Tutorial 7: Fubini Theorem 1

7. Fubini Theorem

Definition 59 Let (21, F1) and (Qa2, F2) be two measurable spaces.
Let E C Qq x Qq. For all wy € 4y, we call wi-section of E in Qs
the set:

B é {WQ e (wl,WQ) S E}

EXERCISE 1. Let (1, F1), (22,F2) and (S,X%) be three measurable
spaces, and [ : (Q1 X Qo, F; @ F3) — (5,%) be a measurable map.
Given wq € Qy, define:

I 2{ECQ xQy, B € F)}
1. Show that for all wy € Qy, I'“* is a o-algebra on 7 x €.
2. Show that for all wy € Qq, Fy I Fo C T2,
3. Show that for all wy € Q1 and E € F; ® Fo, we have E“1 € Fs.

4. Given wy € €, show that w — f(wi,w) is measurable.

www.probability.net


http://www.probability.net

Tutorial 7: Fubini Theorem 2
5. Show that 6 : (Q2 x 1, F2 @ F1) — (21 x Qo, F1 ® Fa) defined
by 0(ws,w1) = (w1,ws) is a measurable map.

6. Given wy € 9, show that w — f(w,ws) is measurable.

Theorem 29 Let (S,X), (21,F1) and (Q2, Fa) be three measurable
spaces. Let f: (1 X Qo, F1 @ Fz) — (S, %) be a measurable map. For
all (wi,w2) € Q1 X Qa, the map w — f(wi,w) is measurable w.r. to
Fo and ¥, and w — f(w,ws) is measurable w.r. to F1 and 3.

EXERCISE 2. Let (4, F;)icr be a family of measurable spaces with
card] > 2. Let f : (ILier%, ®icrFi) — (E,B(E)) be a measurable
map, where (E,d) is a metric space. Let iy € I. Put By = ,;,,
& = Fiy, Bz = Wicp\ iy, E2 = Qe iy Fi-

1. Explain why f can be viewed as a map defined on E; X Es.

2. Show that f: (E; X E, & ® &) — (E,B(E)) is measurable.
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3. For all w;; € Q;,, show that the map w — f(w;,,w) defined on
e 14,19 is measurable w.r. to ®;ep fi,3F: and B(E).

Definition 60 Let (2, F, ) be a measure space. (Q, F, 1) is said to
be o finite measure space, or we say that i is a finite measure,
if and only if p(Q) < +oo.

Definition 61 Let (Q,F, ) be a measure space. (2, F, ) is said
to be a o-finite measure space, or u a o-finite measure, if and
only if there exists a sequence (Qp)p>1 in F such that Q, T Q and
1w(,) < +oo, for alln > 1.

EXERCISE 3. Let (2, F, 1) be a measure space.

1. Show that (92, F, ) is o-finite if and only if there exists a se-
quence (,,),>1 in F such that Q = WX Q,, and p(Q,) < +oo
for all n > 1.
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2. Show that if (Q,F, ) is finite, then y has values in R™.
3. Show that if (2, F, p) is finite, then it is o-finite.

4. Let FF : R — R be a right-continuous, non-decreasing map.
Show that the measure space (R,B(R),dF) is o-finite, where
dF is the Stieltjes measure associated with F'.

EXERCISE 4. Let (Q1, F1) be a measurable space, and (Qs, Fo, p2) be
a o-finite measure space. For all £ € F; ® F» and w; € 1, define:

Pown) 2 [ 1pna)da(a)
2
Let D be the set of subsets of {21 x €3, defined by:
DE{EcF ®F : &p: (0, F) — (R,B(R)) is measurable}
1. Explain why for all F € F; ® F», the map ®g is well defined.
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Show that F; I1 75 C D.
Show that if ps is finite, A, B € D and A C B, then B\ A € D.
Show that if F,, € F; ® Fo,n > 1 and E, T E, then g, | ¢g.

Show that if uo is finite then D is a Dynkin system on 27 x €.

. Show that if u5 is finite, then the map ®f : (1, F1) — (R, B(R))

is measurable, for all £ € F; ® Fs.

Let (£25),>1 in Fa be such that 5 1 Q2 and p2(25) < +o0.
Define py = ugg = z(eNQY). For E € Fy ® Fa, we put:

Bpn) 2 [ Lp(n)dus(z)
Qo
Show that ®% : (21, F1) — (R, B(R)) is measurable, and:

(1) = / Lo (2) 1 (w1, 2)dpia()
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Deduce that ®% 1 ®g.

8. Show that the map ®p : (Q1,F1) — (R, B(R)) is measurable,
for all £ € F; ® Fo.

9. Let s be a simple function on (21 X Qq, F; ® F3). Show that
the map w — fQ2 s(w, z)dps(z) is well defined and measurable

with respect to F; and B(R).

10. Show the following theorem:

Theorem 30 Let (21,F1) be a measurable space, and (2, Fa, f12)
be a o-finite measure space. Then for all non-negative and measurable
map f: (Q1 x Qa, F1 @ Fa) — [0, +00], the map:

w— | flw,z)dps ()
Qo

is measurable with respect to F1 and B(R).
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EXERCISE 5. Let (£2;, F;)ier be a family of measurable spaces, with
cardI > 2. Let ig € I, and suppose that pg is a o-finite measure

n (Qiy, Fip). Show that if f: (IL;er8, @ierFi) — [0, +00] is a non-
negatlve and measurable map, then:

w — / flw, x)duo(x)
Qi

defined on ;e {4,1€%, is measurable w.r. to ®;ep\ (1037 and B(R).

EXERCISE 6. Let (21, F1, p1) and (g, Fa, pi2) be two o-finite measure
spaces. For all £ € F; ® F», we define:

A
p1 @ p2(E) = / (/ 1E($>y)d,u2(y)> dpy ()
Q1 Qo
1. Explain why g1 ® pg : F1 @ Fo2 — [0, +00] is well defined.

2. Show that p; ® pg is a measure on F; ® Fo.
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3. Show that if A x B € F; II F», then:
1 @ p2(A x B) = p1(A)pz(B)

EXERCISE 7. Further to ex. (6), suppose that p: F; @ Fa — [0, +o0]
is another measure on F; @ Fo with u(A x B) = uy(A)p2(B), for all
measurable rectangle A x B. Let (27),>1 and (03 ),>1 be sequences
in 7 and F> respectively, such that QF T Q1, QF T Qa, p1(Q7) < +o0
and p2(€25) < 4o00. Define, for all n > 1:

A n n n n
D, = {E eF1®F: ,u(Eﬁ (Ql X QQ)) = ®/L2(Eﬁ (Ql X QQ))}
1. Show that for all n > 1, 7y I > C D,,.
2. Show that for all n > 1, D,, is a Dynkin system on 7 x .

3. Show that p = 1 ® pe.

I

. Show that (21 xQg, F1 @ Fa, u1 @u2) is a o-finite measure space.
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5. Show that for all £ € F; ® F», we have:

w1 @ po(E) = / </91 1E(x,y)d,u1($)) dpz(y)

Qo

EXERCISE 8. Let (21, F1, 1), .-, (Qn, Fn, tbn) be n o-finite measure
spaces, n > 2. Let ig € {1,...,n} and put Ey = Q;,, Es = II;£;, Y,
& = Fi, and & = @4, F;. Put v1 = 4y, and suppose that vy is
a o-finite measure on (Es, &) such that for all measurable rectangle
Hi;ﬁio Al S Hi;ﬁiofiy we have vy (Hi;éio Al) = Hi;éioﬂi (Al)

1. Show that v; ® v5 is a o-finite measure on the measure space
(Q X ... x Q, F1 ® ... ® F,) such that for all measurable
rectangles A; x ... x A,,, we have:

121 ®V2(A1 X ... X An) = ,ul(Al) .. ,un(An)

2. Show by induction the existence of a measure ppon F1®...QF,,
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such that for all measurable rectangles A; x ... x A,, we have:
WAy x oo x Ay) = p(Ar) e (4y)
3. Show the uniqueness of such measure, denoted p1 @ ... ® fiy,.
4. Show that j11 ® ... ® py, is o-finite.

5. Let i € {1,...,n}. Show that p;y ® (Rizigtti) = p1 Q@ ... Q fin.

Definition 62 Let (Q1, F1,11),- -« (0, Fn,y fin) be n o-finite mea-
sure spaces, with n > 2. We call product measure of p1,..., iy,
the unique measure on F1 ®...®F,, denoted p1 @ ... R Wy, such that
for all measurable rectangles Ay X ... x Ay in Fr ... 11 F,, we have:

This measure is itself o-finite.
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EXERCISE 9. Prove that the following definition is legitimate:

Definition 63 We call Lebesgue measure in R", n > 1, the
unique measure on (R™, B(R™)), denoted dz, dz™ or dzxy ...dx,, such
that for all a; < b;, i=1,...,n, we have:

n

dx([al,bﬂ X ... X [an,bn}) = H(bl — Cll')

i=1

EXERCISE 10.
1. Show that (R™, B(R™),dz™) is a o-finite measure space.

2. For n,p > 1, show that dz"? = dz" ® daP.

EXERCISE 11. Let (21, F1, p1) and (Qo, Fa, u2) be o-finite.
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1. Let s be a simple function on (£ x Q9, F1 ® F2). Show that:

/ sdpy ® pg z/ </ sd,ug) dpy :/ </ sdm) dpo
Ql XQQ Ql Qz Qz Ql

2. Show the following:

Theorem 31 (Fubini) Let (4, Fi, 1) and (Q2, Fa, p2) be two o-
finite measure spaces. Let [ : (1 X Qa,F1 @ F2) — [0,400] be a
non-negative and measurable map. Then:

/leﬂfdlil ®,U2=/Q1 </Qz fd,uz) dpn :/Qz (/Ql fd/”) dyss

EXERCISE 12. Let (21, F1, 1), - - - (2, Fn, fn) be n o-finite measure
spaces, n > 2. Let f: (1 x ... x 0y, 1 ®...0 F,) — [0,+0] be a
non-negative, measurable map. Let ¢ be a permutation of N,,, i.e. a
bijection from N,, to itself.
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1. For all w € Tlj44(1)82;, define:
A
he) & [ )i (2)
Q1)
Explain why J1 @ (ILizo1)Q, ®izeyFi) — [0, +00] is a well

defined, non-negative and measurable map.

2. Suppose Ji 1 (Wig(oq),....o)1 s @ig{o),....ok) Fi) — [0, +0]
is a non-negative, measurable map, for 1 < k < n — 2. Define:

A
Jer1(w) = / Je(w, @) dpto (k1) (@)
Q

o(k+1)

and show that:

Tt (Wiggoqy,....o(b+1)y 2% Qigfo(n),....o(k+1)3Fi) — [0, +00]

is also well-defined, non-negative and measurable.
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3. Propose a rigorous definition for the following notation:

/ Ce / fd/J,U(l) Ce d,ua(n)
Q Q

o(n) (1)

EXERCISE 13. Further to ex. (12), Let (fp)p>1 be a sequence of non-
negative and measurable maps:

foi (@ x...xQ,Fi®...0F,) —[0,+x]
such that f, T f. Define similarly:
A
H@ & [ i@

o (1)

1>

i (W) /Q JP(w, ) dp 1y (x) , 1 <k <n—2

o(k+1)

1. Show that J¥ 1 J;.
2. Show that if J} 1 Jj, then J,fﬂ T Jha1, 1 <k<n-—2.
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3.

Show that:

/ / Tpdpio(ry - - dpio(n) T/ / Jdps(y - - - diton)
Q Qo (1) Q Q1)

o(n) o(n)

. Show that the map p: F; ® ...® F, — [0, +0oc], defined by:

,u(E) = / ce 1Ed,ua(1) ce dﬂo(n)
Qo (n) Q5(1)

is a measure on F1 ® ... ® F,.

. Show that for all £ € F; ® ...® F,, we have:

M1®~-~®Mn(E):/ / 1Ed,u0(1)...dp,g(n)
Q Qo'(l)

a(n)

. Show the following:
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Theorem 32  Let (1, F1,p1)s-- -, (Qn, Fo, pin) be n o-finite mea-
sure spaces, withn > 2. Let f : (Q1x...xXQy,, F1®...0F,) — [0, +]
be a non-negative and measurable map. let o be a permutation of N,,.
Then:

fdu1®...®un:/ / fdugay - ditgm
/le...xﬂn Qo.(n) Qo'(l) (1) ( )

EXERCISE 14. Let (2, F, 1) be a measure space. Define:
L'E{f:Q =R, 3geLh(UF.p), f=gpas)
1. Show that if f € L1, then |f| < 400, p-a.s.

2. Suppose there exists A C 2, such that A ¢ F and A C N for
some N € F with u(N) = 0. Show that 14 € L' and 14 is not
measurable with respect to F and B(R).

3. Explain why if f € L', the integrals [ |f|du and [ fdu may not
be well defined.
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4. Suppose that f : (2, F) — (R, B(R)) is a measurable map with
[ |fldp < +o0c. Show that f € L.
5. Show that if f € L* and f = f; p-a.s. then f; € L'

6. Suppose that f € L' and g1,92 € Li(Q, F, u) are such that
f=g¢1 pas. and f = go p-a.s.. Show that [ gidp = [ gadp.

7. Propose a definition of the integral [ fdu for f € L' which
extends the integral defined on Lg (2, F, p).

EXERCISE 15. Further to ex. (14), Let (f,)n>1 be a sequence in L*,
and f,h € L', with f, — f p-a.s. and for all n > 1, |f,| < h p-a.s..

1. Show the existence of Ny € F,u(Ni) = 0, such that for all
w € NY, fo(w) — f(w), and for all n > 1, |fr(w)| < h(w).

2. Show the existence of g,,g,h1 € Lix(Q,F,n) and Ny € F,
1(N3) = 0, such that for allw € N, g(w) = f(w), h(w) = hy(w),
and for all n > 1, g, (w) = fn(w).
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3.

Show the existence of N € F, u(N) = 0, such that for all
we€ N gp(w) — g(w), and for all n > 1, |gn(w)| < hy(w).

. Show that the Dominated Convergence Theorem can be applied

to gnlne,glye and hylye.

. Recall the definition of [ |f, — f|du when f, f, € L*.
. Show that [|f, — fldu — 0.

EXERCISE 16. Let (Q1, F1,p1) and (Qo, Fo, u2) be two o-finite mea-
sure spaces. Let f be an element of L (21 X Qo, F1 ® Fo, i1 @ p2).
Let 0: (2 x Q1,Fo @ F1) — (1 X Qa, F1 ® F2) be the map defined
by O(wa,w1) = (w1, ws) for all (we,w1) € Qo X Q.

1.

2.

Let A= {wi € Y : [y [f(wi,2)|duz(z) < +00}. Show that
Ac F1 and [Ll(AC) =0.

Show that f(wi,.) € Lk (Q2, Fa, u2) for all wy € A.

www.probability.net


http://www.probability.net

Tutorial 7: Fubini Theorem 19

3. Show that I(wq) = fQ2 flwi,x)dps(x) is well defined for all
wy € A. Let I be an arbitrary extension of I, on €.

4. Define J = I1 4. Show that:

J(w)=1aw) [ [T (w,2)dpa(z) — 1a(w) ; f(w, ) dps ()

Qo
5. Show that J is Fj-measurable and R-valued.
6. Show that J € L (Q1,F1,u1) and that J = I pi-a.s.

7. Propose a definition for the integral:

/91 < o, f(x,y)duz(y)> dy ()

8. Show that fQ (1a fQ frdus)dp, = lexﬁg Frdus @ po.
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9.

10.

11.

12.

Show that:

/nl ( o f(x’y)d/@(y)) dpn () =/Q fdm ®pz (1)

1 X822

Show that if f € L&(1 x Qo, F1 @ Fa, 1 @ pa), then the map
wy — sz flw1,y)dus(y) is p1-almost surely equal to an element
of L&(Q, Fi, 1), and furthermore that (1) is still valid.

Show that if [ : (Q1 x Qo, F1 @ Fa) — [0, +00] is non-negative
and measurable, then fo# is non-negative and measurable, and:

/ foﬂdm@m:/ Fdps @ s
Q Q

2 X2 1 XQ2

Show that if f € LE(Q1 x Qa, F1 @ Fa, 1 @ p2), then f o6 is
an element of L& (Q2 x Q1, Fo ® Fi, 2 ® p11), and:

/ fo9du2®u1=/ fdur @ po
o o

2 X 1 X Q0
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13. Show that if f € LE(Q1 x Q2, F1 @ Fa, 1 @ pa), then the map

Wy — le f(x,wa)dps () is pa-almost surely equal to an element
of L&(Qa, Fa, p12), and furthermore:

/92 < o, f(xvy)dul(x)) dp2(y) = /lefd‘“ ® pia

Theorem 33 Let (1, F1, 1) and (Qa, Fa, ua) be two o-finite mea-
sure spaces. Let f € Llc(Ql X Qo, F1 @ Fa, 1 ® ua). Then, the map:

wr— [ flwr,z)dps(x)
Qo

1s p1-almost surely equal to an element of Lé(Ql,}],ul) and:

/Ql < % f(x’y)dMZ(y)> dpy () = /lei”dm ® po
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Furthermore, the map:

wr— [ )i (2)
Q

1s po-almost surely equal to an element of Lé(Qg,fg,ﬂg) and:

/92 < o, f(xvy)dul(x)) dp2(y) = /lefd’“ ® pia

EXERCISE 17. Let (1, F1, 11),- - - o(Qn, Finy i) be n o-finite measure
spaces, n > 2. Let f € LE(Q1 % ... XDy, F1®...QFp, 1 @ ... @ ).
Let o be a permutation of N,,.

1. For all w € Tl;44(1)§2;, define:

JAN

Ji(w) 2 / o) @)

Explain why J; is well defined and equal to an element of
L&z (1) Qs @201 Fiy Qistor(1) i) Qistor(1) Hi-almost surely.
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2. Suppose 1 < k < n — 2 and that Jj is well defined and equal to
an element of:

LeMig 01,0001 > Qig{o1),....o(k)} Fir @ig{o(1),....00k) } i)
Qig{o(1),....0(k)} Hi-almost surely. Define:

AN
@) 2 [ T, a)dusgern (@)
Qo (kt1)

What can you say about Jjy.

3. Show that:

/ Ce fd,ua(l) Ce d/J,U(n)
Qo (n) Qo(1)

is a well defined complex number. (Propose a definition for it).

4. Show that:

/ R fdﬂo(l) - d,ug(n) = / fdpu1 @ ... ® uy
Q Q1 X...x

o(n) Qs (1) Qn
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Solutions to Exercises

Exercise 1.

1. Let wy € Q1. The wi-section of 21 x Qs in s, is equal to
Qo € Fo. So Q1 xQy € I'“1. Suppose F € I'“t. Then E“ € Fs.
F> being closed under complementation, (E“')¢ € F». How-
ever, given wy € (o, wy € (F“1)° is equivalent to (wi,wq) € E,
ie. (wi,w2) € E° So (E“)¢ = (E°)“. Hence, we see that
(E°)“r € Fy. It follows that E° € !, which is therefore closed
under complementation. Let (E,,),>1 be a sequence of elements
of T“1. Let E = U E,. Foralln > 1, (E,)“ € Fy. F3 be-
ing closed under countable union, U} (E,,)*! € F». However,
given wy € Qo, wy € Uifl(En)‘”l is equivalent to the existence
of n > 1, such that (w1,ws) € E,. Hence, it is equivalent to
(wi,w2) € UFNE, = E. So Ul>(E,)*t = E“1, and we see
that E“1 € Fp. It follows that £ € I'“t, which is therefore
closed under countable union. We have proved that I'“! is a
o-algebra on 1 x Q.
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2. Let wy € Q, and F = A x B € F; II 75 be a measurable
rectangle of F; and Fy. Suppose w; € A. Then (wi,wq) € E,
if and only if wy € B. So E¥* = B € F3. Suppose wy € A.
Then for all wy € Qg, (wi,wz) € E. So E¥* = () € F>. In any
case, E¥1 € Fy. It follows that F € I'“*. We have proved that
FilF, C v,

3. From F, I F5 C I'“" and the fact that I'“? is a o-algebra on
Q1 x Qa, we conclude that F1 @ Fo = o(F1 I F2) C T, Hence,
for all wy € Q1 and E € F; ® F2, E is an element of ['“1, or
equivalently, E“' € Fs.

4. Let f: (1 xQq, F1 @F2) — (5,X) be a measurable map, where
(S,3) is a measurable space. Let wy € 4, and ¢ : Q2 — S be
the partial map w — f(wi,w). Let B € ¥. Then {f € B} is
an element of F; ® Fu. Using 3. it follows that the wi-section
{f € B}** of {f € B} is an element of F,. However, we have:

{fEB}wl = {OJQ €Ny (wl,WQ)E{fEB}}
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= {w2 € Q2 f(w1,w2) € B}
{wa2 € Qa1 ¢(w2) € B}
= {¢€eB}
Hence we see that {¢ € B} € F». This being true for all B € %,

we conclude that ¢ is measurable. This shows that the map
w — f(w1,w) is measurable.

5. Let 0 : (22 x Qq, Fo ® F1) — (21 x Qa, F1 @ F) be defined by
O(w2,w1) = (w1,ws). From theorem (28), in order to show that
0 is measurable, it is sufficient to prove that each coordinate
mapping 67 : (wa,w1) — wy and s : (w2, w1) — wa is measur-
able. This is indeed the case, since for all Ay € F; we have
Qfl(Al) = Oy x A1 € Fo ® Fy, and for all Ay € F> we have
Ggl(Ag) = Ay x Q1 € Fo ® Fy. So 0 is measurable.

6. Let wo € Q. Let g : (Q2 X 1, F2 @ F1) — (5,%) be the map
defined by g = f o . Having proved in 5. that 6 is measurable,
since f is itself measurable, g is a measurable map. Applying 4.
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to g, it follows that the map w — g(ws,w) is measurable with
respect to F; and . In other words, the map w — f(w,ws) is
measurable with respect to F; and X. This completes the proof
of theorem (29).

Exercise 1
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Exercise 2.

1. There is an obvious bijection ® between E; x FEs and Il;c;€;,
defined by ®(wi,w2)(i1) = w1, and P(wy,ws)(i) = wa(i) for
i # i1. The two sets Fy X Ey and I1;¢;€2; can therefore identified,
and f can be viewed as a map defined on E; X Fjs.

2. Having identified E; x Eo and I;¢;€;, using exercise (10) of
Tutorial 6 for the partition I = {i1} W (I \ {i1}), we obtain
RicrFi = E1®E. So [ (E1 X Fo, & ®52) — (E,B(E)) is
measurable.

3. From 2. and theorem (29), given wy € E7, the mapw — f(w1,w)
defined on Es, is measurable with respect to & and B(E). In
other words, given w;, € €;,, the map w — f(w;,,w) defined on
e\ (i, 3$%, is measurable w.r. to ®;ep 4,3 and B(E).

Exercise 2

www.probability.net


http://www.probability.net

Solutions to Exercises 30

Exercise 3.

1. Suppose there exists a sequence (,),>1 of pairwise disjoint
elements of F, such that Q = w29, and u(2,) < +oo for all
n > 1. Define A,, = W}_,Qy, for all n > 1. Then:

w(Ay) = ZM(Qk) < +oo
k=1

and furthermore, A, 1T Q. So (Q,F, u) is o-finite. Conversely,
suppose (£, F, i) is o-finite. Let (A, )n,>1 be a sequence in F,
such that A4, 7 Q and p(A,) < 4+oo for all n > 1. Define
O = Ay, and Q, = A, \ A,,_1 for all n > 2. Then, (2,),>1 is a
sequence of pairwise disjoint elements of F. Since 2, C A,, for
all n > 1, we have pu(€2,) < pu(A4,) < +o0o. Given w € €, since
Q = U$> A, there exists n > 1 such that w € A,,. Let p be the
smallest of such n. Then w e 4, \ 4,1 if p>2,orwe A;. In
any case, w € §),. Hence, we see that Q = U2, and finally
Q = w>Q,. We conclude that (Q,F, i) is o-finite, if and only
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if there exists a sequence (£2,,)p>1 of pairwise disjoint elements
of F, such that Q = W29, and p(f,) < +oc for all n > 1.

2. Suppose (Q, F,u) is finite. Then p(2) < +oo. For all A € F,
since A C Q, p(A) < u(2) < +oo. So p takes values in R7.

3. Suppose (Q, F, u) is finite. Then p(Q2) < +oo. Define Q,, = Q
for all n > 1. Then (,)n>1 is a sequence in F such that ,, T Q
and p1(Qy,) < +oo for all n > 1. So (Q,F, p) is o-finite.

4. Take Q, =|—n,n] for all n > 1. Then, Q, C Q.41 and we
have R = U Q,. So Q, T R. Moreover, by definition of
the Stieltjes measure (20), dF(Q2,) = F(n) — F(—n) € RT. In
particular, dF(€,) < +oo for all n > 1. We conclude that
(R,B(R),dF) is a o-finite measure space.

Exercise 3
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Exercise 4.

1. Let F € F; ® F5. The characteristic function 1 is non-negative
and measurable with respect to F; @ F». From theorem (29), for
all wy € Q, the partial function x — 1g(w1,z) is measurable
with respect to Fp. It is also non-negative. It follows that
the integral f92 1g (w1, x)dus(x) is well-defined, for all wy € €.
Hence, we see that @ is a well-defined map on ;.

2. Let E = A x B € F; I 7, be a measurable rectangle of F; and
Fo. For all wy € 4y, we have:

Bp(wr) = /Q La (@)1 p(@)dpia() = ia(B)1a (1)

2

Since A € Fp, the map 14 is Fi-measurable, and consequently
®p = po(B)la is Fi-measurable. Hence, we see that E € D.
We have proved that F; IT Fo C D.

3. Suppose ps is a finite measure. Let A, B € D with A C B. For
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all w1 € Qy, from 1p = 14 + 1p\ 4, We obtain:

[ a0 = [ 1a@rodus@)+ [ 1o, o)
Qo Qo Qg

ie. @p(w1) = Pa(w1) + Pp\a(wi). p2 being a finite measure,
all ®x’s take values in R*. Hence, it is legitimate to write:

Pp\a =P —Pa

Since A, B € D, both &4 and ®p are Fj-measurable. We con-
clude that ®p\ 4 is Fi-measurable, and B\ A € D. We have
proved that if A, B € D with A C B, then B\ A € D.

4. Let (En)n>1 be a sequence in F; ® Fp with E,, 1 E. In par-
ticular, F, C En4q for all n > 1, and therefore 15, < 1g,,,.
Moreover, E = UiflEn Let w € Q1 x Q9. If w € E, there
exists N > 1 such that w € Ey. For all n > N, we have
1g,(w) =1 =1gw). fw ¢ E, then 1, (w) = 0 = 1g(w),
for all n > 1. In any case, 1g, (w) — 1g(w), and consequently
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1g, 1 1g. Given wi € Qi, we also have 1g, (w1,.) T 1g(wi,.).
From the monotone convergence theorem (19), we obtain:

/ 1En(w17x)dﬂ2(x) T 1E(W1,$)d/j,2(x)
Qo Qs

ie. g (w1) 7 Pg(wr). We conclude that @p, T Ppg.

5. Suppose that us is a finite measure. From 2., F; II 7, C D,
and in particular Q1 x Qo € D. From 3., whenever A, B € D
are such that A C B, we have B\ A € D. Let (E,)n>1 be a
sequence of elements of D, such that E, T E. For all n > 1,
®p  is an Fi-measurable map. Moreover from 4., &g T @g.
In particular, &g = sup,,~; Pr, and we conclude that ¢ is
measurable with respect to F;. So E € D. We have proved that
D is a Dynkin system on 27 x Qs.

6. Suppose pio is a finite measure. From 5., D is a Dynkin system on
0y x Q5. From 2., we have F; I Fo C D. The set of measurable
rectangles F; II > being closed under finite intersection, from
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the Dynkin system theorem (1), we see that D also contains the
o-algebra generated by Fi II F3, i.e.

FL®F 2 o(FI 1L F) CD

We conclude that for all £ € F; ® F2, F is an element of D, or
equivalently, the map ®g : (1, F1) — (R, B(R)) is measurable.

7. For all n > 1, puB(Q2) = p2(Qy) < +o0o0. So pf is a finite
measure. It follows from 6. that for all £ € F; ® F5, the map
®% defined by:

n JAN n
) 2 [ Lp(n)dus(z)
Q2
is measurable with respect to F;. From definition (45), we have:
Bpen) = [ oy (@)Le(ordus(z)
Qo

Since Q5 T €2, we have lgp T lg, = 1 and consequently,
log()1e(wi,.) T 1g(wi,.). From the monotone convergence
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theorem (19), we obtain:
/ 195»(x)1E(w1,x)du2(x) T/ 1g(wy, x)dus(x)
Qg Q2

ie. ®%(w1) 1 Pg(wy), for all wy € Q. So @} 1 Pp.

8. From 7., each ®% is Fj-measurable and &g = sup,,~; ®%. So
d g is Fi-measurable, for all E € F; @ Fo.

9. Let s =Y. | a;1p, be a simple function on (2 x Qa, F1 @ F2).
From theorem (29), the map x — s(wq, x) is Fo-measurable, for
all w1 € ;. It is also non-negative. It follows that the integral
fQ s(w1, z)dps () is well-defined, for all wy € Q1. Moreover:

/s(wl, Yo (x Zaz/ 1g, (w1, z)dpz(z)
Qo

Since E; € F; ® Fy, from 8., each w — sz 1, (w, z)dps () is
Fi-measurable. We conclude that w — fQ2 s(w, x)dps () is also

www.probability.net


http://www.probability.net

Solutions to Exercises 37

10.

Fi-measurable.

Let f: (21 x Qa,F1 ® Fz) — [0,+00] be a non-negative and
measurable map. From theorem (18), there exists a sequence
(Sn)n>1 of simple functions on (1 x Q9, F1 @ Fa) such that
$n T f. In particular for all w € Q1, sp(w,.) T f(w,.). From the
monotone convergence theorem (19), we obtain:

[ sulwdddin@) 1 [ 0)dus(a)

Qo Q2

However, from 9., each w —>fQ2 Sn(w, x)dus(x) is Fr-measurable.
We conclude that w — sz f(w, x)dus(x) is also measurable with
respect to F; and B(R). This proves theorem (30).

Exercise 4
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Exercise 5. Let f : (IL;icsQ;, ®ierFi) — [0,+00] be a non-negative
and measurable map. Define £ = HieI\{io}Qi and By = §;,. Let
&1 = ®iengioyFi and & = F;,. Using exercise (10) of Tutorial 6,
having identified Fy x Fs and I1;¢;€);, we have:

®ic1Fi = (Qien (i} Fi) © Fig

ie. ®ierF; = & ® E. It follows that the map f, viewed as a map
defined on E; x Fs, is measurable with respect to & ® &. pg being
a o-finite measure on (FEs, &), from theorem (30), we see that:

w— / f (@, 2)dpo )
iy

is measurable with respect to & and B(R). In other words, it is
measurable with respect to ®;er\ (i,3Fi and B(R). Exercise 5
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Exercise 6.

1. Let E € F1 ® F5. The characteristic function 1g is measurable
with respect to 71 ® F» and non-negative. us being a o-finite
measure on (g, F2), applying theorem (30), we see that:

r— [ 1gp(z,y)dua(y)
Qo

is measurable with respect to F; and B(R). It is also non-
negative. Hence, the integral:

mon® [ ([ 2 Lo )dia(s) ) i 2)

Q1
is well-defined, for all £ € F; ® Fa. So pu1 ® us is a well-defined
map on F; ® Fa, with values in [0, +00].

2. Suppose E = (). Then 15 = 0 and p11 @ pa(E) = 0. Let (Ep)n>1
be a sequence of pairwise disjoint elements of F; ® Fa. Let
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E = ¢/ E,. Then, 1z = E:iol 1g,. From the monotone
convergence theorem (19), for all z € 4, we have:

+oo
/ Le(z, y)dus(y Z/ g, (@, y)dp2(y)
Qo

Applying the monotone convergence theorem once more:

+o0
e p(E) =3 / ( [ 1e. ety ) dino)
ie.
i ® pa(E) =Y p1 @ pa(E,)
We have proved that p; ® pe is_a measure on F; ® Fo.
3. Let E = A x B € F; Il 75 be a measurable rectangle of F; and
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Fo. For all x € 1, we have:

/ 1 (z, y)dua (y) = / 1a@) L5 (y)dua(y) = pa(B)1a(x)
Q2

Qo
It follows that:

1 @ na(E) = [ ua(B)La@)da (o) = i (A)a(B)

1951

Exercise 6
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Exercise 7.

1. By assumption, if E = Ax B € F;11F; is a measurable rectangle
of 71 and Fa, then py @ p2(E) = pi(A)uz(B) = p(E), ie.
11 ® po and p coincide on Fy II Fo. Let E € F1 II F5. Then
En(QF x 2F) is still a measurable rectangle, i.e. an element of
F1 1 Fo. Hence p1 @ pe(EN (27 x QF)) = p(E N (QF x QF)).
It follows that £ € D,,. So F1 I F5 C D,,.

2. Wy xQo e F I F, CD,. Let E,F € D,, be such that £ C F.
Then FF = EW (F \ E), and consequently:

p(EN(Q) <)) = p(EN(Q xQ3))+p((FAE)N(QT x23)) (2)

with a similar expression for p; ®us. Since E and F are elements
of D,,, we also have:

H(F 0 (9 % Q5)) = i ® pa(F 1 (R x Q5))
and:

(BN (@QF x 95)) = 1 © (B0 (QF x 95))
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All the terms involved being finite, it is legitimate to re-arrange
and simplify equation (2) and its counterpart for 1 ® pa, to
obtain:

p((F\E) N (QF x Q7)) = i1 @ pa((F\ E) N (Q7 x 23))

Hence, we see that F/\ E € D,,. Let (E,),>1 be a sequence of
elements of D,,, such that £, T E. For all p > 1, we have:

1(Ep N (QF x Q3)) = p1 ® pa(Ep N (QF x Q3))
From theorem (7), taking the limit as p — 400, we obtain:
(BN (Q x Q3)) = p1 @ p2(E N (2 x Q3))

It follows that E € D,,. We have proved that D,, is a Dynkin
system on €27 x Q.

3. From 1., /1 I F, € D,,. From 2., D, is in fact a Dynkin system
on €23 x Qy. The set of measurable rectangles F; IT F> being
closed under finite intersection, from the Dynkin system theo-
rem (1), we conclude that D,, actually contains the o-algebra
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generated by Fi Il Fo, i.e. F1 @ Fo = o(F1 U Fe) C D,,. Hence,
for all £ € F; ® F2, E is an element of D,,, or equivalently:

(B0 (@) x 98)) = i @ (B (2 x 95))

Since E N (Q7 x Q3) 1 E, using theorem (7) once more, taking
the limit as n — +o00, we obtain u(E) = p1 ® pue(E). This being
true for all £ € F; ® Fa, we have proved that u = p1 ® ps.

4. For all n > 1, let E,, = QF x Q. Then E, T Q1 x Q2, and
furthermore, p11 @ pa(Ey) = 1 (27 ) p2(25) < +00. We conclude
that (Q1 X Q9, F1 ® Fa, 1 @ p2) is a o-finite measure space.

5. For all £ € F; ® Fo, define:

EE (f | Lo, i) ) dials)

Note that this is the same definition as that of p; ® ua(E),
except that the order of integration has been changed. Similarly
to exercise (6), using the monotone convergence theorem (19)

www.probability.net


http://www.probability.net

Solutions to Exercises 45

twice on infinite series, we see that v is a measure on F; ® Fs.
Moreover, for all E = A x B € F; I1 5 measurable rectangle of
F1 and Fa, we have:

v(E) = /Q 11 (A) L5 (W) (y) = o2 (A)pa(B)

So v is another measure on JF; ® Fa, coinciding with p1 ® pe on
the set of measurable rectangles F; 11 F,. From 3., we see that
v = p1 ® pe. We have proved that for all E € F; ® Fa:

1 @ po(E) = / </91 1E(x,y)d,u1($)) dp2(y)

Q2
Hence, as far as defining p1 ® po is concerned, the order of
integration is irrelevant.

Exercise 7
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Exercise 8.

1. (B1,&1,11) and (Ea, &2, 1) being two o-finite measure spaces,
11 ® vy is well-defined as a measure on (E; X F, &1 @ &) (ex-
ercise (6)). From exercise (7), such measure is itself o-finite.
Having identified Ey x By with Q1 x...x Q,,, using exercise (10)
of Tutorial 6, we have:

Fi1@...0Fn=Fiy @ (®iziyFi) =E1 @ E

So v1 ® vy is a o-finite measure on (2 X ... X Q, F1®...QF,).
Let A = A; x...x A, be a measurable rectangle of Fy, ..., F,.
Identifying A with A;, x (ITizi, A;), we have:

v1 @ va(A) = v1(Aig )va(Tliziy As)
Since by assumption, vo(ILizi, A;) = iz, i (A;), we conclude:
v1 ®@va(A) = pa(Ar) ... pn(An)
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2. If n = 2, there exists a measure pu on F; ® Fa, such that for all
measurable rectangle A; x As € Fy 11 Fy, we have:

(A1 x Ag) = pi(Ar)pa(Az)

In fact, from exercise (7), such measure is unique, o-finite and
equal to g1 ® pe. Suppose the following induction hypothesis is
true for n > 2:

Given n o-finite measure spaces (1, F1,141), -5 (R, Fs fin)s
there exists a measure p on (1 X ... X Qp, F1®...Q F,), such
that for all measurable rectangles Ay X ... X Ay, we have:

,u(A1 X ... X An) = ,ul(Al) .. ,un(An)

Moreover, such measure j is o-finite.

Let us prove this induction hypothesis for n+ 1. Hence, suppose
we have n + 1 o-finite measure spaces. Take F; = Q; and
E2 :QQ X ... XQn+1. Let 51 :fl and52:f2®...®fn+1.
Put 1 = pi. From our induction hypothesis, there exists a
o-finite measure v on (Es, &), such that for all measurable
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rectangles As X ... X A, 41, we have:

Z/Q(AQ X ... X An+1) = 'LLQ(AQ) .. .,un+1(An+1)

All the conditions of question 1. are met: we conclude that
11 @y is a o-finite measure on (21 X. .. X Qp41, F1Q...QF,11)
such that for all measurable rectangles A = A3 X ... X A, 41:

v1 @ve(A) = p1(A1) - pny1(Antr)

This proves our induction hypothesis for n + 1.

We have proved that for all n > 2, and o-finite measure spaces
(Q, Fr, 1), ooy (Qny Fn,y lin), there exists a o-finite measure
pwon (21 X ...x N, F1®...0F,), such that for all measur-
able rectangles A = Ay x ... X A, w(A) = p1(A41) ... un(4y).
Note that this is a little bit stronger (u is o-finite !), than what
was required by the actual wording of the question. However
the o-finite property was required to carry out the induction
argument, based on exercises (6) and (7).
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3. Let u and v be two measures on (21 X ... x Q,, F1 ®...QF,),
such that for all measurable rectangles A Al X ... % An.

u(A) = v(A) = pa(Ar) . pn(An)

For all i = 1,...,n, let (Q7),>1 be a sequence of elements of
Fi, such that QF 1 Q;, and p;(QF) < +oo for all p > 1. Define
E,=0x...xQV Then E, T Q1 x...xQ,, and for all p > 1,
w(E,) =v(Ep) < +00 . Define:

D, 2 {AcFi®.. . ®F,: p(ANE,) = v(ANE,)}

Then D, is a Dynkin system on €y x...x ,. Moreover, by as-
sumption, F 1. .. II.F, C D,. The set of measurable rectangles
Fr ... II F, being closed under finite intersection, from the
Dynkin system theorem (1), we see that D, actually contains
the o-algebra generated by F; IT... I F,, i.e.

Fi®..@F, 2c(A1.. .1F,) CD,

www.probability.net


http://www.probability.net

Solutions to Exercises 50

It follows that for all A € F; ® ... ® F,, we have:
wANE,) =v(ANE,)

Using theorem (7), taking the limit as p — +o00, we obtain
w(A) = v(A). This being true for all A € 71 ® ... ®@ F,, we
conclude that p = v. This proves the uniqueness of the measure
pon (1 X...x 0, F1®...0F,), denoted p11 ® ... ® iy, such
that pw(A) = u1(A1)...un(Ay), for all measurable rectangles
A=A x...x A,.

4. The fact that g = 1 ®...® u, is o-finite was actually proved as
part of the induction argument of 2. However, it is very easy to
justify that point directly: if (Q2F),>1 is a sequence of elements
of F; such that QF 1 Q; and p(QF) < +oo for all p > 1, defining
E, = Q7 x...xQF wehave E, T Q1 x...x€,, and furthermore:

1(Ep) = () ... pn () < 400

So p1 @ ... ® py is indeed a o-finite measure.
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5. iy @ (®iziopi) is @ measure on (g X ... x Qp, F1 @ ... @ Fy)
which coincides with u; ®...® p, on the measurable rectangles.
From the uniqueness property proved in 3., the two measures
are therefore equal, i.e. f;) @ (Rizigfti) =1 @ ...  fn.

Exercise 8
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Exercise 9. Showing that definition (63) is legitimate amounts to
proving the existence and uniqueness of a measure p on (R™, B(R™)),
such that for all a; < b;, i € N,,, we have:

p(lar, ba] X . X [an, bu]) = [ (00 — a2) 3)
i=1
For i € N,,, let (Q;, F;, 1;) be the measure space (R, B(R), dx), where
dz is the Lebesgue measure on (R, B(R)). Each (Q;, F;, ;) being o-
finite, from definition (62), there exists a measure pt = 1 ® ... ® py,
on (R",B(R) ® ... ® B(R)), such that for all measurable rectangles
A=A x...x A,, we have:

i(A) = da(Ay) ... da(Ay) (4)

From exercise (18) of Tutorial 6, we have B(R") = B(R)®...®@ B(R).
So (4 is in fact a measure on (R™, B(R™)). Moreover, taking A; of the
form A; = [a;,b;] for a; < b;, we see from (4) that equation (3) is
satisfied. Hence, we have proved the existence of u. Suppose that v
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is another measure on (R", B(R")) satisfying the property of defini-
tion (63). Let C = {[a1,b1] X ... X [an, by] : a; < b;,Vi € N, }. Then C
is closed under finite intersection. Given p > 1, let E, = [-p,p]", and
define:

D, 2 {AcBR") : W(ANE,) = v(ANE,)}
Then D, is a Dynkin system on R", and we have C C D,. From
the Dynkin system theorem (1), we see that D, actually contains the

o-algebra generated by C, i.e. o(C) C D,. However, we claim that
o(C) = B(R"™). Indeed, from:

CCBR)I..IBR)CBR)®...®BR)=BR")
we obtain ¢(C) C B(R™). Furthermore, if we define:
ce {la,b] : a < b,a,be R}

then every open set in R can be expressed as a countable union of
elements of £ (see the proof of theorem (6)), and it is easy to check
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that B(R) = ¢(€). From theorem (26), we have:
BR")=BR)®...9BR)=0c(EI...IIE)

Since any element of E11...11 £ is of the form A; x ... x A, where
each A; is either equal to R = U;:Cﬁ[ ,p|, or is an element of &,
any element of £I1...1I £ can in fact be expressed as a countable
union of elements of C. Hence, EIT... I € C ¢(C) and consequently,
BR") =co(E...1IE) C o(C). We conclude that B(R") = o(C)!,
and finally B(R") C D,. It follows that for all A € B(R"), we
have u(ANE,) = v(AN E,). Using theorem (7), taking the limit as
p — 400, we obtain p(A) = v(A). This being true for all A € B(R"),
we see that = v. We have proved the uniqueness of p.

Exercise 9

I We proved something very similar in exercise (7) of Tutorial 6.
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Exercise 10.

1. For all p > 1, define E, = [-p, p|*. Then, E, T R", and further-
more dz"(E,) = (2p)" < 400, for all p > 1. So dz” is a o-finite
measure on (R", B(R")).

2. Let a; < b; for i € Nyyp, and A = [a1,b1] X ... X [Gntp, Dntp)-

Then, dz" ® da?(A) = da"tP(A) = TP (b; — a;). From the
uniqueness property of definition (63), we conclude that:

Az P = da™ @ daP

Exercise 10
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Exercise 11.

1. From exercise (6) and exercise (7), for all E € F; ® Fa, we have:

mu(E) = [ (f 2 Lo )dia() ) i 2)
together with:

p @ pa(E) = /

Qo

</Ql 1E(x,y)du1(x)) dua(y)

Hence:

/ Lpduy @ 2 =/ (/ lEduz>du1 =/ (/ lEdm)duz
leﬂg Ql QQ QQ Q1

By linearity, it follows that if s = > | a;1p, is a simple func-
tion on (91 x Qa, F1 ® F2), we have:

/ sdpy ® pg z/ (/ sd,ug) duy, = / </ sdm) dpo
Ql XQz Ql Qz QZ Ql
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2. Let f: (Q1 x Qo, F1 @ F2) — [0, +00] be a non-negative and
measurable map. From theorem (18), there exists a sequence
(Sn)n>1 of simple functions on (21 x Qq, F1 @ F2), such that
$n T f. In particular, for all z € Qq, s, (x,.) T f(x,.). From the
monotone convergence theorem (19), for all = € ;, we have:

/Q su(z, v)dpa() 1 | Fzy)dpa(y)

Qo

and applying theorem (19) once more, we obtain:

/Ql(/%sn(x,y)duz(y)) dp () Ql( Q2f(x,y)du2(y)) dys ()

and similarly:

/92(/913n(x,y)du1(x)> dpa(y) 1 92( Qlf(x,y)dul(x)> dusa(y)
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However, from s, T f and the monotone convergence theorem:

/ spdpy @ g 1 Jdpr @
Ql XQQ Ql XQQ

Using 1., for all n > 1, we have:

/ Spdpy @ p2 =/ (/ sndm) dpiy =/ (/ sndul) dpz
Ql XQQ Ql QQ QQ Q1

Hence, taking the limit as n — 400, we obtain:

fafm =, (f, e am = ([, sam) v

This proves theorem (31).

Exercise 11
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Exercise 12.

L.Let f: (2 x...xQ,F1®...0F,) — [0,+c0] be a non-
negative and measurable map. Since (1) is a o-finite measure,
from exercise (5), the map:

Jiiw— f(wax)d,ua(l) (Jf)
Qo(1)

is well-defined on II;4(1)€2;, and measurable w.r. to ®;.,(1)Fi-

2. If Ji : (Hig{g(l)w.’a(k)}Qi,®ig{g(1)7m,g(k)}fi) — [0, +00] is non-
negative and measurable, for 1 < k < n — 2, from exercise (5):

Jet1 :w — / i (w, ) dptg g1y ()
Qo (k+1)

is also well-defined on IT;g o (1),....
respect t0 Qg (o (1),...,0(k+1)}Fi-

o(k+1)}§2i, and measurable with
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1= / .. / fd,ua(l) ce dﬂo(n)
Q QU(U

a(n)

3. The integral:

can be rigorously defined as:

A
I:/ Jn—1d o (n)
Q

o(n)

where J,,_; is given by 1. and 2.

Exercise 12
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Exercise 13.

1. Since f, T f, for all w € I, £,(1)€, we have fy(w,.) T f(w,.).
From the monotone convergence theorem (19), we obtain:

/ folw2)dpo (@ T/ F (@, 2)dpio 1y (@)

Qo(1) Qo(1)
ie. Jf T Jl.

2. Suppose J; 1 Jp, 1 <k <n—2. Forallwelligion),....o(k+1)} )
we have J!(w,.) 1 Jg(w,.). From the monotone convergence
theorem (19), we have:

| i@ [ R adign @)
Qo (k+1) Qo (k41)

ie. J]€+1 T Jk+1.
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3. From 2., J? | 1 J,—1. Again from theorem (19):

/ Jrsfld:uo‘(n) T / Jnfld:uo‘(n)
Q Q

o(n) o(n)

In other words:

/ .. / fpdug(l) ce d,ua(n) T/ .. / fd,ua(l) ce dug(n)
Q Qq(1) Q Q

o(n) a(n) o(1)

4. Forall F € F; ®...® F,, we have:

A

,u(E) = / ce lEd,uU(l) ce d,ug(n)
Qo) 7o)

So p(0) = 0. If (Ep)p>1 is a sequence of pairwise disjoint ele-

ments of F1 @ ... ® F,, and E = WX E;, defining for p > 1,

fp=>" | 1k, we have f, | 1g. It follows from 3.:

J

- /Q folttay - diony T ()

o(n) o (1)
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By linearity, we obtain Y ©_, u(E;) T p(E), or equivalently:

400
p(E) = u(E;)
i=1
We have proved that p is indeed a measure on F; ® ... ® F,.

5. Let E = A; x ... x A, be a measurable rectangle of (F;)ien,, -
Then:

/L(E) = / ].Edlj,g(l) ...d/l,c,(n) :/Ll(Al)/J,n(An)
Qo) /o)

From the uniqueness property of definition (62), it follows that
1 coincide with the product measure p1 ® ... ® u,. Hence, for
all F € F1 ®...® F,, we have:

Q... pn(E) :/ 1edigy - - - ditgn)
Qo) 7o)
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6. From 5., for all F € 71 ® ... ® F,, we have:

/ 1Ed/1,1®...®,un:/ / 1edpgry - Al (n)
Q1 X...xXQ, Q Q

o(n) o (1)

If s is a simple function on (21 X ... x Q,, F1 @ ... ® F,), by
linearity, we obtain:

/ sdpy @ ... Ry = / . sdpig(1y - - - dpig(n)
Q1 X...xQp Q Qa(l)

o(n)

Since any f : (1 X ... X Q, F1 ®...® F,) — [0,+00] non-
negative and measurable, can be approximated from below by
simple functions (theorem (18)), we conclude from the monotone
convergence theorem (19) and question 3., that:

/ fdu1®...®un:/ / fdpo(ry - - dito(n)
Q1 X...xXQ, Q Q

o(n) o (1)
This proves theorem (32).

Exercise 13
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Exercise 14.

1. Suppose f € L'. There exists g € L (2, F, ) such that f =g,
p-a.s. Hence, there exists N € F with pu(N) = 0, such that
f(w) = g(w) for all w € N¢. However, g has values in R. So
|f(w)| < 400 for all w € N¢. Tt follows that |f| < 400 p-a.s.

2. We assume the existence of A C ), such that A ¢ Fand A C N,
for some N € F with u(N) = 0. Since A ¢ F, 14 is not
measurable. However, for all w € N¢, we have 14(w) = 0. So
14 =0, p-a.s. Since 0 € L (2, F, 1), we see that 14 € L.

3. Suppose f € L. As indicated in 2., we have no guarantee that
f be a measurable map. Hence, the integrals [ |f|dp and [ fdu
may not be meaningful.

4. Let f: (2, F) — (R,B(R)) be a measurable map, such that
JIfldp < 4o00. In particular, we have u({|f| = +oc}) = 0
(see exercise (7) of Tutorial 5). Define g = f1y|f/<4o0}. Then,
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f(w) =g(w) for all w € {|f| < +o00}. So f = g p-a.s. However,
g is measurable, with values in R, and such that:

/Igldu=/\f|du<+oo

So g € L (R, F, ), and finally f € L.

5. Suppose f € L' and f = f; p-a.s. for some map f; : Q@ — R.
There exists g € L (2, F, u), such that f = g p-a.s. There
exists N € F with pu(N) = 0, such that f(w) = g(w) for all
w € N¢ Also, there exists N; € F with u(N7) = 0, such that
fw) = fi(w) for all w € Nf. It follows that fi(w) = g(w) for
all w € (N UNq)°. Since u(N UN7) < u(N) + pu(N1) = 0, we
see that f; = g pu-a.s. We conclude that f; € L',

6. Let f € L'. Let g1,92 € LL(Q, F,p) with f = g1 p-a.s. and
f = g2 p-a.s. There exist Ny, Ny € F with u(Ny) = u(N2) =0,
such that f(w) = g1(w) for all w € Nf, and f(w) = g2(w) for
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all w € N§5. So g1(w) = g2(w) for all w € (N1 U N2)¢, and
w(N1UN3) =0. So g1 = g2 p-a.s. and finally [ gidp = [ gadp.

7. For all f € L', we define:

/fdué/gd,u (5)

where ¢ is any element of Lk (Q,F,u) such that f = g p-a.s.
From 6., if g1, 92 € LR (R, F, ) are such that f = g; p-a.s. and
[ = g2 p-as., then [ gidp = [ gadp. So [ fdp is well-defined.
If fe L'NLL(Q,F,p), then [ fdu as defined in (5) coincide
with [ fdu, in its usual sense.

Exercise 14
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Exercise 15.

1. By assumption, f, — f p-a.s. There exists N € F, u(N) =0,
such that f,(w) — f(w) for all w € N¢. Also, for all n > 1,
|fn] < h p-a.s. There exists M,, € F with u(M,) = 0 such that
| fr(w)] < h(w) for all w € MS. Let Ny = N U (Up>1M,,). Then
N; € F, and:

“+o00
p(N1) < p(N)+ > (M) =0
n=1

So (4(N1) = 0. Moreover, for all w € Nf, we have f,(w) — f(w)
and for all n > 1, | fn(w)| < h(w).

2. Since f € L', there exists g € L (2, F, u) such that f = g p-
a.s. There exists N € F with pu(N) = 0, such that f(w) = g(w)
for all w € N°. Similarly, there exists hy € L (9, F, ), and a
set M1 € F with u(M7) = 0, such that h(w) = hy(w) for all w €
(M7)¢. For all n > 1, there exist g, € L5 (2, F,u) and M,, € F
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with p(M,,) = 0 such that g,(w) = fp(w) for all w € MS. Let
Ny = NUM{U(Up>1M,,). Then Ny € F, p1(N2) = 0, and for all
w € N§, we have g(w) = f(w), hi(w) = h(w) and g,(w) = fn(w)
for all n > 1.

3. Let N = N; U Ny where N; and Ny are given by 1. and 2.
respectively. Then N € F, u(N) = 0, and for all w € N¢, we
have g,(w) — g(w) and |g,(w)| < hy(w) for all n > 1.

4. (gnlne)n>1 is a sequence of C-valued (in fact R-valued) mea-
surable maps, such that g,lye(w) — glye(w) for all w € Q.
Moreover, hi1ye is an element of L (Q, F, u) such that for all
n > 1, |gnlye] < hilye. Hence, we can apply the dominated
convergence theorem (23).

5. When f, f, € L', we have |f, — f| € L', and [|f, — fldp is
defined as [ kdu where k is any element of L (€2, F, i) such
that |f, — f| = k p-a.s. In fact, |g, — g| € Li(Q,F,pn) and
|[fn = fI = lgn — gl p-aus. So [ [fn = fldu = [ lgn — gldp.
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6. From 4., and the dominated convergence theorem (23), we have

lim [ 1n¢|gn — gn|dp = 0 and consequently, [ |gn, —g|dp — 0. It
follows from 5. that [ |f, — f|du — 0.

Exercise 15
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Exercise 16.

1. We define A = {w1 € O : [ |f(wi,@)|dp2(z) < +oo}. From
theorem (30), the map ¢ : w; — sz |f (w1, x)|dps2(z) is measur-
able with respect to F; and B(R). It follows that:

A=¢ Y ([~o0,+a]) € Fy

From theorem (31), we have:
([ ol ) daon = [ [l o < -+oc
Ql Qg Ql XQQ
Using exercise (7) (11.) of Tutorial 5, we have 1 (A°) = 0.
2. For all w; € A, we have fQ2 |f (w1, 2)|dpe(xz) < 4o00. From
theorem (29), the map f(w1,.) is measurable with respect to

Fo, for all wy € Fi. f being R-valued, we conclude that for all
w1 € A, f(wl, ) S L%{(Qg,fg,ug).
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3. For all wy € A, the map f(wry,.) lies in L (Q2, Fo, p2). Hence,
= Jq, [ (w1, 2)duz () is well-defined for all wy € A.

4. Ifw € A, then J(w) = I(w) = Jq, f(w,2)dps(x). Hence:

J(w) =1aw) [ fH(w,z)duz(z) — 1a(w) ., f(w,x)dps(x)

Q2
This equation still holds if w ¢ A.

5. Jo, [T(w,2)du2(z) < +oo and [, f~(w,2)dus(z) < +oo, for
allw e A. If w ¢ A, then J(w) = 0. It follows that J(w) € R,
for all w € Q1. From theorem (30), w — [ f*(w,2)du2(2)
and w — fQ2 f~ (w, x)dps(z) are Fr-measurable maps. Further-

more, A € Fi. So 14 is also an Fj-measurable map. From 4.
we conclude that J is itself Fj-measurable.

6. For all w € 1, using 4., we have:

< [ Fraps [ 5w [ (w0l
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and therefore:

/Q1 | J(w)]dp (w) < /Ql </Qz |f(uJ,x)du2(x)> i (w) < +oo

Since J is R-valued and Fj-measurable, J € L} (1, F1, p).
Furthermore, for all w € A, we have J(w) = I(w). Since
11 (A¢) =0, we conclude that J = I pq-a.s.

7. The map = — [, f(2,y)dua(y) is defined for all x € A, but
may not be defined for all x € 2;. Hence, strictly speaking, the
integral le(fQ2 fdps2)duy may not be meaningful. However,
whichever way we choose to extend z — fQ2 fx,y)dusa(y) (the

map I), we have J = I, uy — a.s. where J € LK (Q,F1, ).
Following the previous exercise, we see that I € L', and the
integral le I(x)duq (x) can in fact be defined as:
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8. Since p1(A°) = 0, we have:

o) (L)

Using theorem (31), we conclude that:

/ (1A/ f+d/12) dpy =/ frdu @ po
Q1 Qo Q1 X0

9. Using 4., 8. and its counterpart for f~, we obtain:

J(@)dp (2) =/ frdu @ ps — /Q frdps @ po

(951 Q1 X0 1 X0

In other words:

/Ql < % f(x’y)dMZ(y)> dpy () = /lefdul ® po

10. Suppose that f € Lé(Ql X 927.7:1 ® fg,ul ® ,ug), i.e. we no
longer assume that f is R-valued. Then f = w + iv where
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both u and v are elements of L (21 x Qo, F1 ® Fa, 1 @ pa).
Applying 6. the map w1 — [, u(wi,z)duz(r) and the map
wp — sz v(wi, x)dus(x) are pq-almost surely equal to elements
of LL (1, Fi, 1) (say J, and J, respectively). Furthermore,
from (1) we have:

/Ql</QQU(x,y)duz(y)> dps () = /leqjd“l ® iz
and:

/Ql</92v(x,y)duz(y)> dps () = /lefd“l ® iz

It follows that w; — sz flwi,z)dps(z) is pi-almost surely
equal to J,, +14J, € L5(Q1, F1, 1), and:

/Ql< f(x’y)dﬂ2(y)>dﬂ1($) = /Ql(Ju—i-iJv)dm

Q2
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= Jud,uzl +1 J’Ud/J’].
Ql Q1

-/ ( / 2u<x,y>du2<y>) dpn (2)
i ( / 2v<x,y>du2<y>) dpn (2)

/ udpy @ pz
Ql XQQ

+ Z/ vdpy ® s
Q

1 X Q2

+

=/ fdpr @ o
Q

1 X Q2

This proves equation (1).

11. From 5. of exercise (1), the map 6 is measurable. It follows that
fol:(Q2xQ,Fa®F) — [0,+00] is indeed non-negative and
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measurable. Furthermore, from theorem (31), we have:

fobduy ®puy = /Q < ; foﬁ(wzawl)dul(w1)> dpa(w2)

QQ XQl

-/ ( | Fon,wada (1)) )

Theorem (31) — = / fdpr @
Ql XQQ

12. From 5. of exercise (1), the map 6 is measurable. So f o0 is
itself measurable. Applying 11. to |f| we obtain:

/ |f o 0ldus @ —/ | fl o bdpz @ pu1
QgXQl Q2><Ql

/ |fldp1 ® pe < 400
Q

1 X Q2

So fob € Le(Q x Qi Fo @ Fi e @ pa). If u = Re(f) and
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v = Im(f), using 11. once more, we obtain:

/ fo9duz®u1=/ u™ o fdps @
Q Q

2 X2 2 X

Q

2 X

+i/ vt 0 fOdps @
Q

2 X

Q

2 X

2/ u+dﬂ1®/¢2—/ u”dpn @ po
leﬂz QIXQ2

+i/ U+du1®u2—i/ v du @ po
Q Q

1 X Q2 1 X Q2

=/ Jdpr @ po
leﬂz
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13. Let f € LE(Q1 x Q2, F1 @ Fo, 1 ® pa). From 12. g = fof is
an element of L (Qe x Q1, Fo @ Fi, po @ p1). Applying 10. to
g, it follows that the map wo — le g(wa, z)dpy (x) is pe-almost
surely equal to an element of L&(Q2,Fa, u2). In other words,
the map wy — le f(x,wa)dps () is po-almost surely equal to
an element of Ly (Q2, Fa, p2). Furthermore, we have:

/92< Qlf(x,y)dul(x)) dpa(y) = /92</ng(y,x)d,u1(x)) dpa(y)

From 10. — = / gdio @ 4
Q

2 X

From 12. — = / fdur @ po
Q

1 X Q2

This completes the proof of theorem (33).

Exercise 16
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Exercise 17.

L Let fELE(U x ... xQp, F1®@...0Fn, 1 ®...R f1,). Define
Er = Wize1)$i, B2 = Qo1), €1 = QizeyFi and &2 = Fy1)-
Let v1 = ®jxo(1)p: and vo = pi,(1). Then:

f € LE(Ey X B3, & ® E2,v1 @ 12)

From theorem (33), the map w — ng f(w,z)dva(z) (defined
vy-almost surely and arbitrarily extended on Fy), is vq-almost
surely equal to an element of L (E1, &1, v1). In other words:

Ji(w) 2 /Q F (@, 2) oy ()
o (1)

is almost surely® equal to an element of L¢ (IT;20(1)%)°.

2. Jg41 is a.s. equal to an element of Lé(Hig{g(l)w.ﬁ(kJrl)}Qi).

2A case of sloppy terminology: we are trying to make the whole thing readable.
3A case of sloppy notations.
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3. From 1., Ji(w) = [, o J(w, z)dpgy(x) is almost surely equal
to an element of L&(isp(1)S2), say Ji. Similarly, from 2.,
Jo(w) = [q o Ji(w,z)dp,(2)(x) is almost surely equal to an
element of LC(ng{U(l o(2)1$2), say Jo. By induction, we obtain
amap J, 1 defined on Q,(,), and i, (,)-almost surely equal to

an element of L(Qp(n)), say Jp—1. We define:

/ / fdlffa(l) d,“/o‘(n) _/ jnfldlffa(n)

Qo(n) Qo(1) Qo(n)

This multiple integral is a well-defined complex number. It is
easy to check by induction that which ever choice is made of
Ji,..., Ju_2, the map J,_, is unique up to Ho(n)-almost sure
equality. Hence, this multiple integral is uniquely defined.

4. From theorem (33), we have:

/ Ji(w)d Rito(1) Hi = / fdur @ ... R pn
izo(1)8h Q1 X... X0y
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Following an induction argument, we obtain:

J

/ fdug(l)...d,ug(n):/ fdpu1 ® ... ® uy
Qo'(l) leu.XQn

In—1dpo(n) =/ Jdp @ ... Q pn
Q1 X...XQp

a(n)

i.e.
/.

This solution is not as detailed as it could have been. ..

o(n)

Exercise 17
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