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7. Fubini Theorem
Definition 59 Let (Ω1,F1) and (Ω2,F2) be two measurable spaces.
Let E ⊆ Ω1 × Ω2. For all ω1 ∈ Ω1, we call ω1-section of E in Ω2,
the set:

Eω1 �
= {ω2 ∈ Ω2 : (ω1, ω2) ∈ E}

Exercise 1. Let (Ω1,F1), (Ω2,F2) and (S, Σ) be three measurable
spaces, and f : (Ω1 × Ω2,F1 ⊗ F2) → (S, Σ) be a measurable map.
Given ω1 ∈ Ω1, define:

Γω1 �
= {E ⊆ Ω1 × Ω2 , Eω1 ∈ F2}

1. Show that for all ω1 ∈ Ω1, Γω1 is a σ-algebra on Ω1 × Ω2.

2. Show that for all ω1 ∈ Ω1, F1 �F2 ⊆ Γω1 .

3. Show that for all ω1 ∈ Ω1 and E ∈ F1 ⊗F2, we have Eω1 ∈ F2.

4. Given ω1 ∈ Ω1, show that ω → f(ω1, ω) is measurable.
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5. Show that θ : (Ω2 ×Ω1,F2 ⊗F1) → (Ω1 × Ω2,F1 ⊗F2) defined
by θ(ω2, ω1) = (ω1, ω2) is a measurable map.

6. Given ω2 ∈ Ω2, show that ω → f(ω, ω2) is measurable.

Theorem 29 Let (S, Σ), (Ω1,F1) and (Ω2,F2) be three measurable
spaces. Let f : (Ω1×Ω2,F1⊗F2) → (S, Σ) be a measurable map. For
all (ω1, ω2) ∈ Ω1 × Ω2, the map ω → f(ω1, ω) is measurable w.r. to
F2 and Σ, and ω → f(ω, ω2) is measurable w.r. to F1 and Σ.

Exercise 2. Let (Ωi,Fi)i∈I be a family of measurable spaces with
cardI ≥ 2. Let f : (Πi∈IΩi,⊗i∈IFi) → (E,B(E)) be a measurable
map, where (E, d) is a metric space. Let i1 ∈ I. Put E1 = Ωi1 ,
E1 = Fi1 , E2 = Πi∈I\{i1}Ωi, E2 = ⊗i∈I\{i1}Fi.

1. Explain why f can be viewed as a map defined on E1 × E2.

2. Show that f : (E1 × E2, E1 ⊗ E2) → (E,B(E)) is measurable.
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3. For all ωi1 ∈ Ωi1 , show that the map ω → f(ωi1 , ω) defined on
Πi∈I\{i1}Ωi is measurable w.r. to ⊗i∈I\{i1}Fi and B(E).

Definition 60 Let (Ω,F , μ) be a measure space. (Ω,F , μ) is said to
be a finite measure space, or we say that μ is a finite measure,
if and only if μ(Ω) < +∞.

Definition 61 Let (Ω,F , μ) be a measure space. (Ω,F , μ) is said
to be a σ-finite measure space, or μ a σ-finite measure, if and
only if there exists a sequence (Ωn)n≥1 in F such that Ωn ↑ Ω and
μ(Ωn) < +∞, for all n ≥ 1.

Exercise 3. Let (Ω,F , μ) be a measure space.

1. Show that (Ω,F , μ) is σ-finite if and only if there exists a se-
quence (Ωn)n≥1 in F such that Ω = 
+∞

n=1Ωn, and μ(Ωn) < +∞
for all n ≥ 1.
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2. Show that if (Ω,F , μ) is finite, then μ has values in R+.

3. Show that if (Ω,F , μ) is finite, then it is σ-finite.

4. Let F : R → R be a right-continuous, non-decreasing map.
Show that the measure space (R,B(R), dF ) is σ-finite, where
dF is the Stieltjes measure associated with F .

Exercise 4. Let (Ω1,F1) be a measurable space, and (Ω2,F2, μ2) be
a σ-finite measure space. For all E ∈ F1 ⊗F2 and ω1 ∈ Ω1, define:

ΦE(ω1)
�
=

∫
Ω2

1E(ω1, x)dμ2(x)

Let D be the set of subsets of Ω1 × Ω2, defined by:

D �
= {E ∈ F1 ⊗F2 : ΦE : (Ω1,F1) → (R̄,B(R̄)) is measurable}

1. Explain why for all E ∈ F1 ⊗F2, the map ΦE is well defined.
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2. Show that F1 � F2 ⊆ D.

3. Show that if μ2 is finite, A, B ∈ D and A ⊆ B, then B \A ∈ D.

4. Show that if En ∈ F1 ⊗F2, n ≥ 1 and En ↑ E, then ΦEn ↑ ΦE .

5. Show that if μ2 is finite then D is a Dynkin system on Ω1 ×Ω2.

6. Show that if μ2 is finite, then the map ΦE : (Ω1,F1)→(R̄,B(R̄))
is measurable, for all E ∈ F1 ⊗F2.

7. Let (Ωn
2 )n≥1 in F2 be such that Ωn

2 ↑ Ω2 and μ2(Ωn
2 ) < +∞.

Define μn
2 = μ

Ωn
2

2 = μ2(• ∩ Ωn
2 ). For E ∈ F1 ⊗F2, we put:

Φn
E(ω1)

�
=

∫
Ω2

1E(ω1, x)dμn
2 (x)

Show that Φn
E : (Ω1,F1) → (R̄,B(R̄)) is measurable, and:

Φn
E(ω1) =

∫
Ω2

1Ωn
2
(x)1E(ω1, x)dμ2(x)
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Deduce that Φn
E ↑ ΦE .

8. Show that the map ΦE : (Ω1,F1) → (R̄,B(R̄)) is measurable,
for all E ∈ F1 ⊗F2.

9. Let s be a simple function on (Ω1 × Ω2,F1 ⊗ F2). Show that
the map ω → ∫

Ω2
s(ω, x)dμ2(x) is well defined and measurable

with respect to F1 and B(R̄).

10. Show the following theorem:

Theorem 30 Let (Ω1,F1) be a measurable space, and (Ω2,F2, μ2)
be a σ-finite measure space. Then for all non-negative and measurable
map f : (Ω1 × Ω2,F1 ⊗F2) → [0, +∞], the map:

ω →
∫

Ω2

f(ω, x)dμ2(x)

is measurable with respect to F1 and B(R̄).
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Exercise 5. Let (Ωi,Fi)i∈I be a family of measurable spaces, with
cardI ≥ 2. Let i0 ∈ I, and suppose that μ0 is a σ-finite measure
on (Ωi0 ,Fi0). Show that if f : (Πi∈IΩi,⊗i∈IFi) → [0, +∞] is a non-
negative and measurable map, then:

ω →
∫

Ωi0

f(ω, x)dμ0(x)

defined on Πi∈I\{i0}Ωi, is measurable w.r. to ⊗i∈I\{i0}Fi and B(R̄).

Exercise 6. Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two σ-finite measure
spaces. For all E ∈ F1 ⊗F2, we define:

μ1 ⊗ μ2(E)
�
=

∫
Ω1

(∫
Ω2

1E(x, y)dμ2(y)
)

dμ1(x)

1. Explain why μ1 ⊗ μ2 : F1 ⊗F2 → [0, +∞] is well defined.

2. Show that μ1 ⊗ μ2 is a measure on F1 ⊗F2.
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3. Show that if A × B ∈ F1 � F2, then:

μ1 ⊗ μ2(A × B) = μ1(A)μ2(B)

Exercise 7. Further to ex. (6), suppose that μ : F1 ⊗ F2 → [0, +∞]
is another measure on F1 ⊗ F2 with μ(A × B) = μ1(A)μ2(B), for all
measurable rectangle A× B. Let (Ωn

1 )n≥1 and (Ωn
2 )n≥1 be sequences

in F1 and F2 respectively, such that Ωn
1 ↑ Ω1, Ωn

2 ↑ Ω2, μ1(Ωn
1 ) < +∞

and μ2(Ωn
2 ) < +∞. Define, for all n ≥ 1:

Dn
�
= {E ∈ F1 ⊗F2 : μ(E ∩ (Ωn

1 × Ωn
2 )) = μ1 ⊗ μ2(E ∩ (Ωn

1 × Ωn
2 ))}

1. Show that for all n ≥ 1, F1 � F2 ⊆ Dn.

2. Show that for all n ≥ 1, Dn is a Dynkin system on Ω1 × Ω2.

3. Show that μ = μ1 ⊗ μ2.

4. Show that (Ω1×Ω2,F1⊗F2, μ1⊗μ2) is a σ-finite measure space.
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5. Show that for all E ∈ F1 ⊗F2, we have:

μ1 ⊗ μ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dμ1(x)
)

dμ2(y)

Exercise 8. Let (Ω1,F1, μ1), . . . , (Ωn,Fn, μn) be n σ-finite measure
spaces, n ≥ 2. Let i0 ∈ {1, . . . , n} and put E1 = Ωi0 , E2 = Πi�=i0Ωi,
E1 = Fi0 and E2 = ⊗i�=i0Fi. Put ν1 = μi0 , and suppose that ν2 is
a σ-finite measure on (E2, E2) such that for all measurable rectangle
Πi�=i0Ai ∈ �i�=i0Fi, we have ν2 (Πi�=i0Ai) = Πi�=i0μi(Ai).

1. Show that ν1 ⊗ ν2 is a σ-finite measure on the measure space
(Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) such that for all measurable
rectangles A1 × . . . × An, we have:

ν1 ⊗ ν2(A1 × . . . × An) = μ1(A1) . . . μn(An)

2. Show by induction the existence of a measure μ on F1⊗. . .⊗Fn,
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such that for all measurable rectangles A1 × . . . × An, we have:

μ(A1 × . . . × An) = μ1(A1) . . . μn(An)

3. Show the uniqueness of such measure, denoted μ1 ⊗ . . . ⊗ μn.

4. Show that μ1 ⊗ . . . ⊗ μn is σ-finite.

5. Let i0 ∈ {1, . . . , n}. Show that μi0 ⊗ (⊗i�=i0μi) = μ1 ⊗ . . .⊗ μn.

Definition 62 Let (Ω1,F1, μ1), . . . , (Ωn,Fn, μn) be n σ-finite mea-
sure spaces, with n ≥ 2. We call product measure of μ1, . . . , μn,
the unique measure on F1⊗ . . .⊗Fn, denoted μ1⊗ . . .⊗μn, such that
for all measurable rectangles A1 × . . .×An in F1 � . . .�Fn, we have:

μ1 ⊗ . . . ⊗ μn(A1 × . . . × An) = μ1(A1) . . . μn(An)

This measure is itself σ-finite.
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Exercise 9. Prove that the following definition is legitimate:

Definition 63 We call Lebesgue measure in Rn, n ≥ 1, the
unique measure on (Rn,B(Rn)), denoted dx, dxn or dx1 . . . dxn, such
that for all ai ≤ bi, i = 1, . . . , n, we have:

dx([a1, b1] × . . . × [an, bn]) =
n∏

i=1

(bi − ai)

Exercise 10.

1. Show that (Rn,B(Rn), dxn) is a σ-finite measure space.

2. For n, p ≥ 1, show that dxn+p = dxn ⊗ dxp.

Exercise 11. Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be σ-finite.
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1. Let s be a simple function on (Ω1 × Ω2,F1 ⊗F2). Show that:∫
Ω1×Ω2

sdμ1 ⊗ μ2 =
∫

Ω1

(∫
Ω2

sdμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

sdμ1

)
dμ2

2. Show the following:

Theorem 31 (Fubini) Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two σ-
finite measure spaces. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0, +∞] be a
non-negative and measurable map. Then:∫

Ω1×Ω2

fdμ1 ⊗ μ2 =
∫

Ω1

(∫
Ω2

fdμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

fdμ1

)
dμ2

Exercise 12. Let (Ω1,F1, μ1), . . . , (Ωn,Fn, μn) be n σ-finite measure
spaces, n ≥ 2. Let f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗Fn) → [0, +∞] be a
non-negative, measurable map. Let σ be a permutation of Nn, i.e. a
bijection from Nn to itself.

www.probability.net

http://www.probability.net


Tutorial 7: Fubini Theorem 13

1. For all ω ∈ Πi�=σ(1)Ωi, define:

J1(ω)
�
=

∫
Ωσ(1)

f(ω, x)dμσ(1)(x)

Explain why J1 : (Πi�=σ(1)Ωi,⊗i�=σ(1)Fi) → [0, +∞] is a well
defined, non-negative and measurable map.

2. Suppose Jk : (Πi�∈{σ(1),...,σ(k)}Ωi,⊗i�∈{σ(1),...,σ(k)}Fi) → [0, +∞]
is a non-negative, measurable map, for 1 ≤ k < n − 2. Define:

Jk+1(ω)
�
=

∫
Ωσ(k+1)

Jk(ω, x)dμσ(k+1)(x)

and show that:

Jk+1 : (Πi�∈{σ(1),...,σ(k+1)}Ωi,⊗i�∈{σ(1),...,σ(k+1)}Fi) → [0, +∞]

is also well-defined, non-negative and measurable.
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3. Propose a rigorous definition for the following notation:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

Exercise 13. Further to ex. (12), Let (fp)p≥1 be a sequence of non-
negative and measurable maps:

fp : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗Fn) → [0, +∞]

such that fp ↑ f . Define similarly:

Jp
1 (ω) �=

∫
Ωσ(1)

fp(ω, x)dμσ(1)(x)

Jp
k+1(ω)

�
=

∫
Ωσ(k+1)

Jp
k (ω, x)dμσ(k+1)(x) , 1 ≤ k < n − 2

1. Show that Jp
1 ↑ J1.

2. Show that if Jp
k ↑ Jk, then Jp

k+1 ↑ Jk+1, 1 ≤ k < n − 2.
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3. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fpdμσ(1) . . . dμσ(n) ↑
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

4. Show that the map μ : F1 ⊗ . . . ⊗Fn → [0, +∞], defined by:

μ(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n)

is a measure on F1 ⊗ . . . ⊗Fn.

5. Show that for all E ∈ F1 ⊗ . . . ⊗Fn, we have:

μ1 ⊗ . . . ⊗ μn(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n)

6. Show the following:
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Theorem 32 Let (Ω1,F1, μ1), . . . , (Ωn,Fn, μn) be n σ-finite mea-
sure spaces, with n ≥ 2. Let f : (Ω1×. . .×Ωn,F1⊗. . .⊗Fn) → [0, +∞]
be a non-negative and measurable map. let σ be a permutation of Nn.
Then:∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

Exercise 14. Let (Ω,F , μ) be a measure space. Define:

L1 �
= {f : Ω → R̄ , ∃g ∈ L1

R(Ω,F , μ) , f = g μ-a.s.}
1. Show that if f ∈ L1, then |f | < +∞, μ-a.s.

2. Suppose there exists A ⊆ Ω, such that A �∈ F and A ⊆ N for
some N ∈ F with μ(N) = 0. Show that 1A ∈ L1 and 1A is not
measurable with respect to F and B(R̄).

3. Explain why if f ∈ L1, the integrals
∫ |f |dμ and

∫
fdμ may not

be well defined.
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4. Suppose that f : (Ω,F) → (R̄,B(R̄)) is a measurable map with∫ |f |dμ < +∞. Show that f ∈ L1.

5. Show that if f ∈ L1 and f = f1 μ-a.s. then f1 ∈ L1.

6. Suppose that f ∈ L1 and g1, g2 ∈ L1
R(Ω,F , μ) are such that

f = g1 μ-a.s. and f = g2 μ-a.s.. Show that
∫

g1dμ =
∫

g2dμ.

7. Propose a definition of the integral
∫

fdμ for f ∈ L1 which
extends the integral defined on L1

R(Ω,F , μ).

Exercise 15. Further to ex. (14), Let (fn)n≥1 be a sequence in L1,
and f, h ∈ L1, with fn → f μ-a.s. and for all n ≥ 1, |fn| ≤ h μ-a.s..

1. Show the existence of N1 ∈ F , μ(N1) = 0, such that for all
ω ∈ N c

1 , fn(ω) → f(ω), and for all n ≥ 1, |fn(ω)| ≤ h(ω).

2. Show the existence of gn, g, h1 ∈ L1
R(Ω,F , μ) and N2 ∈ F ,

μ(N2) = 0, such that for all ω ∈ N c
2 , g(ω) = f(ω), h(ω) = h1(ω),

and for all n ≥ 1, gn(ω) = fn(ω).
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3. Show the existence of N ∈ F , μ(N) = 0, such that for all
ω ∈ N c, gn(ω) → g(ω), and for all n ≥ 1, |gn(ω)| ≤ h1(ω).

4. Show that the Dominated Convergence Theorem can be applied
to gn1Nc , g1Nc and h11Nc .

5. Recall the definition of
∫ |fn − f |dμ when f, fn ∈ L1.

6. Show that
∫ |fn − f |dμ → 0.

Exercise 16. Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two σ-finite mea-
sure spaces. Let f be an element of L1

R(Ω1 × Ω2,F1 ⊗ F2, μ1 ⊗ μ2).
Let θ : (Ω2 × Ω1,F2 ⊗F1) → (Ω1 × Ω2,F1 ⊗F2) be the map defined
by θ(ω2, ω1) = (ω1, ω2) for all (ω2, ω1) ∈ Ω2 × Ω1.

1. Let A = {ω1 ∈ Ω1 :
∫
Ω2

|f(ω1, x)|dμ2(x) < +∞}. Show that
A ∈ F1 and μ1(Ac) = 0.

2. Show that f(ω1, .) ∈ L1
R(Ω2,F2, μ2) for all ω1 ∈ A.
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3. Show that Ī(ω1) =
∫
Ω2

f(ω1, x)dμ2(x) is well defined for all
ω1 ∈ A. Let I be an arbitrary extension of Ī, on Ω1.

4. Define J = I1A. Show that:

J(ω) = 1A(ω)
∫

Ω2

f+(ω, x)dμ2(x) − 1A(ω)
∫

Ω2

f−(ω, x)dμ2(x)

5. Show that J is F1-measurable and R-valued.

6. Show that J ∈ L1
R(Ω1,F1, μ1) and that J = I μ1-a.s.

7. Propose a definition for the integral:∫
Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x)

8. Show that
∫
Ω1

(1A

∫
Ω2

f+dμ2)dμ1 =
∫
Ω1×Ω2

f+dμ1 ⊗ μ2.
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9. Show that:∫
Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x) =
∫

Ω1×Ω2

fdμ1 ⊗ μ2 (1)

10. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗F2, μ1 ⊗ μ2), then the map

ω1 → ∫
Ω2

f(ω1, y)dμ2(y) is μ1-almost surely equal to an element
of L1

C(Ω1,F1, μ1), and furthermore that (1) is still valid.

11. Show that if f : (Ω1 × Ω2,F1 ⊗ F2) → [0, +∞] is non-negative
and measurable, then f ◦θ is non-negative and measurable, and:∫

Ω2×Ω1

f ◦ θdμ2 ⊗ μ1 =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

12. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, μ1 ⊗ μ2), then f ◦ θ is

an element of L1
C(Ω2 × Ω1,F2 ⊗F1, μ2 ⊗ μ1), and:∫

Ω2×Ω1

f ◦ θdμ2 ⊗ μ1 =
∫

Ω1×Ω2

fdμ1 ⊗ μ2
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13. Show that if f ∈ L1
C(Ω1 × Ω2,F1 ⊗F2, μ1 ⊗ μ2), then the map

ω2 → ∫
Ω1

f(x, ω2)dμ1(x) is μ2-almost surely equal to an element
of L1

C(Ω2,F2, μ2), and furthermore:∫
Ω2

(∫
Ω1

f(x, y)dμ1(x)
)

dμ2(y) =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

Theorem 33 Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two σ-finite mea-
sure spaces. Let f ∈ L1

C(Ω1 × Ω2,F1 ⊗F2, μ1 ⊗ μ2). Then, the map:

ω1 →
∫

Ω2

f(ω1, x)dμ2(x)

is μ1-almost surely equal to an element of L1
C(Ω1,F1, μ1) and:∫

Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x) =
∫

Ω1×Ω2

fdμ1 ⊗ μ2
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Furthermore, the map:

ω2 →
∫

Ω1

f(x, ω2)dμ1(x)

is μ2-almost surely equal to an element of L1
C(Ω2,F2, μ2) and:∫

Ω2

(∫
Ω1

f(x, y)dμ1(x)
)

dμ2(y) =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

Exercise 17. Let (Ω1,F1, μ1),. . . ,(Ωn,Fn, μn) be n σ-finite measure
spaces, n ≥ 2. Let f ∈ L1

C(Ω1× . . .×Ωn,F1⊗ . . .⊗Fn, μ1⊗ . . .⊗μn).
Let σ be a permutation of Nn.

1. For all ω ∈ Πi�=σ(1)Ωi, define:

J1(ω)
�
=

∫
Ωσ(1)

f(ω, x)dμσ(1)(x)

Explain why J1 is well defined and equal to an element of
L1

C(Πi�=σ(1)Ωi,⊗i�=σ(1)Fi,⊗i�=σ(1)μi), ⊗i�=σ(1)μi-almost surely.
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2. Suppose 1 ≤ k < n− 2 and that J̄k is well defined and equal to
an element of:

L1
C(Πi�∈{σ(1),...,σ(k)}Ωi,⊗i�∈{σ(1),...,σ(k)}Fi,⊗i�∈{σ(1),...,σ(k)}μi)

⊗i�∈{σ(1),...,σ(k)}μi-almost surely. Define:

Jk+1(ω)
�
=

∫
Ωσ(k+1)

J̄k(ω, x)dμσ(k+1)(x)

What can you say about Jk+1.

3. Show that: ∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

is a well defined complex number. (Propose a definition for it).

4. Show that:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n) =
∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn
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Solutions to Exercises
Exercise 1.

1. Let ω1 ∈ Ω1. The ω1-section of Ω1 × Ω2 in Ω2, is equal to
Ω2 ∈ F2. So Ω1×Ω2 ∈ Γω1 . Suppose E ∈ Γω1 . Then Eω1 ∈ F2.
F2 being closed under complementation, (Eω1)c ∈ F2. How-
ever, given ω2 ∈ Ω2, ω2 ∈ (Eω1)c is equivalent to (ω1, ω2) �∈ E,
i.e. (ω1, ω2) ∈ Ec. So (Eω1)c = (Ec)ω1 . Hence, we see that
(Ec)ω1 ∈ F2. It follows that Ec ∈ Γω1 , which is therefore closed
under complementation. Let (En)n≥1 be a sequence of elements
of Γω1 . Let E = ∪+∞

n=1En. For all n ≥ 1, (En)ω1 ∈ F2. F2 be-
ing closed under countable union, ∪+∞

n=1(En)ω1 ∈ F2. However,
given ω2 ∈ Ω2, ω2 ∈ ∪+∞

n=1(En)ω1 is equivalent to the existence
of n ≥ 1, such that (ω1, ω2) ∈ En. Hence, it is equivalent to
(ω1, ω2) ∈ ∪+∞

n=1En = E. So ∪+∞
n=1(En)ω1 = Eω1 , and we see

that Eω1 ∈ F2. It follows that E ∈ Γω1 , which is therefore
closed under countable union. We have proved that Γω1 is a
σ-algebra on Ω1 × Ω2.
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2. Let ω1 ∈ Ω1, and E = A × B ∈ F1 � F2 be a measurable
rectangle of F1 and F2. Suppose ω1 ∈ A. Then (ω1, ω2) ∈ E,
if and only if ω2 ∈ B. So Eω1 = B ∈ F2. Suppose ω1 �∈ A.
Then for all ω2 ∈ Ω2, (ω1, ω2) �∈ E. So Eω1 = ∅ ∈ F2. In any
case, Eω1 ∈ F2. It follows that E ∈ Γω1 . We have proved that
F1 � F2 ⊆ Γω1 .

3. From F1 � F2 ⊆ Γω1 and the fact that Γω1 is a σ-algebra on
Ω1×Ω2, we conclude that F1⊗F2 = σ(F1 �F2) ⊆ Γω1 . Hence,
for all ω1 ∈ Ω1 and E ∈ F1 ⊗ F2, E is an element of Γω1 , or
equivalently, Eω1 ∈ F2.

4. Let f : (Ω1×Ω2,F1⊗F2) → (S, Σ) be a measurable map, where
(S, Σ) is a measurable space. Let ω1 ∈ Ω1, and φ : Ω2 → S be
the partial map ω → f(ω1, ω). Let B ∈ Σ. Then {f ∈ B} is
an element of F1 ⊗ F2. Using 3. it follows that the ω1-section
{f ∈ B}ω1 of {f ∈ B} is an element of F2. However, we have:

{f ∈ B}ω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ {f ∈ B}}
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= {ω2 ∈ Ω2 : f(ω1, ω2) ∈ B}
= {ω2 ∈ Ω2 : φ(ω2) ∈ B}
= {φ ∈ B}

Hence we see that {φ ∈ B} ∈ F2. This being true for all B ∈ Σ,
we conclude that φ is measurable. This shows that the map
ω → f(ω1, ω) is measurable.

5. Let θ : (Ω2 × Ω1,F2 ⊗F1) → (Ω1 × Ω2,F1 ⊗F2) be defined by
θ(ω2, ω1) = (ω1, ω2). From theorem (28), in order to show that
θ is measurable, it is sufficient to prove that each coordinate
mapping θ1 : (ω2, ω1) → ω1 and θ2 : (ω2, ω1) → ω2 is measur-
able. This is indeed the case, since for all A1 ∈ F1 we have
θ−1
1 (A1) = Ω2 × A1 ∈ F2 ⊗ F1, and for all A2 ∈ F2 we have

θ−1
2 (A2) = A2 × Ω1 ∈ F2 ⊗F1. So θ is measurable.

6. Let ω2 ∈ Ω2. Let g : (Ω2 × Ω1,F2 ⊗ F1) → (S, Σ) be the map
defined by g = f ◦ θ. Having proved in 5. that θ is measurable,
since f is itself measurable, g is a measurable map. Applying 4.
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to g, it follows that the map ω → g(ω2, ω) is measurable with
respect to F1 and Σ. In other words, the map ω → f(ω, ω2) is
measurable with respect to F1 and Σ. This completes the proof
of theorem (29).

Exercise 1
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Exercise 2.

1. There is an obvious bijection Φ between E1 × E2 and Πi∈IΩi,
defined by Φ(ω1, ω2)(i1) = ω1, and Φ(ω1, ω2)(i) = ω2(i) for
i �= i1. The two sets E1×E2 and Πi∈IΩi can therefore identified,
and f can be viewed as a map defined on E1 × E2.

2. Having identified E1 × E2 and Πi∈IΩi, using exercise (10) of
Tutorial 6 for the partition I = {i1} 
 (I \ {i1}), we obtain
⊗i∈IFi = E1 ⊗ E2. So f : (E1 × E2, E1 ⊗ E2) → (E,B(E)) is
measurable.

3. From 2. and theorem (29), given ω1 ∈ E1, the map ω → f(ω1, ω)
defined on E2, is measurable with respect to E2 and B(E). In
other words, given ωi1 ∈ Ωi1 , the map ω → f(ωi1 , ω) defined on
Πi∈I\{i1}Ωi, is measurable w.r. to ⊗i∈I\{i1}Fi and B(E).

Exercise 2
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Exercise 3.

1. Suppose there exists a sequence (Ωn)n≥1 of pairwise disjoint
elements of F , such that Ω = 
+∞

n=1Ωn and μ(Ωn) < +∞ for all
n ≥ 1. Define An = 
n

k=1Ωk, for all n ≥ 1. Then:

μ(An) =
n∑

k=1

μ(Ωk) < +∞

and furthermore, An ↑ Ω. So (Ω,F , μ) is σ-finite. Conversely,
suppose (Ω,F , μ) is σ-finite. Let (An)n≥1 be a sequence in F ,
such that An ↑ Ω and μ(An) < +∞ for all n ≥ 1. Define
Ω1 = A1, and Ωn = An \An−1 for all n ≥ 2. Then, (Ωn)n≥1 is a
sequence of pairwise disjoint elements of F . Since Ωn ⊆ An for
all n ≥ 1, we have μ(Ωn) ≤ μ(An) < +∞. Given ω ∈ Ω, since
Ω = ∪+∞

n=1An, there exists n ≥ 1 such that ω ∈ An. Let p be the
smallest of such n. Then ω ∈ Ap \ Ap−1 if p ≥ 2, or ω ∈ A1. In
any case, ω ∈ Ωp. Hence, we see that Ω = ∪+∞

n=1Ωn and finally
Ω = 
+∞

n=1Ωn. We conclude that (Ω,F , μ) is σ-finite, if and only
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if there exists a sequence (Ωn)n≥1 of pairwise disjoint elements
of F , such that Ω = 
+∞

n=1Ωn and μ(Ωn) < +∞ for all n ≥ 1.

2. Suppose (Ω,F , μ) is finite. Then μ(Ω) < +∞. For all A ∈ F ,
since A ⊆ Ω, μ(A) ≤ μ(Ω) < +∞. So μ takes values in R+.

3. Suppose (Ω,F , μ) is finite. Then μ(Ω) < +∞. Define Ωn = Ω
for all n ≥ 1. Then (Ωn)n≥1 is a sequence in F such that Ωn ↑ Ω
and μ(Ωn) < +∞ for all n ≥ 1. So (Ω,F , μ) is σ-finite.

4. Take Ωn =]−n, n] for all n ≥ 1. Then, Ωn ⊆ Ωn+1 and we
have R = ∪+∞

n=1Ωn. So Ωn ↑ R. Moreover, by definition of
the Stieltjes measure (20), dF (Ωn) = F (n) − F (−n) ∈ R+. In
particular, dF (Ωn) < +∞ for all n ≥ 1. We conclude that
(R,B(R), dF ) is a σ-finite measure space.

Exercise 3
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Exercise 4.

1. Let E ∈ F1⊗F2. The characteristic function 1E is non-negative
and measurable with respect to F1⊗F2. From theorem (29), for
all ω1 ∈ Ω1, the partial function x → 1E(ω1, x) is measurable
with respect to F2. It is also non-negative. It follows that
the integral

∫
Ω2

1E(ω1, x)dμ2(x) is well-defined, for all ω1 ∈ Ω1.
Hence, we see that ΦE is a well-defined map on Ω1.

2. Let E = A ×B ∈ F1 �F2 be a measurable rectangle of F1 and
F2. For all ω1 ∈ Ω1, we have:

ΦE(ω1) =
∫

Ω2

1A(ω1)1B(x)dμ2(x) = μ2(B)1A(ω1)

Since A ∈ F1, the map 1A is F1-measurable, and consequently
ΦE = μ2(B)1A is F1-measurable. Hence, we see that E ∈ D.
We have proved that F1 � F2 ⊆ D.

3. Suppose μ2 is a finite measure. Let A, B ∈ D with A ⊆ B. For
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all ω1 ∈ Ω1, from 1B = 1A + 1B\A, we obtain:∫
Ω2

1B(ω1, x)dμ2(x) =
∫

Ω2

1A(ω1, x)dμ2(x)+
∫

Ω2

1B\A(ω1, x)dμ2(x)

i.e. ΦB(ω1) = ΦA(ω1) + ΦB\A(ω1). μ2 being a finite measure,
all ΦE ’s take values in R+. Hence, it is legitimate to write:

ΦB\A = ΦB − ΦA

Since A, B ∈ D, both ΦA and ΦB are F1-measurable. We con-
clude that ΦB\A is F1-measurable, and B \ A ∈ D. We have
proved that if A, B ∈ D with A ⊆ B, then B \ A ∈ D.

4. Let (En)n≥1 be a sequence in F1 ⊗ F2 with En ↑ E. In par-
ticular, En ⊆ En+1 for all n ≥ 1, and therefore 1En ≤ 1En+1.
Moreover, E = ∪+∞

n=1En. Let ω ∈ Ω1 × Ω2. If ω ∈ E, there
exists N ≥ 1 such that ω ∈ EN . For all n ≥ N , we have
1En(ω) = 1 = 1E(ω). If ω �∈ E, then 1En(ω) = 0 = 1E(ω),
for all n ≥ 1. In any case, 1En(ω) → 1E(ω), and consequently
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1En ↑ 1E. Given ω1 ∈ Ω1, we also have 1En(ω1, .) ↑ 1E(ω1, .).
From the monotone convergence theorem (19), we obtain:∫

Ω2

1En(ω1, x)dμ2(x) ↑
∫

Ω2

1E(ω1, x)dμ2(x)

i.e. ΦEn(ω1) ↑ ΦE(ω1). We conclude that ΦEn ↑ ΦE .

5. Suppose that μ2 is a finite measure. From 2., F1 � F2 ⊆ D,
and in particular Ω1 × Ω2 ∈ D. From 3., whenever A, B ∈ D
are such that A ⊆ B, we have B \ A ∈ D. Let (En)n≥1 be a
sequence of elements of D, such that En ↑ E. For all n ≥ 1,
ΦEn is an F1-measurable map. Moreover from 4., ΦEn ↑ ΦE .
In particular, ΦE = supn≥1 ΦEn and we conclude that ΦE is
measurable with respect to F1. So E ∈ D. We have proved that
D is a Dynkin system on Ω1 × Ω2.

6. Suppose μ2 is a finite measure. From 5., D is a Dynkin system on
Ω1 ×Ω2. From 2., we have F1 �F2 ⊆ D. The set of measurable
rectangles F1 � F2 being closed under finite intersection, from
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the Dynkin system theorem (1), we see that D also contains the
σ-algebra generated by F1 �F2, i.e.

F1 ⊗F2
�
= σ(F1 � F2) ⊆ D

We conclude that for all E ∈ F1 ⊗F2, E is an element of D, or
equivalently, the map ΦE : (Ω1,F1) → (R̄,B(R̄)) is measurable.

7. For all n ≥ 1, μn
2 (Ω2) = μ2(Ωn

2 ) < +∞. So μn
2 is a finite

measure. It follows from 6. that for all E ∈ F1 ⊗ F2, the map
Φn

E defined by:

Φn
E(ω1)

�
=

∫
Ω2

1E(ω1, x)dμn
2 (x)

is measurable with respect to F1. From definition (45), we have:

Φn
E(ω1) =

∫
Ω2

1Ωn
2
(x)1E(ω1, x)dμ2(x)

Since Ωn
2 ↑ Ω2, we have 1Ωn

2
↑ 1Ω2 = 1 and consequently,

1Ωn
2
(.)1E(ω1, .) ↑ 1E(ω1, .). From the monotone convergence
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theorem (19), we obtain:∫
Ω2

1Ωn
2
(x)1E(ω1, x)dμ2(x) ↑

∫
Ω2

1E(ω1, x)dμ2(x)

i.e. Φn
E(ω1) ↑ ΦE(ω1), for all ω1 ∈ Ω1. So Φn

E ↑ ΦE .

8. From 7., each Φn
E is F1-measurable and ΦE = supn≥1 Φn

E . So
ΦE is F1-measurable, for all E ∈ F1 ⊗F2.

9. Let s =
∑n

i=1 αi1Ei be a simple function on (Ω1×Ω2,F1⊗F2).
From theorem (29), the map x → s(ω1, x) is F2-measurable, for
all ω1 ∈ Ω1. It is also non-negative. It follows that the integral∫
Ω2

s(ω1, x)dμ2(x) is well-defined, for all ω1 ∈ Ω1. Moreover:
∫

Ω2

s(ω1, x)dμ2(x) =
n∑

i=1

αi

∫
Ω2

1Ei(ω1, x)dμ2(x)

Since Ei ∈ F1 ⊗ F2, from 8., each ω → ∫
Ω2

1Ei(ω, x)dμ2(x) is
F1-measurable. We conclude that ω → ∫

Ω2
s(ω, x)dμ2(x) is also
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F1-measurable.

10. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0, +∞] be a non-negative and
measurable map. From theorem (18), there exists a sequence
(sn)n≥1 of simple functions on (Ω1 × Ω2,F1 ⊗ F2) such that
sn ↑ f . In particular for all ω ∈ Ω1, sn(ω, .) ↑ f(ω, .). From the
monotone convergence theorem (19), we obtain:∫

Ω2

sn(ω, x)dμ2(x) ↑
∫

Ω2

f(ω, x)dμ2(x)

However, from 9., each ω→∫
Ω2

sn(ω, x)dμ2(x) is F1-measurable.
We conclude that ω → ∫

Ω2
f(ω, x)dμ2(x) is also measurable with

respect to F1 and B(R̄). This proves theorem (30).

Exercise 4
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Exercise 5. Let f : (Πi∈IΩi,⊗i∈IFi) → [0, +∞] be a non-negative
and measurable map. Define E1 = Πi∈I\{i0}Ωi and E2 = Ωi0 . Let
E1 = ⊗i∈I\{i0}Fi and E2 = Fi0 . Using exercise (10) of Tutorial 6,
having identified E1 × E2 and Πi∈IΩi, we have:

⊗i∈IFi =
(⊗i∈I\{i0}Fi

) ⊗Fi0

i.e. ⊗i∈IFi = E1 ⊗ E2. It follows that the map f , viewed as a map
defined on E1 × E2, is measurable with respect to E1 ⊗ E2. μ0 being
a σ-finite measure on (E2, E2), from theorem (30), we see that:

ω →
∫

Ωi0

f(ω, x)dμ0(x)

is measurable with respect to E1 and B(R̄). In other words, it is
measurable with respect to ⊗i∈I\{i0}Fi and B(R̄). Exercise 5
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Exercise 6.

1. Let E ∈ F1 ⊗F2. The characteristic function 1E is measurable
with respect to F1 ⊗ F2 and non-negative. μ2 being a σ-finite
measure on (Ω2,F2), applying theorem (30), we see that:

x →
∫

Ω2

1E(x, y)dμ2(y)

is measurable with respect to F1 and B(R̄). It is also non-
negative. Hence, the integral:

μ1 ⊗ μ2(E)
�
=

∫
Ω1

(∫
Ω2

1E(x, y)dμ2(y)
)

dμ1(x)

is well-defined, for all E ∈ F1 ⊗F2. So μ1 ⊗μ2 is a well-defined
map on F1 ⊗F2, with values in [0, +∞].

2. Suppose E = ∅. Then 1E = 0 and μ1⊗μ2(E) = 0. Let (En)n≥1

be a sequence of pairwise disjoint elements of F1 ⊗ F2. Let
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E = 
+∞
n=1En. Then, 1E =

∑+∞
n=1 1En . From the monotone

convergence theorem (19), for all x ∈ Ω1, we have:
∫

Ω2

1E(x, y)dμ2(y) =
+∞∑
n=1

∫
Ω2

1En(x, y)dμ2(y)

Applying the monotone convergence theorem once more:

μ1 ⊗ μ2(E) =
+∞∑
n=1

∫
Ω1

(∫
Ω2

1En(x, y)dμ2(y)
)

dμ1(x)

i.e.

μ1 ⊗ μ2(E) =
+∞∑
n=1

μ1 ⊗ μ2(En)

We have proved that μ1 ⊗ μ2 is a measure on F1 ⊗F2.

3. Let E = A ×B ∈ F1 �F2 be a measurable rectangle of F1 and
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F2. For all x ∈ Ω1, we have:∫
Ω2

1E(x, y)dμ2(y) =
∫

Ω2

1A(x)1B(y)dμ2(y) = μ2(B)1A(x)

It follows that:

μ1 ⊗ μ2(E) =
∫

Ω1

μ2(B)1A(x)dμ1(x) = μ1(A)μ2(B)

Exercise 6
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Exercise 7.

1. By assumption, if E = A×B ∈ F1�F2 is a measurable rectangle
of F1 and F2, then μ1 ⊗ μ2(E) = μ1(A)μ2(B) = μ(E), i.e.
μ1 ⊗ μ2 and μ coincide on F1 � F2. Let E ∈ F1 � F2. Then
E ∩ (Ωn

1 ×Ωn
2 ) is still a measurable rectangle, i.e. an element of

F1 � F2. Hence μ1 ⊗ μ2(E ∩ (Ωn
1 × Ωn

2 )) = μ(E ∩ (Ωn
1 × Ωn

2 )).
It follows that E ∈ Dn. So F1 � F2 ⊆ Dn.

2. Ω1 × Ω2 ∈ F1 � F2 ⊆ Dn. Let E, F ∈ Dn be such that E ⊆ F .
Then F = E 
 (F \ E), and consequently:

μ(F∩(Ωn
1×Ωn

2 )) = μ(E∩(Ωn
1×Ωn

2 ))+μ((F \E)∩(Ωn
1×Ωn

2 )) (2)

with a similar expression for μ1⊗μ2. Since E and F are elements
of Dn, we also have:

μ(F ∩ (Ωn
1 × Ωn

2 )) = μ1 ⊗ μ2(F ∩ (Ωn
1 × Ωn

2 ))

and:
μ(E ∩ (Ωn

1 × Ωn
2 )) = μ1 ⊗ μ2(E ∩ (Ωn

1 × Ωn
2 ))
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All the terms involved being finite, it is legitimate to re-arrange
and simplify equation (2) and its counterpart for μ1 ⊗ μ2, to
obtain:

μ((F \ E) ∩ (Ωn
1 × Ωn

2 )) = μ1 ⊗ μ2((F \ E) ∩ (Ωn
1 × Ωn

2 ))

Hence, we see that F \ E ∈ Dn. Let (Ep)p≥1 be a sequence of
elements of Dn, such that Ep ↑ E. For all p ≥ 1, we have:

μ(Ep ∩ (Ωn
1 × Ωn

2 )) = μ1 ⊗ μ2(Ep ∩ (Ωn
1 × Ωn

2 ))

From theorem (7), taking the limit as p → +∞, we obtain:

μ(E ∩ (Ωn
1 × Ωn

2 )) = μ1 ⊗ μ2(E ∩ (Ωn
1 × Ωn

2 ))

It follows that E ∈ Dn. We have proved that Dn is a Dynkin
system on Ω1 × Ω2.

3. From 1., F1 �F2 ⊆ Dn. From 2., Dn is in fact a Dynkin system
on Ω1 × Ω2. The set of measurable rectangles F1 � F2 being
closed under finite intersection, from the Dynkin system theo-
rem (1), we conclude that Dn actually contains the σ-algebra
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generated by F1 �F2, i.e. F1 ⊗F2 = σ(F1 �F2) ⊆ Dn. Hence,
for all E ∈ F1 ⊗F2, E is an element of Dn, or equivalently:

μ(E ∩ (Ωn
1 × Ωn

2 )) = μ1 ⊗ μ2(E ∩ (Ωn
1 × Ωn

2 ))

Since E ∩ (Ωn
1 × Ωn

2 ) ↑ E, using theorem (7) once more, taking
the limit as n → +∞, we obtain μ(E) = μ1⊗μ2(E). This being
true for all E ∈ F1 ⊗F2, we have proved that μ = μ1 ⊗ μ2.

4. For all n ≥ 1, let En = Ωn
1 × Ωn

2 . Then En ↑ Ω1 × Ω2, and
furthermore, μ1⊗μ2(En) = μ1(Ωn

1 )μ2(Ωn
2 ) < +∞. We conclude

that (Ω1 × Ω2,F1 ⊗F2, μ1 ⊗ μ2) is a σ-finite measure space.

5. For all E ∈ F1 ⊗F2, define:

ν(E)
�
=

∫
Ω2

(∫
Ω1

1E(x, y)dμ1(x)
)

dμ2(y)

Note that this is the same definition as that of μ1 ⊗ μ2(E),
except that the order of integration has been changed. Similarly
to exercise (6), using the monotone convergence theorem (19)
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twice on infinite series, we see that ν is a measure on F1 ⊗ F2.
Moreover, for all E = A×B ∈ F1 �F2 measurable rectangle of
F1 and F2, we have:

ν(E) =
∫

Ω2

μ1(A)1B(y)dμ2(y) = μ1(A)μ2(B)

So ν is another measure on F1 ⊗F2, coinciding with μ1 ⊗μ2 on
the set of measurable rectangles F1 � F2. From 3., we see that
ν = μ1 ⊗ μ2. We have proved that for all E ∈ F1 ⊗F2:

μ1 ⊗ μ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dμ1(x)
)

dμ2(y)

Hence, as far as defining μ1 ⊗ μ2 is concerned, the order of
integration is irrelevant.

Exercise 7
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Exercise 8.

1. (E1, E1, ν1) and (E2, E2, ν2) being two σ-finite measure spaces,
ν1 ⊗ ν2 is well-defined as a measure on (E1 × E2, E1 ⊗ E2) (ex-
ercise (6)). From exercise (7), such measure is itself σ-finite.
Having identified E1×E2 with Ω1× . . .×Ωn, using exercise (10)
of Tutorial 6, we have:

F1 ⊗ . . . ⊗Fn = Fi0 ⊗ (⊗i�=i0Fi) = E1 ⊗ E2

So ν1⊗ν2 is a σ-finite measure on (Ω1× . . .×Ωn,F1⊗ . . .⊗Fn).
Let A = A1× . . .×An be a measurable rectangle of F1, . . . , Fn.
Identifying A with Ai0 × (Πi�=i0Ai), we have:

ν1 ⊗ ν2(A) = ν1(Ai0 )ν2(Πi�=i0Ai)

Since by assumption, ν2(Πi�=i0Ai) = Πi�=i0μi(Ai), we conclude:

ν1 ⊗ ν2(A) = μ1(A1) . . . μn(An)
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2. If n = 2, there exists a measure μ on F1 ⊗F2, such that for all
measurable rectangle A1 × A2 ∈ F1 �F2, we have:

μ(A1 × A2) = μ1(A1)μ2(A2)

In fact, from exercise (7), such measure is unique, σ-finite and
equal to μ1 ⊗ μ2. Suppose the following induction hypothesis is
true for n ≥ 2:
Given n σ-finite measure spaces (Ω1,F1, μ1), . . . , (Ωn,Fn, μn),
there exists a measure μ on (Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn), such
that for all measurable rectangles A1 × . . . × An, we have:

μ(A1 × . . . × An) = μ1(A1) . . . μn(An)

Moreover, such measure μ is σ-finite.
Let us prove this induction hypothesis for n+1. Hence, suppose
we have n + 1 σ-finite measure spaces. Take E1 = Ω1 and
E2 = Ω2 × . . . × Ωn+1. Let E1 = F1 and E2 = F2 ⊗ . . . ⊗ Fn+1.
Put ν1 = μ1. From our induction hypothesis, there exists a
σ-finite measure ν2 on (E2, E2), such that for all measurable
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rectangles A2 × . . . × An+1, we have:

ν2(A2 × . . . × An+1) = μ2(A2) . . . μn+1(An+1)

All the conditions of question 1. are met: we conclude that
ν1⊗ν2 is a σ-finite measure on (Ω1× . . .×Ωn+1,F1⊗ . . .⊗Fn+1)
such that for all measurable rectangles A = A1 × . . . × An+1:

ν1 ⊗ ν2(A) = μ1(A1) . . . μn+1(An+1)

This proves our induction hypothesis for n + 1.
We have proved that for all n ≥ 2, and σ-finite measure spaces
(Ω1,F1, μ1), . . . , (Ωn,Fn, μn), there exists a σ-finite measure
μ on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn), such that for all measur-
able rectangles A = A1 × . . . × An, μ(A) = μ1(A1) . . . μn(An).
Note that this is a little bit stronger (μ is σ-finite !), than what
was required by the actual wording of the question. However
the σ-finite property was required to carry out the induction
argument, based on exercises (6) and (7).
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3. Let μ and ν be two measures on (Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn),
such that for all measurable rectangles A = A1 × . . . × An:

μ(A) = ν(A) = μ1(A1) . . . μn(An)

For all i = 1, . . . , n, let (Ωp
i )p≥1 be a sequence of elements of

Fi, such that Ωp
i ↑ Ωi, and μi(Ω

p
i ) < +∞ for all p ≥ 1. Define

Ep = Ωp
1 × . . .×Ωp

n. Then Ep ↑ Ω1 × . . .×Ωn, and for all p ≥ 1,
μ(Ep) = ν(Ep) < +∞ . Define:

Dp
�
= {A ∈ F1 ⊗ . . . ⊗Fn : μ(A ∩ Ep) = ν(A ∩ Ep)}

Then Dp is a Dynkin system on Ω1× . . .×Ωn. Moreover, by as-
sumption, F1� . . .�Fn ⊆ Dp. The set of measurable rectangles
F1 � . . . � Fn being closed under finite intersection, from the
Dynkin system theorem (1), we see that Dp actually contains
the σ-algebra generated by F1 � . . . �Fn, i.e.

F1 ⊗ . . . ⊗Fn
�
= σ(F1 � . . . � Fn) ⊆ Dp
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It follows that for all A ∈ F1 ⊗ . . . ⊗Fn, we have:

μ(A ∩ Ep) = ν(A ∩ Ep)

Using theorem (7), taking the limit as p → +∞, we obtain
μ(A) = ν(A). This being true for all A ∈ F1 ⊗ . . . ⊗ Fn, we
conclude that μ = ν. This proves the uniqueness of the measure
μ on (Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn), denoted μ1 ⊗ . . .⊗μn, such
that μ(A) = μ1(A1) . . . μn(An), for all measurable rectangles
A = A1 × . . . × An.

4. The fact that μ = μ1⊗ . . .⊗μn is σ-finite was actually proved as
part of the induction argument of 2. However, it is very easy to
justify that point directly: if (Ωp

i )p≥1 is a sequence of elements
of Fi such that Ωp

i ↑ Ωi and μ(Ωp
i ) < +∞ for all p ≥ 1, defining

Ep = Ωp
1×. . .×Ωp

n, we have Ep ↑ Ω1×. . .×Ωn, and furthermore:

μ(Ep) = μ1(Ω
p
1) . . . μn(Ωp

n) < +∞
So μ1 ⊗ . . . ⊗ μn is indeed a σ-finite measure.
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5. μi0 ⊗ (⊗i�=i0μi) is a measure on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗Fn)
which coincides with μ1⊗ . . .⊗μn on the measurable rectangles.
From the uniqueness property proved in 3., the two measures
are therefore equal, i.e. μi0 ⊗ (⊗i�=i0μi) = μ1 ⊗ . . . ⊗ μn.

Exercise 8
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Exercise 9. Showing that definition (63) is legitimate amounts to
proving the existence and uniqueness of a measure μ on (Rn,B(Rn)),
such that for all ai ≤ bi, i ∈ Nn, we have:

μ([a1, b1] × . . . × [an, bn]) =
n∏

i=1

(bi − ai) (3)

For i ∈ Nn, let (Ωi,Fi, μi) be the measure space (R,B(R), dx), where
dx is the Lebesgue measure on (R,B(R)). Each (Ωi,Fi, μi) being σ-
finite, from definition (62), there exists a measure μ = μ1 ⊗ . . . ⊗ μn

on (Rn,B(R) ⊗ . . . ⊗ B(R)), such that for all measurable rectangles
A = A1 × . . . × An, we have:

μ(A) = dx(A1) . . . dx(An) (4)

From exercise (18) of Tutorial 6, we have B(Rn) = B(R)⊗ . . .⊗B(R).
So μ is in fact a measure on (Rn,B(Rn)). Moreover, taking Ai of the
form Ai = [ai, bi] for ai ≤ bi, we see from (4) that equation (3) is
satisfied. Hence, we have proved the existence of μ. Suppose that ν
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is another measure on (Rn,B(Rn)) satisfying the property of defini-
tion (63). Let C = {[a1, b1]× . . .× [an, bn] : ai ≤ bi, ∀i ∈ Nn}. Then C
is closed under finite intersection. Given p ≥ 1, let Ep = [−p, p]n, and
define:

Dp
�
= {A ∈ B(Rn) : μ(A ∩ Ep) = ν(A ∩ Ep)}

Then Dp is a Dynkin system on Rn, and we have C ⊆ Dp. From
the Dynkin system theorem (1), we see that Dp actually contains the
σ-algebra generated by C, i.e. σ(C) ⊆ Dp. However, we claim that
σ(C) = B(Rn). Indeed, from:

C ⊆ B(R)� . . . � B(R) ⊆ B(R) ⊗ . . . ⊗ B(R) = B(Rn)

we obtain σ(C) ⊆ B(Rn). Furthermore, if we define:

E �
= {[a, b] : a ≤ b, a, b ∈ R}

then every open set in R can be expressed as a countable union of
elements of E (see the proof of theorem (6)), and it is easy to check
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that B(R) = σ(E). From theorem (26), we have:

B(Rn) = B(R)⊗ . . . ⊗ B(R) = σ(E � . . . � E)

Since any element of E � . . . � E is of the form A1 × . . . × An where
each Ai is either equal to R = ∪+∞

p=1[−p, p], or is an element of E ,
any element of E � . . . � E can in fact be expressed as a countable
union of elements of C. Hence, E � . . . � E ⊆ σ(C) and consequently,
B(Rn) = σ(E � . . . � E) ⊆ σ(C). We conclude that B(Rn) = σ(C)1,
and finally B(Rn) ⊆ Dp. It follows that for all A ∈ B(Rn), we
have μ(A ∩ Ep) = ν(A ∩ Ep). Using theorem (7), taking the limit as
p → +∞, we obtain μ(A) = ν(A). This being true for all A ∈ B(Rn),
we see that μ = ν. We have proved the uniqueness of μ.

Exercise 9

1 We proved something very similar in exercise (7) of Tutorial 6.
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Exercise 10.

1. For all p ≥ 1, define Ep = [−p, p]n. Then, Ep ↑ Rn, and further-
more dxn(Ep) = (2p)n < +∞, for all p ≥ 1. So dxn is a σ-finite
measure on (Rn,B(Rn)).

2. Let ai ≤ bi for i ∈ Nn+p, and A = [a1, b1] × . . . × [an+p, bn+p].
Then, dxn ⊗ dxp(A) = dxn+p(A) = Πn+p

i=1 (bi − ai). From the
uniqueness property of definition (63), we conclude that:

dxn+p = dxn ⊗ dxp

Exercise 10
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Exercise 11.

1. From exercise (6) and exercise (7), for all E ∈ F1⊗F2, we have:

μ1 ⊗ μ2(E) =
∫

Ω1

(∫
Ω2

1E(x, y)dμ2(y)
)

dμ1(x)

together with:

μ1 ⊗ μ2(E) =
∫

Ω2

(∫
Ω1

1E(x, y)dμ1(x)
)

dμ2(y)

Hence:∫
Ω1×Ω2

1Edμ1⊗μ2 =
∫

Ω1

(∫
Ω2

1Edμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

1Edμ1

)
dμ2

By linearity, it follows that if s =
∑n

i=1 αi1Ei is a simple func-
tion on (Ω1 × Ω2,F1 ⊗F2), we have:∫

Ω1×Ω2

sdμ1 ⊗ μ2 =
∫

Ω1

(∫
Ω2

sdμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

sdμ1

)
dμ2
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2. Let f : (Ω1 × Ω2,F1 ⊗ F2) → [0, +∞] be a non-negative and
measurable map. From theorem (18), there exists a sequence
(sn)n≥1 of simple functions on (Ω1 × Ω2,F1 ⊗ F2), such that
sn ↑ f . In particular, for all x ∈ Ω1, sn(x, .) ↑ f(x, .). From the
monotone convergence theorem (19), for all x ∈ Ω1, we have:∫

Ω2

sn(x, y)dμ2(y) ↑
∫

Ω2

f(x, y)dμ2(y)

and applying theorem (19) once more, we obtain:∫
Ω1

(∫
Ω2

sn(x, y)dμ2(y)
)

dμ1(x) ↑
∫

Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x)

and similarly:∫
Ω2

(∫
Ω1

sn(x, y)dμ1(x)
)

dμ2(y) ↑
∫

Ω2

(∫
Ω1

f(x, y)dμ1(x)
)

dμ2(y)
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However, from sn ↑ f and the monotone convergence theorem:∫
Ω1×Ω2

sndμ1 ⊗ μ2 ↑
∫

Ω1×Ω2

fdμ1 ⊗ μ2

Using 1., for all n ≥ 1, we have:∫
Ω1×Ω2

sndμ1 ⊗ μ2 =
∫

Ω1

(∫
Ω2

sndμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

sndμ1

)
dμ2

Hence, taking the limit as n → +∞, we obtain:∫
Ω1×Ω2

fdμ1 ⊗ μ2 =
∫

Ω1

(∫
Ω2

fdμ2

)
dμ1 =

∫
Ω2

(∫
Ω1

fdμ1

)
dμ2

This proves theorem (31).

Exercise 11
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Exercise 12.

1. Let f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) → [0, +∞] be a non-
negative and measurable map. Since μσ(1) is a σ-finite measure,
from exercise (5), the map:

J1 : ω →
∫

Ωσ(1)

f(ω, x)dμσ(1)(x)

is well-defined on Πi�=σ(1)Ωi, and measurable w.r. to ⊗i�=σ(1)Fi.

2. If Jk : (Πi�∈{σ(1),...,σ(k)}Ωi,⊗i�∈{σ(1),...,σ(k)}Fi) → [0, +∞] is non-
negative and measurable, for 1 ≤ k ≤ n − 2, from exercise (5):

Jk+1 : ω →
∫

Ωσ(k+1)

Jk(ω, x)dμσ(k+1)(x)

is also well-defined on Πi�∈{σ(1),...,σ(k+1)}Ωi, and measurable with
respect to ⊗i�∈{σ(1),...,σ(k+1)}Fi.
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3. The integral:

I =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

can be rigorously defined as:

I
�
=

∫
Ωσ(n)

Jn−1dμσ(n)

where Jn−1 is given by 1. and 2.

Exercise 12
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Exercise 13.

1. Since fp ↑ f , for all ω ∈ Πi�=σ(1)Ωi, we have fp(ω, .) ↑ f(ω, .).
From the monotone convergence theorem (19), we obtain:∫

Ωσ(1)

fp(ω, x)dμσ(1)(x) ↑
∫

Ωσ(1)

f(ω, x)dμσ(1)(x)

i.e. Jp
1 ↑ J1.

2. Suppose Jp
k ↑ Jk, 1 ≤ k ≤ n−2. For all ω∈Πi�∈{σ(1),...,σ(k+1)}Ωi,

we have Jp
k (ω, .) ↑ Jk(ω, .). From the monotone convergence

theorem (19), we have:∫
Ωσ(k+1)

Jp
k (ω, x)dμσ(k+1)(x) ↑

∫
Ωσ(k+1)

Jk(ω, x)dμσ(k+1)(x)

i.e. Jp
k+1 ↑ Jk+1.
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3. From 2., Jp
n−1 ↑ Jn−1. Again from theorem (19):∫

Ωσ(n)

Jp
n−1dμσ(n) ↑

∫
Ωσ(n)

Jn−1dμσ(n)

In other words:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fpdμσ(1) . . . dμσ(n) ↑
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

4. For all E ∈ F1 ⊗ . . . ⊗Fn, we have:

μ(E)
�
=

∫
Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n)

So μ(∅) = 0. If (Ep)p≥1 is a sequence of pairwise disjoint ele-
ments of F1 ⊗ . . . ⊗ Fn, and E = 
+∞

i=1 Ei, defining for p ≥ 1,
fp =

∑p
i=1 1Ei , we have fp ↑ 1E . It follows from 3.:∫

Ωσ(n)

. . .

∫
Ωσ(1)

fpdμσ(1) . . . dμσ(n) ↑ μ(E)
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By linearity, we obtain
∑p

i=1 μ(Ei) ↑ μ(E), or equivalently:

μ(E) =
+∞∑
i=1

μ(Ei)

We have proved that μ is indeed a measure on F1 ⊗ . . . ⊗Fn.

5. Let E = A1 × . . . × An be a measurable rectangle of (Fi)i∈Nn .
Then:

μ(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n) = μ1(A1) . . . μn(An)

From the uniqueness property of definition (62), it follows that
μ coincide with the product measure μ1 ⊗ . . . ⊗ μn. Hence, for
all E ∈ F1 ⊗ . . . ⊗Fn, we have:

μ1 ⊗ . . . ⊗ μn(E) =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n)

www.probability.net

http://www.probability.net


Solutions to Exercises 64

6. From 5., for all E ∈ F1 ⊗ . . . ⊗Fn, we have:∫
Ω1×...×Ωn

1Edμ1 ⊗ . . . ⊗ μn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

1Edμσ(1) . . . dμσ(n)

If s is a simple function on (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn), by
linearity, we obtain:∫

Ω1×...×Ωn

sdμ1 ⊗ . . . ⊗ μn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

sdμσ(1) . . . dμσ(n)

Since any f : (Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗ Fn) → [0, +∞] non-
negative and measurable, can be approximated from below by
simple functions (theorem (18)), we conclude from the monotone
convergence theorem (19) and question 3., that:∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn =
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

This proves theorem (32).

Exercise 13
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Exercise 14.

1. Suppose f ∈ L1. There exists g ∈ L1
R(Ω,F , μ) such that f = g,

μ-a.s. Hence, there exists N ∈ F with μ(N) = 0, such that
f(ω) = g(ω) for all ω ∈ N c. However, g has values in R. So
|f(ω)| < +∞ for all ω ∈ N c. It follows that |f | < +∞ μ-a.s.

2. We assume the existence of A ⊆ Ω, such that A �∈ F and A ⊆ N ,
for some N ∈ F with μ(N) = 0. Since A �∈ F , 1A is not
measurable. However, for all ω ∈ N c, we have 1A(ω) = 0. So
1A = 0, μ-a.s. Since 0 ∈ L1

R(Ω,F , μ), we see that 1A ∈ L1.

3. Suppose f ∈ L1. As indicated in 2., we have no guarantee that
f be a measurable map. Hence, the integrals

∫ |f |dμ and
∫

fdμ
may not be meaningful.

4. Let f : (Ω,F) → (R̄,B(R̄)) be a measurable map, such that∫ |f |dμ < +∞. In particular, we have μ({|f | = +∞}) = 0
(see exercise (7) of Tutorial 5). Define g = f1{|f |<+∞}. Then,
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f(ω) = g(ω) for all ω ∈ {|f | < +∞}. So f = g μ-a.s. However,
g is measurable, with values in R, and such that:∫

|g|dμ =
∫

|f |dμ < +∞

So g ∈ L1
R(Ω,F , μ), and finally f ∈ L1.

5. Suppose f ∈ L1 and f = f1 μ-a.s. for some map f1 : Ω → R̄.
There exists g ∈ L1

R(Ω,F , μ), such that f = g μ-a.s. There
exists N ∈ F with μ(N) = 0, such that f(ω) = g(ω) for all
ω ∈ N c. Also, there exists N1 ∈ F with μ(N1) = 0, such that
f(ω) = f1(ω) for all ω ∈ N c

1 . It follows that f1(ω) = g(ω) for
all ω ∈ (N ∪ N1)c. Since μ(N ∪ N1) ≤ μ(N) + μ(N1) = 0, we
see that f1 = g μ-a.s. We conclude that f1 ∈ L1.

6. Let f ∈ L1. Let g1, g2 ∈ L1
R(Ω,F , μ) with f = g1 μ-a.s. and

f = g2 μ-a.s. There exist N1, N2 ∈ F with μ(N1) = μ(N2) = 0,
such that f(ω) = g1(ω) for all ω ∈ N c

1 , and f(ω) = g2(ω) for

www.probability.net

http://www.probability.net


Solutions to Exercises 67

all ω ∈ N c
2 . So g1(ω) = g2(ω) for all ω ∈ (N1 ∪ N2)c, and

μ(N1 ∪ N2) = 0. So g1 = g2 μ-a.s. and finally
∫

g1dμ =
∫

g2dμ.

7. For all f ∈ L1, we define:∫
fdμ

�
=

∫
gdμ (5)

where g is any element of L1
R(Ω,F , μ) such that f = g μ-a.s.

From 6., if g1, g2 ∈ L1
R(Ω,F , μ) are such that f = g1 μ-a.s. and

f = g2 μ-a.s., then
∫

g1dμ =
∫

g2dμ. So
∫

fdμ is well-defined.
If f ∈ L1 ∩ L1

R(Ω,F , μ), then
∫

fdμ as defined in (5) coincide
with

∫
fdμ, in its usual sense.

Exercise 14
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Exercise 15.

1. By assumption, fn → f μ-a.s. There exists N ∈ F , μ(N) = 0,
such that fn(ω) → f(ω) for all ω ∈ N c. Also, for all n ≥ 1,
|fn| ≤ h μ-a.s. There exists Mn ∈ F with μ(Mn) = 0 such that
|fn(ω)| ≤ h(ω) for all ω ∈ M c

n. Let N1 = N ∪ (∪n≥1Mn). Then
N1 ∈ F , and:

μ(N1) ≤ μ(N) +
+∞∑
n=1

μ(Mn) = 0

So μ(N1) = 0. Moreover, for all ω ∈ N c
1 , we have fn(ω) → f(ω)

and for all n ≥ 1, |fn(ω)| ≤ h(ω).

2. Since f ∈ L1, there exists g ∈ L1
R(Ω,F , μ) such that f = g μ-

a.s. There exists N ∈ F with μ(N) = 0, such that f(ω) = g(ω)
for all ω ∈ N c. Similarly, there exists h1 ∈ L1

R(Ω,F , μ), and a
set M ′

1 ∈ F with μ(M ′
1) = 0, such that h(ω) = h1(ω) for all ω ∈

(M ′
1)

c. For all n ≥ 1, there exist gn ∈ L1
R(Ω,F , μ) and Mn ∈ F
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with μ(Mn) = 0 such that gn(ω) = fn(ω) for all ω ∈ M c
n. Let

N2 = N∪M ′
1∪(∪n≥1Mn). Then N2 ∈ F , μ(N2) = 0, and for all

ω ∈ N c
2 , we have g(ω) = f(ω), h1(ω) = h(ω) and gn(ω) = fn(ω)

for all n ≥ 1.

3. Let N = N1 ∪ N2 where N1 and N2 are given by 1. and 2.
respectively. Then N ∈ F , μ(N) = 0, and for all ω ∈ N c, we
have gn(ω) → g(ω) and |gn(ω)| ≤ h1(ω) for all n ≥ 1.

4. (gn1Nc)n≥1 is a sequence of C-valued (in fact R-valued) mea-
surable maps, such that gn1Nc(ω) → g1Nc(ω) for all ω ∈ Ω.
Moreover, h11Nc is an element of L1

R(Ω,F , μ) such that for all
n ≥ 1, |gn1Nc | ≤ h11Nc . Hence, we can apply the dominated
convergence theorem (23).

5. When f, fn ∈ L1, we have |fn − f | ∈ L1, and
∫ |fn − f |dμ is

defined as
∫

kdμ where k is any element of L1
R(Ω,F , μ) such

that |fn − f | = k μ-a.s. In fact, |gn − g| ∈ L1
R(Ω,F , μ) and

|fn − f | = |gn − g| μ-a.s. So
∫ |fn − f |dμ =

∫ |gn − g|dμ.
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6. From 4., and the dominated convergence theorem (23), we have
lim

∫
1Nc |gn − gn|dμ = 0 and consequently,

∫ |gn − g|dμ → 0. It
follows from 5. that

∫ |fn − f |dμ → 0.

Exercise 15
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Exercise 16.

1. We define A = {ω1 ∈ Ω1 :
∫
Ω2

|f(ω1, x)|dμ2(x) < +∞}. From
theorem (30), the map φ : ω1 → ∫

Ω2
|f(ω1, x)|dμ2(x) is measur-

able with respect to F1 and B(R̄). It follows that:

A = φ−1([−∞, +∞[) ∈ F1

From theorem (31), we have:∫
Ω1

(∫
Ω2

|f(ω1, x)|dμ2(x)
)

dμ1(ω1) =
∫

Ω1×Ω2

|f |dμ1 ⊗ μ2 < +∞

Using exercise (7) (11.) of Tutorial 5, we have μ1(Ac) = 0.

2. For all ω1 ∈ A, we have
∫
Ω2

|f(ω1, x)|dμ2(x) < +∞. From
theorem (29), the map f(ω1, .) is measurable with respect to
F2, for all ω1 ∈ F1. f being R-valued, we conclude that for all
ω1 ∈ A, f(ω1, .) ∈ L1

R(Ω2,F2, μ2).
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3. For all ω1 ∈ A, the map f(ω1, .) lies in L1
R(Ω2,F2, μ2). Hence,

Ī(ω1) =
∫
Ω2

f(ω1, x)dμ2(x) is well-defined for all ω1 ∈ A.

4. If ω ∈ A, then J(ω) = I(ω) = Ī(ω) =
∫
Ω2

f(ω, x)dμ2(x). Hence:

J(ω) = 1A(ω)
∫

Ω2

f+(ω, x)dμ2(x) − 1A(ω)
∫

Ω2

f−(ω, x)dμ2(x)

This equation still holds if ω �∈ A.

5.
∫
Ω2

f+(ω, x)dμ2(x) < +∞ and
∫
Ω2

f−(ω, x)dμ2(x) < +∞, for
all ω ∈ A. If ω �∈ A, then J(ω) = 0. It follows that J(ω) ∈ R,
for all ω ∈ Ω1. From theorem (30), ω → ∫

Ω2
f+(ω, x)dμ2(x)

and ω → ∫
Ω2

f−(ω, x)dμ2(x) are F1-measurable maps. Further-
more, A ∈ F1. So 1A is also an F1-measurable map. From 4.
we conclude that J is itself F1-measurable.

6. For all ω ∈ Ω1, using 4., we have:

|J(ω)| ≤
∫

Ω2

f+dμ2 +
∫

Ω2

f−dμ2=
∫

Ω2

|f(ω, x)|dμ2(x)
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and therefore:∫
Ω1

|J(ω)|dμ1(ω) ≤
∫

Ω1

(∫
Ω2

|f(ω, x)|dμ2(x)
)

dμ1(ω) < +∞

Since J is R-valued and F1-measurable, J ∈ L1
R(Ω1,F1, μ).

Furthermore, for all ω ∈ A, we have J(ω) = I(ω). Since
μ1(Ac) = 0, we conclude that J = I μ1-a.s.

7. The map x → ∫
Ω2

f(x, y)dμ2(y) is defined for all x ∈ A, but
may not be defined for all x ∈ Ω1. Hence, strictly speaking, the
integral

∫
Ω1

(
∫
Ω2

fdμ2)dμ1 may not be meaningful. However,
whichever way we choose to extend x → ∫

Ω2
f(x, y)dμ2(y) (the

map I), we have J = I, μ1 − a.s. where J ∈ L1
R(Ω1,F1, μ1).

Following the previous exercise, we see that I ∈ L1, and the
integral

∫
Ω1

I(x)dμ1(x) can in fact be defined as:
∫

Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x)
�
=

∫
Ω1

J(x)dμ1(x)
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8. Since μ1(Ac) = 0, we have:∫
Ω1

(
1A

∫
Ω2

f+dμ2

)
dμ1 =

∫
Ω1

(∫
Ω2

f+dμ2

)
dμ1

Using theorem (31), we conclude that:∫
Ω1

(
1A

∫
Ω2

f+dμ2

)
dμ1 =

∫
Ω1×Ω2

f+dμ1 ⊗ μ2

9. Using 4., 8. and its counterpart for f−, we obtain:∫
Ω1

J(x)dμ1(x) =
∫

Ω1×Ω2

f+dμ1 ⊗ μ2 −
∫

Ω1×Ω2

f−dμ1 ⊗ μ2

In other words:∫
Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x) =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

10. Suppose that f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, μ1 ⊗ μ2), i.e. we no

longer assume that f is R-valued. Then f = u + iv where
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both u and v are elements of L1
R(Ω1 × Ω2,F1 ⊗ F2, μ1 ⊗ μ2).

Applying 6. the map ω1 → ∫
Ω2

u(ω1, x)dμ2(x) and the map
ω1 → ∫

Ω2
v(ω1, x)dμ2(x) are μ1-almost surely equal to elements

of L1
R(Ω1,F1, μ1) (say Ju and Jv respectively). Furthermore,

from (1) we have:∫
Ω1

(∫
Ω2

u(x, y)dμ2(y)
)

dμ1(x) =
∫

Ω1×Ω2

udμ1 ⊗ μ2

and: ∫
Ω1

(∫
Ω2

v(x, y)dμ2(y)
)

dμ1(x) =
∫

Ω1×Ω2

vdμ1 ⊗ μ2

It follows that ω1 → ∫
Ω2

f(ω1, x)dμ2(x) is μ1-almost surely
equal to Ju + iJv ∈ L1

C(Ω1,F1, μ1), and:∫
Ω1

(∫
Ω2

f(x, y)dμ2(y)
)

dμ1(x)
�
=

∫
Ω1

(Ju + iJv)dμ1
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=
∫

Ω1

Judμ1 + i

∫
Ω1

Jvdμ1

=
∫

Ω1

(∫
Ω2

u(x, y)dμ2(y)
)

dμ1(x)

+ i

∫
Ω1

(∫
Ω2

v(x, y)dμ2(y)
)

dμ1(x)

=
∫

Ω1×Ω2

udμ1 ⊗ μ2

+ i

∫
Ω1×Ω2

vdμ1 ⊗ μ2

=
∫

Ω1×Ω2

fdμ1 ⊗ μ2

This proves equation (1).

11. From 5. of exercise (1), the map θ is measurable. It follows that
f ◦ θ : (Ω2 ×Ω1,F2 ⊗F1) → [0, +∞] is indeed non-negative and
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measurable. Furthermore, from theorem (31), we have:∫
Ω2×Ω1

f ◦ θdμ2 ⊗ μ1 =
∫

Ω2

(∫
Ω1

f ◦ θ(ω2, ω1)dμ1(ω1)
)

dμ2(ω2)

=
∫

Ω2

(∫
Ω1

f(ω1, ω2)dμ1(ω1)
)

dμ2(ω2)

Theorem (31) → =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

12. From 5. of exercise (1), the map θ is measurable. So f ◦ θ is
itself measurable. Applying 11. to |f | we obtain:∫

Ω2×Ω1

|f ◦ θ|dμ2 ⊗ μ1 =
∫

Ω2×Ω1

|f | ◦ θdμ2 ⊗ μ1

=
∫

Ω1×Ω2

|f |dμ1 ⊗ μ2 < +∞

So f ◦ θ ∈ L1
C(Ω2 × Ω1,F2 ⊗ F1, μ2 ⊗ μ1). If u = Re(f) and
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v = Im(f), using 11. once more, we obtain:∫
Ω2×Ω1

f ◦ θdμ2 ⊗ μ1 =
∫

Ω2×Ω1

u+ ◦ θdμ2 ⊗ μ1

−
∫

Ω2×Ω1

u− ◦ θdμ2 ⊗ μ1

+ i

∫
Ω2×Ω1

v+ ◦ θdμ2 ⊗ μ1

− i

∫
Ω2×Ω1

v− ◦ θdμ2 ⊗ μ1

=
∫

Ω1×Ω2

u+dμ1 ⊗ μ2 −
∫

Ω1×Ω2

u−dμ1 ⊗ μ2

+ i

∫
Ω1×Ω2

v+dμ1 ⊗ μ2 − i

∫
Ω1×Ω2

v−dμ1 ⊗ μ2

=
∫

Ω1×Ω2

fdμ1 ⊗ μ2
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13. Let f ∈ L1
C(Ω1 × Ω2,F1 ⊗ F2, μ1 ⊗ μ2). From 12. g = f ◦ θ is

an element of L1
C(Ω2 × Ω1,F2 ⊗ F1, μ2 ⊗ μ1). Applying 10. to

g, it follows that the map ω2 → ∫
Ω1

g(ω2, x)dμ1(x) is μ2-almost
surely equal to an element of L1

C(Ω2,F2, μ2). In other words,
the map ω2 → ∫

Ω1
f(x, ω2)dμ1(x) is μ2-almost surely equal to

an element of L1
C(Ω2,F2, μ2). Furthermore, we have:∫

Ω2

(∫
Ω1

f(x, y)dμ1(x)
)

dμ2(y) =
∫

Ω2

(∫
Ω1

g(y, x)dμ1(x)
)

dμ2(y)

From 10. → =
∫

Ω2×Ω1

gdμ2 ⊗ μ1

From 12. → =
∫

Ω1×Ω2

fdμ1 ⊗ μ2

This completes the proof of theorem (33).

Exercise 16
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Exercise 17.

1. Let f ∈ L1
C(Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn, μ1 ⊗ . . .⊗ μn). Define

E1 = Πi�=σ(1)Ωi, E2 = Ωσ(1), E1 = ⊗i�=σ(1)Fi and E2 = Fσ(1).
Let ν1 = ⊗i�=σ(1)μi and ν2 = μσ(1). Then:

f ∈ L1
C(E1 × E2, E1 ⊗ E2, ν1 ⊗ ν2)

From theorem (33), the map ω → ∫
E2

f(ω, x)dν2(x) (defined
ν1-almost surely and arbitrarily extended on E1), is ν1-almost
surely equal to an element of L1

C(E1, E1, ν1). In other words:

J1(ω)
�
=

∫
Ωσ(1)

f(ω, x)dμσ(1)(x)

is almost surely2 equal to an element of L1
C(Πi�=σ(1)Ωi)3.

2. Jk+1 is a.s. equal to an element of L1
C(Πi�∈{σ(1),...,σ(k+1)}Ωi).

2A case of sloppy terminology: we are trying to make the whole thing readable.
3A case of sloppy notations.
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3. From 1., J1(ω) =
∫
Ωσ(1)

f(ω, x)dμσ(1)(x) is almost surely equal

to an element of L1
C(Πi�=σ(1)Ωi), say J̄1. Similarly, from 2.,

J2(ω) =
∫
Ωσ(2)

J̄1(ω, x)dμσ(2)(x) is almost surely equal to an

element of L1
C(Πi�∈{σ(1),σ(2)}Ωi), say J̄2. By induction, we obtain

a map Jn−1 defined on Ωσ(n), and μσ(n)-almost surely equal to
an element of L1

C(Ωσ(n)), say J̄n−1. We define:∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)
�
=

∫
Ωσ(n)

J̄n−1dμσ(n)

This multiple integral is a well-defined complex number. It is
easy to check by induction that which ever choice is made of
J̄1, . . . , J̄n−2, the map J̄n−1 is unique up to μσ(n)-almost sure
equality. Hence, this multiple integral is uniquely defined.

4. From theorem (33), we have:∫
Πi�=σ(1)Ωi

J̄1(ω)d ⊗i�=σ(1) μi =
∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn
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Following an induction argument, we obtain:∫
Ωσ(n)

J̄n−1dμσ(n) =
∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn

i.e.∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n) =
∫

Ω1×...×Ωn

fdμ1 ⊗ . . . ⊗ μn

This solution is not as detailed as it could have been. . .

Exercise 17
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