
Tutorial 1: Dynkin systems 1

1. Dynkin systems
Definition 1 A Dynkin system on a set Ω is a subset D of the
power set P(Ω), with the following properties:

(i) Ω ∈ D
(ii) A, B ∈ D, A ⊆ B ⇒ B \ A ∈ D

(iii) An ∈ D, An ⊆ An+1, n ≥ 1 ⇒
+∞⋃

n=1

An ∈ D

Definition 2 A σ-algebra on a set Ω is a subset F of the power
set P(Ω) with the following properties:

(i) Ω ∈ F
(ii) A ∈ F ⇒ Ac �

= Ω \ A ∈ F

(iii) An ∈ F , n ≥ 1 ⇒
+∞⋃

n=1

An ∈ F
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Exercise 1. Let F be a σ-algebra on Ω. Show that ∅ ∈ F , that
if A, B ∈ F then A ∪ B ∈ F and also A ∩ B ∈ F . Recall that
B \ A = B ∩ Ac and conclude that F is also a Dynkin system on Ω.

Exercise 2. Let (Di)i∈I be an arbitrary family of Dynkin systems

on Ω, with I 	= ∅. Show that D �
= ∩i∈IDi is also a Dynkin system on

Ω.

Exercise 3. Let (Fi)i∈I be an arbitrary family of σ-algebras on Ω,

with I 	= ∅. Show that F �
= ∩i∈IFi is also a σ-algebra on Ω.

Exercise 4. Let A be a subset of the power set P(Ω). Define:

D(A)
�
= {D Dynkin system on Ω : A ⊆ D}

Show that P(Ω) is a Dynkin system on Ω, and that D(A) is not empty.
Define:

D(A)
�
=

⋂

D∈D(A)

D
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Show that D(A) is a Dynkin system on Ω such that A ⊆ D(A), and
that it is the smallest Dynkin system on Ω with such property, (i.e.
if D is a Dynkin system on Ω with A ⊆ D, then D(A) ⊆ D).

Definition 3 Let A ⊆ P(Ω). We call Dynkin system generated
by A, the Dynkin system on Ω, denoted D(A), equal to the intersection
of all Dynkin systems on Ω, which contain A.

Exercise 5. Do exactly as before, but replacing Dynkin systems by
σ-algebras.

Definition 4 Let A ⊆ P(Ω). We call σ-algebra generated by
A, the σ-algebra on Ω, denoted σ(A), equal to the intersection of all
σ-algebras on Ω, which contain A.

Definition 5 A subset A of the power set P(Ω) is called a π-system
on Ω, if and only if it is closed under finite intersection, i.e. if it has
the property:

A, B ∈ A ⇒ A ∩ B ∈ A
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Exercise 6. Let A be a π-system on Ω. For all A ∈ D(A), we define:

Γ(A)
�
= {B ∈ D(A) : A ∩ B ∈ D(A)}

1. If A ∈ A, show that A ⊆ Γ(A)

2. Show that for all A ∈ D(A), Γ(A) is a Dynkin system on Ω.

3. Show that if A ∈ A, then D(A) ⊆ Γ(A).

4. Show that if B ∈ D(A), then A ⊆ Γ(B).

5. Show that for all B ∈ D(A), D(A) ⊆ Γ(B).

6. Conclude that D(A) is also a π-system on Ω.

Exercise 7. Let D be a Dynkin system on Ω which is also a π-system.

1. Show that if A, B ∈ D then A ∪ B ∈ D.
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2. Let An ∈ D, n ≥ 1. Consider Bn
�
= ∪n

i=1Ai. Show that
∪+∞

n=1An = ∪+∞
n=1Bn.

3. Show that D is a σ-algebra on Ω.

Exercise 8. Let A be a π-system on Ω. Explain why D(A) is a
σ-algebra on Ω, and σ(A) is a Dynkin system on Ω. Conclude that
D(A) = σ(A). Prove the theorem:

Theorem 1 (Dynkin system) Let C be a collection of subsets of Ω
which is closed under pairwise intersection. If D is a Dynkin system
containing C then D also contains the σ-algebra σ(C) generated by C.
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Solutions to Exercises
Exercise 1.

1. From (i) of definition (2), Ω ∈ F . Hence, from (ii), ∅ = Ωc ∈ F .

2. If A, B ∈ F , we can construct a sequence (An)n≥1 of elements
of F by setting A1 = A, A2 = B and Ak = ∅ for all k ≥ 3.
Then, using (iii) of definition (2):

A ∪ B =
+∞⋃

n=1

An ∈ F

3. From (ii), Ac and Bc are also elements of F . So Ac ∪ Bc ∈ F .
Finally, again from (ii):

A ∩ B = (Ac ∪ Bc)c ∈ F
4. B and Ac are both elements of F , so:

B \ A
�
= B ∩ Ac ∈ F
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5. F being a σ-algebra, conditions (i) and (iii) of definition (1) are
immediately satisfied. But we have just proved that if A, B ∈ F ,
then B \ A ∈ F . Hence, condition (ii) of definition (1) is also
satisfied, and F is therefore a Dynkin system.

Exercise 1
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Exercise 2.

1. Each Di is a Dynkin system. From (i) of definition (1), Ω ∈ Di.
This being true for all i ∈ I, Ω ∈ ∩i∈IDi = D. Hence (i) of
definition (1) is satisfied for D.

2. Let A, B ∈ D with A ⊆ B. Then for all i ∈ I, A, B ∈ Di,
with A ⊆ B. Since each Di is a Dynkin system, from (ii) of
definition (1) we see that B \ A ∈ Di. This being true for all
i ∈ I, B \ A ∈ ∩i∈IDi = D. Hence, (ii) of definition (1) is
satisfied for D.

3. Let (An)n≥1 be a sequence of elements of D with An ⊆ An+1.
Then, for all i ∈ I, (An)n≥1 is a sequence of elements of Di with
An ⊆ An+1. Since each Di is a Dynkin system, from (iii) of
definition (1) we see that ∪+∞

n=1An ∈ Di. This being true for all
i ∈ I, ∪+∞

n=1An ∈ ∩i∈IDi = D. Hence, (iii) of definition (1) is
satisfied for D.
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4. Having checked (i), (ii), (iii) of definition (1), we conclude that
D is indeed a Dynkin system on Ω.

Exercise 2
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Exercise 3.

1. Each Fi is a σ-algebra. From (i) of definition (2), Ω ∈ Fi.
This being true for all i ∈ I, Ω ∈ ∩i∈IFi = F . Hence (i) of
definition (2) is satisfied for F .

2. Let A ∈ F . Then for all i ∈ I, A ∈ Fi. Since each Fi is
a σ-algebra, from (ii) of definition (2) we see that Ac ∈ Fi.
This being true for all i ∈ I, Ac ∈ ∩i∈IFi = F . Hence, (ii) of
definition (2) is satisfied for F .

3. Let (An)n≥1 be a sequence of elements of F . Then, for all i ∈ I,
(An)n≥1 is a sequence of elements of Fi. Since each Fi is a
σ-algebra, from (iii) of definition (2) we see that ∪+∞

n=1An ∈ Fi.
This being true for all i ∈ I, ∪+∞

n=1An ∈ ∩i∈IFi = F . Hence,
(iii) of definition (2) is satisfied for F .

4. Having checked (i), (ii), (iii) of definition (2), we conclude that
F is indeed a σ-algebra on Ω.

Exercise 3
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Exercise 4.

1. Ω is obviously a subset of Ω, so Ω ∈ P(Ω), and (i) of defini-
tion (1) is satisfied for P(Ω). If A, B ∈ P(Ω), whether or not
A ⊆ B, B \A is still a subset of Ω, i.e. B \A ∈ P(Ω). So (ii) of
definition (1) is also satisfied for P(Ω). If (An)n≥1 is a sequence
of subsets of Ω, whether or not this sequence is increasing (i.e.
An ⊆ An+1), ∪+∞

n=1An is still a subset of Ω, i.e. belongs to P(Ω).
So (iii) of definition (1) is satisfied for P(Ω), and finally, P(Ω)
is a Dynkin system on Ω.

2. By assumption, A ⊆ P(Ω). Since P(Ω) is also a Dynkin system
on Ω, we see that P(Ω) ∈ D(A). In particular, D(A) is not
empty.

3. Take I = D(A), and for all i ∈ I, define Di = i. Then (Di)i∈I

is a family of Dynkin systems on Ω (where I 	= ∅) and since:

D(A)
�
=

⋂

D∈D(A)

D =
⋂

i∈I

Di
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using exercise (2), we conclude that D(A) is a Dynkin system
on Ω.

4. Let A ∈ A. For all D ∈ D(A), we have A ⊆ D. Hence, for all
D ∈ D(A), A ∈ D. So:

A ∈
⋂

D∈D(A)

D �
= D(A)

It follows that A ⊆ D(A).

5. Suppose D is another Dynkin system on Ω such that A ⊆ D.
Then D ∈ D(A), from which we conclude that:

D(A)
�
=

⋂

D′∈D(A)

D′ ⊆ D

Exercise 4
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Exercise 5.

1. We define similarly: F (A)
�
= {F σ-algebra on Ω : A ⊆ F} and:

σ(A)
�
=

⋂

F∈F (A)

F

2. Ω ∈ P(Ω), and (i) of definition (2) is satisfied for P(Ω). If
A ∈ P(Ω), then Ac ∈ P(Ω) and (ii) of definition (2) is also
satisfied for P(Ω). If (An)n≥1 is a sequence of subsets of Ω,
∪+∞

n=1An is still a subset of Ω, and (iii) of definition (2) is satisfied
for P(Ω). Finally, P(Ω) is a σ-algebra on Ω.

3. By assumption, A ⊆ P(Ω). Since P(Ω) is also a σ-algebra on
Ω, we see that P(Ω) ∈ F (A). In particular, F (A) is not empty.

4. Take I = F (A), and for all i ∈ I, define Fi = i. Then (Fi)i∈I
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is a family of σ-algebra on Ω (where I 	= ∅) and since:

σ(A)
�
=

⋂

F∈F (A)

F =
⋂

i∈I

Fi

using exercise (3), we conclude that σ(A) is a σ-algebra on Ω.

5. Let A ∈ A. For all F ∈ F (A), we have A ⊆ F . Hence, for all
F ∈ F (A), A ∈ F . So:

A ∈
⋂

F∈F (A)

F �
= σ(A)

It follows that A ⊆ σ(A).

6. Suppose F is another σ-algebra on Ω such that A ⊆ F . Then
F ∈ F (A), from which we conclude that:

σ(A)
�
=

⋂

F ′∈F (A)

F ′ ⊆ F
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Exercise 5
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Exercise 6.

1. Suppose A ∈ A, and let B ∈ A. D(A) being the Dynkin system
generated by A, A ⊆ D(A) (see exercise (4)). In particular,
B ∈ D(A). Since both A, B lie in A, A being a π-system, we
have A ∩ B ∈ A ⊆ D(A). Hence, we see that B ∈ Γ(A). We
have proved that for all A ∈ A, A ⊆ Γ(A).

2. Let A ∈ D(A). D(A) being a Dynkin system, Ω ∈ D(A). More-
over, A ∩ Ω = A ∈ D(A). So Ω ∈ Γ(A), and condition (i) of
definition (1) is satisfied for Γ(A). Let B, C ∈ Γ(A) with B ⊆ C.
Both B, C belong to D(A), with B ⊆ C. D(A) being a Dynkin
system on Ω, C \ B ∈ D(A). Also:

A ∩ (C \ B) = (A ∩ C) \ (A ∩ B)

Since B, C ∈ Γ(A), both A∩B and A∩C belong to D(A), with
A ∩ B ⊆ A ∩ C. It follows that (A ∩ C) \ (A ∩ B) ∈ D(A), i.e.
A∩ (C \B) ∈ D(A). Hence, we see that C \B ∈ Γ(A), and (ii)
of definition (1) is satisfied for Γ(A). Let (Bn)n≥1 be a sequence
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of elements of Γ(A), with Bn ⊆ Bn+1. Let B = ∪+∞
n=1Bn. Then

(Bn)n≥1 is a sequence of elements of D(A) with Bn ⊆ Bn+1.
D(A) being a Dynkin system, we see that B ∈ D(A). Moreover,
(A ∩ Bn)n≥1 is a sequence of elements of D(A), with A ∩ Bn ⊆
A∩Bn+1. It follows that ∪+∞

n=1A∩Bn = A ∩B ∈ D(A). Hence
we see that B ∈ Γ(A), and condition (iii) of definition (1) is
satisfied for Γ(A). We have proved that for all A ∈ D(A), Γ(A)
is a Dynkin system on Ω.

3. If A ∈ A, we saw in 1. that A ⊆ Γ(A). But Γ(A) being a Dynkin
system on Ω, using exercise (4), we conclude that D(A) ⊆ Γ(A).

4. From the previous point, it follows that if A ∈ A and B ∈ D(A),
then A ∩ B ∈ D(A). In other words, if B ∈ D(A) and A ∈ A,
then A ∈ Γ(B). We have proved that for all B ∈ D(A), we have
A ⊆ Γ(B).

5. From 2., we know that Γ(B) is a Dynkin system on Ω. Using
exercise (4), it follows from the previous point that D(A) ⊆
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Γ(B), for all B ∈ D(A).

6. Another way of writing the previous property, is that for all B ∈
D(A), and A ∈ D(A), we have A ∈ Γ(B), i.e. A ∩ B ∈ D(A).
Hence, we see that D(A) is closed under finite intersection, i.e.
it is a π-system on Ω. The purpose of this exercise is to show
that wheneverA is a π-system on Ω, its generated Dynkin system
D(A) is also a π-system on Ω.

Exercise 6
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Exercise 7.

1. Let A ∈ D. Since D is a Dynkin system on Ω, Ω ∈ D. We
obviously have A ⊆ Ω. it follows that Ω \ A ∈ D, i.e. Ac ∈ D.
Hence we see that D is closed under complementation. Now, if
A, B ∈ D, then Ac, Bc ∈ D. Since D is also assumed to be a
π-system on Ω, we have Ac ∩ Bc ∈ D, and finally:

A ∪ B = (Ac ∩ Bc)c ∈ D

2. Let (An)n≥1 be a sequence of elements of D. Having defined
Bn = ∪n

i=1Ai for all n ≥ 1, we put A = ∪+∞
n=1An and B =

∪+∞
n=1Bn. Let x ∈ A. There exists n ≥ 1 such that x ∈ An ⊆ Bn.

So x ∈ B, and A ⊆ B. Let x ∈ B. There exists n ≥ 1 such that
x ∈ Bn = ∪n

i=1Ai. Hence, there exists i ∈ {1, . . . , n} such that
x ∈ Ai. So x ∈ A and B ⊆ A. We have proved that A = B.

3. D being a Dynkin system, Ω ∈ D and condition (i) of defini-
tion (2) is satisfied for D. If A ∈ D, we saw in 1. that Ac ∈ D. So
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condition (ii) of definition (2) is also satisfied for D. Let (An)n≥1

be a sequence of elements of D. Having defined Bn = ∪n
i=1Ai

for all n ≥ 1, we saw in 1. that D was closed under finite union,
i.e. Bn is an element of D for all n ≥ 1. Moreover, Bn ⊆ Bn+1

for all n ≥ 1. D being a Dynkin system, ∪+∞
n=1Bn is an element

of D. But from 2., ∪+∞
n=1Bn = ∪+∞

n=1An. Hence, we see that
∪+∞

n=1An is also an element of D, and condition (iii) of defini-
tion (2) is satisfied for D. We have proved that D is indeed a
σ-algebra on Ω. The purpose of this exercise is to show that
whenever a Dynkin system D is also a π-system, then it is in
fact a σ-algebra on Ω.

Exercise 7
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Exercise 8.

1. From exercise (6), we know that since A is a π-system on Ω,
its generated Dynkin system D(A) is also a π-system on Ω.
However, from exercise (7), we know that any Dynkin system
which is also a π-system, is in fact a σ-algebra on Ω. Hence,
D(A) is a σ-algebra on Ω.

2. The σ-algebra σ(A) generated by A being a σ-algebra, it is also
a Dynkin system on Ω (see exercise (1)).

3. From A ⊆ σ(A) and the fact that σ(A) is a Dynkin system
on Ω, we conclude that D(A) ⊆ σ(A) (see exercise (4)). From
A ⊆ D(A) and the fact that D(A) is also a σ-algebra on Ω, we
conclude that σ(A) ⊆ D(A) (see exercise (5)). Finally, σ(A) =
D(A). The purpose of this exercise is to show that for any π-
system A on Ω, its generated σ-algebra σ(A) and Dynkin system
D(A) coincide.

4. If C is a π-system and D is a Dynkin system with C ⊆ D, then
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D(C) ⊆ D (see exercise (4)). But we have just seen that C
being a π-system, D(C) = σ(C). Hence σ(C) ⊆ D, which proves
theorem (1).

Exercise 8
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