2}=\emptyset$.
3. Suppose that $A \cap U_{1}=\emptyset$. Show that $\bar{A} \subseteq U_{1}^{c}$.
4. Show then that $V_{1}=B \cap U_{1}=\emptyset$.
5. Conclude that B and \bar{A} are both connected subsets of Ω.

Exercise 7. Prove the following:
Theorem 96 Let $(\Omega, \mathcal{T}),\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right)$ be two topological spaces, and f be a continuous map, $f: \Omega \rightarrow \Omega^{\prime}$. If (Ω, \mathcal{T}) is connected, then $f(\Omega)$ is a connected subset of Ω^{\prime}.

Definition 118 Let $A \subseteq \overline{\mathbf{R}}$. We say that A is an interval, if and only if for all $x, y \in A$ with $x \leq y$, we have $[x, y] \subseteq A$, where:

$$
[x, y] \triangleq\{z \in \overline{\mathbf{R}}: x \leq z \leq y\}
$$

Exercise 8. Let $A \subseteq \overline{\mathbf{R}}$.

1. If A is an interval, and $\alpha=\inf A, \beta=\sup A$, show that:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]
$$

2. Show that A is an interval if and only if, it is of the form $[\alpha, \beta]$, $[\alpha, \beta[,] \alpha, \beta]$ or $] \alpha, \beta[$, for some $\alpha, \beta \in \overline{\mathbf{R}}$.
3. Show that an interval of the form $]-\infty, \alpha[$, where $\alpha \in \mathbf{R}$, is homeomorphic to $]-1, \alpha^{\prime}\left[\right.$, for some $\alpha^{\prime} \in \mathbf{R}$.
4. Show that an interval of the form $] \alpha,+\infty[$, where $\alpha \in \mathbf{R}$, is homeomorphic to $] \alpha^{\prime}, 1\left[\right.$, for some $\alpha^{\prime} \in \mathbf{R}$.
5. Show that an interval of the form $] \alpha, \beta[$, where $\alpha, \beta \in \mathbf{R}$ and $\alpha<\beta$, is homeomorphic to] $-1,1[$.
6. Show that $]-1,1[$ is homeomorphic to \mathbf{R}.
7. Show an non-empty open interval in \mathbf{R}, is homeomorphic to \mathbf{R}.
8. Show that an open interval in \mathbf{R}, is a connected subset of \mathbf{R}.
9. Show that an interval in \mathbf{R}, is a connected subset of \mathbf{R}.

Exercise 9. Let $A \subseteq \mathbf{R}$ be a non-empty connected subset of \mathbf{R}, and $\alpha=\inf A, \beta=\sup A$. We assume there exists $\left.x_{0} \in A^{c} \cap\right] \alpha, \beta[$.

1. Show that $A \cap] x_{0},+\infty[$ or $A \cap]-\infty, x_{0}$ [is empty.
2. Show that $A \cap] x_{0},+\infty[=\emptyset$ leads to a contradiction.
3. Show that $] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]$.
4. Show the following:

Theorem 97 For all $A \subseteq \mathbf{R}, A$ is a connected subset of \mathbf{R}, if and only if A is an interval.

Exercise 10. Prove the following:
Theorem 98 Let $f: \Omega \rightarrow \mathbf{R}$ be a continuous map, where (Ω, \mathcal{T}) is a connected topological space. Let $a, b \in \Omega$ such that $f(a) \leq f(b)$. Then, for all $z \in[f(a), f(b)]$, there exists $x \in \Omega$ such that $z=f(x)$.

Exercise 11. Let $a, b \in \mathbf{R}, a<b$, and $f:[a, b] \rightarrow \mathbf{R}$ be a map such that $f^{\prime}(x)$ exists for all $x \in[a, b]$.

1. Show that $f^{\prime}:([a, b], \mathcal{B}([a, b])) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable.
2. Show that $f^{\prime} \in L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$ is equivalent to:

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t<+\infty
$$

3. We assume from now on that $f^{\prime} \in L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$. Given $\epsilon>0$, show the existence of $g:[a, b] \rightarrow \overline{\mathbf{R}}$, almost surely equal
to an element of $L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$, such that $f^{\prime} \leq g$ and g is l.s.c, with:

$$
\int_{a}^{b} g(t) d t \leq \int_{a}^{b} f^{\prime}(t) d t+\epsilon
$$

4. By considering $g+\alpha$ for some $\alpha>0$, show that without loss of generality, we can assume that $f^{\prime}<g$ with the above inequality still holding.
5. We define the complex measure $\nu=\int g d x \in M^{1}([a, b], \mathcal{B}([a, b]))$. Show that:

$$
\forall \epsilon^{\prime}>0, \exists \delta>0, \forall E \in \mathcal{B}([a, b]), d x(E) \leq \delta \Rightarrow|\nu(E)|<\epsilon^{\prime}
$$

6. For all $\eta>0$ and $x \in[a, b]$, we define:

$$
F_{\eta}(x) \triangleq \int_{a}^{x} g(t) d t-f(x)+f(a)+\eta(x-a)
$$

Show that $F_{\eta}:[a, b] \rightarrow \mathbf{R}$ is a continuous map.
7. η being fixed, let $x=\sup F_{\eta}^{-1}(\{0\})$. Show that $x \in[a, b]$ and $F_{\eta}(x)=0$.
8. We assume that $x \in[a, b[$. Show the existence of $\delta>0$ such that for all $t \in] x, x+\delta[\cap[a, b]$, we have:

$$
f^{\prime}(x)<g(t) \quad \text { and } \quad \frac{f(t)-f(x)}{t-x}<f^{\prime}(x)+\eta
$$

9. Show that for all $t \in] x, x+\delta\left[\cap[a, b]\right.$, we have $F_{\eta}(t)>F_{\eta}(x)=0$.
10. Show that there exists t_{0} such that $x<t_{0}<b$ and $F_{\eta}\left(t_{0}\right)>0$.
11. Show that $F_{\eta}(b)<0$ leads to a contradiction.
12. Conclude that $F_{\eta}(b) \geq 0$, even if $x=b$.
13. Show that $f(b)-f(a) \leq \int_{a}^{b} f^{\prime}(t) d t$, and conclude:

Theorem 99 (Fundamental Calculus) Let $a, b \in \mathbf{R}, a<b$, and $f:[a, b] \rightarrow \mathbf{R}$ be a map which is differentiable at every point of $[a, b]$, and such that:

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t<+\infty
$$

Then, we have:

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(t) d t
$$

Exercise 12. Let $\alpha>0$, and $k_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defined by $k_{\alpha}(x)=\alpha x$. 1. Show that $k_{\alpha}:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is measurable.
2. Show that for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have:

$$
d x\left(\left\{k_{\alpha} \in B\right\}\right)=\frac{1}{\alpha^{n}} d x(B)
$$

3. Show that for all $\epsilon>0$ and $x \in \mathbf{R}^{n}$:

$$
d x(B(x, \epsilon))=\epsilon^{n} d x(B(0,1))
$$

Definition 119 Let μ be a complex measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right), n \geq 1$, with total variation $|\mu|$. We call maximal function of μ, the map $M \mu: \mathbf{R}^{n} \rightarrow[0,+\infty]$, defined by:

$$
\forall x \in \mathbf{R}^{n},(M \mu)(x) \triangleq \sup _{\epsilon>0} \frac{|\mu|(B(x, \epsilon))}{d x(B(x, \epsilon))}
$$

where $B(x, \epsilon)$ is the open ball in \mathbf{R}^{n}, of center x and radius ϵ, with respect to the usual metric of \mathbf{R}^{n}.

Exercise 13. Let μ be a complex measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.

1. Let $\lambda \in \mathbf{R}$. Show that if $\lambda<0$, then $\{\lambda<M \mu\}=\mathbf{R}^{n}$.
2. Show that if $\lambda=0$, then $\{\lambda<M \mu\}=\mathbf{R}^{n}$ if $\mu \neq 0$, and $\{\lambda<M \mu\}$ is the empty set if $\mu=0$.
3. Suppose $\lambda>0$. Let $x \in\{\lambda<M \mu\}$. Show the existence of $\epsilon>0$ such that $|\mu|(B(x, \epsilon))=t d x(B(x, \epsilon))$, for some $t>\lambda$.
4. Show the existence of $\delta>0$ such that $(\epsilon+\delta)^{n}<\epsilon^{n} t / \lambda$.
5. Show that if $y \in B(x, \delta)$, then $B(x, \epsilon) \subseteq B(y, \epsilon+\delta)$.
6. Show that if $y \in B(x, \delta)$, then:

$$
|\mu|(B(y, \epsilon+\delta)) \geq \frac{\epsilon^{n} t}{(\epsilon+\delta)^{n}} d x(B(y, \epsilon+\delta))>\lambda d x(B(y, \epsilon+\delta))
$$

7. Conclude that $B(x, \delta) \subseteq\{\lambda<M \mu\}$, and that the maximal function $M \mu: \mathbf{R}^{n} \rightarrow[0,+\infty]$ is l.s.c, and therefore measurable.

Exercise 14. Let $B_{i}=B\left(x_{i}, \epsilon_{i}\right), i=1, \ldots, N, N \geq 1$, be a finite collection of open balls in \mathbf{R}^{n}. Assume without loss of generality that $\epsilon_{N} \leq \ldots \leq \epsilon_{1}$. We define a sequence $\left(J_{k}\right)$ of sets by $J_{0}=\{1, \ldots, N\}$ and for all $k \geq 1$:

$$
J_{k} \triangleq \begin{cases}J_{k-1} \cap\left\{j: j>i_{k}, B_{j} \cap B_{i_{k}}=\emptyset\right\} & \text { if } J_{k-1} \neq \emptyset \\ \emptyset & \text { if } J_{k-1}=\emptyset\end{cases}
$$

where we have put $i_{k}=\min J_{k-1}$, whenever $J_{k-1} \neq \emptyset$.

1. Show that if $J_{k-1} \neq \emptyset$ then $J_{k} \subset J_{k-1}$ (strict inclusion), $k \geq 1$.
2. Let $p=\min \left\{k \geq 1: J_{k}=\emptyset\right\}$. Show that p is well-defined.
3. Let $S=\left\{i_{1}, \ldots, i_{p}\right\}$. Explain why S is well defined.
4. Suppose that $1 \leq k<k^{\prime} \leq p$. Show that $i_{k^{\prime}} \in J_{k}$.
5. Show that $\left(B_{i}\right)_{i \in S}$ is a family of pairwise disjoint open balls.
6. Let $i \in\{1, \ldots, N\} \backslash S$, and define k_{0} to be the minimum of the set $\left\{k \in \mathbf{N}_{p}: i \notin J_{k}\right\}$. Explain why k_{0} is well-defined.
7. Show that $i \in J_{k_{0}-1}$ and $i_{k_{0}} \leq i$.
8. Show that $B_{i} \cap B_{i_{k_{0}}} \neq \emptyset$.
9. Show that $B_{i} \subseteq B\left(x_{i_{k_{0}}}, 3 \epsilon_{i_{k_{0}}}\right)$.
10. Conclude that there exists a subset S of $\{1, \ldots, N\}$ such that $\left(B_{i}\right)_{i \in S}$ is a family of pairwise disjoint balls, and:

$$
\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right) \subseteq \bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{i}\right)
$$

11. Show that:

$$
d x\left(\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right)\right) \leq 3^{n} \sum_{i \in S} d x\left(B\left(x_{i}, \epsilon_{i}\right)\right)
$$

ExErcise 15. Let μ be a complex measure on \mathbf{R}^{n}. Let $\lambda>0$ and K be a non-empty compact subset of $\{\lambda<M \mu\}$.

1. Show that K can be covered by a finite collection $B_{i}=B\left(x_{i}, \epsilon_{i}\right)$, $i=1, \ldots, N$ of open balls, such that:

$$
\forall i=1, \ldots, N, \lambda d x\left(B_{i}\right)<|\mu|\left(B_{i}\right)
$$

2. Show the existence of $S \subseteq\{1, \ldots, N\}$ such that:

$$
d x(K) \leq 3^{n} \lambda^{-1}|\mu|\left(\bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right)\right)
$$

3. Show that $d x(K) \leq 3^{n} \lambda^{-1}\|\mu\|$
4. Conclude with the following:

Theorem 100 Let μ be a complex measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right), n \geq 1$, with maximal function $M \mu$. Then, for all $\lambda \in \mathbf{R}^{+} \backslash\{0\}$, we have:

$$
d x(\{\lambda<M \mu\}) \leq 3^{n} \lambda^{-1}\|\mu\|
$$

Definition 120 Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right.$, dx , and μ be the complex measure $\mu=\int f d x$ on $\mathbf{R}^{n}, n \geq 1$. We call maximal function of f, denoted $M f$, the maximal function $M \mu$ of μ.

Tutorial 16: Differentiation
Exercise 16. Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$.

1. Show that for all $x \in \mathbf{R}^{n}$:

$$
(M f)(x)=\sup _{\epsilon>0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f| d x
$$

2. Show that for all $\lambda>0, d x(\{\lambda<M f\}) \leq 3^{n} \lambda^{-1}\|f\|_{1}$.

Definition 121 Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$. We say that $x \in \mathbf{R}^{n}$ is a Lebesgue point of f, if and only if we have:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y=0
$$

Exercise 17. Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$.

1. Show that if f is continuous at $x \in \mathbf{R}^{n}$, then x is a Lebesgue point of f.
2. Show that if $x \in \mathbf{R}^{n}$ is a Lebesgue point of f, then:

$$
f(x)=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)} f(y) d y
$$

Exercise 18. Let $n \geq 1$ and $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$. For all $\epsilon>0$ and $x \in \mathbf{R}^{n}$, we define:

$$
\left(T_{\epsilon} f\right)(x) \triangleq \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y
$$

and we put, for all $x \in \mathbf{R}^{n}$:

$$
(T f)(x) \triangleq \limsup _{\epsilon \downarrow \downarrow 0}\left(T_{\epsilon} f\right)(x) \triangleq \inf _{\epsilon>0} \sup _{u \in] 0, \epsilon[}\left(T_{u} f\right)(x)
$$

1. Given $\eta>0$, show the existence of $g \in C_{\mathbf{C}}^{c}\left(\mathbf{R}^{n}\right)$ such that:

$$
\|f-g\|_{1} \leq \eta
$$

2. Let $h=f-g$. Show that for all $\epsilon>0$ and $x \in \mathbf{R}^{n}$:

$$
\left(T_{\epsilon} h\right)(x) \leq \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|h| d x+|h(x)|
$$

3. Show that $T h \leq M h+|h|$.
4. Show that for all $\epsilon>0$, we have $T_{\epsilon} f \leq T_{\epsilon} g+T_{\epsilon} h$.
5. Show that $T f \leq T g+T h$.
6. Using the continuity of g, show that $T g=0$.
7. Show that $T f \leq M h+|h|$.
8. Show that for all $\alpha>0,\{2 \alpha<T f\} \subseteq\{\alpha<M h\} \cup\{\alpha<|h|\}$.
9. Show that $d x(\{\alpha<|h|\}) \leq \alpha^{-1}\|h\|_{1}$.
10. Conclude that for all $\alpha>0$ and $\eta>0$, there is $N_{\alpha, \eta} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that $\{2 \alpha<T f\} \subseteq N_{\alpha, \eta}$ and $d x\left(N_{\alpha, \eta}\right) \leq \eta$.
11. Show that for all $\alpha>0$, there exists $N_{\alpha} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that $\{2 \alpha<T f\} \subseteq N_{\alpha}$ and $d x\left(N_{\alpha}\right)=0$.
12. Show there is $N \in \mathcal{B}\left(\mathbf{R}^{n}\right), d x(N)=0$, such that $\{T f>0\} \subseteq N$.
13. Conclude that $T f=0, d x-$ a.s.
14. Conclude with the following:

Theorem 101 Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$. Then, dx-almost surely, any $x \in \mathbf{R}^{n}$ is a Lebesgue points of f, i.e.

$$
d x-a . s ., \lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y=0
$$

Exercise 19. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega^{\prime} \in \mathcal{F}$. We define $\mathcal{F}^{\prime}=\mathcal{F}_{\mid \Omega^{\prime}}$ and $\mu^{\prime}=\mu_{\mid \mathcal{F}^{\prime}}$. For all maps $f: \Omega^{\prime} \rightarrow[0,+\infty]$ (or
\mathbf{C}), we define $\tilde{f}: \Omega \rightarrow[0,+\infty]$ (or \mathbf{C}), by:

$$
\tilde{f}(\omega) \triangleq\left\{\begin{array}{lll}
f(\omega) & \text { if } & \omega \in \Omega^{\prime} \\
0 & \text { if } & \omega \notin \Omega^{\prime}
\end{array}\right.
$$

1. Show that $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ and conclude that μ^{\prime} is therefore a welldefined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
2. Let $A \in \mathcal{F}^{\prime}$ and 1_{A}^{\prime} be the characteristic function of A defined on Ω^{\prime}. Let 1_{\sim}^{1} be the characteristic function of A defined on Ω. Show that $\tilde{1}_{A}^{\prime}=1_{A}$.
3. Let $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Show that $\tilde{f}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is also non-negative and measurable, and that we have:

$$
\int_{\Omega^{\prime}} f d \mu^{\prime}=\int_{\Omega} \tilde{f} d \mu
$$

4. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mu^{\prime}\right)$. Show that $\tilde{f} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$, and:

$$
\int_{\Omega^{\prime}} f d \mu^{\prime}=\int_{\Omega} \tilde{f} d \mu
$$

Definition $122 b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ is absolutely continuous, if and only if b is right-continuous of finite variation, and b is absolutely continuous with respect to $a(t)=t$.

Exercise 20. Let $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ be a map.

1. Show that b is absolutely continuous, if and only if there is $f \in L_{\mathbf{C}}^{1, \operatorname{loc}}(t)$ such that $b(t)=\int_{0}^{t} f(s) d s$, for all $t \in \mathbf{R}^{+}$.
2. Show that b absolutely continuous $\Rightarrow b$ continuous with $b(0)=0$.

Exercise 21. Let $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ be an absolutely continuous map. Let $f \in L_{\mathbf{C}}^{1, \operatorname{loc}^{\prime}}(t)$ be such that $b=f . t$. For all $n \geq 1$, we define
$f_{n}: \mathbf{R} \rightarrow \mathbf{C}$ by:

$$
f_{n}(t) \triangleq\left\{\begin{array}{lll}
f(t) 1_{[0, n]}(t) & \text { if } & t \in \mathbf{R}^{+} \\
0 & \text { if } & t<0
\end{array}\right.
$$

1. Let $n \geq 1$. Show $f_{n} \in L_{\mathbf{C}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d x)$ and for all $t \in[0, n]$:

$$
b(t)=\int_{0}^{t} f_{n} d x
$$

2. Show the existence of $N_{n} \in \mathcal{B}(\mathbf{R})$ such that $d x\left(N_{n}\right)=0$, and for all $t \in N_{n}^{c}, t$ is a Lebesgue point of f_{n}.
3. Show that for all $t \in \mathbf{R}$, and $\epsilon>0$:

$$
\frac{1}{\epsilon} \int_{t}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s \leq \frac{2}{d x(B(t, \epsilon))} \int_{B(t, \epsilon)}\left|f_{n}(s)-f_{n}(t)\right| d s
$$

4. Show that for all $t \in N_{n}^{c}$, we have:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_{n}(s) d s=f_{n}(t)
$$

Tutorial 16: Differentiation
5. Show similarly that for all $t \in N_{n}^{c}$, we have:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_{n}(s) d s=f_{n}(t)
$$

6. Show that for all $t \in N_{n}^{c} \cap\left[0, n\left[, b^{\prime}(t)\right.\right.$ exists and $b^{\prime}(t)=f(t) .{ }^{1}$
7. Show the existence of $N \in \mathcal{B}\left(\mathbf{R}^{+}\right)$, such that $d x(N)=0$, and:

$$
\forall t \in N^{c}, b^{\prime}(t) \text { exists with } b^{\prime}(t)=f(t)
$$

8. Conclude with the following:
${ }^{1} b^{\prime}(0)$ being a r.h.s derivative only.

Theorem $102 A$ map $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ is absolutely continuous, if and only if there exists $f \in L_{\mathbf{C}}^{1, l o c}(t)$ such that:

$$
\forall t \in \mathbf{R}^{+}, b(t)=\int_{0}^{t} f(s) d s
$$

in which case, b is almost surely differentiable with $b^{\prime}=f d x$-a.s.

Solutions to Exercises

Exercise 1.

1. Let $f: \Omega \rightarrow \overline{\mathbf{R}}$ be a map, where Ω is a topological space. Suppose that $\{\lambda<f\}$ is open for all $\lambda \in \overline{\mathbf{R}}$. Then in particular, $\{\lambda<f\}$ is open for all $\lambda \in \mathbf{R}$. So f is l.s.c. Conversely, suppose f is l.s.c. Then $\{\lambda<f\}$ is open for all $\lambda \in \mathbf{R}$, and since:

$$
\{-\infty<f\}=\bigcup_{\lambda \in \mathbf{R}}\{\lambda<f\}
$$

it follows that $\{-\infty<f\}$ is also open. Furthermore, $\{+\infty<f\}$ is the empty set, and in particular, $\{+\infty<f\}$ is open. We conclude that $\{\lambda<f\}$ is open for all $\lambda \in \overline{\mathbf{R}}$. We have proved that f is l.s.c if and only if $\{\lambda<f\}$ is open for all $\lambda \in \overline{\mathbf{R}}$.
2. Similarly to 1 . we have:

$$
\{f<+\infty\}=\bigcup_{\lambda \in \mathbf{R}}\{f<\lambda\}
$$

and $\{f<-\infty\}=\emptyset$ which is open. We conclude that f is u.s.c if and only if $\{f<\lambda\}$ is open for all $\lambda \in \overline{\mathbf{R}}$.
3. Let U be open in $\overline{\mathbf{R}}$. If $+\infty \in U$, let $\left.\left.V^{+}=\right] \alpha,+\infty\right]$ where $\alpha \in \mathbf{R}$ is such that $] \alpha,+\infty] \subseteq U$. Otherwise, let $V^{+}=\emptyset$. If $-\infty \in U$, let $V^{-}=[-\infty, \beta[$, where $\beta \in \mathbf{R}$ is such that $[-\infty, \beta[\subseteq U$. Otherwise, let $V^{-}=\emptyset$. Then, we have:

$$
U=V^{+} \cup V^{-} \cup(U \cap \mathbf{R})
$$

and $U \cap \mathbf{R}$ is an open subset of \mathbf{R} (possibly empty). For all $x \in U \cap \mathbf{R}$, let $\alpha_{x}, \beta_{x} \in \mathbf{R}$ be such that $\left.x \in\right] \alpha_{x}, \beta_{x}[\subseteq U \cap \mathbf{R}$. Then, we have:

$$
\left.U \cap \mathbf{R}=\bigcup_{x \in U \cap \mathbf{R}}\right] \alpha_{x}, \beta_{x}[
$$

where it is understood that if $U \cap \mathbf{R}=\emptyset$, the corresponding union is the empty set. Taking $I=U \cap \mathbf{R}$, we conclude that:

$$
\left.U=V^{+} \cup V^{-} \cup \bigcup_{i \in I}\right] \alpha_{i}, \beta_{i}[
$$

4. Suppose that f is continuous. For all $\lambda \in \mathbf{R}$, the interval $] \lambda,+\infty]$ is an open subset of $\overline{\mathbf{R}}$. It follows that $\left.\left.\{\lambda<f\}=f^{-1}(] \lambda,+\infty\right]\right)$ is open. This being true for all $\lambda \in \mathbf{R}, f$ is l.s.c. Similarly, the interval $[-\infty, \lambda[$ is an open subset of $\overline{\mathbf{R}}$. It follows that $\{f<\lambda\}=f^{-1}([-\infty, \lambda[)$ is open. This being true for all $\lambda \in \mathbf{R}$, f is u.s.c. Hence, if f is continuous, it is both l.s.c and u.s.c. Conversely, suppose f is both l.s.c. and u.s.c. Let U be an open subset of $\overline{\mathbf{R}}$. Using the decomposition obtained in 3 . we have:

$$
\begin{aligned}
f^{-1}(U) & =f^{-1}\left(V^{+} \cup V^{-} \cup \bigcup_{i \in I}\right] \alpha_{i}, \beta_{i}[) \\
& =f^{-1}\left(V^{+}\right) \cup f^{-1}\left(V^{-}\right) \cup \bigcup_{i \in I} f^{-1}(] \alpha_{i}, \beta_{i}[) \\
& =f^{-1}\left(V^{+}\right) \cup f^{-1}\left(V^{-}\right) \cup \bigcup_{i \in I}\left\{\alpha_{i}<f\right\} \cap\left\{f<\beta_{i}\right\}
\end{aligned}
$$

Since $f^{-1}\left(V^{+}\right)$is either $\{\alpha<f\}$ or \emptyset, and $f^{-1}\left(V^{-}\right)$is either $\{f<\beta\}$ or \emptyset, it follows that $f^{-1}(U)$ is a union of open sets in
Ω, and is therefore open. Having proved that $f^{-1}(U)$ is open for all U open in $\overline{\mathbf{R}}$, we conclude that f is continuous. So f is continuous, if and only if it is both l.s.c and u.s.c.
5. Let $u: \Omega \rightarrow \mathbf{R}$ and $v: \Omega \rightarrow \overline{\mathbf{R}}$. Let $\lambda \in \mathbf{R}$. Note that having restricted the range of u to be a subset of \mathbf{R}, the map $u+v$ is well defined, as there can be no occurrence of $(+\infty)+(-\infty)$. We claim that:

$$
\begin{aligned}
\{\lambda<u+v\}= & \left.\bigcup^{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{R}^{2}}\right\} \\
& \left.\lambda_{1}+\lambda_{2}=\lambda\right\} \cap\left\{\lambda_{2}<v\right\}
\end{aligned}
$$

It is clear that if $\omega \in \Omega$ is such that $\lambda_{1}<u(\omega)$ and $\lambda_{2}<v(\omega)$ for some $\lambda_{1}, \lambda_{2} \in \mathbf{R}$ with $\lambda_{1}+\lambda_{2}=\lambda$, then $\lambda<u(\omega)+v(\omega)$. This shows the inclusion \supseteq. To show the reverse inclusion, suppose that $\omega \in \Omega$ is such that $\lambda<u(\omega)+v(\omega)$. Then, we have $\lambda-u(\omega)<v(\omega)$, and there exists $\lambda_{2} \in \mathbf{R}$ such that:

$$
\lambda-u(\omega)<\lambda_{2}<v(\omega)
$$

Define $\lambda_{1}=\lambda-\lambda_{2}$. Then $\lambda_{2}<v(\omega)$ and $\lambda_{1}<u(\omega)$ where λ_{1}, λ_{2} are elements of \mathbf{R} such that $\lambda_{1}+\lambda_{2}=\lambda$. This shows the inclusion \subseteq.
6. Suppose that both u and v are l.s.c. Then for all $\lambda_{1}, \lambda_{2} \in \mathbf{R}$, $\left\{\lambda_{1}<u\right\}$ and $\left\{\lambda_{2}<v\right\}$ are open subsets of Ω. It follows from 5. that $\{\lambda<u+v\}$ is also an open subset of Ω, for all $\lambda \in \mathbf{R}$. So $u+v$ is l.s.c.
7. Suppose that both u and v are u.s.c. Similarly to 5 . we have:

$$
\begin{aligned}
\{u+v<\lambda\}= & \bigcup^{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{R}^{2}} \mathfrak{}\left\{u<\lambda_{1}\right\} \cap\left\{v<\lambda_{2}\right\} \\
& \lambda_{1}+\lambda_{2}=\lambda
\end{aligned}
$$

and consequently $\{u+v<\lambda\}$ is an open subset of Ω, for all $\lambda \in \mathbf{R}$. So $u+v$ is u.s.c. Anticipating on questions 10. and 11., an alternative proof goes as follows: if u and v are u.s.c, then $-u$ and $-v$ are l.s.c. so $-u-v$ is l.s.c. and finally $u+v$ is u.s.c.
8. Suppose f is l.s.c and let $\alpha \in \mathbf{R}^{+}$. If $\alpha=0$, then $\alpha f=0$ and consequently αf is continuous and in particular l.s.c. We assume that $\alpha>0$. Then for all $\omega \in \Omega, \lambda<\alpha f(\omega)$ is equivalent to $\lambda / \alpha<f(\omega)$ (this is certainly true when $f(\omega) \in \mathbf{R}$, and one can easily check that it is still true when $f(\omega) \in\{-\infty,+\infty\})$. It follows that $\{\lambda<\alpha f\}=\{\lambda / \alpha<f\}$ and consequently $\{\lambda<\alpha f\}$ is an open subset of Ω. This being true for all $\lambda \in \mathbf{R}$, we conclude that αf is l.s.c.
9. Suppose that f is u.s.c and $\alpha \in \mathbf{R}^{+}$. If $\alpha=0$ then αf is u.s.c. We assume that $\alpha>0$. Then $\{\alpha f<\lambda\}=\{f<\lambda / \alpha\}$ and consequently $\{\alpha f<\lambda\}$ is open for all $\lambda \in \mathbf{R}$. So αf is u.s.c.
10. Suppose that f is l.s.c. Then $\{-f<\lambda\}=\{-\lambda<f\}$ for all $\lambda \in \mathbf{R}$, and consequently $\{-f<\lambda\}$ is an open subset of Ω. So $-f$ is u.s.c.
11. Suppose that f is u.s.c. Then $\{\lambda<-f\}=\{f<-\lambda\}$ for all $\lambda \in \mathbf{R}$, and consequently $\{\lambda<-f\}$ is an open subset of Ω. So
$-f$ is l.s.c.
12. Let V be an open subset of Ω and $f=1_{V}$. Let $\lambda \in \mathbf{R}$. If $\lambda<0$ we have $\{\lambda<f\}=\Omega$. If $0 \leq \lambda<1$ we have $\{\lambda<f\}=V$. If $1 \leq \lambda$ we have $\{\lambda<f\}=\emptyset$. In any case, $\{\lambda<f\}$ is an open subset of Ω. So f is l.s.c. The characteristic function of an open subset of Ω is lower-semi-continuous
13. Let F be a closed subset of Ω. Let $\lambda \in \mathbf{R}$. Then $\{f<\lambda\}$ is either \emptyset, F^{c} or Ω, depending respectively on whether $\lambda \leq 0$, $0<\lambda \leq 1$ and $1<\lambda$. In any case, $\{f<\lambda\}$ is an open subset of Ω. So f is u.s.c. The characteristic function of a closed subset of Ω is upper-semi-continuous.

Exercise 1

Exercise 2.

1. Let $\left(f_{i}\right)_{i \in I}$ be a family of maps $f_{i}: \Omega \rightarrow \overline{\mathbf{R}}$, where Ω is a topological space. Let $f=\sup _{i \in I} f_{i}$. We assume that all f_{i} 's are l.s.c. For all $\lambda \in \mathbf{R}$, we claim that:

$$
\begin{equation*}
\{\lambda<f\}=\bigcup_{i \in I}\left\{\lambda<f_{i}\right\} \tag{1}
\end{equation*}
$$

Indeed, suppose that $\omega \in \Omega$ is such that $\lambda<f(\omega)$. Since $f(\omega)$ is the lowest upper-bound of all $f_{i}(\omega)$'s, λ cannot be such an upper-bound. Hence, there exists $i \in I$ such that $\lambda<f_{i}(\omega)$. This shows the inclusion \subseteq. To show the reverse inclusion, suppose $\omega \in \Omega$ is such that $\lambda<f_{i}(\omega)$ for some $i \in I$. Since $f_{i}(\omega) \leq f(\omega)$, in particular we have $\lambda<f(\omega)$. This shows the inclusion \supseteq. Having proved equation (1) and since all f_{i} 's are l.s.c, $\{\lambda<f\}$ is an open subset of Ω for all $\lambda \in \mathbf{R}$. It follows that f is l.s.c. The supremum of l.s.c functions is l.s.c.
2. Suppose that all f_{i} 's are u.s.c and $f=\inf _{i \in I} f_{i}$. Given $\lambda \in \mathbf{R}$:

$$
\{f<\lambda\}=\bigcup_{i \in I}\left\{f_{i}<\lambda\right\}
$$

and consequently $\{f<\lambda\}$ is an open subset of Ω. It follows that f is u.s.c. The infimum of u.s.c functions is u.s.c.

Exercise 2

Exercise 3.

1. Let (Ω, \mathcal{T}) be a metrizable and σ-compact topological space. Let $f \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu), f \geq 0$, where μ is a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. From theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on $(\Omega, \mathcal{B}(\Omega))$ such that $s_{n} \uparrow f$ (i.e. $s_{n} \leq s_{n+1}$ for all $n \geq 1$ and $s_{n} \rightarrow f$ pointwise). We define $t_{1}=s_{1}$ and $t_{n}=s_{n}-s_{n-1}$ for all $n \geq 2$. In order to show that t_{n} is a simple function for all $n \geq 1$, we need to show that if s, t are simple functions on $(\Omega, \mathcal{B}(\Omega))$ with $s \leq t$, then $t-s$ is also a simple function on $(\Omega, \mathcal{B}(\Omega))$. Since s and t are measurable with values in \mathbf{R}^{+}, and $s \leq t$, the map $t-s$ is also measurable with values in \mathbf{R}^{+}. From:

$$
t-s=\sum_{\alpha \in(t-s)(\Omega)} \alpha 1_{\{t-s=\alpha\}}
$$

we conclude that $t-s$ is a simple function on $(\Omega, \mathcal{B}(\Omega))$.
2. Since each t_{n} is a simple function on $(\Omega, \mathcal{B}(\Omega))$, for all $n \geq 1$
there exists an integer $p_{n} \geq 1$ and some $\alpha_{n}^{1}, \ldots, \alpha_{n}^{p_{n}} \in \mathbf{R}^{+}$and $A_{n}^{1}, \ldots, A_{n}^{p_{n}} \in \mathcal{B}(\Omega)$ such that:

$$
t_{n}=\sum_{k=1}^{p_{n}} \alpha_{n}^{k} 1_{A_{n}^{k}}
$$

Note that it is always possible to assume $\alpha_{n}^{k} \neq 0$, by setting $A_{n}^{k}=\emptyset$ if necessary. Since $s_{N}=\sum_{n=1}^{N} t_{n}$ for all $N \geq 1$, from $s_{N} \rightarrow f$ we obtain:

$$
f=\sum_{n=1}^{+\infty} t_{n}=\sum_{n=1}^{+\infty} \sum_{k=1}^{p_{n}} \alpha_{n}^{k} 1_{A_{n}^{k}}
$$

This last sum having a countable number of (non-negative) terms, it can be re-expressed as:

$$
f=\sum_{n=1}^{+\infty} \alpha_{n} 1_{A_{n}}
$$

where $\alpha_{n} \in \mathbf{R}^{+} \backslash\{0\}$ and $A_{n} \in \mathcal{B}(\Omega)$ for all $n \geq 1$.
3. Since $f \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$ and $f \geq 0$, from 2 . we have:

$$
\begin{aligned}
\sum_{n=1}^{+\infty} \alpha_{n} \mu\left(A_{n}\right) & =\sum_{n=1}^{+\infty} \alpha_{n} \int 1_{A_{n}} d \mu \\
& =\int\left(\sum_{n=1}^{+\infty} \alpha_{n} 1_{A_{n}}\right) d \mu \\
& =\int f d \mu<+\infty
\end{aligned}
$$

where the second equality is obtained from the linearity of the integral and an immediate application of the monotone convergence theorem (19). Since for all $n \geq 1$ we have $\alpha_{n}>0$, we conclude that $\mu\left(A_{n}\right)<+\infty$.
4. Let $\epsilon>0$ and $n \geq 1$. Define $\epsilon^{\prime}=\epsilon /\left(\alpha_{n} 2^{n+2}\right)$. Since (Ω, \mathcal{T}) is metrizable and σ-compact, while μ is a locally finite measure on
$(\Omega, \mathcal{B}(\Omega))$, from theorem (73) μ is a regular measure. Hence:

$$
\begin{aligned}
\mu\left(A_{n}\right) & =\sup \left\{\mu(K): K \subseteq A_{n}, K \text { compact }\right\} \\
& =\inf \left\{\mu(V): A_{n} \subseteq V, V \text { open }\right\}
\end{aligned}
$$

Since $\mu\left(A_{n}\right)<+\infty$, we have $\mu\left(A_{n}\right)<\mu\left(A_{n}\right)+\epsilon^{\prime}$, and $\mu\left(A_{n}\right)$ being the greatest lower-bound of all $\mu(V)$'s as V runs through the set of all open subsets of Ω with $A_{n} \subseteq V, \mu\left(A_{n}\right)+\epsilon^{\prime}$ cannot be such a lower-bound. There exists V_{n} open subset of Ω such that $A_{n} \subseteq V_{n}$, and:

$$
\mu\left(V_{n}\right)<\mu\left(A_{n}\right)+\epsilon^{\prime}
$$

Similarly, from the fact that $\mu\left(A_{n}\right)-\epsilon^{\prime}<\mu\left(A_{n}\right)$, there exists K_{n} compact subset of Ω such that $K_{n} \subseteq A_{n}$, and:

$$
\mu\left(A_{n}\right)-\epsilon^{\prime}<\mu\left(K_{n}\right)
$$

From $K_{n} \subseteq A_{n}$ note in particular that $\mu\left(K_{n}\right)<+\infty$, and con-
sequently we have $K_{n} \subseteq A_{n} \subseteq V_{n}$ with:

$$
\mu\left(V_{n} \backslash K_{n}\right)=\mu\left(V_{n}\right)-\mu\left(K_{n}\right)<2 \epsilon^{\prime}=\frac{\epsilon}{\alpha_{n} 2^{n+1}}
$$

5. Having proved in 3. that $\sum_{n \geq 1} \alpha_{n} \mu\left(A_{n}\right)<+\infty$, given $\epsilon>0$ there exists $N \geq 1$ such that:

$$
\left|\sum_{n=1}^{+\infty} \alpha_{n} \mu\left(A_{n}\right)-\sum_{n=1}^{N} \alpha_{n} \mu\left(A_{n}\right)\right| \leq \frac{\epsilon}{2}
$$

or equivalently:

$$
\sum_{n=N+1}^{+\infty} \alpha_{n} \mu\left(A_{n}\right) \leq \frac{\epsilon}{2}
$$

6. Let $u=\sum_{n=1}^{N} \alpha_{n} 1_{K_{n}}$. Since (Ω, \mathcal{T}) is metrizable, in particular it is a Hausdorff topological space. Since K_{n} is a compact subset of Ω, from theorem (35) K_{n} is a closed subset of Ω. It follows from 13. of exercise (1) that $1_{K_{n}}$ is upper-semi-continuous. Using 7. and 9. of exercise (1), we conclude that u is also u.s.c.
7. Let $v=\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n}}$. Since V_{n} is an open subset of Ω, from 12. of exercise (1) the map $1_{V_{n}}$ is lower-semi-continuous. It follows from 6. and 8. of this same exercise that every partial sum $\sum_{n=1}^{k} \alpha_{n} 1_{V_{n}}$ is itself l.s.c. Since v is the supremum of these partial sums, we conclude from exercise (2) that v is l.s.c.
8. Since $K_{n} \subseteq A_{n} \subseteq V_{n}$ and $\alpha_{n} \in \mathbf{R}^{+}$for all $n \geq 1$:

$$
\begin{aligned}
0 & \leq \sum_{n=1}^{N} \alpha_{n} 1_{K_{n}}=u \\
& \leq \sum_{n=1}^{N} \alpha_{n} 1_{A_{n}} \\
& \leq \sum_{n=1}^{+\infty} \alpha_{n} 1_{A_{n}}=f \\
& \leq \sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n}}=v
\end{aligned}
$$

We conclude that $0 \leq u \leq f \leq v$.
9. Since $K_{n} \subseteq V_{n}$ for all $n \geq 1$, we have:

$$
\begin{aligned}
v=\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n}} & =\sum_{n=1}^{+\infty} \alpha_{n}\left(1_{K_{n}}+1_{V_{n} \backslash K_{n}}\right) \\
& =\sum_{n=1}^{+\infty} \alpha_{n} 1_{K_{n}}+\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n} \backslash K_{n}} \\
& =u+\sum_{n=N+1}^{+\infty} \alpha_{n} 1_{K_{n}}+\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n} \backslash K_{n}}
\end{aligned}
$$

10. Since $K_{n} \subseteq A_{n}$ for all $n \geq 1$, using 5 . we have:

$$
\sum_{n=N+1}^{+\infty} \alpha_{n} \mu\left(K_{n}\right) \leq \sum_{n=N+1}^{+\infty} \alpha_{n} \mu\left(A_{n}\right) \leq \frac{\epsilon}{2}
$$

Hence, using 9. and 4. we obtain:

$$
\begin{aligned}
\int v d \mu & =\int\left(u+\sum_{n=N+1}^{+\infty} \alpha_{n} 1_{K_{n}}+\sum_{n=1}^{+\infty} \alpha_{n} 1_{V_{n} \backslash K_{n}}\right) d \mu \\
& =\int u d \mu+\sum_{n=N+1}^{+\infty} \alpha_{n} \int 1_{K_{n}} d \mu+\sum_{n=1}^{+\infty} \alpha_{n} \int 1_{V_{n} \backslash K_{n}} d \mu \\
& =\int u d \mu+\sum_{n=N+1}^{+\infty} \alpha_{n} \mu\left(K_{n}\right)+\sum_{n=1}^{+\infty} \alpha_{n} \mu\left(V_{n} \backslash K_{n}\right) \\
& \leq \int u d \mu+\frac{\epsilon}{2}+\sum_{n=1}^{+\infty} \alpha_{n} \cdot \frac{\epsilon}{\alpha_{n} 2^{n+1}} \\
& =\int u d \mu+\epsilon
\end{aligned}
$$

where the second equality stems from the linearity of the integral and an application of the monotone convergence theorem (19).

Note that since $\mu\left(K_{n}\right)<+\infty$ for all $n \geq 1$, in particular:

$$
\int u d \mu=\sum_{n=1}^{N} \alpha_{n} \mu\left(K_{n}\right)<+\infty
$$

Hence, we conclude that:

$$
\int v d \mu \leq \int u d \mu+\epsilon<+\infty
$$

11. The map u is \mathbf{R}-valued, Borel measurable with:

$$
\int|u| d \mu=\int u d \mu<+\infty
$$

So $u \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$.
12. The map v is Borel measurable with:

$$
\int|v| d \mu=\int v d \mu<+\infty
$$

However, it has values in $[0,+\infty]$, i.e. $v(\omega)=+\infty$ is possible for some $\omega \in \Omega$. The condition $\int v d \mu<+\infty$ does imply that $v(\omega)<+\infty$ for μ-almost every $\omega \in \Omega$. As we shall see in the next question, v is therefore μ-almost surely equal to an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$. But strictly speaking, it may not be itself an element of this space, because its range $v(\Omega)$ may fail to be a subset of \mathbf{R}.
13. Since $\int v d \mu<+\infty$, we have $v<+\infty \mu$-a.s since:

$$
(+\infty) \cdot \mu(\{v=+\infty\})=\int_{\{v=+\infty\}} v d \mu \leq \int v d \mu<+\infty
$$

Hence, if $N=\{v=+\infty\}$, we have $N \in \mathcal{B}(\Omega)$ and $\mu(N)=0$. Let $v^{*}=v 1_{N^{c}}$. Then v^{*} has values in \mathbf{R}, is Borel measurable and:

$$
\int\left|v^{*}\right| d \mu=\int v 1_{N^{c}} d \mu=\int v d \mu<+\infty
$$

So $v^{*} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$. Since $v^{*}=v \mu$-a.s. we conclude that v is μ-almost surely equal to an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$.
14. Note that from 8 . we have $0 \leq u \leq v$ and consequently $v-u$ is non-negative and measurable, and the integral $\int(v-u) d \mu$ makes sense. In fact, even if $u \leq v$ did not hold, since $u \in L^{1}$ and v is almost surely equal to an element of L^{1}, it would be possible to give meaning to $\int(v-u) d \mu$ in the obvious way. Now from 10 . we have:

$$
\begin{aligned}
\int u d \mu+\int(v-u) d \mu & =\int v d \mu \\
& \leq \int u d \mu+\epsilon
\end{aligned}
$$

and since $\int u d \mu<+\infty$ we conclude that $\int(v-u) d \mu \leq \epsilon$.
15. Having considered a metrizable and σ-compact topological space (Ω, \mathcal{T}) and a locally finite measure μ on $(\Omega, \mathcal{B}(\Omega))$, given $\epsilon>0$ and $f \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$ with $f \geq 0$, we have found two measurable maps $u, v: \Omega \rightarrow[0,+\infty]$ (where in fact u has values in \mathbf{R}^{+}), which are μ-almost surely equal to elements of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$
(in fact u is itself an element of L^{1}) and such that $u \leq f \leq v, u$ is u.s.c, v is l.s.c. and:

$$
\int(v-u) d \mu \leq \epsilon
$$

Now let $f \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$ which we no longer assume to be non-negative. Let f^{+}and f^{-}be respectively the positive and negative parts of f. Then $f=f^{+}-f^{-}$and given $\epsilon>0$, it is possible to apply the result of this exercise to f^{+}and f^{-}separately, with $\epsilon / 2$ instead of ϵ. Hence, there exist four measurable maps u^{+}, v^{+}, u^{-}and v^{-}where u^{+}, u^{-}have values in \mathbf{R}^{+}and v^{+}, v^{-} have values in $[0,+\infty]$, which are μ-almost surely equal elements of L^{1}, and satisfy the conditions $u^{+} \leq f^{+} \leq v^{+}, u^{-} \leq f^{-} \leq v^{-}$, u^{+}, u^{-}are u.s.c, v^{+}, v^{-}are l.s.c, and:

$$
\int\left(v^{+}-u^{+}\right) d \mu \leq \frac{\epsilon}{2}
$$

together with:

$$
\int\left(v^{-}-u^{-}\right) d \mu \leq \frac{\epsilon}{2}
$$

We define $u=u^{+}-v^{-}$and $v=v^{+}-u^{-}$. Since u^{+}, u^{-}have values in \mathbf{R}, given $\omega \in \Omega$, the differences $u^{+}(\omega)-v^{-}(\omega)$ and $v^{+}(\omega)-u^{-}(\omega)$ are always well-defined elements of $\overline{\mathbf{R}}$. It follows that $u, v: \Omega \rightarrow \overline{\mathbf{R}}$ are well-defined measurable maps. Furthermore, it is clear that both u and v are μ-almost surely equal to an element of L^{1}. From $u^{+} \leq f^{+} \leq v^{+}, u^{-} \leq f^{-} \leq v^{-}$and $f=f^{+}-f^{-}$we obtain $u \leq f \leq v$. Furthermore, since u^{+}is $\mathbf{R}-$ valued and u.s.c while v^{-}is l.s.c, from exercise (1) $u=u^{+}-v^{-}$is u.s.c, and similarly $v=v^{+}-u^{-}$is l.s.c. Finally, since $u \leq f \leq v$ and f is \mathbf{R}-valued, given $\omega \in \Omega$ the difference $v(\omega)-u(\omega)$ is always a well-defined element of $[0,+\infty]$. So $v-u$ is a well-defined non-negative and measurable map, and the integral $\int(v-u) d \mu$ is meaningful. We have:

$$
\int(v-u) d \mu=\int\left(v^{+}-u^{-}-u^{+}+v^{-}\right) d \mu
$$

$$
\begin{aligned}
& =\int\left(v^{+}-u^{+}+v^{-}-u^{-}\right) d \mu \\
& =\int\left(v^{+}-u^{+}\right) d \mu+\int\left(v^{-}-u^{-}\right) d \mu \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

This completes the proof of theorem (94).
Exercise 3

Exercise 4.

1. Let (Ω, \mathcal{T}) be a topological space. Suppose it is connected and $\Omega=A \uplus B$ where A, B are disjoint open sets. Then $A^{c}=B$ so A is closed and consequently A is both open and closed. Hence, Ω being connected, we have $A=\emptyset$ or $A=\Omega$, i.e. $A=\emptyset$ or $B=\emptyset$. Conversely, suppose $\Omega=A \uplus B$ with A, B disjoint open sets implies that $A=\emptyset$ or $B=\emptyset$. Then if A is both open and closed in Ω, with have $\Omega=A \uplus A^{c}$ where A, A^{c} are disjoint open sets. So $A=\emptyset$ or $A^{c}=\emptyset$, i.e. $A=\emptyset$ or $A=\Omega$. This shows that Ω is connected. We have proved that Ω is connected if and only if whenever $\Omega=A \uplus B$ with A, B disjoint open sets, we have $A=\emptyset$ or $B=\emptyset$.
2. If $\Omega=A \uplus B$ with A, B disjoint open sets, then $\Omega=A^{c} \uplus B^{c}$ with A^{c}, B^{c} disjoint closed sets, and conversely if $\Omega=A \uplus B$ with A, B disjoint closed sets, then $\Omega=A^{c} \uplus B^{c}$ with A^{c}, B^{c}
disjoint open sets. Hence, the statements:
(i) $\Omega=A \uplus B, A, B$ disjoint and open $\Rightarrow A=\emptyset$ or $B=\emptyset$ (ii) $\Omega=A \uplus B, A, B$ disjoint and closed $\Rightarrow A=\emptyset$ or $B=\emptyset$ are equivalent. We conclude from 1 . that Ω is connected, if and only if whenever $\Omega=A \uplus B$ with A, B disjoint closed sets, we have $A=\emptyset$ or $B=\emptyset$.

Exercise 4

Exercise 5.

1. Let A be an open and closed subset of \mathbf{R}, with $A \neq \emptyset$ and $A^{c} \neq \emptyset$. Let $x \in A^{c}$. We have:

$$
A=(A \cap]-\infty, x]) \cup(A \cap[x,+\infty[)
$$

and since $A \neq \emptyset$, we have $A \cap]-\infty, x] \neq \emptyset$ or $A \cap[x,+\infty[\neq \emptyset$.
2. Let $B=A \cap[x,+\infty[$ and suppose $B \neq \emptyset$. Both A and $[x,+\infty[$ are closed subsets of \mathbf{R}. So B is a closed subset of \mathbf{R}. However, since $x \in A^{c}$, we have:

$$
\begin{aligned}
B & =A \cap[x,+\infty[\\
& =(A \cap\{x\}) \cup(A \cap] x,+\infty[) \\
& =A \cap] x,+\infty[
\end{aligned}
$$

and since both A and $] x,+\infty[$ are open subsets of \mathbf{R}, B is also an open subset of \mathbf{R}. Note that the assumption $B \neq \emptyset$ has not been used so far.
3. Let $b=\inf B$. We have proved in exercise (9) (part 5) of Tutorial 8 that if B is a non-empty closed subset of $\overline{\mathbf{R}}$, then $\inf B \in B$. Unfortunately, this result does not apply to nonempty closed subsets of \mathbf{R} (indeed \mathbf{R}, is a non-empty closed subset of \mathbf{R} and $\inf \mathbf{R}=-\infty \notin \mathbf{R}$). So we cannot apply exercise (9) of Tutorial 8, at least not without a little bit of care. However, the following can be done: since $B \neq \emptyset$, there exists $y \in B=A \cap\left[x,+\infty\left[\right.\right.$. Then it is clear that $B^{*}=A \cap[x, y]$ is a non-empty closed subset of $\overline{\mathbf{R}}$, and consequently since $b=$ $\inf B^{*}$, applying exercise (9) of Tutorial 8 , we have $b \in B^{*}$. So $b \in B \subseteq \mathbf{R}$. For those who wish to have a more detailed argument, the following can be said: the fact that $B^{*} \neq \emptyset$ is a consequence of $y \in B^{*}$. If we define $b^{*}=\inf B^{*}$, the fact that $b^{*}=b$ can be shown as follows: since $B^{*} \subseteq B$, any lower-bound of B is also a lower-bound of B^{*}, and consequently b is a lowerbound of B^{*} which shows that $b \leq b^{*}$. To show the reverse inequality, consider $u \in B$. Then if $u \leq y$ we have $u \in B^{*}$ and therefore $b^{*} \leq u$. But if $y<u$, then $b^{*} \leq y<u$ and we see
that $b^{*} \leq u$ is true in all cases. So b^{*} is a lower-bound of B which shows that $b^{*} \leq b$. We have proved that $b=b^{*}$. To show that B^{*} is a closed subset of $\overline{\mathbf{R}}$, we first argue that it is a closed subset of \mathbf{R} since A is closed and $[x, y]$ is closed. However, the topology of \mathbf{R} is induced by the topology of $\overline{\mathbf{R}}$. It is a simple exercise to show that any closed subset of \mathbf{R} can be written as $F \cap \mathbf{R}$ where F is a closed subset of \mathbf{R}. Hence, there is a closed subset F of $\overline{\mathbf{R}}$ such that $B^{*}=F \cap \mathbf{R}$. But then:

$$
\begin{aligned}
B^{*} & =A \cap[x, y] \\
& =A \cap[x, y] \cap[x, y] \\
& =B^{*} \cap[x, y] \\
& =(F \cap \mathbf{R}) \cap[x, y] \\
& =F \cap[x, y]
\end{aligned}
$$

and since $[x, y]$ is also closed in $\overline{\mathbf{R}}$, we conclude that B^{*} is indeed closed in $\overline{\mathbf{R}}$. This concludes our proof that $b \in B$. All this may seem like a lot of work, made necessary by our desperate attempt
to apply exercise (9) of Tutorial 8. For those who believe that a direct proof is more convenient, here is the following: Since $B=A \cap[x,+\infty[$, it is clear that x is a lower bound of B and consequently $x \leq b$. To show that $b \in B$, we only need to show that $b \in A$. Since $B \neq \emptyset$, there exist $y \in B \subseteq \mathbf{R}$ and from $b \leq y$ we obtain in particular $b<+\infty$. Hence, there exists a sequence $\left(t_{n}\right)_{n \geq 1}$ in \mathbf{R} such that $t_{n} \downarrow \downarrow b$ (i.e. $t_{n} \rightarrow b$ with $b<t_{n+1} \leq t_{n}$ for all $n \geq 1$). Since $b<t_{n}$, it is impossible that t_{n} be a lowerbound of B. Hence, for all $n \geq 1$ there exists some $x_{n} \in B \subseteq A$ such that $b \leq x_{n}<t_{n}$. From $t_{n} \rightarrow b$ we see that $x_{n} \rightarrow b$ and since $x_{n} \in A$ while A is a closed subset of \mathbf{R}, we conclude that $b \in A$. This completes our second proof of $b \in B$.
4. Having proved in 2. that B is an open subset of \mathbf{R}, since $b \in B$ there exists $\epsilon>0$ such that $] b-\epsilon, b+\epsilon[\subseteq B$.
5. To show that $\left(\mathbf{R}, \mathcal{I}_{\mathbf{R}}\right)$ is connected, we need to show that if A is an open and closed subset of \mathbf{R}, then $A=\emptyset$ or $A=\mathbf{R}$. Suppose this is not the case and $A \neq \emptyset$ together with $A^{c} \neq \emptyset$. We have
shown in 2. that $A \cap[x,+\infty[\neq \emptyset$ or $A \cap]-\infty, x] \neq \emptyset$. If we assume that $B=A \cap[x,+\infty[$ and $B \neq \emptyset$, then $b=\inf B \in \mathbf{R}$ and we have proved in 4 . that there exists $\epsilon>0$ such that $] b-\epsilon, b+\epsilon[\subseteq B$. This is a contradiction. Indeed, since $b-\epsilon / 2<b$, the fact that $b-\epsilon / 2 \in B$ contradicts the fact that b is a lower-bound of B. So the only possible case is that $C \neq \emptyset$ where $C=A \cap]-\infty, x]$. However, if $c=\sup C$, then a similar proof to that of 3 . will show that $c \in C$ (in particular $c \in \mathbf{R}$) and C being open in \mathbf{R}, there exists $\epsilon>0$ with $] c-\epsilon, c+\epsilon[\subseteq C$, leading to a contradiction. Hence, we see that all possible cases lead to a contradiction. We conclude that the initial assumption is absurd, i.e. that $A=\emptyset$ or $A=\mathbf{R}$. So $\left(\mathbf{R}, \mathcal{I}_{\mathbf{R}}\right)$ is a connected topological space, which completes the proof of theorem (95).

Exercise 5

Exercise 6.

1. Let (Ω, \mathcal{T}) be a topological space and $A \subseteq \Omega$ be a connected subset of Ω. Let B be a subset of Ω such that $A \subseteq B \subseteq \bar{A}$, where \bar{A} is the closure of A in Ω. Let V_{1}, V_{2} be disjoint open subsets of B such that $B=V_{1} \uplus V_{2}$. From definition (23) of the induced topology $\mathcal{T}_{\mid B}$, there exist U_{1}, U_{2} open subsets of Ω such that $V_{1}=B \cap U_{1}$ and $V_{2}=B \cap U_{2}$.
2. Since $A \subseteq B$, using 1 . we have:

$$
\begin{aligned}
A & =A \cap B \\
& =A \cap\left(V_{1} \uplus V_{2}\right) \\
& =A \cap\left[\left(B \cap U_{1}\right) \uplus\left(B \cap U_{2}\right)\right] \\
& =\left(A \cap B \cap U_{1}\right) \uplus\left(A \cap B \cap U_{2}\right) \\
& =\left(A \cap U_{1}\right) \uplus\left(A \cap U_{2}\right)
\end{aligned}
$$

Now since U_{1}, U_{2} are open subsets of $\Omega, A \cap U_{1}$ and $A \cap U_{2}$ are open subsets of A. Furthermore, since V_{1} and V_{2} are disjoint,
we have $V_{1} \cap V_{2}=B \cap U_{1} \cap U_{2}=\emptyset$. and in particular since $A \subseteq B, A \cap U_{1} \cap U_{2}=\emptyset$. So $A \cap U_{1}$ and $A \cap U_{2}$ are disjoint open subsets of A with $A=\left(A \cap U_{1}\right) \uplus\left(A \cap U_{2}\right)$. Having assumed that A is a connected subset of Ω, the topological space $\left(A, \mathcal{T}_{\mid A}\right)$ is connected and consequently using exercise (4), it follows that $A \cap U_{1}=\emptyset$ or $A \cap U_{2}=\emptyset$.
3. Suppose that $A \cap U_{1}=\emptyset$. Let $x \in \bar{A}$. Then for all U open subsets of Ω with $x \in U$, we have $A \cap U \neq \emptyset$. Hence, since U_{1} is an open subset of Ω and $A \cap U_{1}=\emptyset$, it is necessary that $x \notin U_{1}$. So $x \in U_{1}^{c}$ and we have proved that $\bar{A} \subseteq U_{1}^{c}$.
4. Having assumed that $B \subseteq \bar{A}$, it follows from 3. that $B \subseteq U_{1}^{c}$, i.e. $V_{1}=B \cap U_{1}=\emptyset$.
5. From 3. and 4. we have seen that if $A \cap U_{1}=\emptyset$, then $V_{1}=\emptyset$. Similarly, if $A \cap U_{2}=\emptyset$, then $V_{2}=\emptyset$. However, we have shown in 2. that $A \cap U_{1}=\emptyset$ or $A \cap U_{2}=\emptyset$. So $V_{1}=\emptyset$ or $V_{2}=\emptyset$. Having considered $B \subseteq \Omega$ such that $A \subseteq B \subseteq \bar{A}$, and V_{1}, V_{2}
disjoint open subsets of B such that $B=V_{1} \uplus V_{2}$, we have proved that $V_{1}=\emptyset$ or $V_{2}=\emptyset$. From exercise (4), this shows that the topological space $\left(B, \mathcal{T}_{\mid B}\right)$ is connected, or equivalently that B is a connected subset of Ω. Hence, if A is a connected subset of Ω and $A \subseteq B \subseteq \bar{A}$, then B is also a connected subset of Ω. In particular, \bar{A} is a connected subset of Ω.

Exercise 6

Exercise 7. Let (Ω, \mathcal{T}) and $\left(\Omega^{\prime}, \mathcal{T}^{\prime}\right)$ be two topological spaces, and f be a continuous map $f: \Omega \rightarrow \Omega^{\prime}$. We assume that (Ω, \mathcal{T}) is connected. We claim that $f(\Omega)$ is a connected subset of Ω^{\prime}, or equivalently that the topological space $\left(f(\Omega), \mathcal{T}_{\mid f(\Omega)}^{\prime}\right)$ is connected. In order to prove this, we shall use exercise (4) and consider A, B two disjoint open subsets of $f(\Omega)$ such that $f(\Omega)=A \uplus B$. There exist U^{\prime}, V^{\prime} open subsets of Ω^{\prime} such that $A=f(\Omega) \cap U^{\prime}$ and $B=f(\Omega) \cap V^{\prime}$. Since f is continuous, $f^{-1}\left(U^{\prime}\right)$ and $f^{-1}\left(V^{\prime}\right)$ are open subsets of Ω. Furthermore, it is clear that:

$$
f^{-1}\left(U^{\prime}\right)=f^{-1}\left(f(\Omega) \cap U^{\prime}\right)=f^{-1}(A)
$$

and similarly $f^{-1}\left(V^{\prime}\right)=f^{-1}(B)$. So $f^{-1}(A)$ and $f^{-1}(B)$ are open subsets of Ω. Since A and B are disjoint, $f^{-1}(A)$ and $f^{-1}(B)$ are also disjoint. Since $f(\Omega)=A \uplus B$, for all $x \in \Omega$ we have $f(x) \in$ A or $f(x) \in B$. So $x \in f^{-1}(A)$ or $x \in f^{-1}(B)$. It follows that $f^{-1}(A)$ and $f^{-1}(B)$ are two disjoint open subsets of Ω, such that $\Omega=f^{-1}(A) \uplus f^{-1}(B)$. Since Ω is connected, from exercise (4) it follows that $f^{-1}(A)=\emptyset$ or $f^{-1}(B)=\emptyset$. Suppose that $f^{-1}(A)=\emptyset$.

We claim that $A=\emptyset$. Otherwise there exists $y \in A \subseteq f(\Omega)$. Let $x \in \Omega$ be such that $y=f(x)$. Then $f(x) \in A$ and consequently $x \in f^{-1}(A)$ which contradicts $f^{-1}(A)=\emptyset$. So $f^{-1}(A)=\emptyset$ implies that $A=\emptyset$, and similarly $f^{-1}(B)=\emptyset$ implies that $B=\emptyset$. It follows that $A=\emptyset$ or $B=\emptyset$. Having assumed that $f(\Omega)=A \uplus B$ where A, B are disjoint open subsets of $f(\Omega)$, we have proved that $A=\emptyset$ or $B=\emptyset$. From exercise (4), this shows that the topological space $\left(f(\Omega), \mathcal{T}_{\mid f(\Omega)}^{\prime}\right)$ is connected, or equivalently that $f(\Omega)$ is a connected subset of Ω^{\prime}. This completes the proof of theorem (96).

Exercise 7

Exercise 8.

1. Let $A \subseteq \overline{\mathbf{R}}$ and suppose that A is an interval. Let $\alpha=\inf A$ and $\beta=\sup A$. We claim that:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]
$$

If $A=\emptyset$, then $\alpha=+\infty$ and $\beta=-\infty$, so there is nothing to prove. So we assume that $A \neq \emptyset$. Then there is $x \in A$, and we have $\alpha \leq x$ as well as $x \leq \beta$. In particular, $\alpha \leq \beta$. Let $z \in A$. Since α is a lower-bound of $A, \alpha \leq z$. Since β is an upper-bound of $A, z \leq \beta$. So $z \in[\alpha, \beta]$ and we have proved that $A \subseteq[\alpha, \beta]$. Suppose $z \in] \alpha, \beta[$. From $\alpha<z$ we see that z cannot be a lower-bound of A (α is the greatest of such lowerbounds). There exists $x \in A$ such that $\alpha \leq x<z$. From $z<\beta$ we see that z cannot be an upper-bound of A. There exists $y \in A$ such that $z<y \leq \beta$. From $x<z<y$ we obtain in particular $z \in[x, y]$. Since $x, y \in A$ and A is assumed to be an interval, it follows from definition (118) that $z \in A$. We have proved that $] \alpha, \beta[\subseteq A$.
2. Let $A \subseteq \overline{\mathbf{R}}$. Suppose that A is of the form $[\alpha, \beta],[\alpha, \beta[,] \alpha, \beta]$ or $] \alpha, \beta[$ for some $\alpha, \beta \in \overline{\mathbf{R}}$. Suppose there exist $x, y \in A$ with $x \leq y$. Then for all $z \in[x, y]$ we have $x \leq z \leq y$. If $\alpha \leq x$ then $\alpha \leq z$. If $\alpha<x$ then $\alpha<z$. If $y \leq \beta$ then $z \leq \beta$. If $y<\beta$ then $z<\beta$. In any case, we see that $z \in A$. This shows that $[x, y] \subseteq A$ for all $x, y \in A, x \leq y$, and consequently from definition (118), A is an interval. Note that A can be the empty set without anything being flawed in the argument just given. Conversely, suppose that A is an interval. From 1. we have:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]
$$

where $\alpha=\inf A$ and $\beta=\sup A$. We shall distinguish four cases: suppose $\alpha \in A$ and $\beta \in A$. Then:

$$
[\alpha, \beta]=] \alpha, \beta[\cup\{\alpha\} \cup\{\beta\} \subseteq A \subseteq[\alpha, \beta]
$$

and consequently $A=[\alpha, \beta]$. Suppose $\alpha \in A$ and $\beta \notin A$. Then:

$$
[\alpha, \beta[=] \alpha, \beta[\cup\{\alpha\} \subseteq A \subseteq[\alpha, \beta] \backslash\{\beta\}=[\alpha, \beta[
$$

and consequently $A=[\alpha, \beta[$. Suppose $\alpha \notin A$ and $\beta \in A$. Then:

$$
] \alpha, \beta]=] \alpha, \beta[\cup\{\beta\} \subseteq A \subseteq[\alpha, \beta] \backslash\{\alpha\}=] \alpha, \beta]
$$

and consequently $A=] \alpha, \beta]$. Finally suppose $\alpha \notin A$ and $\beta \notin A$:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta] \backslash\{\alpha, \beta\}=] \alpha, \beta[
$$

and consequently $A=] \alpha, \beta[$. Hence, we have proved that A is of the form $[\alpha, \beta],[\alpha, \beta[,] \alpha, \beta]$ or $] \alpha, \beta[$. Note that if $A=\emptyset$, there is nothing flawed in the argument just given.
3. Let $A=]-\infty, \alpha[$ where $\alpha \in \mathbf{R}$. Consider $\phi: \mathbf{R} \rightarrow]-1,1[$ defined by $\phi(x)=x /(1+|x|)$. Then ϕ is a bijection with $\phi^{-1}(y)=$ $y /(1-|y|)$. Let $\psi=\phi_{\mid A}$ be the restriction of ϕ to A. Then ψ is injective, and it is therefore a bijection from A to $\psi(A)$. We claim that $\psi(A)=]-1, \phi(\alpha)[$. Since $|\phi(x)|<1$ for all $x \in \mathbf{R}$, it is clear that $\psi(A) \subseteq]-1,1[$. Since $\phi(x)=1-1 /(1+x)$ for $x>0$ and $\phi(x)=1+1 /(1-x)$ for $x<0$, it is clear that ϕ is increasing. So $\psi(A) \subseteq]-1, \phi(\alpha)[$. To show the reverse
inclusion, consider $y \in]-1, \phi(\alpha)\left[\right.$. Since ϕ^{-1} is also increasing, from $y<\phi(\alpha)$ we obtain $\phi^{-1}(y)<\alpha$. Hence, $\phi^{-1}(y) \in A$ and $y=\psi\left(\phi^{-1}(y)\right) \in \psi(A)$. We have proved that $\left.\psi(A)=\right]-1, \phi(\alpha)[$ and ψ is consequently a bijection from A to $]-1, \phi(\alpha)[$. Since ϕ is continuous, $\psi=\phi_{\mid A}$ is also continuous. Since ϕ^{-1} is continuous, $\psi^{-1}=\left(\phi^{-1}\right)_{\mid \psi(A)}$ is also continuous. We conclude that $\psi: A \rightarrow$] $-1, \phi(\alpha)$ [is a homeomorphism. We have proved that for all $\alpha \in \mathbf{R},]-\infty, \alpha[$ is homeomorphic to $]-1, \alpha^{\prime}\left[\right.$ for some $\alpha^{\prime} \in \mathbf{R}$.
4. Let $A=] \alpha,+\infty[$ where $\alpha \in \mathbf{R}$. Then if $\phi: \mathbf{R} \rightarrow]-, 1,1[$ is defined as in 3. and $\psi=\phi_{\mid A}$, then $\left.\psi(A)=\right] \phi(\alpha), 1[$ and ψ is a homeomorphism from A to $] \phi(\alpha), 1[$. Hence, for all $\alpha \in \mathbf{R}$, $] \alpha,+\infty[$ is homeomorphic to $] \alpha^{\prime}, 1\left[\right.$ for some $\alpha^{\prime} \in \mathbf{R}$.
5. Let $A=] \alpha, \beta[, \alpha, \beta \in \mathbf{R}, \alpha<\beta$. Define $\phi:]-1,1[\rightarrow] \alpha, \beta[$ by:

$$
\phi(x)=\alpha+\frac{\beta-\alpha}{2}(x+1)
$$

Then it is easy to show that ϕ is a continuous bijection, and that
ϕ^{-1} is continuous. So $\left.\phi:\right]-1,1[\rightarrow] \alpha, \beta[$ is a homeomorphism.
6. $\phi(x)=x /(1+|x|)$ is a homeomorphism between \mathbf{R} and $]-1,1[$.
7. Let A be a non-empty open interval in \mathbf{R}, i.e. a non-empty interval of $\overline{\mathbf{R}}$ which is an open subset of \mathbf{R}. Being an interval, from 2. it is of the form $[\alpha, \beta],[\alpha, \beta[,] \alpha, \beta]$ or $] \alpha, \beta[$ for some $\alpha, \beta \in \overline{\mathbf{R}}$. Suppose A is of the form $[\alpha, \beta]$. Being non-empty with have $\alpha \leq \beta$. So $\alpha \in[\alpha, \beta] \subseteq \mathbf{R}$. Being an open subset of \mathbf{R}, there exists $\epsilon>0$ such that $] \alpha-\epsilon, \alpha+\epsilon[\subset[\alpha, \beta]$. This is a contradiction since $\alpha \in \mathbf{R}$. So A cannot be of the form $[\alpha, \beta]$ and we prove similarly that it cannot be of the form $[\alpha, \beta[$ and $] \alpha, \beta]$ either. So A is of the form $] \alpha, \beta[$ for some $\alpha, \beta \in \overline{\mathbf{R}}, \alpha<\beta$. Suppose $\alpha=-\infty$ and $\beta=+\infty$. Then $A=\mathbf{R}$ which is clearly homeomorphic to \mathbf{R}. Suppose $\alpha=-\infty$ and $\beta \in \mathbf{R}$. Then from 3. A is homeomorphic to $]-1, \alpha^{\prime}\left[\right.$ for some $\alpha^{\prime} \in \mathbf{R}$, which is itself homeomorphic to] - 1,1 [, as we have proved in 5 . Having proved in 6 . that] $-1,1[$ is homeomorphic to \mathbf{R}, we conclude that A is homeomorphic to \mathbf{R}. Suppose $\alpha \in \mathbf{R}$ and $\beta=+\infty$.

Then from 4. 5. and 6 . we see that A is homeomorphic to \mathbf{R}. Suppose $\alpha \in \mathbf{R}$ and $\beta \in \mathbf{R}$. Then from 5. and 6 . we see that A is homeomorphic to \mathbf{R}. Hence, in all possible cases, we see that A is homeomorphic to \mathbf{R}. We have proved that any non-empty open interval in \mathbf{R} is homeomorphic to \mathbf{R}.
8. Let A be an open interval of \mathbf{R}. If $A=\emptyset$, then the induced topology on A is reduced to $\{\emptyset\}$, and $(\emptyset,\{\emptyset\})$ is a connected topological space. So A is a connected subset of \mathbf{R}. If $A \neq \emptyset$, then from 7. A is homeomorphic to \mathbf{R}. In particular, there exists $f: \mathbf{R} \rightarrow A$ which is continuous and surjective. From theorem (95), \mathbf{R} is connected. Since f is continuous, from theorem (96) $f(\mathbf{R})$ is a connected subset of A. Since f is surjective, $f(\mathbf{R})=A$ and consequently A is connected. We have proved that any open interval of \mathbf{R} is a connected subset of \mathbf{R}.
9. Let A be an interval of \mathbf{R}, i.e. an interval of $\overline{\mathbf{R}}$ with $A \subseteq \mathbf{R}$. If $A=\emptyset$ then A is connected. So we assume that $A \neq \emptyset$. From 1 .
there exist $\alpha, \beta \in \overline{\mathbf{R}}$ such that:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]
$$

and since $A \neq \emptyset$ we have $\alpha \leq \beta$. Since] $\alpha, \beta[$ is an open interval in \mathbf{R}, from 8. it is a connected subset of \mathbf{R}. Suppose $\alpha=-\infty$ and $\beta=+\infty$. Then $A=\mathbf{R}$ and:

$$
] \alpha, \beta[\subseteq A \subseteq] \alpha, \beta[=\overline{] \alpha, \beta[}
$$

Suppose $\alpha=-\infty$ and $\beta \in \mathbf{R}$. Since $A \subseteq \mathbf{R}$ we have:

$$
] \alpha, \beta[\subseteq A \subseteq] \alpha, \beta]=\overline{] \alpha, \beta[}
$$

Suppose $\alpha \in \mathbf{R}$ and $\beta=+\infty$. Then:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta[=\overline{] \alpha, \beta[}
$$

And finally suppose that $\alpha, \beta \in \mathbf{R}$. Then:

$$
] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]=\overline{] \alpha, \beta[}
$$

It follows that $] \alpha, \beta[\subseteq A \subseteq \overline{\alpha, \beta[}$ in all possible cases, where $\overline{] \alpha, \beta[}$ denotes the closure of $] \alpha, \beta[$ in \mathbf{R}. Having proved that $] \alpha, \beta[$ is a connected subset of \mathbf{R}, from exercise (6) we conclude that A is a connected subset of \mathbf{R}. We have proved that any interval in \mathbf{R} is a connected subset of \mathbf{R}.

Exercise 8

Exercise 9.

1. Let $A \subseteq \mathbf{R}$ be a non-empty connected subset of \mathbf{R}. Let $\alpha=\inf A$ and $\beta=\sup A$. We assume that there exists $\left.x_{0} \in A^{c} \cap\right] \alpha, \beta[$. In particular, we have $x_{0} \in A^{c}$ and consequently, since $A \subseteq \mathbf{R}$:

$$
\begin{equation*}
A=(A \cap]-\infty, x_{0}[) \uplus(A \cap] x_{0},+\infty[) \tag{2}
\end{equation*}
$$

However, $]-\infty, x_{0}[$ and $] x_{0},+\infty[$ being open subsets of \mathbf{R}, the sets $A \cap]-\infty, x_{0}[$ and $A \cap] x_{0},+\infty[$ are open in A, and they are clearly disjoint. Since A is connected, it follows from exercise (4) that $A \cap]-\infty, x_{0}[=\emptyset$ or $A \cap] x_{0},+\infty[=\emptyset$.
2. Suppose $A \cap] x_{0},+\infty[=\emptyset$. From (2) we have $A=A \cap]-\infty, x_{0}[$, and consequently x_{0} is an upper-bound of A. Since β is the smallest of such upper-bounds, we obtain $\beta \leq x_{0}$ contradicting $\left.x_{0} \in\right] \alpha, \beta[$.
3. Similarly, if $A \cap]-\infty, x_{0}\left[=\emptyset\right.$, then x_{0} is a lower-bound of A and consequently $x_{0} \leq \alpha$ contradicting $\left.x_{0} \in\right] \alpha, \beta[$. We have seen
in 1. that $A \cap]-\infty, x_{0}[=\emptyset$ or $A \cap] x_{0},+\infty[=\emptyset$. However, both of these cases lead to a contradiction. We conclude that our initial assumption was absurd, i.e. that there exists no x_{0} in $\left.A^{c} \cap\right] \alpha, \beta[$. In other words, $\left.A^{c} \cap\right] \alpha, \beta[=\emptyset$ or equivalently $] \alpha, \beta[\subseteq A$. The fact that $A \subseteq[\alpha, \beta]$ follows immediately from the fact that α and β are respectively a lower-bound and an upper-bound of A. We have proved that $] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]$.
4. Let $A \subseteq \mathbf{R}$. Suppose that A is a connected subset of \mathbf{R}. If $A=\emptyset$ then in particular A is an interval, as can be seen from definition (118). If $A \neq \emptyset$, then A is a non-empty connected subset of \mathbf{R}, and we have just proved that $] \alpha, \beta[\subseteq A \subseteq[\alpha, \beta]$ where $\alpha=\inf A$ and $\beta=\sup A$. In a similar fashion to 2 . of exercise (8) (depending on whether α, β lie in A or not), we conclude that A is of the form $[\alpha, \beta],[\alpha, \beta[,] \alpha, \beta]$ or $] \alpha, \beta[$. From this same exercise, this is equivalent to A being an interval. So any connected subset of \mathbf{R} is an interval. Conversely, suppose that A is an interval of \mathbf{R}. Then from exercise (8), A is a
connected subset of \mathbf{R}. We have proved that for all $A \subseteq \mathbf{R}, A$ is connected, if and only if A is an interval. This completes the proof of theorem (97).

Exercise 9

Exercise 10. Let $f: \Omega \rightarrow \mathbf{R}$ be a continuous map, where (Ω, \mathcal{T}) is a connected topological space. Let $a, b \in \Omega$ with $f(a) \leq f(b)$. From theorem (96), $f(\Omega)$ is a connected subset of \mathbf{R}. From theorem (97), $f(\Omega)$ is therefore an interval of \mathbf{R}. Since $f(a), f(b)$ are elements of $f(\Omega)$ and $f(a) \leq f(b)$, it follows from definition (118) that for all $z \in[f(a), f(b)]$ we have $z \in f(\Omega)$. So there exists $x \in \Omega$ such that $z=f(x)$. This completes the proof of theorem (98).

Exercise 10

Exercise 11.

1. Let $a, b \in \mathbf{R}, a<b$. Let $f:[a, b] \rightarrow \mathbf{R}$ be a map such that $f^{\prime}(x)$ exists for all $x \in[a, b]$. Note in particular that f is continuous and therefore measurable. For all $n \geq 1$, let $\phi_{n}:[a, b] \rightarrow[a, b]:$

$$
\forall x \in[a, b], \phi_{n}(x)=\left\{\begin{array}{lr}
x+\frac{(b-x)}{n} \quad, & \text { if } x \in[a, b[\\
b-\frac{(b-a)}{n} \quad, & \text { if } x=b
\end{array}\right.
$$

Then ϕ_{n} is well-defined on $[a, b]$ and has indeed values in $[a, b]$. The particular definition of ϕ_{n} is however not very important. What we need to note is that ϕ_{n} is Borel measurable, satisfies $\phi_{n}(x) \rightarrow x$ while $\phi_{n}(x) \neq x$ for all $x \in[a, b]$. Given $n \geq 1$, we now define $g_{n}:[a, b] \rightarrow \mathbf{R}$ as:

$$
\forall x \in[a, b], g_{n}(x)=\frac{f \circ \phi_{n}(x)-f(x)}{\phi_{n}(x)-x}
$$

Then $g_{n}:([a, b], \mathcal{B}([a, b])) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is well-defined and measurable, and furthermore $g_{n}(x) \rightarrow f^{\prime}(x)$ for all $x \in[a, b]$. It fol-
lows that f^{\prime} is the pointwise limit of the sequence $\left(g_{n}\right)_{n \geq 1}$, and we conclude from theorem (17) that f^{\prime} is itself Borel measurable.
2. Since f^{\prime} is measurable and \mathbf{R}-valued, the condition:

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t<+\infty
$$

is equivalent to $f^{\prime} \in L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$.
3. We assume that $f^{\prime} \in L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$. Let $\epsilon>0$. The topological space $[a, b]$ is metrizable and compact, and in particular σ-compact. The Lebesgue measure $d x$ on $[a, b]$ is finite, and in particular locally finite. Since $f^{\prime} \in L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$, we can apply Vitali-Caratheodory theorem (94): there exists measurable maps $u, v:[a, b] \rightarrow \overline{\mathbf{R}}$ which are almost surely equal to elements of L^{1}, such that $u \leq f^{\prime} \leq v, u$ is u.s.c, v is l.s.c and furthermore:

$$
\int_{a}^{b}(v(t)-u(t)) d t \leq \epsilon
$$

In particular, denoting $g=v$, we have found $g:[a, b] \rightarrow \overline{\mathbf{R}}$ almost surely equal to an element of L^{1}, such that $f^{\prime} \leq g$ and g is l.s.c. Note that the integral $\int_{a}^{b} g(t) d t$ is meaningful, and:

$$
\begin{aligned}
\int_{a}^{b} g(t) d t & =\int_{a}^{b}\left(f^{\prime}(t)+g(t)-f^{\prime}(t)\right) d t \\
& =\int_{a}^{b} f^{\prime}(t) d t+\int_{a}^{b}\left(g(t)-f^{\prime}(t)\right) d t \\
& \leq \int_{a}^{b} f^{\prime}(t) d t+\int_{a}^{b}(v(t)-u(t)) d t \\
& \leq \int_{a}^{b} f^{\prime}(t) d t+\epsilon
\end{aligned}
$$

4. Let $\alpha>0$. Since $f^{\prime} \leq g$ we have $f^{\prime}<g+\alpha$. Indeed, suppose $f^{\prime}(x)=g(x)+\alpha, x \in[a, b]$. Then $f^{\prime}(x)=g(x)=g(x)+\alpha$ and consequently $g(x) \in\{-\infty,+\infty\}$ contradicting the fact that f^{\prime} is \mathbf{R}-valued. Having proved that $f^{\prime}<g+\alpha$, note that $g+\alpha$ is
also a lower-semi-continuous map, which furthermore is almost surely equal to an element of L^{1}, since the Lebesgue measure on $[a, b]$ is finite. Furthermore, we have:

$$
\begin{aligned}
\int_{a}^{b}(g+\alpha)(t) d t & =\int_{a}^{b} g(t) d t+\alpha(b-a) \\
& \leq \int_{a}^{b} f^{\prime}(t) d t+\epsilon+\alpha(b-a)
\end{aligned}
$$

Hence, taking $\alpha>0$ small enough, it is possible to achieve:

$$
\int_{a}^{b}(g+\alpha)(t) d t \leq \int_{a}^{b} f^{\prime}(t) d t+2 \epsilon
$$

Replacing g by $g+\alpha$, we have found $g:[a, b] \rightarrow \overline{\mathbf{R}}$ almost surely equal to an element of L^{1}, which is l.s.c. and satisfies $f^{\prime}<g$ together with:

$$
\int_{a}^{b} g(t) d t \leq \int_{a}^{b} f^{\prime}(t) d t+2 \epsilon
$$

Since $\epsilon>0$ was arbitrary, it is possible to find g such that:

$$
\int_{a}^{b} g(t) d t \leq \int_{a}^{b} f^{\prime}(t) d t+\epsilon
$$

In other words, without loss of generality, we have been able to find a map g as in 3., with the additional condition $f^{\prime}<g$.

5 . Let ν be the complex measure defined by $\nu=\int g d x$. Note that strictly speaking, g is not an element of L^{1} (it may have values in $\{-\infty,+\infty\})$. If h is an element of $L_{\mathbf{R}}^{1}([a, b], \mathcal{B}([a, b]), d x)$ such that $g=h d x$-almost surely, then for all $E \in \mathcal{B}([a, b]), \nu(E)$ is defined as:

$$
\nu(E)=\int_{E} h(x) d x
$$

Note that ν is in fact a signed measure (i.e. a complex measure with values in R). Since $d x(E)=0$ implies $\nu(E)=0$, the measure ν is absolutely continuous with respect to the Lebesgue
measure on $[a, b]$. From theorem (58), we have:

$$
\forall \epsilon^{\prime}>0, \exists \delta>0, \forall E \in \mathcal{B}([a, b]), d x(E) \leq \delta \Rightarrow|\nu(E)| \leq \epsilon^{\prime}
$$

6. Let $\eta>0$ and $x \in[a, b]$. We define:

$$
F_{\eta}(x)=\int_{a}^{x} g(t) d t-f(x)+f(a)+\eta(x-a)
$$

Then $F_{\eta}:[a, b] \rightarrow \mathbf{R}$ is well-defined, and we claim that it is continuous. It is sufficient to show that $x \rightarrow \int_{a}^{x} g(t) d t$ is continuous. Let $\epsilon^{\prime}>0$ be given, and consider $\delta>0$ such that the statement of 5 . is satisfied. Let $u, u^{\prime} \in[a, b]$ such that $\left|u^{\prime}-u\right| \leq \delta$. Without loss of generality, we may assume that $u \leq u^{\prime}$. Then $\left.\left.d x(] u, u^{\prime}\right]\right) \leq \delta$ and consequently from $\left.\left.5 ., \mid \nu(] u, u^{\prime}\right]\right) \mid \leq \epsilon^{\prime}$. So:

$$
\left|\int_{a}^{u^{\prime}} g(t) d t-\int_{a}^{u} g(t) d t\right|=\left|\int_{\left[a, u^{\prime}\right]} g(t) d t-\int_{[a, u]} g(t) d t\right|
$$

$$
\left.\left.=\left|\int_{] u, u^{\prime}\right]} g(t) d t\right|=\mid \nu(] u, u^{\prime}\right]\right) \mid \leq \epsilon^{\prime}
$$

This shows that $x \rightarrow \int_{a}^{x} g(t) d t$ is indeed continuous on $[a, b]$ (in fact uniformly continuous), and $F_{\eta}:[a, b] \rightarrow \mathbf{R}$ is indeed a continuous map.
7. Given $\eta>0$, let $x=\sup F_{\eta}^{-1}(\{0\})$. It is clear that $F_{\eta}(a)=0$ and consequently $a \in F_{\eta}^{-1}(\{0\})$. So $a \leq x$. Since $F_{\eta}^{-1}(\{0\}) \subseteq$ [a,b], in particular b is an upper-bound of $F_{\eta}^{-1}(\{0\})$. So $x \leq b$. We have proved that $x \in[a, b]$. In particular, $x \in \mathbf{R}$ and for all $n \geq 1$ we have $x-1 / n<x$. Since x is the lowest upper-bound of $F_{\eta}^{-1}(\{0\}), x-1 / n$ cannot be such an upper-bound. There exists $x_{n} \in F_{\eta}^{-1}(\{0\})$ such that $x-1 / n<x_{n} \leq x$. We have thus constructed a sequence $\left(x_{n}\right)_{n \geq 1}$ in $F_{\eta}^{-1}(\{0\})$ such that $x_{n} \rightarrow x$ as $n \rightarrow+\infty$. Since $F_{\eta}\left(x_{n}\right)=0$ for all $n \geq 1$, from the continuity of F_{η} we obtain $F_{\eta}(x)=0$.
8. Suppose $x \in\left[a, b\left[\right.\right.$. Having proved in 4. that $f^{\prime}<g$, in particular
$f^{\prime}(x)<g(x)$. Since g is l.s.c, the set $\left\{f^{\prime}(x)<g\right\}$ is an open subset of $[a, b]$, which contains x. Hence, there exists $\delta_{1}>0$ such that:

$$
] x-\delta_{1}, x+\delta_{1}\left[\cap[a, b] \subseteq\left\{f^{\prime}(x)<g\right\}\right.
$$

In particular we have:

$$
t \in] x, x+\delta_{1}\left[\cap[a, b] \Rightarrow f^{\prime}(x)<g(t)\right.
$$

Furthermore, by definition of the derivative $f^{\prime}(x)$, since $\eta>0$, there exists $\delta_{2}>0$ such that:

$$
t \in] x-\delta_{2}, x+\delta_{2}\left[\cap[a, b], t \neq x \Rightarrow\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\eta\right.
$$

In particular, we have:

$$
t \in] x, x+\delta_{2}\left[\cap[a, b] \Rightarrow \frac{f(t)-f(x)}{t-x}<f^{\prime}(x)+\eta\right.
$$

Taking $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, for all $\left.t \in\right] x, x+\delta[\cap[a, b]$ we have:

$$
f^{\prime}(x)<g(t) \text { and } \frac{f(t)-f(x)}{t-x}<f^{\prime}(x)+\eta
$$

Note that this conclusion is not very interesting if $x=b$, which is why we have assumed $x \in[a, b[$.
9. Let $t \in] x, x+\delta[\cap[a, b]$. Using 8 . we have:

$$
\begin{aligned}
F_{\eta}(t) & =\int_{a}^{t} g(u) d u-f(t)+f(a)+\eta(t-a) \\
& =F_{\eta}(x)+\int_{x}^{t} g(u) d u+f(x)-f(t)+\eta(t-x) \\
& >F_{\eta}(x)+\int_{x}^{t} g(u) d u-f^{\prime}(x)(t-x) \\
& \geq F_{\eta}(x)+\int_{x}^{t} f^{\prime}(x) d u-f^{\prime}(x)(t-x) \\
& =F_{\eta}(x)=0
\end{aligned}
$$

10. From 9. we have found $\delta>0$ such that $F_{\eta}(t)>0$ for all t in the set $] x, x+\delta[\cap[a, b]$. Having assumed in 8 . that $x \in[a, b[$, in particular $x<b$. So it is possible to find $\left.t_{0} \in\right] x, b[$ such that $\left.t_{0} \in\right] x, x+\delta\left[\cap[a, b]\right.$. In particular $F_{\eta}\left(t_{0}\right)>0$. We have proved the existence of $\left.t_{0} \in\right] x, b\left[\right.$ such that $F_{\eta}\left(t_{0}\right)>0$.
11. Suppose $F_{\eta}(b)<0$. From 10. we have $\left.t_{0} \in\right] x, b$ [such that $F_{\eta}\left(t_{0}\right)>0$. From 6. the map $F_{\eta}:[a, b] \rightarrow \mathbf{R}$ is continuous. Let $h=\left(F_{\eta}\right)_{\mid\left[t_{0}, b\right]}$ be the restriction of F_{η} to the interval $\left[t_{0}, b\right]$. Then h is also continuous. From theorem (97), $\left[t_{0}, b\right]$ is a connected topological space. Since $0 \in\left[F_{\eta}(b), F_{\eta}\left(t_{0}\right)\right]$, from theorem (98) there exists $u \in\left[t_{0}, b\right]$ such that $F_{\eta}(u)=0$. Since $x=\sup F_{\eta}^{-1}(\{0\})$, in particular $u \leq x$. Hence, we obtain the contradiction $x<t_{0} \leq u \leq x$.
12. From 11. we see that $F_{\eta}(b) \geq 0$ must be true when $x \in[a, b[$. Having proved in 7. that $F_{\eta}(x)=0$, if $x=b, F_{\eta}(b)=0$ and in particular $F_{\eta}(b) \geq 0$ is still true. So $F_{\eta}(b) \geq 0$ in all cases.
13. From $F_{\eta}(b) \geq 0$ we obtain:

$$
\int_{a}^{b} g(t) d t-f(b)+f(a)+\eta(b-a) \geq 0
$$

This being true for all $\eta>0$, we have:

$$
f(b)-f(a) \leq \int_{a}^{b} g(t) d t
$$

Hence, using 3. we obtain:

$$
f(b)-f(a) \leq \int_{a}^{b} f^{\prime}(t) d t+\epsilon
$$

and this being true for all $\epsilon>0$, we have proved that:

$$
\begin{equation*}
f(b)-f(a) \leq \int_{a}^{b} f^{\prime}(t) d t \tag{3}
\end{equation*}
$$

Having considered $a, b \in \mathbf{R}, a<b$ and $f:[a, b] \rightarrow \mathbf{R}$ a map
such that $f^{\prime}(x)$ exists for all $x \in[a, b]$ and:

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t<+\infty
$$

we have been able to prove inequality (3). Applying this result to $-f$ instead of f, we obtain:

$$
\int_{a}^{b} f^{\prime}(t) d t \leq f(b)-f(a)
$$

and finally we conclude that:

$$
f(b)-f(a)=\int_{a}^{b} f^{\prime}(t) d t
$$

This completes the proof of theorem (99).

Exercise 12.

1. Let $\alpha>0$ and $k_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defined by $k_{\alpha}(x)=\alpha x$. Then k_{α} is continuous, and in particular Borel measurable.
2. Let $\mu: \mathcal{B}\left(\mathbf{R}^{n}\right) \rightarrow[0,+\infty]$ be defined by:

$$
\forall B \in \mathcal{B}\left(\mathbf{R}^{n}\right), \mu(B)=\alpha^{n} d x\left(\left\{k_{\alpha} \in B\right\}\right)
$$

where $d x$ is the Lebesgue measure on \mathbf{R}^{n}. Note that μ is welldefined since $\left\{k_{\alpha} \in B\right\}$ is a Borel set for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, k_{α} being measurable. It is clear that $\mu(\emptyset)=0$ and furthermore, if $\left(B_{p}\right)_{p \geq 1}$ is sequence of pairwise disjoint elements of $\mathcal{B}\left(\mathbf{R}^{n}\right)$ and $B=\uplus_{p \geq 1} B_{p}$, we have:

$$
\mu(B)=\alpha^{n} d x\left(k_{\alpha}^{-1}\left(\biguplus_{p \geq 1} B_{p}\right)\right)
$$

$$
\begin{aligned}
& =\alpha^{n} d x\left(\biguplus_{p \geq 1} k_{\alpha}^{-1}\left(B_{p}\right)\right) \\
& =\alpha^{n}\left(\sum_{p=1}^{+\infty} d x\left(k_{\alpha}^{-1}\left(B_{p}\right)\right)\right) \\
& =\sum_{p=1}^{+\infty} \alpha^{n} d x\left(\left\{k_{\alpha} \in B_{p}\right\}\right) \\
& =\sum_{p=1}^{+\infty} \mu\left(B_{p}\right)
\end{aligned}
$$

So μ is a measure on \mathbf{R}^{n}. Let $a_{i}, b_{i} \in \mathbf{R}, a_{i} \leq b_{i}$ for $i \in \mathbf{N}_{n}$. For all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ the inequality $a_{i} \leq \alpha x_{i} \leq b_{i}$ is equivalent to $a_{i} / \alpha \leq x_{i} \leq b_{i} / \alpha$. Hence:

$$
\mu\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]\right)=\alpha^{n} d x\left(\left\{\alpha x \in \prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right\}\right)
$$

$$
\begin{aligned}
& =\alpha^{n} d x\left(\prod_{i=1}^{n}\left[\frac{a_{i}}{\alpha}, \frac{b_{i}}{\alpha}\right]\right) \\
& =\alpha^{n} \prod_{i=1}^{n}\left(\frac{b_{i}}{\alpha}-\frac{a_{i}}{\alpha}\right) \\
& =\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)
\end{aligned}
$$

From the uniqueness property of definition (63) we conclude that $\mu=d x$. Hence, we have proved that for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$:

$$
d x\left(\left\{k_{\alpha} \in B\right\}\right)=\frac{1}{\alpha^{n}} \mu(B)=\frac{1}{\alpha^{n}} d x(B)
$$

3. Let $\epsilon>0$ and $x \in \mathbf{R}^{n}$. Let $B(x, \epsilon)$ be the open ball:

$$
B(x, \epsilon)=\left\{y \in \mathbf{R}^{n}:\|x-y\|<\epsilon\right\}
$$

where $\|\cdot\|$ denotes the usual Euclidean norm on \mathbf{R}^{n}. Given $u \in \mathbf{R}^{n}$ we consider $\tau_{u}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ the translation mapping of
vector u defined by $\tau_{u}(x)=u+x$. Then τ_{u} is clearly continuous, hence Borel measurable. Furthermore, for all $a, b \in \mathbf{R}^{n}$ such that $a_{i} \leq b_{i}$ for all $i \in \mathbf{N}_{n}$, we have:

$$
\begin{aligned}
d x\left(\left\{\tau_{u} \in \prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right\}\right) & =d x\left(\prod_{i=1}^{n}\left[a_{i}-u_{i}, b_{i}-u_{i}\right]\right) \\
& =\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)
\end{aligned}
$$

and in a similar fashion to 2 . we conclude from the uniqueness property of definition (63) that for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$:

$$
d x\left(\left\{\tau_{u} \in B\right\}\right)=d x(B)
$$

This equality expresses the idea that the Lebesgue measure is invariant by translation. We shall see more on the subject in Tutorial 17. In the meantime, using 2. we obtain:

$$
d x(B(x, \epsilon))=d x\left(\left\{\tau_{-x} \in B(0, \epsilon)\right\}\right)
$$

$$
\begin{aligned}
& =d x(B(0, \epsilon)) \\
& =d x\left(\left\{k_{1 / \epsilon} \in B(0,1)\right\}\right) \\
& =\epsilon^{n} d x(B(0,1))
\end{aligned}
$$

So we have proved that $d x(B(x, \epsilon))=\epsilon^{n} d x(B(0,1))$.
Exercise 12

Exercise 13.

1. Let μ be a complex measure on \mathbf{R}^{n}. Let $\lambda \in \mathbf{R}$ and suppose that $\lambda<0$. Let $x \in \mathbf{R}^{n}$ and $\epsilon>0$. Since $B(x, \epsilon)$ is an open subset of \mathbf{R}^{n}, in particular it is a Borel subset of \mathbf{R}^{n}. So $|\mu|(B(x, \epsilon))$ and $d x(B(x, \epsilon))$ are well-defined quantities of $[0,+\infty]$. In fact, from theorem (57), the total variation $|\mu|$ is a finite measure on \mathbf{R}^{n}, so $|\mu|(B(x, \epsilon))$ is an element of \mathbf{R}^{+}(this is not relevant to the present question, but the fact that $|\mu|$ is a finite measure should not be forgotten). From the inclusions:

$$
\left[-1 / 2 \sqrt{n}, 1 / 2 \sqrt{n}^{n} \subseteq B(0,1) \subseteq[-1,1]^{n}\right.
$$

we obtain the crude estimates:

$$
\left(\frac{1}{\sqrt{n}}\right)^{n} \leq d x(B(0,1)) \leq 2^{n}
$$

and it follows from 3. of exercise (12) that $d x(B(x, \epsilon))$ is an element of $] 0,+\infty[$. Hence, we see that $|\mu|(B(x, \epsilon)) / d x(B(x, \epsilon))$
is a well-defined element of \mathbf{R}^{+}. Since $(M \mu)(x)$ is an upperbound of all such ratios for $\epsilon>0$, we have:

$$
\lambda<0 \leq \frac{|\mu|(B(x, \epsilon))}{d x(B(x, \epsilon))} \leq(M \mu)(x)
$$

So $x \in\{\lambda<M \mu\}$. This being true for all $x \in \mathbf{R}^{n}$, we conclude that $\{\lambda<M \mu\}=\mathbf{R}^{n}$.
2. Suppose $\lambda=0$ and $\mu \neq 0$. There exists $E \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that $\mu(E) \neq 0$. Since $|\mu(E)| \leq|\mu|(E)$, in particular $|\mu|(E)>0$. Let $x \in \mathbf{R}^{n}$. Since $B(x, p) \uparrow \mathbf{R}^{n}$ as $p \rightarrow+\infty$, from theorem (7):

$$
0<|\mu|(E)=\lim _{p \rightarrow+\infty}|\mu|(E \cap B(x, p))
$$

In particular, there exists $p \geq 1$ such that $|\mu|(E \cap B(x, p))>0$ and consequently $|\mu|(B(x, p))>0$. Hence, we have:

$$
0<\frac{|\mu|(B(x, p))}{d x(B(x, p))} \leq(M \mu)(x)
$$

and we have proved that $x \in\{\lambda<M \mu\}=\{0<M \mu\}$. This being true for all $x \in \mathbf{R}^{n}$, we have $\{\lambda<M \mu\}=\mathbf{R}^{n}$. Suppose now that $\lambda=0$ with $\mu=0$. Then $|\mu|=0$ and it is clear that $(M \mu)(x)=0$ for all $x \in \mathbf{R}^{n}$. So $\{\lambda<M \mu\}=\emptyset$.
3. Suppose $\lambda>0$. Let $x \in\{\lambda<M \mu\}$. Then $\lambda<(M \mu)(x)$. Since $(M \mu)(x)$ is the smallest upper-bound of all ratios:

$$
|\mu|(B(x, \epsilon)) / d x(B(x, \epsilon))
$$

as $\epsilon>0, \lambda$ cannot be such an upper-bound. There exists $\epsilon>0$ such that $\lambda<|\mu|(B(x, \epsilon)) / d x(B(x, \epsilon))$. Defining:

$$
t=|\mu|(B(x, \epsilon)) / d x(B(x, \epsilon))
$$

we have $t>\lambda$ and $|\mu|(B(x, \epsilon))=t d x(B(x, \epsilon))$.
4. Since $1<t / \lambda$ we have $\epsilon^{n}<\epsilon^{n} t / \lambda$. Furthermore, it is clear that $\lim _{\delta \downarrow 0}(\epsilon+\delta)^{n}=\epsilon^{n}$. Hence, we have $(\epsilon+\delta)^{n}<\epsilon^{n} t / \lambda$, for $\delta>0$ small enough.
5. Suppose $y \in B(x, \delta)$ and let $z \in B(x, \epsilon)$. Then:

$$
\|z-y\| \leq\|z-x\|+\|x-y\|<\epsilon+\delta
$$

So $z \in B(y, \epsilon+\delta)$ and we have proved that $B(x, \epsilon) \subseteq B(y, \epsilon+\delta)$.
6. Let $y \in B(x, \delta)$. Since $B(x, \epsilon) \subseteq B(y, \epsilon+\delta)$, we have:

$$
\begin{aligned}
|\mu|(B(y, \epsilon+\delta)) & \geq|\mu|(B(x, \epsilon)) \\
& =t d x(B(x, \epsilon)) \\
& =\epsilon^{n} t d x(B(0,1)) \\
& =\frac{\epsilon^{n} t}{(\epsilon+\delta)^{n}} d x(B(y, \epsilon+\delta)) \\
& >\lambda d x(B(y, \epsilon+\delta))
\end{aligned}
$$

where the second and third equalities stem from exercise (12).
7. For all $y \in B(x, \delta)$, from 6 . we have:

$$
\lambda<\frac{|\mu|(B(y, \epsilon+\delta))}{d x(B(y, \epsilon+\delta))} \leq(M \mu)(y)
$$

So in particular $y \in\{\lambda<M \mu\}$ and we have proved that $B(x, \delta) \subseteq\{\lambda<M \mu\}$. Having considered $x \in\{\lambda<M \mu\}$ we have found $\delta>0$ such that $B(x, \delta) \subseteq\{\lambda<M \mu\}$. This shows that $\{\lambda<M \mu\}$ is an open subset of \mathbf{R}^{n}, for all $\lambda \in \mathbf{R}$ with $\lambda>0$. In fact, it follows from 1. and 2. that $\{\lambda<M \mu\}$ is also open if $\lambda \leq 0$. We conclude that $\{\lambda<M \mu\}$ is open for all $\lambda \in \mathbf{R}$, i.e. that the maximal function $M \mu$ is lower-semicontinuous. In particular, $\{\lambda<M \mu\}$ is a Borel subset of \mathbf{R}^{n} for all $\lambda \in \mathbf{R}$ and from theorem (15), $M \mu$ is measurable.

Exercise 13

Exercise 14.

1. Let $B_{i}=B\left(x_{i}, \epsilon_{i}\right), i=1, \ldots, N$, be a finite collection of open balls in \mathbf{R}^{n} where we have assumed that $\epsilon_{N} \leq \ldots \leq \epsilon_{1}$. We define $J_{0}=\{1, \ldots, N\}$ and for all $k \geq 1$:

$$
J_{k} \triangleq \begin{cases}J_{k-1} \cap\left\{j: j>i_{k}, B_{j} \cap B_{i_{k}}=\emptyset\right\} & \text { if } J_{k-1} \neq \emptyset \\ \emptyset & \text { if } J_{k-1}=\emptyset\end{cases}
$$

where $i_{k}=\min J_{k-1}$ if $J_{k-1} \neq \emptyset$. Suppose $k \geq 1$ and $J_{k-1} \neq \emptyset$. The fact that $J_{k} \subseteq J_{k-1}$ is clear. However, the inclusion is strict. Indeed, since $i_{k}=\min J_{k-1}$, in particular $i_{k} \in J_{k-1}$. However, it is clear that $i_{k} \notin J_{k}$. We have proved that $J_{k} \subset J_{k-1}$.
2. Since $\left(J_{k}\right)_{k \geq 0}$ is a strictly decreasing sequence (in the inclusion sense) and J_{0} is a finite set, there exists $k \geq 1$ such that $J_{k}=\emptyset$. It follows that $p=\min \left\{k \geq 1: J_{k}=\emptyset\right\}$, as the smallest element of a non-empty subset of \mathbf{N}, is well-defined.
3. Let $S=\left\{i_{1}, \ldots, i_{p}\right\}$ where $i_{k}=\min J_{k-1}$ for all $k \geq 1$ with $J_{k-1} \neq \emptyset$. In order to show that S is well-defined, we need to
ensure that i_{k} is meaningful for $k \in \mathbf{N}_{p}$, i.e. that $J_{k-1} \neq \emptyset$. But if $k \in \mathbf{N}_{p}$ and $J_{k-1}=\emptyset$, since p is the smallest element of $\left\{k \geq 1: J_{k}=\emptyset\right\}$ we obtain $p \leq k-1$ and $k \leq p$ which is a contradiction. So S is well-defined.
4. Suppose $1 \leq k<k^{\prime} \leq p$. We have $i_{k^{\prime}} \in J_{k^{\prime}-1} \subseteq J_{k}$. So $i_{k^{\prime}} \in J_{k}$.
5. The family $\left(B_{i}\right)_{i \in S}$ is a family of open balls. Suppose $i, j \in S$ with $i<j$. There exist $1 \leq k<k^{\prime} \leq p$ such that $i=i_{k}$ and $j=i_{k^{\prime}}$. From 4. we have $j \in J_{k}$. This implies in particular that $B_{j} \cap B_{i_{k}}=\emptyset$. So $B_{j} \cap B_{i}=\emptyset$, and $\left(B_{i}\right)_{i \in S}$ is a family of pairwise disjoint open balls.
6. Let $i \in\{1, \ldots, N\} \backslash S$ and $k_{0}=\min \left\{k \in \mathbf{N}_{p}: i \notin J_{k}\right\}$. In order to show that k_{0} is well-defined, we need to check that $\left\{k \in \mathbf{N}_{p}: i \notin J_{k}\right\}$ is not empty. This is clear from the fact that $J_{p}=\emptyset$. So k_{0} is well-defined. Note that this conclusion holds for any $i \in\{1, \ldots, N\}$.
7. k_{0} being the smallest element of $\left\{k \in \mathbf{N}_{p}: i \notin J_{k}\right\}, k_{0}-1$ does not lie in this set. So either $k_{0}-1=0$ or $i \in J_{k_{0}-1}$. Since $J_{0}=\{1, \ldots, N\}$, in any case we have $i \in J_{k_{0}-1}$. In particular $J_{k_{0}-1} \neq \emptyset$. So $i_{k_{0}}$ is defined as the smallest element of $J_{k_{0}-1}$. From $i \in J_{k_{0}-1}$ we obtain $i_{k_{0}} \leq i$.
8. Since $J_{k_{0}-1} \neq \emptyset$, we have:

$$
J_{k_{0}}=J_{k_{0}-1} \cap\left\{j: j>i_{k_{0}}, B_{j} \cap B_{i_{k_{0}}}=\emptyset\right\}
$$

k_{0} being the smallest element of $\left\{k \in \mathbf{N}_{p}: i \notin J_{k}\right\}$, in particular it is an element of this set and consequently we know that $i \notin$ $J_{k_{0}}$. However, we have proved in 7 . that $i \in J_{k_{0}-1}$. Furthermore, we know that $i_{k_{0}} \leq i$ and since by assumption $i \in\{1, \ldots, N\} \backslash S$, in particular i is not an element of S. So $i \neq i_{k_{0}}$ and therefore $i_{k_{0}}<i$. Since $i \notin J_{k_{0}}$ we conclude that $B_{i} \cap B_{i_{k_{0}}} \neq \emptyset$.
9. From 8. we have $B_{i} \cap B_{i_{k_{0}}}=B\left(x_{i}, \epsilon_{i}\right) \cap B\left(x_{i_{k_{0}}}, \epsilon_{i_{k_{0}}}\right) \neq \emptyset$. Let x be an arbitrary element of $B_{i} \cap B_{i_{k_{0}}}$. Then for all $y \in B_{i}$, since
$i_{k_{0}}<i$ and $\epsilon_{N} \leq \ldots \leq \epsilon_{1}$, we have:

$$
\begin{aligned}
\left\|y-x_{i_{k_{0}}}\right\| & \leq\left\|y-x_{i}\right\|+\left\|x_{i}-x\right\|+\left\|x-x_{i_{k_{0}}}\right\| \\
& <\epsilon_{i}+\epsilon_{i}+\epsilon_{i_{k_{0}}} \\
& \leq 3 \epsilon_{i_{k_{0}}}
\end{aligned}
$$

So $y \in B\left(x_{i_{k_{0}}}, 3 \epsilon_{i_{k_{0}}}\right)$ and we have proved $B_{i} \subseteq B\left(x_{i_{k_{0}}}, 3 \epsilon_{i_{k_{0}}}\right)$.
10. For all $i \in\{1, \ldots, N\} \backslash S$, we found $k_{0} \in \mathbf{N}_{p}$ such that $B_{i} \subseteq$ $B\left(x_{i_{k_{0}}}, 3 \epsilon_{i_{k_{0}}}\right)$. In other words, if we denote $j(i)=i_{k_{0}}$, there exists some $j(i) \in S$ such that we have $B_{i} \subseteq B\left(x_{j(i)}, 3 \epsilon_{j(i)}\right)$. Hence:

$$
\begin{aligned}
\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right) & =\bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right) \cup\left(\bigcup_{i \notin S} B\left(x_{i}, \epsilon_{i}\right)\right) \\
& \subseteq \bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right) \cup\left(\bigcup_{i \notin S} B\left(x_{j(i)}, 3 \epsilon_{j(i)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \subseteq \bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right) \cup\left(\bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{i}\right)\right) \\
& =\bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{i}\right)
\end{aligned}
$$

So $S=\left\{i_{1}, \ldots, i_{p}\right\}$ is a subset of $\{1, \ldots, N\}$ such that $\left(B_{i}\right)_{i \in S}$ is a family of pairwise disjoint open balls, and:

$$
\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right) \subseteq \bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{i}\right)
$$

11. Using 10. and exercise (12), we have:

$$
\begin{aligned}
d x\left(\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right)\right) & \leq d x\left(\bigcup_{i \in S} B\left(x_{i}, 3 \epsilon_{i}\right)\right) \\
& \leq \sum_{i \in S} d x\left(B\left(x_{i}, 3 \epsilon_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in S} 3^{n} \epsilon_{i}^{n} d x(B(0,1)) \\
& =3^{n} \sum_{i \in S} d x\left(B\left(x_{i}, \epsilon_{i}\right)\right)
\end{aligned}
$$

where the second inequality stems from the fact that a measure is always sub-additive, as can be seen from exercise (13) of Tutorial 5.

Exercise 14

Exercise 15.

1. Let μ be a complex measure on \mathbf{R}^{n}. Let $\lambda>0$ and K be a non-empty compact subset of $\{\lambda<M \mu\}$. Let $x \in K$. Then $x \in\{\lambda<M \mu\}$, i.e. $\lambda<(M \mu)(x)$. Since $(M \mu)(x)$ is the smallest upper-bound of all ratios:

$$
|\mu|(B(x, \epsilon)) / d x(B(x, \epsilon))
$$

as $\epsilon>0$, it is impossible for λ to be such an upper-bound. There exists $\epsilon_{x}>0$ such that:

$$
\begin{equation*}
\lambda<\frac{|\mu|\left(B\left(x, \epsilon_{x}\right)\right)}{d x\left(B\left(x, \epsilon_{x}\right)\right)} \tag{4}
\end{equation*}
$$

Now it is clear that $K \subseteq \cup_{x \in K} B\left(x, \epsilon_{x}\right)$. Since K is compact, there exist $N \geq 1$ and $x_{1}, \ldots, x_{N} \in K$ such that:

$$
K \subseteq B\left(x_{1}, \epsilon_{x_{1}}\right) \cup \ldots \cup B\left(x_{N}, \epsilon_{x_{N}}\right)
$$

Defining $\epsilon_{i}=\epsilon_{x_{i}}$ and $B_{i}=B\left(x_{i}, \epsilon_{i}\right)$, the collection $\left(B_{i}\right)_{i \in \mathbf{N}_{N}}$ is therefore a covering of K. From (4), for all $i=1, \ldots, N$ we
have $\lambda d x\left(B_{i}\right)<|\mu|\left(B_{i}\right)$.
2. By re-indexing the B_{i} 's if necessary, without loss of generality we can assume that $\epsilon_{N} \leq \ldots \leq \epsilon_{1}$. From exercise (14), there exists a subset S of $\{1, \ldots, N\}$ such that the B_{i} 's for $i \in S$ are pairwise disjoint, and furthermore:

$$
d x\left(\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right)\right) \leq 3^{n} \sum_{i \in S} d x\left(B\left(x_{i}, \epsilon_{i}\right)\right)
$$

Hence, since $K \subseteq \cup_{i=1}^{N} B_{i}$, using 1. we obtain:

$$
\begin{aligned}
d x(K) & \leq d x\left(\bigcup_{i=1}^{N} B\left(x_{i}, \epsilon_{i}\right)\right) \\
& \leq 3^{n} \sum_{i \in S} d x\left(B\left(x_{i}, \epsilon_{i}\right)\right) \\
& <3^{n} \sum_{i \in S} \frac{1}{\lambda}|\mu|\left(B\left(x_{i}, \epsilon_{i}\right)\right)
\end{aligned}
$$

$$
=\frac{3^{n}}{\lambda}|\mu|\left(\bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right)\right)
$$

where the last equality stems from the fact that all the B_{i} 's, $i \in S$, are pairwise disjoint. We have effectively obtained a strict inequality, when only a large inequality was required.
3. Let $\|\mu\|=|\mu|\left(\mathbf{R}^{n}\right)<+\infty$ be the total mass of $|\mu|$. From 2.:

$$
d x(K) \leq 3^{n} \lambda^{-1}|\mu|\left(\bigcup_{i \in S} B\left(x_{i}, \epsilon_{i}\right)\right) \leq 3^{n} \lambda^{-1}\|\mu\|
$$

4. Having considered a complex measure μ on \mathbf{R}^{n}, with maximal function $M \mu$, given $\lambda \in \mathbf{R}^{+} \backslash\{0\}$, for all K non-empty compact subset of $\{\lambda<M \mu\}$, we have proved that:

$$
d x(K) \leq 3^{n} \lambda^{-1}\|\mu\|
$$

Note that this inequality is still valid if $K=\emptyset$. The Lebesgue measure on \mathbf{R}^{n} being locally finite, from theorem (74) it is inner-
regular. In particular, we have:

$$
d x(\{\lambda<M \mu\})=\sup \{d x(K): K \subseteq\{\lambda<M \mu\}, K \text { compact }\}
$$

In other words, $d x(\{\lambda<M \mu\})$ is the smallest upper-bound of all $d x(K)$'s, as K runs through the set of all compact subsets of $\{\lambda<M \mu\}$. Having proved that $3^{n} \lambda^{-1}\|\mu\|$ is one of those upper-bounds, we conclude that:

$$
d x(\{\lambda<M \mu\}) \leq 3^{n} \lambda^{-1}\|\mu\|
$$

This completes the proof of theorem (100).
Exercise 15

Exercise 16.

1. Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$. From theorem (63), $\mu=$ $\int f d x$ is a well-defined complex measure on \mathbf{R}^{n}, and its total variation $|\mu|$ is given by $|\mu|=\int|f| d x$. From definition (120), the maximal function $M f$ of f is exactly the maximal function $M \mu$ of μ. Hence, for all $x \in \mathbf{R}^{n}$:

$$
\begin{aligned}
(M f)(x) & =(M \mu)(x) \\
& =\sup _{\epsilon>0} \frac{|\mu|(B(x, \epsilon))}{d x(B(x, \epsilon))} \\
& =\sup _{\epsilon>0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f| d x
\end{aligned}
$$

2. If $\mu=\int f d x$ then $|\mu|=\int|f| d x$ and consequently:

$$
\|\mu\|=|\mu|\left(\mathbf{R}^{n}\right)=\int_{\mathbf{R}^{n}}|f| d x=\|f\|_{1}
$$

Applying theorem (100) to μ, for all $\lambda>0$ we obtain:

$$
\begin{aligned}
d x(\{\lambda<M f\}) & =d x(\{\lambda<M \mu\}) \\
& \leq 3^{n} \lambda^{-1}\|\mu\| \\
& =3^{n} \lambda^{-1}\|f\|_{1}
\end{aligned}
$$

Exercise 16

Exercise 17.

1. Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right), n \geq 1$. Let $x \in \mathbf{R}^{n}$. We assume that f is continuous at x. Let $\eta>0$. There is $\delta>0$ such that:

$$
\forall y \in \mathbf{R}^{n},\|x-y\| \leq \delta \Rightarrow|f(x)-f(y)| \leq \eta
$$

Suppose $\epsilon>0$ is such that $0<\epsilon<\delta$. Then:

$$
\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y \leq \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)} \eta d y=\eta
$$

We conclude that:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y=0
$$

and x is therefore a Lebesgue point of f.
2. Let $x \in \mathbf{R}^{n}$. We assume that x is a Lebesgue point of f. For
all $\epsilon>0$, denoting $B_{\epsilon}=B(x, \epsilon)$ we have:

$$
\begin{aligned}
\left|\frac{1}{d x\left(B_{\epsilon}\right)} \int_{B_{\epsilon}} f(y) d y-f(x)\right| & =\left|\frac{1}{d x\left(B_{\epsilon}\right)} \int_{B_{\epsilon}}(f(y)-f(x)) d y\right| \\
& \leq \frac{1}{d x\left(B_{\epsilon}\right)} \int_{B_{\epsilon}}|f(y)-f(x)| d y
\end{aligned}
$$

Hence, from:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y=0
$$

we conclude that:

$$
f(x)=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)} f(y) d y
$$

Exercise 17

Exercise 18.

1. Given $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$, for all $\epsilon>0$ and $x \in \mathbf{R}^{n}$, let:

$$
\left(T_{\epsilon} f\right)(x)=\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y
$$

and:

$$
(T f)(x)=\inf _{\epsilon>0} \sup _{u \in] 0, \epsilon[}\left(T_{u} f\right)(x)
$$

From theorem (79), the space $C_{\mathbf{C}}^{c}\left(\mathbf{R}^{n}\right)$ of continuous \mathbf{C}-valued functions defined on \mathbf{R}^{n} with compact support, is dense in L^{1}. Given $\eta>0$, there exists $g \in C_{\mathbf{C}}^{c}\left(\mathbf{R}^{n}\right)$ such that $\|f-g\|_{1} \leq \eta$.
2. Let $h=f-g$. For all $\epsilon>0$ and $x \in \mathbf{R}^{n}$ we have:

$$
\begin{aligned}
\left(T_{\epsilon} h\right)(x) & =\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|h(y)-h(x)| d y \\
& \leq \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}(|h(y)|+|h(x)|) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|h(y)| d y+|h(x)| \\
& =\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|h| d x+|h(x)|
\end{aligned}
$$

3. Let $x \in \mathbf{R}^{n}$. From exercise (16) we have:

$$
(M h)(x)=\sup _{\epsilon>0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|h| d x
$$

In particular, for all $\epsilon>0$, from 2 . we obtain:

$$
\left(T_{\epsilon} h\right)(x) \leq(M h)(x)+|h(x)|
$$

Hence, if $\epsilon>0$ is given, $(M h)(x)+|h(x)|$ is an upper-bound of all $\left(T_{u} h\right)(x)$ as $\left.u \in\right] 0, \epsilon[$. It follows that:

$$
\sup _{u \in] 0, \epsilon[}\left(T_{u} h\right)(x) \leq(M h)(x)+|h(x)|
$$

and we have:

$$
\begin{aligned}
(T h)(x) & =\inf _{\epsilon^{\prime}>0} \sup _{u \in] 0, \epsilon^{\prime}[}\left(T_{u} h\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon[}\left(T_{u} h\right)(x) \\
& \leq(M h)(x)+|h(x)|
\end{aligned}
$$

This being true for all $x \in \mathbf{R}^{n}$, $T h \leq M h+|h|$.
4. Let $x \in \mathbf{R}^{n}$ and $\epsilon>0$. Let $B_{\epsilon}=B(x, \epsilon)$. Then:

$$
\begin{aligned}
\left(T_{\epsilon} f\right)(x) & =\frac{1}{d x\left(B_{\epsilon}\right)} \int_{B_{\epsilon}}|f(y)-f(x)| d y \\
& =\frac{1}{d x\left(B_{\epsilon}\right)} \int_{B_{\epsilon}}|g(y)-g(x)+h(y)-h(x)| d y \\
& \leq \frac{1}{d x\left(B_{\epsilon}\right)}\left(\int_{B_{\epsilon}}|g(y)-g(x)| d y+\int_{B_{\epsilon}}|h(y)-h(x)| d y\right) \\
& =\left(T_{\epsilon} g\right)(x)+\left(T_{\epsilon} h\right)(x)
\end{aligned}
$$

This being true for all $x \in \mathbf{R}^{n}, T_{\epsilon} f \leq T_{\epsilon} g+T_{\epsilon} h$.
5. Let $x \in \mathbf{R}^{n}$. Let $\epsilon_{1}, \epsilon_{2}>0$ be given and $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}\right)$. For all $u \in] 0, \epsilon[$, using 4 . we have:

$$
\begin{aligned}
\left(T_{u} f\right)(x) & \leq\left(T_{u} g\right)(x)+\left(T_{u} h\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)+\sup _{u \in] 0, \epsilon_{2}[}\left(T_{u} h\right)(x)
\end{aligned}
$$

Hence, the right-hand-side of this inequality is an upper-bound of all $\left(T_{u} f\right)(x)$'s as $\left.u \in\right] 0, \epsilon[$. It follows that:

$$
\begin{aligned}
(T f)(x) & =\inf _{\epsilon^{\prime}>0} \sup _{u \in] 0, \epsilon^{\prime}[}\left(T_{u} f\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon[}\left(T_{u} f\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)+\sup _{u \in] 0, \epsilon_{2}[}\left(T_{u} h\right)(x)
\end{aligned}
$$

Suppose $\sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)<+\infty$. Then this quantity can be safely subtracted from both sides of the previous inequality, to
obtain:

$$
(T f)(x)-\sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x) \leq \sup _{u \in] 0, \epsilon_{2}[}\left(T_{u} h\right)(x)
$$

Hence, $\epsilon_{1}>0$ being given, we see that the left-hand-side of this inequality is a lower-bound of all $\sup _{u \in] 0, \epsilon_{2}[}\left(T_{u} h\right)(x)$'s, as $\epsilon_{2}>0$. Since $(T h)(x)$ is the greatest of such lower-bounds, we obtain:

$$
(T f)(x)-\sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x) \leq(T h)(x)
$$

or equivalently:

$$
(T f)(x) \leq \sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)+(T h)(x)
$$

which is still valid when $\sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)=+\infty$. Suppose now that $(T h)(x)<+\infty$. Then $(T h)(x)$ can be safely subtracted from both sides of the previous inequality, to obtain:

$$
(T f)(x)-(T h)(x) \leq \sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)
$$

This being established for all $\epsilon_{1}>0,(T f)(x)-(T h)(x)$ is a lower-bound of all $\sup _{u \in] 0, \epsilon_{1}[}\left(T_{u} g\right)(x)$'s, as $\epsilon_{1}>0$. Since $(T g)(x)$ is the greatest of such lower-bounds, we obtain:

$$
(T f)(x)-(T h)(x) \leq(T g)(x)
$$

or equivalently:

$$
(T f)(x) \leq(T g)(x)+(T h)(x)
$$

This being true for all $x \in \mathbf{R}^{n}, T f \leq T g+T h$.
6. Let $x \in \mathbf{R}^{n}$. Since $g \in C_{\mathbf{C}}^{c}\left(\mathbf{R}^{n}\right), g$ is a continuous element of L^{1}. From exercise (17), x is therefore a Lebesgue point of g. Hence, from definition (121):

$$
\lim _{\epsilon \downarrow \downarrow 0}\left(T_{\epsilon} g\right)(x)=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|g(y)-g(x)| d y=0
$$

Let $\delta>0$. There exists $\epsilon>0$ such that:

$$
u \in] 0, \epsilon\left[\Rightarrow\left(T_{u} g\right)(x) \leq \delta\right.
$$

So δ is an upper-bound of all $\left(T_{u} g\right)(x)$'s as $\left.u \in\right] 0, \epsilon[$, and consequently $\sup _{u \in] 0, \epsilon[}\left(T_{u} g\right)(x) \leq \delta$. Hence:

$$
\begin{aligned}
(T g)(x) & =\inf _{\epsilon^{\prime}>0} \sup _{u \in] 0, \epsilon^{\prime}[}\left(T_{u} g\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon[}\left(T_{u} g\right)(x) \\
& \leq \delta
\end{aligned}
$$

This being true for all $\delta>0$, we conclude that $(T g)(x)=0$. This being true for all $x \in \mathbf{R}^{n}$, we have proved that $T g=0$.
7. Using 3. and 5. together with $T g=0$, we obtain:

$$
T f \leq T g+T h=T h \leq M h+|h|
$$

8. Let $\alpha>0$. Let $x \in \mathbf{R}^{n}$ and suppose that $(M h)(x) \leq \alpha$ together with $|h|(x) \leq \alpha$. Using 7. we obtain:

$$
(T f)(x) \leq(M h)(x)+|h|(x) \leq 2 \alpha
$$

Hence, we have shown the inclusion:

$$
\{M h \leq \alpha\} \cap\{|h| \leq \alpha\} \subseteq\{T f \leq 2 \alpha\}
$$

from which we conclude that:

$$
\{2 \alpha<T f\} \subseteq\{\alpha<M h\} \cup\{\alpha<|h|\}
$$

9. We have:

$$
\begin{aligned}
d x(\{\alpha<|h|\}) & =\alpha^{-1} \int \alpha 1_{\{\alpha<|h|\}} d x \\
& \leq \alpha^{-1} \int|h| 1_{\{\alpha<|h|\}} d x \\
& \leq \alpha^{-1} \int|h| d x \\
& =\alpha^{-1}\|h\|_{1}
\end{aligned}
$$

10. Let $\alpha>0$ and $\eta>0$. From 1. we have the existence of $g \in$ $C_{\mathbf{C}}^{c}\left(\mathbf{R}^{n}\right)$ such that $\|h\|_{1} \leq \eta$ where $h=f-g$. Define $M_{\alpha, \eta}=$
$\{\alpha<M h\} \cup\{\alpha<|h|\}$. From exercise (13) applied to the complex measure $\mu=\int h d x, M h$ is a Borel measurable map. Since $|h|$ is also Borel measurable, we see that $M_{\alpha, \eta} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. Furthermore from 8. we have $\{2 \alpha<T f\} \subseteq M_{\alpha, \eta}$. Finally, using 9. and exercise (16), we obtain:

$$
\begin{aligned}
d x\left(M_{\alpha, \eta}\right) & =d x(\{\alpha<M h\} \cup\{\alpha<|h|\}) \\
& \leq d x(\{\alpha<M h\})+d x(\{\alpha<|h|\}) \\
& \leq 3^{n} \alpha^{-1}\|h\|_{1}+\alpha^{-1}\|h\|_{1} \\
& =\left(3^{n}+1\right) \alpha^{-1}\|h\|_{1} \\
& \leq\left(3^{n}+1\right) \alpha^{-1} \eta
\end{aligned}
$$

Hence, given $\alpha>0$ and $\eta>0$, we have found $M_{\alpha, \eta} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that $\{2 \alpha<T f\} \subseteq M_{\alpha, \eta}$ and $d x\left(M_{\alpha, \eta}\right) \leq\left(3^{n}+1\right) \alpha^{-1} \eta$. Take $N_{\alpha, \eta}=M_{\alpha, \eta^{*}}$ where $\eta^{*}=\left(3^{n}+1\right)^{-1} \alpha \eta$. Then $N_{\alpha, \eta} \in$ $B\left(\mathbf{R}^{n}\right),\{2 \alpha<T f\} \subseteq N_{\alpha, \eta}$ and $d x\left(N_{\alpha, \eta}\right) \leq \eta$, which is exactly what we want.
11. Let $\alpha>0$. With an obvious change of notation, given $n \geq 1$, from 10. there exists $N_{\alpha, n} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that we have $\{2 \alpha<$ $T f\} \subseteq N_{\alpha, n}$ and $d x\left(N_{\alpha, n}\right) \leq 1 / n$. Let $N_{\alpha}=\cap_{n \geq 1} N_{\alpha, n}$. Then $N_{\alpha} \in \mathcal{B}\left(\mathbf{R}^{n}\right),\{2 \alpha<T f\} \subseteq N_{\alpha}$ and furthermore for all $n \geq 1$:

$$
d x\left(N_{\alpha}\right)=d x\left(\cap_{n \geq 1} N_{\alpha, n}\right) \leq d x\left(N_{\alpha, n}\right) \leq \frac{1}{n}
$$

So $d x\left(N_{\alpha}\right)=0$.
12. Let $n \geq 1$. With an obvious change of notation, from 11. there exists $N_{n} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ such that $\{2 / n<T f\} \subseteq N_{n}$ together with $d x\left(N_{n}\right)=0$. Define $N=\cup_{n \geq 1} N_{n}$. Then $N \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and $d x(N)=0$. Furthermore:

$$
\begin{aligned}
\{T f>0\} & =\bigcup_{n \geq 1}\{2 / n<T f\} \\
& \subseteq \bigcup_{n \geq 1} N_{n}=N
\end{aligned}
$$

13. From 12. there exists $N \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ with $d x(N)=0$ such that $\{T f>0\} \subseteq N$. Hence, for all $x \in \mathbf{R}^{n}$, we have $x \in N^{c} \Rightarrow$ $(T f)(x)=0$. We conclude that $T f=0 d x$-a.s.
14. Let $f \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x\right)$. Let $x \in \mathbf{R}^{n}$ and suppose that $(T f)(x)=0$. Let $\delta>0$. Then $(T f)(x)<\delta$. Since $(T f)(x)$ is
 δ cannot be such a lower-bound. There exists $\epsilon^{\prime}>0$ such that $\sup _{u \in] 0, \epsilon^{\prime}[}\left(T_{u} f\right)(x)<\delta$. Hence for all $\left.\epsilon \in\right] 0, \epsilon^{\prime}[$, we have:

$$
\begin{aligned}
\frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y & =\left(T_{\epsilon} f\right)(x) \\
& \leq \sup _{u \in] 0, \epsilon^{\prime}[}\left(T_{u} f\right)(x)<\delta
\end{aligned}
$$

We have proved that:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{d x(B(x, \epsilon))} \int_{B(x, \epsilon)}|f(y)-f(x)| d y=0
$$

i.e. that x is a Lebesgue point of f. So every $x \in \mathbf{R}^{n}$ such that $(T f)(x)=0$ is a Lebesgue point of f. Since $T f=0 d x$-almost surely, we conclude that $d x$-almost all $x \in \mathbf{R}^{n}$ are Lebesgue points of f. This completes the proof of theorem (101).

Exercise 18

Exercise 19.

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\Omega^{\prime} \in \mathcal{F}$. Let $\mathcal{F}^{\prime}=\mathcal{F}_{\mid \Omega^{\prime}}$ and $\mu^{\prime}=\mu_{\mid \mathcal{F}^{\prime}}$. Let $A \in \mathcal{F}^{\prime}$. Since \mathcal{F}^{\prime} is the trace of \mathcal{F} on Ω^{\prime}, from definition (22) there exists $A \in \mathcal{F}$ such that $A^{\prime}=A \cap \Omega^{\prime}$. Since $\Omega^{\prime} \in \mathcal{F}$, we see that $A^{\prime} \in \mathcal{F}$. This shows that $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ and the restriction $\mu^{\prime}=\mu_{\mid \mathcal{F}^{\prime}}$ is a well-defined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
2. For all maps f defined on Ω^{\prime} with values in \mathbf{C} or $[0,+\infty]$, we define an extension of f on Ω, denoted \tilde{f}, by setting $\tilde{f}(\omega)=0$ for all $\omega \in \Omega \backslash \Omega^{\prime}$. Let $A \in \mathcal{F}^{\prime}$ and 1_{A}^{\prime} be the indicator function of A on $\Omega^{\prime} . A$ is also a subset of Ω, and we denote 1_{A} its indicator function on Ω. Let $\omega \in \Omega$. If $\omega \in A \subseteq \Omega^{\prime}$, then:

$$
\tilde{1}_{A}^{\prime}(\omega) \triangleq 1_{A}^{\prime}(\omega)=1=1_{A}(\omega)
$$

If $\omega \in \Omega^{\prime} \backslash A$, then:

$$
\tilde{1}_{A}^{\prime}(\omega) \triangleq 1_{A}^{\prime}(\omega)=0=1_{A}(\omega)
$$

if $\omega \in \Omega \backslash \Omega^{\prime}$, then:

$$
\tilde{1}_{A}^{\prime}(\omega) \triangleq 0=1_{A}(\omega)
$$

In any case we have $\tilde{1}_{A}^{\prime}(\omega)=1_{A}(\omega)$. So $\tilde{1}_{A}^{\prime}=1_{A}$.
3. Let $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. For all $B \in \mathcal{B}([0,+\infty])$ we have:

$$
\begin{aligned}
\{\tilde{f} \in B\} & =\left(\{\tilde{f} \in B\} \cap \Omega^{\prime}\right) \uplus\left(\{\tilde{f} \in B\} \cap\left(\Omega \backslash \Omega^{\prime}\right)\right) \\
& =\{f \in B\} \uplus\left(\{0 \in B\} \cap\left(\Omega \backslash \Omega^{\prime}\right)\right)
\end{aligned}
$$

where $\{0 \in B\}$ denotes Ω if $0 \in B$ and \emptyset if $0 \notin B$. Since f is measurable, we have $\{f \in B\} \in \mathcal{F}^{\prime} \subseteq \mathcal{F}$. Since $\Omega^{\prime} \in \mathcal{F}$, it is clear that $\{0 \in B\} \cap\left(\Omega \backslash \Omega^{\prime}\right) \in \mathcal{F}$. It follows that $\{\tilde{f} \in B\} \in \mathcal{F}$, and we have proved that f is a non-negative and measurable map. Suppose f is of the form 1_{A}^{\prime} for some $A \in \mathcal{F}^{\prime}$. Then:

$$
\int_{\Omega^{\prime}} 1_{A}^{\prime} d \mu^{\prime}=\mu^{\prime}(A)=\mu(A)=\int_{\Omega} 1_{A} d \mu=\int_{\Omega} \tilde{1}_{A}^{\prime} d \mu
$$

Suppose now that $f=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}^{\prime}$ is a simple function on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$. To make our proof clearer, let us denote $\phi(g)$ the extension \tilde{g} of any map g defined on Ω^{\prime}. Then:

$$
\begin{aligned}
\int_{\Omega^{\prime}} f d \mu^{\prime} & =\int_{\Omega^{\prime}}\left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}^{\prime}\right) d \mu^{\prime} \\
& =\sum_{i=1}^{n} \alpha_{i} \int_{\Omega^{\prime}} 1_{A_{i}}^{\prime} d \mu^{\prime} \\
& =\sum_{i=1}^{n} \alpha_{i} \int_{\Omega} \phi\left(1_{A_{i}}^{\prime}\right) d \mu \\
& =\int_{\Omega}\left(\sum_{i=1}^{n} \alpha_{i} \phi\left(1_{A_{i}}^{\prime}\right)\right) d \mu \\
& =\int_{\Omega} \phi\left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}^{\prime}\right) d \mu
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega} \phi(f) d \mu \\
& =\int_{\Omega} \tilde{f} d \mu
\end{aligned}
$$

Finally, if $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ is an arbitrary non-negative and measurable map, from theorem (18) there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ such that $s_{n} \uparrow f$, i.e. for all $\omega \in \Omega^{\prime}, s_{n}(\omega) \leq s_{n+1}(\omega)$ for all $n \geq 1$, and $s_{n}(\omega) \rightarrow f(\omega)$. It is clear that $\tilde{s_{n}} \uparrow \tilde{f}$, and from the monotone convergence theorem (19) we obtain:

$$
\begin{aligned}
\int_{\Omega^{\prime}} f d \mu^{\prime} & =\lim _{n \rightarrow+\infty} \int_{\Omega^{\prime}} s_{n} d \mu^{\prime} \\
& =\lim _{n \rightarrow+\infty} \int_{\Omega} \tilde{s_{n}} d \mu \\
& =\int_{\Omega} \tilde{f} d \mu
\end{aligned}
$$

4. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mu^{\prime}\right)$. Let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$. To make our proof clearer, we shall denote $\phi(g)$ the extension \tilde{g} of any map g defined on Ω^{\prime}. From $f=u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)$ we obtain $\phi(f)=\phi\left(u^{+}\right)-\phi\left(u^{-}\right)+i\left(\phi\left(v^{+}\right)-\phi\left(v^{-}\right)\right)$. From 3 . each $\phi\left(u^{ \pm}\right)$and $\phi\left(v^{ \pm}\right)$is measurable, and consequently $\phi(f)$ is itself measurable. Note that given $B \in \mathcal{B}(\mathbf{C})$, it is not difficult to show directly that $\{\tilde{f} \in B\} \in \mathcal{F}$ just like we did in 3. with $B \in \mathcal{B}([0,+\infty])$. It is clear that $|\phi(f)|=\phi(|f|)$, and applying 3. to the non-negative and measurable map $|f|$ we obtain:

$$
\int_{\Omega}|\phi(f)| d \mu=\int_{\Omega} \phi(|f|) d \mu=\int_{\Omega^{\prime}}|f| d \mu^{\prime}<+\infty
$$

Hence, we have proved that $\tilde{f}=\phi(f) \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Finally, using 3 . once more together with the linearity of the integral:

$$
\int_{\Omega^{\prime}} f d \mu^{\prime}=\int_{\Omega^{\prime}} u^{+} d \mu^{\prime}-\int_{\Omega^{\prime}} u^{-} d \mu^{\prime}
$$

$$
\begin{aligned}
& +i\left(\int_{\Omega^{\prime}} v^{+} d \mu^{\prime}-\int_{\Omega^{\prime}} v^{-} d \mu^{\prime}\right) \\
& =\int_{\Omega} \phi\left(u^{+}\right) d \mu-\int_{\Omega} \phi\left(u^{-}\right) d \mu \\
& +i\left(\int_{\Omega} \phi\left(v^{+}\right) d \mu-\int_{\Omega} \phi\left(v^{-}\right) d \mu\right) \\
& =\int_{\Omega}\left[\phi\left(u^{+}\right)-\phi\left(u^{-}\right)+i\left(\phi\left(v^{+}\right)-\phi\left(v^{-}\right)\right)\right] d \mu \\
& =\int_{\Omega} \phi(f) d \mu=\int_{\Omega} \tilde{f} d \mu
\end{aligned}
$$

Exercise 19

Exercise 20.

1. Let $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ be a map. Suppose b is absolutely continuous. From definition (122), b is right-continuous of finite variation, and furthermore it is absolutely continuous with respect to the right-continuous and non-decreasing map $a: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$with $a(0) \geq 0$, defined by $a(t)=t$. From theorem (89), there exists $f \in L_{\mathbf{C}}^{1,{ }^{l o c}}(t)$ such that $b(t)=\int_{0}^{t} f(s) d s$ for all $t \in \mathbf{R}^{+}$. Conversely, suppose such an f exists. From theorem (88), $b=f . a$ is a right-continuous map of finite variation, and from theorem (89), it is in fact absolutely continuous with respect to $a(t)=t$. So b is absolutely continuous. We have proved that b is absolutely continuous, if and only if there exists $f \in L_{\mathbf{C}}^{1,{ }^{l o c}}(t)$ such that $b(t)=\int_{0}^{t} f(s) d s$ for all $t \in \mathbf{R}^{+}$.
2. Suppose b is absolutely continuous and let $f \in L_{\mathbf{C}}^{1, \operatorname{loc}}(t)$ be such that $b(t)=\int_{0}^{t} f(s) d s$ for all $t \in \mathbf{R}^{+}$. From theorem (88), we have $\Delta b=f \Delta t=0$. Since b is right-continuous of finite varia-
tion, in particular it is cadlag. We conclude from exercise (29) (part 1) of Tutorial 14 that b is in fact continuous with $b(0)=0$.

Exercise 20

Exercise 21.

1. Let $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$ be absolutely continuous. Let $f \in L_{\mathbf{C}}^{1, \operatorname{loc}}(t)$ be such that $b(t)=\int_{0}^{t} f(s) d s$ for all $t \in \mathbf{R}^{+}$. For all $n \geq 1$, we define $f_{n}: \mathbf{R} \rightarrow \mathbf{C}$ by:

$$
f_{n}(t) \triangleq\left\{\begin{array}{lll}
f(t) 1_{[0, n]}(t) & \text { if } & t \in \mathbf{R}^{+} \\
0 & \text { if } & t<0
\end{array}\right.
$$

Applying exercise (19) to $\left(\Omega, \Omega^{\prime}\right)=\left(\mathbf{R}, \mathbf{R}^{+}\right)$, bearing in mind that $\mathcal{B}\left(\mathbf{R}^{+}\right)=\mathcal{B}(\mathbf{R})_{\mid \mathbf{R}^{+}}$, we have $f_{n}=\phi\left(f 1_{[0, n]}\right)$ where $\phi(g)$ denotes the extension \tilde{g} on \mathbf{R}, of any map g defined on \mathbf{R}^{+}. Since $f \in L_{\mathbf{C}}^{1, \operatorname{loc}^{\prime}}(t)$, we have $f 1_{[0, n]} \in L_{\mathbf{C}}^{1}\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right), d x\right)$ and consequently $f_{n}=\phi\left(f 1_{[0, n]}\right) \in L_{\mathbf{C}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d x)$. Note that we are using the same notation $d x$ to denote successively the Lebesgue measure on \mathbf{R}^{+}and the Lebesgue measure on \mathbf{R}, the former being the restriction of the latter to $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\mathbf{R})$. Let
$n \geq 1$ and $t \in[0, n]$. Using exercise (19) once more:

$$
\begin{aligned}
\int_{0}^{t} f_{n} d x & =\int_{\mathbf{R}} f_{n} 1_{[0, t]} d x \\
& =\int_{\mathbf{R}} \phi\left(f 1_{[0, n]} 1_{[0, t]}\right) d x \\
& =\int_{\mathbf{R}^{+}} f 1_{[0, n]} 1_{[0, t]} d x \\
& =\int_{\mathbf{R}^{+}} f 1_{[0, t]} d x \\
& =\int_{0}^{t} f(s) d s=b(t)
\end{aligned}
$$

Note that we use the same notations $1_{[0, t]}$ and $1_{[0, n]}$ to denote characteristic functions defined successively on \mathbf{R} and \mathbf{R}^{+}.
2. Since $f_{n} \in L_{\mathbf{C}}^{1}(\mathbf{R}, \mathcal{B}(\mathbf{R}), d x)$, from theorem (101), $d x$-almost every $t \in \mathbf{R}$ is a Lebesgue point of f_{n}. Hence, there exists
$N_{n} \in \mathcal{B}(\mathbf{R})$ with $d x\left(N_{n}\right)=0$ such that for all $t \in N_{n}^{c}, t$ is a Lebesgue point of f_{n}.
3. Let $t \in \mathbf{R}$ and $\epsilon>0$. Since $B(t, \epsilon)=] t-\epsilon, t+\epsilon[$, we have:

$$
\begin{aligned}
\frac{1}{\epsilon} \int_{t}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s & =\frac{2}{d x(B(t, \epsilon))} \int_{t}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s \\
& \leq \frac{2}{d x(B(t, \epsilon))} \int_{t-\epsilon}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s \\
& =\frac{2}{d x(B(t, \epsilon))} \int_{B(t, \epsilon)}\left|f_{n}(s)-f_{n}(t)\right| d s
\end{aligned}
$$

4. Let $t \in N_{n}^{c}$. Then t is a Lebesgue point of f_{n}. From the inequality obtained in 3 . we have:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s=0
$$

Furthermore, since:

$$
\begin{aligned}
\left|\frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_{n}(s) d s-f_{n}(t)\right| & =\frac{1}{\epsilon}\left|\int_{t}^{t+\epsilon}\left(f_{n}(s)-f_{n}(t)\right) d s\right| \\
& \leq \frac{1}{\epsilon} \int_{t}^{t+\epsilon}\left|f_{n}(s)-f_{n}(t)\right| d s
\end{aligned}
$$

We conclude that:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_{n}(s) d s=f_{n}(t)
$$

5. Similarly to 3 . and 4 . we have:

$$
\begin{aligned}
\left|\frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_{n}(s) d s-f_{n}(t)\right| & =\frac{1}{\epsilon}\left|\int_{t-\epsilon}^{t}\left(f_{n}(s)-f_{n}(t)\right) d s\right| \\
& \leq \frac{1}{\epsilon} \int_{t-\epsilon}^{t}\left|f_{n}(s)-f_{n}(t)\right| d s
\end{aligned}
$$

$$
\leq \frac{2}{d x(B(t, \epsilon))} \int_{B(t, \epsilon)}\left|f_{n}(s)-f_{n}(t)\right| d s
$$

Hence for all $t \in N_{n}^{c}, t$ being a Lebesgue point of f_{n} :

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_{n}(s) d s=f_{n}(t)
$$

6. Let $t \in N_{n}^{c} \cap\left[0, n\left[\right.\right.$. From 1. we have $b(t)=\int_{0}^{t} f_{n}(s) d s$. Furthermore, for $\epsilon>0$ small enough we have $t+\epsilon \in[0, n]$, and consequently $b(t+\epsilon)=\int_{0}^{t+\epsilon} f_{n}(s) d s$. Hence:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{b(t+\epsilon)-b(t)}{\epsilon}=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t}^{t+\epsilon} f_{n}(s) d s=f_{n}(t)
$$

Moreover, assuming $t>0, t-\epsilon \in[0, n]$ for $\epsilon>0$ small enough, and consequently $b(t-\epsilon)=\int_{0}^{t-\epsilon} f_{n}(s) d s$. Hence:

$$
\lim _{\epsilon \downarrow \downarrow 0} \frac{b(t)-b(t-\epsilon)}{\epsilon}=\lim _{\epsilon \downarrow \downarrow 0} \frac{1}{\epsilon} \int_{t-\epsilon}^{t} f_{n}(s) d s=f_{n}(t)
$$

We conclude that for all $t \in N_{n}^{c} \cap[0, n[$, if $t=0$, the right-handside derivative $b^{\prime}(0)$ exists and is equal to $f_{n}(0)$. If $t>0$, the derivative $b^{\prime}(t)$ exists and is equal to $f_{n}(t)$. However if $t \in[0, n[$, $f_{n}(t)=f(t)$. So for all $t \in N_{n}^{c} \cap\left[0, n\left[, b^{\prime}(t)=f(t)\right.\right.$.
7. Define $N=\left(\cup_{n \geq 1} N_{n}\right) \cap \mathbf{R}^{+}$. Then $N \in \mathcal{B}\left(\mathbf{R}^{+}\right)$and $d x(N)=0$. Let $t \in N^{c}$. Choosing $n \geq 1$ such that $t \in[0, n[$, from $t \notin N$ we obtain $t \notin N_{n}$ and consequently $t \in N_{n}^{c} \cap[0, n[$. From 6 . it follows that $b^{\prime}(t)$ exists and is equal to $f(t)$. We have found $N \in \mathcal{B}\left(\mathbf{R}^{+}\right)$with $d x(N)=0$, such that for all $t \in N^{c}, b^{\prime}(t)$ exists and is equal to $f(t)$.
8. We have shown in exercise (20) that a map b is absolutely continuous, if and only if there exists $f \in L_{\mathbf{C}}^{1, \operatorname{loc}_{c}}(t)$ such that $b=f . t$. Furthermore, it follows from 7. that if b is absolutely continuous, it is almost surely differentiable with $b^{\prime}=f d x$-almost surely. This completes the proof of theorem (102).

Exercise 21

