7. Fubini Theorem

Definition 59 Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be two measurable spaces. Let $E \subseteq \Omega_{1} \times \Omega_{2}$. For all $\omega_{1} \in \Omega_{1}$, we call ω_{1}-section of E in Ω_{2}, the set:

$$
E^{\omega_{1}} \triangleq\left\{\omega_{2} \in \Omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in E\right\}
$$

Exercise 1. Let $\left(\Omega_{1}, \mathcal{F}_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}\right)$ and (S, Σ) be three measurable spaces, and $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow(S, \Sigma)$ be a measurable map. Given $\omega_{1} \in \Omega_{1}$, define:

$$
\Gamma^{\omega_{1}} \triangleq\left\{E \subseteq \Omega_{1} \times \Omega_{2}, E^{\omega_{1}} \in \mathcal{F}_{2}\right\}
$$

1. Show that for all $\omega_{1} \in \Omega_{1}, \Gamma^{\omega_{1}}$ is a σ-algebra on $\Omega_{1} \times \Omega_{2}$.
2. Show that for all $\omega_{1} \in \Omega_{1}, \mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \Gamma^{\omega_{1}}$.
3. Show that for all $\omega_{1} \in \Omega_{1}$ and $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we have $E^{\omega_{1}} \in \mathcal{F}_{2}$.
4. Given $\omega_{1} \in \Omega_{1}$, show that $\omega \rightarrow f\left(\omega_{1}, \omega\right)$ is measurable.
5. Show that $\theta:\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}\right) \rightarrow\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ defined by $\theta\left(\omega_{2}, \omega_{1}\right)=\left(\omega_{1}, \omega_{2}\right)$ is a measurable map.
6. Given $\omega_{2} \in \Omega_{2}$, show that $\omega \rightarrow f\left(\omega, \omega_{2}\right)$ is measurable.

Theorem 29 Let $(S, \Sigma),\left(\Omega_{1}, \mathcal{F}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ be three measurable spaces. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow(S, \Sigma)$ be a measurable map. For all $\left(\omega_{1}, \omega_{2}\right) \in \Omega_{1} \times \Omega_{2}$, the map $\omega \rightarrow f\left(\omega_{1}, \omega\right)$ is measurable w.r. to \mathcal{F}_{2} and Σ, and $\omega \rightarrow f\left(\omega, \omega_{2}\right)$ is measurable w.r. to \mathcal{F}_{1} and Σ.

Exercise 2. Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces with $\operatorname{card} I \geq 2$. Let $f:\left(\Pi_{i \in I} \Omega_{i}, \otimes_{i \in I} \mathcal{F}_{i}\right) \rightarrow(E, \mathcal{B}(E))$ be a measurable map, where (E, d) is a metric space. Let $i_{1} \in I$. Put $E_{1}=\Omega_{i_{1}}$, $\mathcal{E}_{1}=\mathcal{F}_{i_{1}}, E_{2}=\Pi_{i \in I \backslash\left\{i_{1}\right\}} \Omega_{i}, \mathcal{E}_{2}=\otimes_{i \in I \backslash\left\{i_{1}\right\}} \mathcal{F}_{i}$.

1. Explain why f can be viewed as a map defined on $E_{1} \times E_{2}$.
2. Show that $f:\left(E_{1} \times E_{2}, \mathcal{E}_{1} \otimes \mathcal{E}_{2}\right) \rightarrow(E, \mathcal{B}(E))$ is measurable.
3. For all $\omega_{i_{1}} \in \Omega_{i_{1}}$, show that the map $\omega \rightarrow f\left(\omega_{i_{1}}, \omega\right)$ defined on $\Pi_{i \in I \backslash\left\{i_{1}\right\}} \Omega_{i}$ is measurable w.r. to $\otimes_{i \in I \backslash\left\{i_{1}\right\}} \mathcal{F}_{i}$ and $\mathcal{B}(E)$.

Definition $60 \operatorname{Let}(\Omega, \mathcal{F}, \mu)$ be a measure space. $(\Omega, \mathcal{F}, \mu)$ is said to be a finite measure space, or we say that μ is a finite measure, if and only if $\mu(\Omega)<+\infty$.

Definition 61 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. $(\Omega, \mathcal{F}, \mu)$ is said to be a σ-finite measure space, or μ a σ-finite measure, if and only if there exists a sequence $\left(\Omega_{n}\right)_{n \geq 1}$ in \mathcal{F} such that $\Omega_{n} \uparrow \Omega$ and $\mu\left(\Omega_{n}\right)<+\infty$, for all $n \geq 1$.

Exercise 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

1. Show that $(\Omega, \mathcal{F}, \mu)$ is σ-finite if and only if there exists a sequence $\left(\Omega_{n}\right)_{n \geq 1}$ in \mathcal{F} such that $\Omega=\uplus_{n=1}^{+\infty} \Omega_{n}$, and $\mu\left(\Omega_{n}\right)<+\infty$ for all $n \geq 1$.
2. Show that if $(\Omega, \mathcal{F}, \mu)$ is finite, then μ has values in \mathbf{R}^{+}.
3. Show that if $(\Omega, \mathcal{F}, \mu)$ is finite, then it is σ-finite.
4. Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be a right-continuous, non-decreasing map. Show that the measure space $(\mathbf{R}, \mathcal{B}(\mathbf{R}), d F)$ is σ-finite, where $d F$ is the Stieltjes measure associated with F.

ExERCISE 4. Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ be a measurable space, and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be a σ-finite measure space. For all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$ and $\omega_{1} \in \Omega_{1}$, define:

$$
\Phi_{E}\left(\omega_{1}\right) \triangleq \int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

Let \mathcal{D} be the set of subsets of $\Omega_{1} \times \Omega_{2}$, defined by:
$\mathcal{D} \triangleq\left\{E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}: \Phi_{E}:\left(\Omega_{1}, \mathcal{F}_{1}\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))\right.$ is measurable $\}$

1. Explain why for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, the map Φ_{E} is well defined.
2. Show that $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}$.
3. Show that if μ_{2} is finite, $A, B \in \mathcal{D}$ and $A \subseteq B$, then $B \backslash A \in \mathcal{D}$.
4. Show that if $E_{n} \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}, n \geq 1$ and $E_{n} \uparrow E$, then $\Phi_{E_{n}} \uparrow \Phi_{E}$.
5. Show that if μ_{2} is finite then \mathcal{D} is a Dynkin system on $\Omega_{1} \times \Omega_{2}$.
6. Show that if μ_{2} is finite, then the map $\Phi_{E}:\left(\Omega_{1}, \mathcal{F}_{1}\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
7. Let $\left(\Omega_{2}^{n}\right)_{n \geq 1}$ in \mathcal{F}_{2} be such that $\Omega_{2}^{n} \uparrow \Omega_{2}$ and $\mu_{2}\left(\Omega_{2}^{n}\right)<+\infty$. Define $\mu_{2}^{n}=\mu_{2}^{\Omega_{2}^{n}}=\mu_{2}\left(\bullet \cap \Omega_{2}^{n}\right)$. For $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we put:

$$
\Phi_{E}^{n}\left(\omega_{1}\right) \triangleq \int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}^{n}(x)
$$

Show that $\Phi_{E}^{n}:\left(\Omega_{1}, \mathcal{F}_{1}\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, and:

$$
\Phi_{E}^{n}\left(\omega_{1}\right)=\int_{\Omega_{2}} 1_{\Omega_{2}^{n}}(x) 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

Deduce that $\Phi_{E}^{n} \uparrow \Phi_{E}$.
8. Show that the map $\Phi_{E}:\left(\Omega_{1}, \mathcal{F}_{1}\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
9. Let s be a simple function on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$. Show that the map $\omega \rightarrow \int_{\Omega_{2}} s(\omega, x) d \mu_{2}(x)$ is well defined and measurable with respect to \mathcal{F}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$.
10. Show the following theorem:

Theorem 30 Let $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ be a measurable space, and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be a σ-finite measure space. Then for all non-negative and measurable map $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow[0,+\infty]$, the map:

$$
\omega \rightarrow \int_{\Omega_{2}} f(\omega, x) d \mu_{2}(x)
$$

is measurable with respect to \mathcal{F}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$.

ExERCISE 5. Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces, with $\operatorname{card} I \geq 2$. Let $i_{0} \in I$, and suppose that μ_{0} is a σ-finite measure on $\left(\Omega_{i_{0}}, \mathcal{F}_{i_{0}}\right)$. Show that if $f:\left(\Pi_{i \in I} \Omega_{i}, \otimes_{i \in I} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]$ is a nonnegative and measurable map, then:

$$
\omega \rightarrow \int_{\Omega_{i_{0}}} f(\omega, x) d \mu_{0}(x)
$$

defined on $\Pi_{i \in I \backslash\left\{i_{0}\right\}} \Omega_{i}$, is measurable w.r. to $\otimes_{i \in I \backslash\left\{i_{0}\right\}} \mathcal{F}_{i}$ and $\mathcal{B}(\overline{\mathbf{R}})$.
Exercise 6. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ-finite measure spaces. For all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we define:

$$
\mu_{1} \otimes \mu_{2}(E) \triangleq \int_{\Omega_{1}}\left(\int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$

1. Explain why $\mu_{1} \otimes \mu_{2}: \mathcal{F}_{1} \otimes \mathcal{F}_{2} \rightarrow[0,+\infty]$ is well defined.
2. Show that $\mu_{1} \otimes \mu_{2}$ is a measure on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
3. Show that if $A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$, then:

$$
\mu_{1} \otimes \mu_{2}(A \times B)=\mu_{1}(A) \mu_{2}(B)
$$

Exercise 7. Further to ex. (6), suppose that $\mu: \mathcal{F}_{1} \otimes \mathcal{F}_{2} \rightarrow[0,+\infty]$ is another measure on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ with $\mu(A \times B)=\mu_{1}(A) \mu_{2}(B)$, for all measurable rectangle $A \times B$. Let $\left(\Omega_{1}^{n}\right)_{n \geq 1}$ and $\left(\Omega_{2}^{n}\right)_{n \geq 1}$ be sequences in \mathcal{F}_{1} and \mathcal{F}_{2} respectively, such that $\Omega_{1}^{n} \uparrow \Omega_{1}, \Omega_{2}^{n} \uparrow \Omega_{2}, \mu_{1}\left(\Omega_{1}^{n}\right)<+\infty$ and $\mu_{2}\left(\Omega_{2}^{n}\right)<+\infty$. Define, for all $n \geq 1$:
$\mathcal{D}_{n} \triangleq\left\{E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}: \mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)\right\}$

1. Show that for all $n \geq 1, \mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}_{n}$.
2. Show that for all $n \geq 1, \mathcal{D}_{n}$ is a Dynkin system on $\Omega_{1} \times \Omega_{2}$.
3. Show that $\mu=\mu_{1} \otimes \mu_{2}$.
4. Show that $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$ is a σ-finite measure space.
5. Show that for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we have:

$$
\mu_{1} \otimes \mu_{2}(E)=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} 1_{E}(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

Exercise 8. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$ be $n \sigma$-finite measure spaces, $n \geq 2$. Let $i_{0} \in\{1, \ldots, n\}$ and put $E_{1}=\Omega_{i_{0}}, E_{2}=\Pi_{i \neq i_{0}} \Omega_{i}$, $\mathcal{E}_{1}=\mathcal{F}_{i_{0}}$ and $\mathcal{E}_{2}=\otimes_{i \neq i_{0}} \mathcal{F}_{i}$. Put $\nu_{1}=\mu_{i_{0}}$, and suppose that ν_{2} is a σ-finite measure on $\left(E_{2}, \mathcal{E}_{2}\right)$ such that for all measurable rectangle $\Pi_{i \neq i_{0}} A_{i} \in \amalg_{i \neq i_{0}} \mathcal{F}_{i}$, we have $\nu_{2}\left(\Pi_{i \neq i_{0}} A_{i}\right)=\Pi_{i \neq i_{0}} \mu_{i}\left(A_{i}\right)$.

1. Show that $\nu_{1} \otimes \nu_{2}$ is a σ-finite measure on the measure space $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$ such that for all measurable rectangles $A_{1} \times \ldots \times A_{n}$, we have:

$$
\nu_{1} \otimes \nu_{2}\left(A_{1} \times \ldots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

2. Show by induction the existence of a measure μ on $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$,
such that for all measurable rectangles $A_{1} \times \ldots \times A_{n}$, we have:

$$
\mu\left(A_{1} \times \ldots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

3. Show the uniqueness of such measure, denoted $\mu_{1} \otimes \ldots \otimes \mu_{n}$.
4. Show that $\mu_{1} \otimes \ldots \otimes \mu_{n}$ is σ-finite.
5. Let $i_{0} \in\{1, \ldots, n\}$. Show that $\mu_{i_{0}} \otimes\left(\otimes_{i \neq i_{0}} \mu_{i}\right)=\mu_{1} \otimes \ldots \otimes \mu_{n}$.

Definition 62 Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$ be $n \sigma$-finite measure spaces, with $n \geq 2$. We call product measure of μ_{1}, \ldots, μ_{n}, the unique measure on $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, denoted $\mu_{1} \otimes \ldots \otimes \mu_{n}$, such that for all measurable rectangles $A_{1} \times \ldots \times A_{n}$ in $\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n}$, we have:

$$
\mu_{1} \otimes \ldots \otimes \mu_{n}\left(A_{1} \times \ldots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

This measure is itself σ-finite.

Exercise 9. Prove that the following definition is legitimate:
Definition 63 We call Lebesgue measure in \mathbf{R}^{n}, $n \geq 1$, the unique measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$, denoted $d x, d x^{n}$ or $d x_{1} \ldots d x_{n}$, such that for all $a_{i} \leq b_{i}, i=1, \ldots, n$, we have:

$$
d x\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]\right)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)
$$

Exercise 10.

1. Show that $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right), d x^{n}\right)$ is a σ-finite measure space.
2. For $n, p \geq 1$, show that $d x^{n+p}=d x^{n} \otimes d x^{p}$.

Exercise 11. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be σ-finite.

1. Let s be a simple function on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$. Show that:

$$
\int_{\Omega_{1} \times \Omega_{2}} s d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} s d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} s d \mu_{1}\right) d \mu_{2}
$$

2. Show the following:

Theorem 31 (Fubini) Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ finite measure spaces. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Then:

$$
\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f d \mu_{1}\right) d \mu_{2}
$$

ExERCISE 12. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$ be $n \sigma$-finite measure spaces, $n \geq 2$. Let $f:\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right) \rightarrow[0,+\infty]$ be a non-negative, measurable map. Let σ be a permutation of \mathbf{N}_{n}, i.e. a bijection from \mathbf{N}_{n} to itself.

1. For all $\omega \in \Pi_{i \neq \sigma(1)} \Omega_{i}$, define:

$$
J_{1}(\omega) \triangleq \int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)
$$

Explain why $J_{1}:\left(\Pi_{i \neq \sigma(1)} \Omega_{i}, \otimes_{i \neq \sigma(1)} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]$ is a well defined, non-negative and measurable map.
2. Suppose $J_{k}:\left(\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \Omega_{i}, \otimes_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]$ is a non-negative, measurable map, for $1 \leq k<n-2$. Define:

$$
J_{k+1}(\omega) \triangleq \int_{\Omega_{\sigma(k+1)}} J_{k}(\omega, x) d \mu_{\sigma(k+1)}(x)
$$

and show that:

$$
J_{k+1}:\left(\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \Omega_{i}, \otimes_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]
$$

is also well-defined, non-negative and measurable.
3. Propose a rigorous definition for the following notation:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

ExErcise 13. Further to ex. (12), Let $\left(f_{p}\right)_{p \geq 1}$ be a sequence of nonnegative and measurable maps:

$$
f_{p}:\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right) \rightarrow[0,+\infty]
$$

such that $f_{p} \uparrow f$. Define similarly:

$$
\begin{aligned}
J_{1}^{p}(\omega) & \triangleq \int_{\Omega_{\sigma(1)}} f_{p}(\omega, x) d \mu_{\sigma(1)}(x) \\
J_{k+1}^{p}(\omega) & \triangleq \int_{\Omega_{\sigma(k+1)}} J_{k}^{p}(\omega, x) d \mu_{\sigma(k+1)}(x), 1 \leq k<n-2
\end{aligned}
$$

1. Show that $J_{1}^{p} \uparrow J_{1}$.
2. Show that if $J_{k}^{p} \uparrow J_{k}$, then $J_{k+1}^{p} \uparrow J_{k+1}, 1 \leq k<n-2$.
3. Show that:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f_{p} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)} \uparrow \int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

4. Show that the map $\mu: \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n} \rightarrow[0,+\infty]$, defined by:

$$
\mu(E)=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

is a measure on $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$.
5. Show that for all $E \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we have:

$$
\mu_{1} \otimes \ldots \otimes \mu_{n}(E)=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

6. Show the following:

Theorem 32 Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$ be $n \sigma$-finite measure spaces, with $n \geq 2$. Let $f:\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. let σ be a permutation of \mathbf{N}_{n}. Then:

$$
\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

Exercise 14. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define:

$$
L^{1} \triangleq\left\{f: \Omega \rightarrow \overline{\mathbf{R}}, \exists g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu), f=g \mu \text {-a.s. }\right\}
$$

1. Show that if $f \in L^{1}$, then $|f|<+\infty, \mu$-a.s.
2. Suppose there exists $A \subseteq \Omega$, such that $A \notin \mathcal{F}$ and $A \subseteq N$ for some $N \in \mathcal{F}$ with $\mu(N)=0$. Show that $1_{A} \in L^{1}$ and 1_{A} is not measurable with respect to \mathcal{F} and $\mathcal{B}(\overline{\mathbf{R}})$.
3. Explain why if $f \in L^{1}$, the integrals $\int|f| d \mu$ and $\int f d \mu$ may not be well defined.
4. Suppose that $f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is a measurable map with $\int|f| d \mu<+\infty$. Show that $f \in L^{1}$.
5. Show that if $f \in L^{1}$ and $f=f_{1} \mu$-a.s. then $f_{1} \in L^{1}$.
6. Suppose that $f \in L^{1}$ and $g_{1}, g_{2} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ are such that $f=g_{1} \mu$-a.s. and $f=g_{2} \mu$-a.s.. Show that $\int g_{1} d \mu=\int g_{2} d \mu$.
7. Propose a definition of the integral $\int f d \mu$ for $f \in L^{1}$ which extends the integral defined on $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.

Exercise 15. Further to ex. (14), Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence in L^{1}, and $f, h \in L^{1}$, with $f_{n} \rightarrow f \mu$-a.s. and for all $n \geq 1,\left|f_{n}\right| \leq h \mu$-a.s..

1. Show the existence of $N_{1} \in \mathcal{F}, \mu\left(N_{1}\right)=0$, such that for all $\omega \in N_{1}^{c}, f_{n}(\omega) \rightarrow f(\omega)$, and for all $n \geq 1,\left|f_{n}(\omega)\right| \leq h(\omega)$.
2. Show the existence of $g_{n}, g, h_{1} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ and $N_{2} \in \mathcal{F}$, $\mu\left(N_{2}\right)=0$, such that for all $\omega \in N_{2}^{c}, g(\omega)=f(\omega), h(\omega)=h_{1}(\omega)$, and for all $n \geq 1, g_{n}(\omega)=f_{n}(\omega)$.
3. Show the existence of $N \in \mathcal{F}, \mu(N)=0$, such that for all $\omega \in N^{c}, g_{n}(\omega) \rightarrow g(\omega)$, and for all $n \geq 1,\left|g_{n}(\omega)\right| \leq h_{1}(\omega)$.
4. Show that the Dominated Convergence Theorem can be applied to $g_{n} 1_{N^{c}}, g 1_{N^{c}}$ and $h_{1} 1_{N^{c}}$.
5. Recall the definition of $\int\left|f_{n}-f\right| d \mu$ when $f, f_{n} \in L^{1}$.
6. Show that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$.

Exercise 16. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ-finite measure spaces. Let f be an element of $L_{\mathbf{R}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$. Let $\theta:\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}\right) \rightarrow\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ be the map defined by $\theta\left(\omega_{2}, \omega_{1}\right)=\left(\omega_{1}, \omega_{2}\right)$ for all $\left(\omega_{2}, \omega_{1}\right) \in \Omega_{2} \times \Omega_{1}$.

1. Let $A=\left\{\omega_{1} \in \Omega_{1}: \int_{\Omega_{2}}\left|f\left(\omega_{1}, x\right)\right| d \mu_{2}(x)<+\infty\right\}$. Show that $A \in \mathcal{F}_{1}$ and $\mu_{1}\left(A^{c}\right)=0$.
2. Show that $f\left(\omega_{1},.\right) \in L_{\mathbf{R}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ for all $\omega_{1} \in A$.
3. Show that $\bar{I}\left(\omega_{1}\right)=\int_{\Omega_{2}} f\left(\omega_{1}, x\right) d \mu_{2}(x)$ is well defined for all $\omega_{1} \in A$. Let I be an arbitrary extension of \bar{I}, on Ω_{1}.
4. Define $J=I 1_{A}$. Show that:

$$
J(\omega)=1_{A}(\omega) \int_{\Omega_{2}} f^{+}(\omega, x) d \mu_{2}(x)-1_{A}(\omega) \int_{\Omega_{2}} f^{-}(\omega, x) d \mu_{2}(x)
$$

5. Show that J is \mathcal{F}_{1}-measurable and \mathbf{R}-valued.
6. Show that $J \in L_{\mathbf{R}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and that $J=I \mu_{1}$-a.s.
7. Propose a definition for the integral:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$

8. Show that $\int_{\Omega_{1}}\left(1_{A} \int_{\Omega_{2}} f^{+} d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{1} \times \Omega_{2}} f^{+} d \mu_{1} \otimes \mu_{2}$.
9. Show that:

$$
\begin{equation*}
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2} \tag{1}
\end{equation*}
$$

10. Show that if $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$, then the map $\omega_{1} \rightarrow \int_{\Omega_{2}} f\left(\omega_{1}, y\right) d \mu_{2}(y)$ is μ_{1}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$, and furthermore that (1) is still valid.
11. Show that if $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow[0,+\infty]$ is non-negative and measurable, then $f \circ \theta$ is non-negative and measurable, and:

$$
\int_{\Omega_{2} \times \Omega_{1}} f \circ \theta d \mu_{2} \otimes \mu_{1}=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

12. Show that if $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$, then $f \circ \theta$ is an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}, \mu_{2} \otimes \mu_{1}\right)$, and:

$$
\int_{\Omega_{2} \times \Omega_{1}} f \circ \theta d \mu_{2} \otimes \mu_{1}=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

13. Show that if $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$, then the map $\omega_{2} \rightarrow \int_{\Omega_{1}} f\left(x, \omega_{2}\right) d \mu_{1}(x)$ is μ_{2}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$, and furthermore:

$$
\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

Theorem 33 Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ-finite measure spaces. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$. Then, the map:

$$
\omega_{1} \rightarrow \int_{\Omega_{2}} f\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

is μ_{1}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ and:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

Furthermore, the map:

$$
\omega_{2} \rightarrow \int_{\Omega_{1}} f\left(x, \omega_{2}\right) d \mu_{1}(x)
$$

is μ_{2}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ and:

$$
\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

ExErcise 17. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$ be $n \sigma$-finite measure spaces, $n \geq 2$. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}, \mu_{1} \otimes \ldots \otimes \mu_{n}\right)$. Let σ be a permutation of \mathbf{N}_{n}.

1. For all $\omega \in \Pi_{i \neq \sigma(1)} \Omega_{i}$, define:

$$
J_{1}(\omega) \triangleq \int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)
$$

Explain why J_{1} is well defined and equal to an element of $L_{\mathbf{C}}^{1}\left(\Pi_{i \neq \sigma(1)} \Omega_{i}, \otimes_{i \neq \sigma(1)} \mathcal{F}_{i}, \otimes_{i \neq \sigma(1)} \mu_{i}\right), \otimes_{i \neq \sigma(1)} \mu_{i}$-almost surely.
2. Suppose $1 \leq k<n-2$ and that \bar{J}_{k} is well defined and equal to an element of:

$$
L_{\mathbf{C}}^{1}\left(\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \Omega_{i}, \otimes_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \mathcal{F}_{i}, \otimes_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \mu_{i}\right)
$$

$\otimes_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \mu_{i}$-almost surely. Define:

$$
J_{k+1}(\omega) \triangleq \int_{\Omega_{\sigma(k+1)}} \bar{J}_{k}(\omega, x) d \mu_{\sigma(k+1)}(x)
$$

What can you say about J_{k+1}.
3. Show that:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

is a well defined complex number. (Propose a definition for it).
4. Show that:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}=\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}
$$

Tutorial 7: Fubini Theorem

Solutions to Exercises

Exercise 1.

1. Let $\omega_{1} \in \Omega_{1}$. The ω_{1}-section of $\Omega_{1} \times \Omega_{2}$ in Ω_{2}, is equal to $\Omega_{2} \in \mathcal{F}_{2}$. So $\Omega_{1} \times \Omega_{2} \in \Gamma^{\omega_{1}}$. Suppose $E \in \Gamma^{\omega_{1}}$. Then $E^{\omega_{1}} \in \mathcal{F}_{2}$. \mathcal{F}_{2} being closed under complementation, $\left(E^{\omega_{1}}\right)^{c} \in \mathcal{F}_{2}$. However, given $\omega_{2} \in \Omega_{2}, \omega_{2} \in\left(E^{\omega_{1}}\right)^{c}$ is equivalent to $\left(\omega_{1}, \omega_{2}\right) \notin E$, i.e. $\left(\omega_{1}, \omega_{2}\right) \in E^{c}$. So $\left(E^{\omega_{1}}\right)^{c}=\left(E^{c}\right)^{\omega_{1}}$. Hence, we see that $\left(E^{c}\right)^{\omega_{1}} \in \mathcal{F}_{2}$. It follows that $E^{c} \in \Gamma^{\omega_{1}}$, which is therefore closed under complementation. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of elements of $\Gamma^{\omega_{1}}$. Let $E=\cup_{n=1}^{+\infty} E_{n}$. For all $n \geq 1,\left(E_{n}\right)^{\omega_{1}} \in \mathcal{F}_{2}$. \mathcal{F}_{2} being closed under countable union, $\cup_{n=1}^{+\infty}\left(E_{n}\right)^{\omega_{1}} \in \mathcal{F}_{2}$. However, given $\omega_{2} \in \Omega_{2}, \omega_{2} \in \cup_{n=1}^{+\infty}\left(E_{n}\right)^{\omega_{1}}$ is equivalent to the existence of $n \geq 1$, such that $\left(\omega_{1}, \omega_{2}\right) \in E_{n}$. Hence, it is equivalent to $\left(\omega_{1}, \omega_{2}\right) \in \cup_{n=1}^{+\infty} E_{n}=E$. So $\cup_{n=1}^{+\infty}\left(E_{n}\right)^{\omega_{1}}=E^{\omega_{1}}$, and we see that $E^{\omega_{1}} \in \mathcal{F}_{2}$. It follows that $E \in \Gamma^{\omega_{1}}$, which is therefore closed under countable union. We have proved that $\Gamma^{\omega_{1}}$ is a σ-algebra on $\Omega_{1} \times \Omega_{2}$.
2. Let $\omega_{1} \in \Omega_{1}$, and $E=A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$ be a measurable rectangle of \mathcal{F}_{1} and \mathcal{F}_{2}. Suppose $\omega_{1} \in A$. Then $\left(\omega_{1}, \omega_{2}\right) \in E$, if and only if $\omega_{2} \in B$. So $E^{\omega_{1}}=B \in \mathcal{F}_{2}$. Suppose $\omega_{1} \notin A$. Then for all $\omega_{2} \in \Omega_{2},\left(\omega_{1}, \omega_{2}\right) \notin E$. So $E^{\omega_{1}}=\emptyset \in \mathcal{F}_{2}$. In any case, $E^{\omega_{1}} \in \mathcal{F}_{2}$. It follows that $E \in \Gamma^{\omega_{1}}$. We have proved that $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \Gamma^{\omega_{1}}$.
3. From $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \Gamma^{\omega_{1}}$ and the fact that $\Gamma^{\omega_{1}}$ is a σ-algebra on $\Omega_{1} \times \Omega_{2}$, we conclude that $\mathcal{F}_{1} \otimes \mathcal{F}_{2}=\sigma\left(\mathcal{F}_{1} \amalg \mathcal{F}_{2}\right) \subseteq \Gamma^{\omega_{1}}$. Hence, for all $\omega_{1} \in \Omega_{1}$ and $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}, E$ is an element of $\Gamma^{\omega_{1}}$, or equivalently, $E^{\omega_{1}} \in \mathcal{F}_{2}$.
4. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow(S, \Sigma)$ be a measurable map, where (S, Σ) is a measurable space. Let $\omega_{1} \in \Omega_{1}$, and $\phi: \Omega_{2} \rightarrow S$ be the partial map $\omega \rightarrow f\left(\omega_{1}, \omega\right)$. Let $B \in \Sigma$. Then $\{f \in B\}$ is an element of $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$. Using 3. it follows that the ω_{1}-section $\{f \in B\}^{\omega_{1}}$ of $\{f \in B\}$ is an element of \mathcal{F}_{2}. However, we have:

$$
\{f \in B\}^{\omega_{1}}=\left\{\omega_{2} \in \Omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in\{f \in B\}\right\}
$$

$$
\begin{aligned}
& =\left\{\omega_{2} \in \Omega_{2}: f\left(\omega_{1}, \omega_{2}\right) \in B\right\} \\
& =\left\{\omega_{2} \in \Omega_{2}: \phi\left(\omega_{2}\right) \in B\right\} \\
& =\{\phi \in B\}
\end{aligned}
$$

Hence we see that $\{\phi \in B\} \in \mathcal{F}_{2}$. This being true for all $B \in \Sigma$, we conclude that ϕ is measurable. This shows that the map $\omega \rightarrow f\left(\omega_{1}, \omega\right)$ is measurable.
5. Let $\theta:\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}\right) \rightarrow\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ be defined by $\theta\left(\omega_{2}, \omega_{1}\right)=\left(\omega_{1}, \omega_{2}\right)$. From theorem (28), in order to show that θ is measurable, it is sufficient to prove that each coordinate mapping $\theta_{1}:\left(\omega_{2}, \omega_{1}\right) \rightarrow \omega_{1}$ and $\theta_{2}:\left(\omega_{2}, \omega_{1}\right) \rightarrow \omega_{2}$ is measurable. This is indeed the case, since for all $A_{1} \in \mathcal{F}_{1}$ we have $\theta_{1}^{-1}\left(A_{1}\right)=\Omega_{2} \times A_{1} \in \mathcal{F}_{2} \otimes \mathcal{F}_{1}$, and for all $A_{2} \in \mathcal{F}_{2}$ we have $\theta_{2}^{-1}\left(A_{2}\right)=A_{2} \times \Omega_{1} \in \mathcal{F}_{2} \otimes \mathcal{F}_{1}$. So θ is measurable.
6. Let $\omega_{2} \in \Omega_{2}$. Let $g:\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}\right) \rightarrow(S, \Sigma)$ be the map defined by $g=f \circ \theta$. Having proved in 5 . that θ is measurable, since f is itself measurable, g is a measurable map. Applying 4.
to g, it follows that the map $\omega \rightarrow g\left(\omega_{2}, \omega\right)$ is measurable with respect to \mathcal{F}_{1} and Σ. In other words, the map $\omega \rightarrow f\left(\omega, \omega_{2}\right)$ is measurable with respect to \mathcal{F}_{1} and Σ. This completes the proof of theorem (29).

Exercise 1

Exercise 2.

1. There is an obvious bijection Φ between $E_{1} \times E_{2}$ and $\Pi_{i \in I} \Omega_{i}$, defined by $\Phi\left(\omega_{1}, \omega_{2}\right)\left(i_{1}\right)=\omega_{1}$, and $\Phi\left(\omega_{1}, \omega_{2}\right)(i)=\omega_{2}(i)$ for $i \neq i_{1}$. The two sets $E_{1} \times E_{2}$ and $\Pi_{i \in I} \Omega_{i}$ can therefore identified, and f can be viewed as a map defined on $E_{1} \times E_{2}$.
2. Having identified $E_{1} \times E_{2}$ and $\Pi_{i \in I} \Omega_{i}$, using exercise (10) of Tutorial 6 for the partition $I=\left\{i_{1}\right\} \uplus\left(I \backslash\left\{i_{1}\right\}\right)$, we obtain $\otimes_{i \in I} \mathcal{F}_{i}=\mathcal{E}_{1} \otimes \mathcal{E}_{2}$. So $f:\left(E_{1} \times E_{2}, \mathcal{E}_{1} \otimes \mathcal{E}_{2}\right) \rightarrow(E, \mathcal{B}(E))$ is measurable.
3. From 2. and theorem (29), given $\omega_{1} \in E_{1}$, the map $\omega \rightarrow f\left(\omega_{1}, \omega\right)$ defined on E_{2}, is measurable with respect to \mathcal{E}_{2} and $\mathcal{B}(E)$. In other words, given $\omega_{i_{1}} \in \Omega_{i_{1}}$, the map $\omega \rightarrow f\left(\omega_{i_{1}}, \omega\right)$ defined on $\Pi_{i \in I \backslash\left\{i_{1}\right\}} \Omega_{i}$, is measurable w.r. to $\otimes_{i \in I \backslash\left\{i_{1}\right\}} \mathcal{F}_{i}$ and $\mathcal{B}(E)$.

Exercise 2

Exercise 3.

1. Suppose there exists a sequence $\left(\Omega_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $\Omega=\uplus_{n=1}^{+\infty} \Omega_{n}$ and $\mu\left(\Omega_{n}\right)<+\infty$ for all $n \geq 1$. Define $A_{n}=\uplus_{k=1}^{n} \Omega_{k}$, for all $n \geq 1$. Then:

$$
\mu\left(A_{n}\right)=\sum_{k=1}^{n} \mu\left(\Omega_{k}\right)<+\infty
$$

and furthermore, $A_{n} \uparrow \Omega$. So $(\Omega, \mathcal{F}, \mu)$ is σ-finite. Conversely, suppose $(\Omega, \mathcal{F}, \mu)$ is σ-finite. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence in \mathcal{F}, such that $A_{n} \uparrow \Omega$ and $\mu\left(A_{n}\right)<+\infty$ for all $n \geq 1$. Define $\Omega_{1}=A_{1}$, and $\Omega_{n}=A_{n} \backslash A_{n-1}$ for all $n \geq 2$. Then, $\left(\Omega_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint elements of \mathcal{F}. Since $\Omega_{n} \subseteq A_{n}$ for all $n \geq 1$, we have $\mu\left(\Omega_{n}\right) \leq \mu\left(A_{n}\right)<+\infty$. Given $\omega \in \Omega$, since $\Omega=\cup_{n=1}^{+\infty} A_{n}$, there exists $n \geq 1$ such that $\omega \in A_{n}$. Let p be the smallest of such n. Then $\omega \in A_{p} \backslash A_{p-1}$ if $p \geq 2$, or $\omega \in A_{1}$. In any case, $\omega \in \Omega_{p}$. Hence, we see that $\Omega=\cup_{n=1}^{+\infty} \Omega_{n}$ and finally $\Omega=\uplus_{n=1}^{+\infty} \Omega_{n}$. We conclude that $(\Omega, \mathcal{F}, \mu)$ is σ-finite, if and only
if there exists a sequence $\left(\Omega_{n}\right)_{n \geq 1}$ of pairwise disjoint elements of \mathcal{F}, such that $\Omega=\uplus_{n=1}^{+\infty} \Omega_{n}$ and $\mu\left(\Omega_{n}\right)<+\infty$ for all $n \geq 1$.
2. Suppose $(\Omega, \mathcal{F}, \mu)$ is finite. Then $\mu(\Omega)<+\infty$. For all $A \in \mathcal{F}$, since $A \subseteq \Omega, \mu(A) \leq \mu(\Omega)<+\infty$. So μ takes values in \mathbf{R}^{+}.
3. Suppose $(\Omega, \mathcal{F}, \mu)$ is finite. Then $\mu(\Omega)<+\infty$. Define $\Omega_{n}=\Omega$ for all $n \geq 1$. Then $\left(\Omega_{n}\right)_{n \geq 1}$ is a sequence in \mathcal{F} such that $\Omega_{n} \uparrow \Omega$ and $\mu\left(\Omega_{n}\right)<+\infty$ for all $n \geq 1$. So $(\Omega, \mathcal{F}, \mu)$ is σ-finite.
4. Take $\left.\left.\Omega_{n}=\right]-n, n\right]$ for all $n \geq 1$. Then, $\Omega_{n} \subseteq \Omega_{n+1}$ and we have $\mathbf{R}=\cup_{n=1}^{+\infty} \Omega_{n}$. So $\Omega_{n} \uparrow \mathbf{R}$. Moreover, by definition of the Stieltjes measure (20), $d F\left(\Omega_{n}\right)=F(n)-F(-n) \in \mathbf{R}^{+}$. In particular, $d F\left(\Omega_{n}\right)<+\infty$ for all $n \geq 1$. We conclude that $(\mathbf{R}, \mathcal{B}(\mathbf{R}), d F)$ is a σ-finite measure space.

Exercise 3

Exercise 4.

1. Let $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$. The characteristic function 1_{E} is non-negative and measurable with respect to $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$. From theorem (29), for all $\omega_{1} \in \Omega_{1}$, the partial function $x \rightarrow 1_{E}\left(\omega_{1}, x\right)$ is measurable with respect to \mathcal{F}_{2}. It is also non-negative. It follows that the integral $\int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)$ is well-defined, for all $\omega_{1} \in \Omega_{1}$. Hence, we see that Φ_{E} is a well-defined map on Ω_{1}.
2. Let $E=A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$ be a measurable rectangle of \mathcal{F}_{1} and \mathcal{F}_{2}. For all $\omega_{1} \in \Omega_{1}$, we have:

$$
\Phi_{E}\left(\omega_{1}\right)=\int_{\Omega_{2}} 1_{A}\left(\omega_{1}\right) 1_{B}(x) d \mu_{2}(x)=\mu_{2}(B) 1_{A}\left(\omega_{1}\right)
$$

Since $A \in \mathcal{F}_{1}$, the map 1_{A} is \mathcal{F}_{1}-measurable, and consequently $\Phi_{E}=\mu_{2}(B) 1_{A}$ is \mathcal{F}_{1}-measurable. Hence, we see that $E \in \mathcal{D}$. We have proved that $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}$.
3. Suppose μ_{2} is a finite measure. Let $A, B \in \mathcal{D}$ with $A \subseteq B$. For
all $\omega_{1} \in \Omega_{1}$, from $1_{B}=1_{A}+1_{B \backslash A}$, we obtain:
$\int_{\Omega_{2}} 1_{B}\left(\omega_{1}, x\right) d \mu_{2}(x)=\int_{\Omega_{2}} 1_{A}\left(\omega_{1}, x\right) d \mu_{2}(x)+\int_{\Omega_{2}} 1_{B \backslash A}\left(\omega_{1}, x\right) d \mu_{2}(x)$
i.e. $\Phi_{B}\left(\omega_{1}\right)=\Phi_{A}\left(\omega_{1}\right)+\Phi_{B \backslash A}\left(\omega_{1}\right)$. μ_{2} being a finite measure, all Φ_{E} 's take values in \mathbf{R}^{+}. Hence, it is legitimate to write:

$$
\Phi_{B \backslash A}=\Phi_{B}-\Phi_{A}
$$

Since $A, B \in \mathcal{D}$, both Φ_{A} and Φ_{B} are \mathcal{F}_{1}-measurable. We conclude that $\Phi_{B \backslash A}$ is \mathcal{F}_{1}-measurable, and $B \backslash A \in \mathcal{D}$. We have proved that if $A, B \in \mathcal{D}$ with $A \subseteq B$, then $B \backslash A \in \mathcal{D}$.
4. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence in $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ with $E_{n} \uparrow E$. In particular, $E_{n} \subseteq E_{n+1}$ for all $n \geq 1$, and therefore $1_{E_{n}} \leq 1_{E_{n+1}}$. Moreover, $E=\cup_{n=1}^{+\infty} E_{n}$. Let $\omega \in \Omega_{1} \times \Omega_{2}$. If $\omega \in E$, there exists $N \geq 1$ such that $\omega \in E_{N}$. For all $n \geq N$, we have $1_{E_{n}}(\omega)=1=1_{E}(\omega)$. If $\omega \notin E$, then $1_{E_{n}}(\omega)=0=1_{E}(\omega)$, for all $n \geq 1$. In any case, $1_{E_{n}}(\omega) \rightarrow 1_{E}(\omega)$, and consequently
$1_{E_{n}} \uparrow 1_{E}$. Given $\omega_{1} \in \Omega_{1}$, we also have $1_{E_{n}}\left(\omega_{1},.\right) \uparrow 1_{E}\left(\omega_{1},.\right)$. From the monotone convergence theorem (19), we obtain:

$$
\int_{\Omega_{2}} 1_{E_{n}}\left(\omega_{1}, x\right) d \mu_{2}(x) \uparrow \int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

i.e. $\Phi_{E_{n}}\left(\omega_{1}\right) \uparrow \Phi_{E}\left(\omega_{1}\right)$. We conclude that $\Phi_{E_{n}} \uparrow \Phi_{E}$.
5. Suppose that μ_{2} is a finite measure. From 2., $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}$, and in particular $\Omega_{1} \times \Omega_{2} \in \mathcal{D}$. From 3., whenever $A, B \in \mathcal{D}$ are such that $A \subseteq B$, we have $B \backslash A \in \mathcal{D}$. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{D}, such that $E_{n} \uparrow E$. For all $n \geq 1$, $\Phi_{E_{n}}$ is an \mathcal{F}_{1}-measurable map. Moreover from 4., $\Phi_{E_{n}} \uparrow \Phi_{E}$. In particular, $\Phi_{E}=\sup _{n \geq 1} \Phi_{E_{n}}$ and we conclude that Φ_{E} is measurable with respect to \mathcal{F}_{1}. So $E \in \mathcal{D}$. We have proved that \mathcal{D} is a Dynkin system on $\Omega_{1} \times \Omega_{2}$.
6. Suppose μ_{2} is a finite measure. From 5., \mathcal{D} is a Dynkin system on $\Omega_{1} \times \Omega_{2}$. From 2., we have $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}$. The set of measurable rectangles $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$ being closed under finite intersection, from
the Dynkin system theorem (1), we see that \mathcal{D} also contains the σ-algebra generated by $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$, i.e.

$$
\mathcal{F}_{1} \otimes \mathcal{F}_{2} \triangleq \sigma\left(\mathcal{F}_{1} \amalg \mathcal{F}_{2}\right) \subseteq \mathcal{D}
$$

We conclude that for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}, E$ is an element of \mathcal{D}, or equivalently, the map $\Phi_{E}:\left(\Omega_{1}, \mathcal{F}_{1}\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
7. For all $n \geq 1, \mu_{2}^{n}\left(\Omega_{2}\right)=\mu_{2}\left(\Omega_{2}^{n}\right)<+\infty$. So μ_{2}^{n} is a finite measure. It follows from 6. that for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, the map Φ_{E}^{n} defined by:

$$
\Phi_{E}^{n}\left(\omega_{1}\right) \triangleq \int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}^{n}(x)
$$

is measurable with respect to \mathcal{F}_{1}. From definition (45), we have:

$$
\Phi_{E}^{n}\left(\omega_{1}\right)=\int_{\Omega_{2}} 1_{\Omega_{2}^{n}}(x) 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

Since $\Omega_{2}^{n} \uparrow \Omega_{2}$, we have $1_{\Omega_{2}^{n}} \uparrow 1_{\Omega_{2}}=1$ and consequently, $1_{\Omega_{2}^{n}}(.) 1_{E}\left(\omega_{1},.\right) \uparrow 1_{E}\left(\omega_{1},.\right)$. From the monotone convergence
theorem (19), we obtain:

$$
\int_{\Omega_{2}} 1_{\Omega_{2}^{n}}(x) 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x) \uparrow \int_{\Omega_{2}} 1_{E}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

i.e. $\Phi_{E}^{n}\left(\omega_{1}\right) \uparrow \Phi_{E}\left(\omega_{1}\right)$, for all $\omega_{1} \in \Omega_{1}$. So $\Phi_{E}^{n} \uparrow \Phi_{E}$.
8. From 7., each Φ_{E}^{n} is \mathcal{F}_{1}-measurable and $\Phi_{E}=\sup _{n \geq 1} \Phi_{E}^{n}$. So Φ_{E} is \mathcal{F}_{1}-measurable, for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
9. Let $s=\sum_{i=1}^{n} \alpha_{i} 1_{E_{i}}$ be a simple function on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$. From theorem (29), the map $x \rightarrow s\left(\omega_{1}, x\right)$ is \mathcal{F}_{2}-measurable, for all $\omega_{1} \in \Omega_{1}$. It is also non-negative. It follows that the integral $\int_{\Omega_{2}} s\left(\omega_{1}, x\right) d \mu_{2}(x)$ is well-defined, for all $\omega_{1} \in \Omega_{1}$. Moreover:

$$
\int_{\Omega_{2}} s\left(\omega_{1}, x\right) d \mu_{2}(x)=\sum_{i=1}^{n} \alpha_{i} \int_{\Omega_{2}} 1_{E_{i}}\left(\omega_{1}, x\right) d \mu_{2}(x)
$$

Since $E_{i} \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, from 8., each $\omega \rightarrow \int_{\Omega_{2}} 1_{E_{i}}(\omega, x) d \mu_{2}(x)$ is \mathcal{F}_{1}-measurable. We conclude that $\omega \rightarrow \int_{\Omega_{2}} s(\omega, x) d \mu_{2}(x)$ is also
\mathcal{F}_{1}-measurable.
10. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. From theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$ such that $s_{n} \uparrow f$. In particular for all $\omega \in \Omega_{1}, s_{n}(\omega,.) \uparrow f(\omega,$.$) . From the$ monotone convergence theorem (19), we obtain:

$$
\int_{\Omega_{2}} s_{n}(\omega, x) d \mu_{2}(x) \uparrow \int_{\Omega_{2}} f(\omega, x) d \mu_{2}(x)
$$

However, from 9., each $\omega \rightarrow \int_{\Omega_{2}} s_{n}(\omega, x) d \mu_{2}(x)$ is \mathcal{F}_{1}-measurable. We conclude that $\omega \rightarrow \int_{\Omega_{2}} f(\omega, x) d \mu_{2}(x)$ is also measurable with respect to \mathcal{F}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$. This proves theorem (30).

Exercise 4

Exercise 5. Let $f:\left(\Pi_{i \in I} \Omega_{i}, \otimes_{i \in I} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Define $E_{1}=\Pi_{i \in I \backslash\left\{i_{0}\right\}} \Omega_{i}$ and $E_{2}=\Omega_{i_{0}}$. Let $\mathcal{E}_{1}=\otimes_{i \in I \backslash\left\{i_{0}\right\}} \mathcal{F}_{i}$ and $\mathcal{E}_{2}=\mathcal{F}_{i_{0}}$. Using exercise (10) of Tutorial 6, having identified $E_{1} \times E_{2}$ and $\Pi_{i \in I} \Omega_{i}$, we have:

$$
\otimes_{i \in I} \mathcal{F}_{i}=\left(\otimes_{i \in I \backslash\left\{i_{0}\right\}} \mathcal{F}_{i}\right) \otimes \mathcal{F}_{i_{0}}
$$

i.e. $\otimes_{i \in I} \mathcal{F}_{i}=\mathcal{E}_{1} \otimes \mathcal{E}_{2}$. It follows that the map f, viewed as a map defined on $E_{1} \times E_{2}$, is measurable with respect to $\mathcal{E}_{1} \otimes \mathcal{E}_{2} . \mu_{0}$ being a σ-finite measure on $\left(E_{2}, \mathcal{E}_{2}\right)$, from theorem (30), we see that:

$$
\omega \rightarrow \int_{\Omega_{i_{0}}} f(\omega, x) d \mu_{0}(x)
$$

is measurable with respect to \mathcal{E}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$. In other words, it is measurable with respect to $\otimes_{i \in I \backslash\left\{i_{0}\right\}} \mathcal{F}_{i}$ and $\mathcal{B}(\overline{\mathbf{R}})$.

Exercise 5

Exercise 6.

1. Let $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$. The characteristic function 1_{E} is measurable with respect to $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ and non-negative. μ_{2} being a σ-finite measure on $\left(\Omega_{2}, \mathcal{F}_{2}\right)$, applying theorem (30), we see that:

$$
x \rightarrow \int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)
$$

is measurable with respect to \mathcal{F}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$. It is also nonnegative. Hence, the integral:

$$
\mu_{1} \otimes \mu_{2}(E) \triangleq \int_{\Omega_{1}}\left(\int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$

is well-defined, for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$. So $\mu_{1} \otimes \mu_{2}$ is a well-defined map on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$, with values in $[0,+\infty]$.
2. Suppose $E=\emptyset$. Then $1_{E}=0$ and $\mu_{1} \otimes \mu_{2}(E)=0$. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of pairwise disjoint elements of $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$. Let
$E=\uplus_{n=1}^{+\infty} E_{n}$. Then, $1_{E}=\sum_{n=1}^{+\infty} 1_{E_{n}}$. From the monotone convergence theorem (19), for all $x \in \Omega_{1}$, we have:

$$
\int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)=\sum_{n=1}^{+\infty} \int_{\Omega_{2}} 1_{E_{n}}(x, y) d \mu_{2}(y)
$$

Applying the monotone convergence theorem once more:

$$
\mu_{1} \otimes \mu_{2}(E)=\sum_{n=1}^{+\infty} \int_{\Omega_{1}}\left(\int_{\Omega_{2}} 1_{E_{n}}(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$

i.e.

$$
\mu_{1} \otimes \mu_{2}(E)=\sum_{n=1}^{+\infty} \mu_{1} \otimes \mu_{2}\left(E_{n}\right)
$$

We have proved that $\mu_{1} \otimes \mu_{2}$ is a measure on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$.
3. Let $E=A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$ be a measurable rectangle of \mathcal{F}_{1} and
\mathcal{F}_{2}. For all $x \in \Omega_{1}$, we have:

$$
\int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)=\int_{\Omega_{2}} 1_{A}(x) 1_{B}(y) d \mu_{2}(y)=\mu_{2}(B) 1_{A}(x)
$$

It follows that:

$$
\mu_{1} \otimes \mu_{2}(E)=\int_{\Omega_{1}} \mu_{2}(B) 1_{A}(x) d \mu_{1}(x)=\mu_{1}(A) \mu_{2}(B)
$$

Exercise 6

Exercise 7.

1. By assumption, if $E=A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$ is a measurable rectangle of \mathcal{F}_{1} and \mathcal{F}_{2}, then $\mu_{1} \otimes \mu_{2}(E)=\mu_{1}(A) \mu_{2}(B)=\mu(E)$, i.e. $\mu_{1} \otimes \mu_{2}$ and μ coincide on $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$. Let $E \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$. Then $E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)$ is still a measurable rectangle, i.e. an element of $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$. Hence $\mu_{1} \otimes \mu_{2}\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)$. It follows that $E \in \mathcal{D}_{n}$. So $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}_{n}$.
2. $\Omega_{1} \times \Omega_{2} \in \mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}_{n}$. Let $E, F \in \mathcal{D}_{n}$ be such that $E \subseteq F$. Then $F=E \uplus(F \backslash E)$, and consequently:

$$
\begin{equation*}
\mu\left(F \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)+\mu\left((F \backslash E) \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right) \tag{2}
\end{equation*}
$$

with a similar expression for $\mu_{1} \otimes \mu_{2}$. Since E and F are elements of \mathcal{D}_{n}, we also have:

$$
\mu\left(F \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(F \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

and:

$$
\mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

All the terms involved being finite, it is legitimate to re-arrange and simplify equation (2) and its counterpart for $\mu_{1} \otimes \mu_{2}$, to obtain:

$$
\mu\left((F \backslash E) \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left((F \backslash E) \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

Hence, we see that $F \backslash E \in \mathcal{D}_{n}$. Let $\left(E_{p}\right)_{p \geq 1}$ be a sequence of elements of \mathcal{D}_{n}, such that $E_{p} \uparrow E$. For all $p \geq 1$, we have:

$$
\mu\left(E_{p} \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(E_{p} \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

From theorem (7), taking the limit as $p \rightarrow+\infty$, we obtain:

$$
\mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

It follows that $E \in \mathcal{D}_{n}$. We have proved that \mathcal{D}_{n} is a Dynkin system on $\Omega_{1} \times \Omega_{2}$.
3. From 1., $\mathcal{F}_{1} \amalg \mathcal{F}_{2} \subseteq \mathcal{D}_{n}$. From 2., \mathcal{D}_{n} is in fact a Dynkin system on $\Omega_{1} \times \Omega_{2}$. The set of measurable rectangles $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$ being closed under finite intersection, from the Dynkin system theorem (1), we conclude that \mathcal{D}_{n} actually contains the σ-algebra
generated by $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$, i.e. $\mathcal{F}_{1} \otimes \mathcal{F}_{2}=\sigma\left(\mathcal{F}_{1} \amalg \mathcal{F}_{2}\right) \subseteq \mathcal{D}_{n}$. Hence, for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}, E$ is an element of \mathcal{D}_{n}, or equivalently:

$$
\mu\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)=\mu_{1} \otimes \mu_{2}\left(E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right)\right)
$$

Since $E \cap\left(\Omega_{1}^{n} \times \Omega_{2}^{n}\right) \uparrow E$, using theorem (7) once more, taking the limit as $n \rightarrow+\infty$, we obtain $\mu(E)=\mu_{1} \otimes \mu_{2}(E)$. This being true for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we have proved that $\mu=\mu_{1} \otimes \mu_{2}$.
4. For all $n \geq 1$, let $E_{n}=\Omega_{1}^{n} \times \Omega_{2}^{n}$. Then $E_{n} \uparrow \Omega_{1} \times \Omega_{2}$, and furthermore, $\mu_{1} \otimes \mu_{2}\left(E_{n}\right)=\mu_{1}\left(\Omega_{1}^{n}\right) \mu_{2}\left(\Omega_{2}^{n}\right)<+\infty$. We conclude that $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$ is a σ-finite measure space.
5. For all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, define:

$$
\nu(E) \triangleq \int_{\Omega_{2}}\left(\int_{\Omega_{1}} 1_{E}(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

Note that this is the same definition as that of $\mu_{1} \otimes \mu_{2}(E)$, except that the order of integration has been changed. Similarly to exercise (6), using the monotone convergence theorem (19)
twice on infinite series, we see that ν is a measure on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$. Moreover, for all $E=A \times B \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$ measurable rectangle of \mathcal{F}_{1} and \mathcal{F}_{2}, we have:

$$
\nu(E)=\int_{\Omega_{2}} \mu_{1}(A) 1_{B}(y) d \mu_{2}(y)=\mu_{1}(A) \mu_{2}(B)
$$

So ν is another measure on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$, coinciding with $\mu_{1} \otimes \mu_{2}$ on the set of measurable rectangles $\mathcal{F}_{1} \amalg \mathcal{F}_{2}$. From 3., we see that $\nu=\mu_{1} \otimes \mu_{2}$. We have proved that for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$:

$$
\mu_{1} \otimes \mu_{2}(E)=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} 1_{E}(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

Hence, as far as defining $\mu_{1} \otimes \mu_{2}$ is concerned, the order of integration is irrelevant.

Exercise 7

Exercise 8.

1. $\left(E_{1}, \mathcal{E}_{1}, \nu_{1}\right)$ and $\left(E_{2}, \mathcal{E}_{2}, \nu_{2}\right)$ being two σ-finite measure spaces, $\nu_{1} \otimes \nu_{2}$ is well-defined as a measure on $\left(E_{1} \times E_{2}, \mathcal{E}_{1} \otimes \mathcal{E}_{2}\right)$ (exercise (6)). From exercise (7), such measure is itself σ-finite. Having identified $E_{1} \times E_{2}$ with $\Omega_{1} \times \ldots \times \Omega_{n}$, using exercise (10) of Tutorial 6 , we have:

$$
\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}=\mathcal{F}_{i_{0}} \otimes\left(\otimes_{i \neq i_{0}} \mathcal{F}_{i}\right)=\mathcal{E}_{1} \otimes \mathcal{E}_{2}
$$

So $\nu_{1} \otimes \nu_{2}$ is a σ-finite measure on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$. Let $A=A_{1} \times \ldots \times A_{n}$ be a measurable rectangle of $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$. Identifying A with $A_{i_{0}} \times\left(\Pi_{i \neq i_{0}} A_{i}\right)$, we have:

$$
\nu_{1} \otimes \nu_{2}(A)=\nu_{1}\left(A_{i_{0}}\right) \nu_{2}\left(\Pi_{i \neq i_{0}} A_{i}\right)
$$

Since by assumption, $\nu_{2}\left(\Pi_{i \neq i_{0}} A_{i}\right)=\Pi_{i \neq i_{0}} \mu_{i}\left(A_{i}\right)$, we conclude:

$$
\nu_{1} \otimes \nu_{2}(A)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

2. If $n=2$, there exists a measure μ on $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$, such that for all measurable rectangle $A_{1} \times A_{2} \in \mathcal{F}_{1} \amalg \mathcal{F}_{2}$, we have:

$$
\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)
$$

In fact, from exercise (7), such measure is unique, σ-finite and equal to $\mu_{1} \otimes \mu_{2}$. Suppose the following induction hypothesis is true for $n \geq 2$:
Given $n \sigma$-finite measure spaces $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$, there exists a measure μ on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$, such that for all measurable rectangles $A_{1} \times \ldots \times A_{n}$, we have:

$$
\mu\left(A_{1} \times \ldots \times A_{n}\right)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

Moreover, such measure μ is σ-finite.
Let us prove this induction hypothesis for $n+1$. Hence, suppose we have $n+1 \sigma$-finite measure spaces. Take $E_{1}=\Omega_{1}$ and $E_{2}=\Omega_{2} \times \ldots \times \Omega_{n+1}$. Let $\mathcal{E}_{1}=\mathcal{F}_{1}$ and $\mathcal{E}_{2}=\mathcal{F}_{2} \otimes \ldots \otimes \mathcal{F}_{n+1}$. Put $\nu_{1}=\mu_{1}$. From our induction hypothesis, there exists a σ-finite measure ν_{2} on $\left(E_{2}, \mathcal{E}_{2}\right)$, such that for all measurable
rectangles $A_{2} \times \ldots \times A_{n+1}$, we have:

$$
\nu_{2}\left(A_{2} \times \ldots \times A_{n+1}\right)=\mu_{2}\left(A_{2}\right) \ldots \mu_{n+1}\left(A_{n+1}\right)
$$

All the conditions of question 1. are met: we conclude that $\nu_{1} \otimes \nu_{2}$ is a σ-finite measure on $\left(\Omega_{1} \times \ldots \times \Omega_{n+1}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n+1}\right)$ such that for all measurable rectangles $A=A_{1} \times \ldots \times A_{n+1}$:

$$
\nu_{1} \otimes \nu_{2}(A)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n+1}\left(A_{n+1}\right)
$$

This proves our induction hypothesis for $n+1$.
We have proved that for all $n \geq 2$, and σ-finite measure spaces $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{F}_{n}, \mu_{n}\right)$, there exists a σ-finite measure μ on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$, such that for all measurable rectangles $A=A_{1} \times \ldots \times A_{n}, \mu(A)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)$. Note that this is a little bit stronger (μ is σ-finite!), than what was required by the actual wording of the question. However the σ-finite property was required to carry out the induction argument, based on exercises (6) and (7).
3. Let μ and ν be two measures on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$, such that for all measurable rectangles $A=A_{1} \times \ldots \times A_{n}$:

$$
\mu(A)=\nu(A)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

For all $i=1, \ldots, n$, let $\left(\Omega_{i}^{p}\right)_{p \geq 1}$ be a sequence of elements of \mathcal{F}_{i}, such that $\Omega_{i}^{p} \uparrow \Omega_{i}$, and $\mu_{i}\left(\Omega_{i}^{p}\right)<+\infty$ for all $p \geq 1$. Define $E_{p}=\Omega_{1}^{p} \times \ldots \times \Omega_{n}^{p}$. Then $E_{p} \uparrow \Omega_{1} \times \ldots \times \Omega_{n}$, and for all $p \geq 1$, $\mu\left(E_{p}\right)=\nu\left(E_{p}\right)<+\infty$. Define:

$$
\mathcal{D}_{p} \triangleq\left\{A \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}: \mu\left(A \cap E_{p}\right)=\nu\left(A \cap E_{p}\right)\right\}
$$

Then \mathcal{D}_{p} is a Dynkin system on $\Omega_{1} \times \ldots \times \Omega_{n}$. Moreover, by assumption, $\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n} \subseteq \mathcal{D}_{p}$. The set of measurable rectangles $\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n}$ being closed under finite intersection, from the Dynkin system theorem (1), we see that \mathcal{D}_{p} actually contains the σ-algebra generated by $\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n}$, i.e.

$$
\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n} \triangleq \sigma\left(\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n}\right) \subseteq \mathcal{D}_{p}
$$

It follows that for all $A \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we have:

$$
\mu\left(A \cap E_{p}\right)=\nu\left(A \cap E_{p}\right)
$$

Using theorem (7), taking the limit as $p \rightarrow+\infty$, we obtain $\mu(A)=\nu(A)$. This being true for all $A \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we conclude that $\mu=\nu$. This proves the uniqueness of the measure μ on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$, denoted $\mu_{1} \otimes \ldots \otimes \mu_{n}$, such that $\mu(A)=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)$, for all measurable rectangles $A=A_{1} \times \ldots \times A_{n}$.
4. The fact that $\mu=\mu_{1} \otimes \ldots \otimes \mu_{n}$ is σ-finite was actually proved as part of the induction argument of 2 . However, it is very easy to justify that point directly: if $\left(\Omega_{i}^{p}\right)_{p \geq 1}$ is a sequence of elements of \mathcal{F}_{i} such that $\Omega_{i}^{p} \uparrow \Omega_{i}$ and $\mu\left(\Omega_{i}^{p}\right)<+\infty$ for all $p \geq 1$, defining $E_{p}=\Omega_{1}^{p} \times \ldots \times \Omega_{n}^{p}$, we have $E_{p} \uparrow \Omega_{1} \times \ldots \times \Omega_{n}$, and furthermore:

$$
\mu\left(E_{p}\right)=\mu_{1}\left(\Omega_{1}^{p}\right) \ldots \mu_{n}\left(\Omega_{n}^{p}\right)<+\infty
$$

So $\mu_{1} \otimes \ldots \otimes \mu_{n}$ is indeed a σ-finite measure.
5. $\mu_{i_{0}} \otimes\left(\otimes_{i \neq i_{0}} \mu_{i}\right)$ is a measure on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$ which coincides with $\mu_{1} \otimes \ldots \otimes \mu_{n}$ on the measurable rectangles. From the uniqueness property proved in 3., the two measures are therefore equal, i.e. $\mu_{i_{0}} \otimes\left(\otimes_{i \neq i_{0}} \mu_{i}\right)=\mu_{1} \otimes \ldots \otimes \mu_{n}$.

Exercise 8

Exercise 9. Showing that definition (63) is legitimate amounts to proving the existence and uniqueness of a measure μ on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$, such that for all $a_{i} \leq b_{i}, i \in \mathbf{N}_{n}$, we have:

$$
\begin{equation*}
\mu\left(\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]\right)=\prod_{i=1}^{n}\left(b_{i}-a_{i}\right) \tag{3}
\end{equation*}
$$

For $i \in \mathbf{N}_{n}$, let $\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right)$ be the measure space $(\mathbf{R}, \mathcal{B}(\mathbf{R}), d x)$, where $d x$ is the Lebesgue measure on $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$. Each $\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right)$ being σ finite, from definition (62), there exists a measure $\mu=\mu_{1} \otimes \ldots \otimes \mu_{n}$ on $\left(\mathbf{R}^{n}, \mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})\right)$, such that for all measurable rectangles $A=A_{1} \times \ldots \times A_{n}$, we have:

$$
\begin{equation*}
\mu(A)=d x\left(A_{1}\right) \ldots d x\left(A_{n}\right) \tag{4}
\end{equation*}
$$

From exercise (18) of Tutorial 6 , we have $\mathcal{B}\left(\mathbf{R}^{n}\right)=\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})$. So μ is in fact a measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$. Moreover, taking A_{i} of the form $A_{i}=\left[a_{i}, b_{i}\right]$ for $a_{i} \leq b_{i}$, we see from (4) that equation (3) is satisfied. Hence, we have proved the existence of μ. Suppose that ν
is another measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ satisfying the property of definition (63). Let $\mathcal{C}=\left\{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]: a_{i} \leq b_{i}, \forall i \in \mathbf{N}_{n}\right\}$. Then \mathcal{C} is closed under finite intersection. Given $p \geq 1$, let $E_{p}=[-p, p]^{n}$, and define:

$$
\mathcal{D}_{p} \triangleq\left\{A \in \mathcal{B}\left(\mathbf{R}^{n}\right): \mu\left(A \cap E_{p}\right)=\nu\left(A \cap E_{p}\right)\right\}
$$

Then \mathcal{D}_{p} is a Dynkin system on \mathbf{R}^{n}, and we have $\mathcal{C} \subseteq \mathcal{D}_{p}$. From the Dynkin system theorem (1), we see that \mathcal{D}_{p} actually contains the σ-algebra generated by \mathcal{C}, i.e. $\sigma(\mathcal{C}) \subseteq \mathcal{D}_{p}$. However, we claim that $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{n}\right)$. Indeed, from:

$$
\mathcal{C} \subseteq \mathcal{B}(\mathbf{R}) \amalg \ldots \amalg \mathcal{B}(\mathbf{R}) \subseteq \mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\mathcal{B}\left(\mathbf{R}^{n}\right)
$$

we obtain $\sigma(\mathcal{C}) \subseteq \mathcal{B}\left(\mathbf{R}^{n}\right)$. Furthermore, if we define:

$$
\mathcal{E} \triangleq\{[a, b]: a \leq b, a, b \in \mathbf{R}\}
$$

then every open set in \mathbf{R} can be expressed as a countable union of elements of \mathcal{E} (see the proof of theorem (6)), and it is easy to check
that $\mathcal{B}(\mathbf{R})=\sigma(\mathcal{E})$. From theorem (26), we have:

$$
\mathcal{B}\left(\mathbf{R}^{n}\right)=\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma(\mathcal{E} \amalg \ldots \amalg \mathcal{E})
$$

Since any element of $\mathcal{E} \amalg \ldots \amalg \mathcal{E}$ is of the form $A_{1} \times \ldots \times A_{n}$ where each A_{i} is either equal to $\mathbf{R}=\cup_{p=1}^{+\infty}[-p, p]$, or is an element of \mathcal{E}, any element of $\mathcal{E} \amalg \ldots \amalg \mathcal{E}$ can in fact be expressed as a countable union of elements of \mathcal{C}. Hence, $\mathcal{E} \amalg \ldots \amalg \mathcal{E} \subseteq \sigma(\mathcal{C})$ and consequently, $\mathcal{B}\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{E} \amalg \ldots \amalg \mathcal{E}) \subseteq \sigma(\mathcal{C})$. We conclude that $\mathcal{B}\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{C})^{1}$, and finally $\mathcal{B}\left(\mathbf{R}^{n}\right) \subseteq \mathcal{D}_{p}$. It follows that for all $A \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have $\mu\left(A \cap E_{p}\right)=\nu\left(A \cap E_{p}\right)$. Using theorem (7), taking the limit as $p \rightarrow+\infty$, we obtain $\mu(A)=\nu(A)$. This being true for all $A \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we see that $\mu=\nu$. We have proved the uniqueness of μ.

Exercise 9
${ }^{1}$ We proved something very similar in exercise (7) of Tutorial 6.

Exercise 10.

1. For all $p \geq 1$, define $E_{p}=[-p, p]^{n}$. Then, $E_{p} \uparrow \mathbf{R}^{n}$, and furthermore $d x^{n}\left(E_{p}\right)=(2 p)^{n}<+\infty$, for all $p \geq 1$. So $d x^{n}$ is a σ-finite measure on ($\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)$).
2. Let $a_{i} \leq b_{i}$ for $i \in \mathbf{N}_{n+p}$, and $A=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n+p}, b_{n+p}\right]$. Then, $d x^{n} \otimes d x^{p}(A)=d x^{n+p}(A)=\Pi_{i=1}^{n+p}\left(b_{i}-a_{i}\right)$. From the uniqueness property of definition (63), we conclude that:

$$
d x^{n+p}=d x^{n} \otimes d x^{p}
$$

Exercise 10

Exercise 11.

1. From exercise (6) and exercise (7), for all $E \in \mathcal{F}_{1} \otimes \mathcal{F}_{2}$, we have:

$$
\mu_{1} \otimes \mu_{2}(E)=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} 1_{E}(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$

together with:

$$
\mu_{1} \otimes \mu_{2}(E)=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} 1_{E}(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

Hence:
$\int_{\Omega_{1} \times \Omega_{2}} 1_{E} d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} 1_{E} d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} 1_{E} d \mu_{1}\right) d \mu_{2}$
By linearity, it follows that if $s=\sum_{i=1}^{n} \alpha_{i} 1_{E_{i}}$ is a simple function on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$, we have:

$$
\int_{\Omega_{1} \times \Omega_{2}} s d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} s d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} s d \mu_{1}\right) d \mu_{2}
$$

2. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. From theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}\right)$, such that $s_{n} \uparrow f$. In particular, for all $x \in \Omega_{1}, s_{n}(x,.) \uparrow f(x,$.$) . From the$ monotone convergence theorem (19), for all $x \in \Omega_{1}$, we have:

$$
\int_{\Omega_{2}} s_{n}(x, y) d \mu_{2}(y) \uparrow \int_{\Omega_{2}} f(x, y) d \mu_{2}(y)
$$

and applying theorem (19) once more, we obtain:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} s_{n}(x, y) d \mu_{2}(y)\right) d \mu_{1}(x) \uparrow \int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)
$$ and similarly:

$$
\int_{\Omega_{2}}\left(\int_{\Omega_{1}} s_{n}(x, y) d \mu_{1}(x)\right) d \mu_{2}(y) \uparrow \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

However, from $s_{n} \uparrow f$ and the monotone convergence theorem:

$$
\int_{\Omega_{1} \times \Omega_{2}} s_{n} d \mu_{1} \otimes \mu_{2} \uparrow \int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

Using 1., for all $n \geq 1$, we have:

$$
\int_{\Omega_{1} \times \Omega_{2}} s_{n} d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} s_{n} d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} s_{n} d \mu_{1}\right) d \mu_{2}
$$

Hence, taking the limit as $n \rightarrow+\infty$, we obtain:

$$
\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f d \mu_{1}\right) d \mu_{2}
$$

This proves theorem (31).
Exercise 11

Exercise 12.

1. Let $f:\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right) \rightarrow[0,+\infty]$ be a nonnegative and measurable map. Since $\mu_{\sigma(1)}$ is a σ-finite measure, from exercise (5), the map:

$$
J_{1}: \omega \rightarrow \int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)
$$

is well-defined on $\Pi_{i \neq \sigma(1)} \Omega_{i}$, and measurable w.r. to $\otimes_{i \neq \sigma(1)} \mathcal{F}_{i}$.
2. If $J_{k}:\left(\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \Omega_{i}, \otimes_{i \notin\{\sigma(1), \ldots, \sigma(k)\}} \mathcal{F}_{i}\right) \rightarrow[0,+\infty]$ is nonnegative and measurable, for $1 \leq k \leq n-2$, from exercise (5):

$$
J_{k+1}: \omega \rightarrow \int_{\Omega_{\sigma(k+1)}} J_{k}(\omega, x) d \mu_{\sigma(k+1)}(x)
$$

is also well-defined on $\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \Omega_{i}$, and measurable with respect to $\otimes_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \mathcal{F}_{i}$.
3. The integral:

$$
I=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

can be rigorously defined as:

$$
I \triangleq \int_{\Omega_{\sigma(n)}} J_{n-1} d \mu_{\sigma(n)}
$$

where J_{n-1} is given by 1 . and 2 .
Exercise 12

Exercise 13.

1. Since $f_{p} \uparrow f$, for all $\omega \in \Pi_{i \neq \sigma(1)} \Omega_{i}$, we have $f_{p}(\omega,.) \uparrow f(\omega,$.$) .$ From the monotone convergence theorem (19), we obtain:

$$
\int_{\Omega_{\sigma(1)}} f_{p}(\omega, x) d \mu_{\sigma(1)}(x) \uparrow \int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)
$$

i.e. $J_{1}^{p} \uparrow J_{1}$.
2. Suppose $J_{k}^{p} \uparrow J_{k}, 1 \leq k \leq n-2$. For all $\omega \in \Pi_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \Omega_{i}$, we have $J_{k}^{p}(\omega,.) \uparrow J_{k}(\omega,$.$) . From the monotone convergence$ theorem (19), we have:

$$
\int_{\Omega_{\sigma(k+1)}} J_{k}^{p}(\omega, x) d \mu_{\sigma(k+1)}(x) \uparrow \int_{\Omega_{\sigma(k+1)}} J_{k}(\omega, x) d \mu_{\sigma(k+1)}(x)
$$

i.e. $J_{k+1}^{p} \uparrow J_{k+1}$.
3. From 2., $J_{n-1}^{p} \uparrow J_{n-1}$. Again from theorem (19):

$$
\int_{\Omega_{\sigma(n)}} J_{n-1}^{p} d \mu_{\sigma(n)} \uparrow \int_{\Omega_{\sigma(n)}} J_{n-1} d \mu_{\sigma(n)}
$$

In other words:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f_{p} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)} \uparrow \int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

4. For all $E \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we have:

$$
\mu(E) \triangleq \int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

So $\mu(\emptyset)=0$. If $\left(E_{p}\right)_{p \geq 1}$ is a sequence of pairwise disjoint elements of $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, and $E=\uplus_{i=1}^{+\infty} E_{i}$, defining for $p \geq 1$, $f_{p}=\sum_{i=1}^{p} 1_{E_{i}}$, we have $f_{p} \uparrow 1_{E}$. It follows from 3.:

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f_{p} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)} \uparrow \mu(E)
$$

By linearity, we obtain $\sum_{i=1}^{p} \mu\left(E_{i}\right) \uparrow \mu(E)$, or equivalently:

$$
\mu(E)=\sum_{i=1}^{+\infty} \mu\left(E_{i}\right)
$$

We have proved that μ is indeed a measure on $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$.
5. Let $E=A_{1} \times \ldots \times A_{n}$ be a measurable rectangle of $\left(\mathcal{F}_{i}\right)_{i \in \mathbf{N}_{n}}$. Then:

$$
\mu(E)=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}=\mu_{1}\left(A_{1}\right) \ldots \mu_{n}\left(A_{n}\right)
$$

From the uniqueness property of definition (62), it follows that μ coincide with the product measure $\mu_{1} \otimes \ldots \otimes \mu_{n}$. Hence, for all $E \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we have:

$$
\mu_{1} \otimes \ldots \otimes \mu_{n}(E)=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

6. From 5., for all $E \in \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$, we have:

$$
\int_{\Omega_{1} \times \ldots \times \Omega_{n}} 1_{E} d \mu_{1} \otimes \ldots \otimes \mu_{n}=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} 1_{E} d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

If s is a simple function on $\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right)$, by linearity, we obtain:

$$
\int_{\Omega_{1} \times \ldots \times \Omega_{n}} s d \mu_{1} \otimes \ldots \otimes \mu_{n}=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} s d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

Since any $f:\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}\right) \rightarrow[0,+\infty]$ nonnegative and measurable, can be approximated from below by simple functions (theorem (18)), we conclude from the monotone convergence theorem (19) and question 3., that:

$$
\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}=\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}
$$

This proves theorem (32).

Exercise 14.

1. Suppose $f \in L^{1}$. There exists $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that $f=g$, μ-a.s. Hence, there exists $N \in \mathcal{F}$ with $\mu(N)=0$, such that $f(\omega)=g(\omega)$ for all $\omega \in N^{c}$. However, g has values in R. So $|f(\omega)|<+\infty$ for all $\omega \in N^{c}$. It follows that $|f|<+\infty \mu$-a.s.
2. We assume the existence of $A \subseteq \Omega$, such that $A \notin \mathcal{F}$ and $A \subseteq N$, for some $N \in \mathcal{F}$ with $\mu(N)=0$. Since $A \notin \mathcal{F}, 1_{A}$ is not measurable. However, for all $\omega \in N^{c}$, we have $1_{A}(\omega)=0$. So $1_{A}=0, \mu$-a.s. Since $0 \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, we see that $1_{A} \in L^{1}$.
3. Suppose $f \in L^{1}$. As indicated in 2., we have no guarantee that f be a measurable map. Hence, the integrals $\int|f| d \mu$ and $\int f d \mu$ may not be meaningful.
4. Let $f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ be a measurable map, such that $\int|f| d \mu<+\infty$. In particular, we have $\mu(\{|f|=+\infty\})=0$ (see exercise (7) of Tutorial 5). Define $g=f 1_{\{|f|<+\infty\}}$. Then,
$f(\omega)=g(\omega)$ for all $\omega \in\{|f|<+\infty\}$. So $f=g \mu$-a.s. However, g is measurable, with values in \mathbf{R}, and such that:

$$
\int|g| d \mu=\int|f| d \mu<+\infty
$$

So $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, and finally $f \in L^{1}$.
5. Suppose $f \in L^{1}$ and $f=f_{1} \mu$-a.s. for some map $f_{1}: \Omega \rightarrow \overline{\mathbf{R}}$. There exists $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, such that $f=g \mu$-a.s. There exists $N \in \mathcal{F}$ with $\mu(N)=0$, such that $f(\omega)=g(\omega)$ for all $\omega \in N^{c}$. Also, there exists $N_{1} \in \mathcal{F}$ with $\mu\left(N_{1}\right)=0$, such that $f(\omega)=f_{1}(\omega)$ for all $\omega \in N_{1}^{c}$. It follows that $f_{1}(\omega)=g(\omega)$ for all $\omega \in\left(N \cup N_{1}\right)^{c}$. Since $\mu\left(N \cup N_{1}\right) \leq \mu(N)+\mu\left(N_{1}\right)=0$, we see that $f_{1}=g \mu$-a.s. We conclude that $f_{1} \in L^{1}$.
6. Let $f \in L^{1}$. Let $g_{1}, g_{2} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ with $f=g_{1} \mu$-a.s. and $f=g_{2} \mu$-a.s. There exist $N_{1}, N_{2} \in \mathcal{F}$ with $\mu\left(N_{1}\right)=\mu\left(N_{2}\right)=0$, such that $f(\omega)=g_{1}(\omega)$ for all $\omega \in N_{1}^{c}$, and $f(\omega)=g_{2}(\omega)$ for
all $\omega \in N_{2}^{c}$. So $g_{1}(\omega)=g_{2}(\omega)$ for all $\omega \in\left(N_{1} \cup N_{2}\right)^{c}$, and $\mu\left(N_{1} \cup N_{2}\right)=0$. So $g_{1}=g_{2} \mu$-a.s. and finally $\int g_{1} d \mu=\int g_{2} d \mu$.
7. For all $f \in L^{1}$, we define:

$$
\begin{equation*}
\int f d \mu \triangleq \int g d \mu \tag{5}
\end{equation*}
$$

where g is any element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that $f=g \mu$-a.s. From 6., if $g_{1}, g_{2} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ are such that $f=g_{1} \mu$-a.s. and $f=g_{2} \mu$-a.s., then $\int g_{1} d \mu=\int g_{2} d \mu$. So $\int f d \mu$ is well-defined. If $f \in L^{1} \cap L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, then $\int f d \mu$ as defined in (5) coincide with $\int f d \mu$, in its usual sense.

Exercise 14

Exercise 15.

1. By assumption, $f_{n} \rightarrow f \mu$-a.s. There exists $N \in \mathcal{F}, \mu(N)=0$, such that $f_{n}(\omega) \rightarrow f(\omega)$ for all $\omega \in N^{c}$. Also, for all $n \geq 1$, $\left|f_{n}\right| \leq h \mu$-a.s. There exists $M_{n} \in \mathcal{F}$ with $\mu\left(M_{n}\right)=0$ such that $\left|f_{n}(\omega)\right| \leq h(\omega)$ for all $\omega \in M_{n}^{c}$. Let $N_{1}=N \cup\left(\cup_{n \geq 1} M_{n}\right)$. Then $N_{1} \in \mathcal{F}$, and:

$$
\mu\left(N_{1}\right) \leq \mu(N)+\sum_{n=1}^{+\infty} \mu\left(M_{n}\right)=0
$$

So $\mu\left(N_{1}\right)=0$. Moreover, for all $\omega \in N_{1}^{c}$, we have $f_{n}(\omega) \rightarrow f(\omega)$ and for all $n \geq 1,\left|f_{n}(\omega)\right| \leq h(\omega)$.
2. Since $f \in L^{1}$, there exists $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that $f=g \mu$ a.s. There exists $N \in \mathcal{F}$ with $\mu(N)=0$, such that $f(\omega)=g(\omega)$ for all $\omega \in N^{c}$. Similarly, there exists $h_{1} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, and a set $M_{1}^{\prime} \in \mathcal{F}$ with $\mu\left(M_{1}^{\prime}\right)=0$, such that $h(\omega)=h_{1}(\omega)$ for all $\omega \in$ $\left(M_{1}^{\prime}\right)^{c}$. For all $n \geq 1$, there exist $g_{n} \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ and $M_{n} \in \mathcal{F}$
with $\mu\left(M_{n}\right)=0$ such that $g_{n}(\omega)=f_{n}(\omega)$ for all $\omega \in M_{n}^{c}$. Let $N_{2}=N \cup M_{1}^{\prime} \cup\left(\cup_{n \geq 1} M_{n}\right)$. Then $N_{2} \in \mathcal{F}, \mu\left(N_{2}\right)=0$, and for all $\omega \in N_{2}^{c}$, we have $g(\omega)=f(\omega), h_{1}(\omega)=h(\omega)$ and $g_{n}(\omega)=f_{n}(\omega)$ for all $n \geq 1$.
3. Let $N=N_{1} \cup N_{2}$ where N_{1} and N_{2} are given by 1 . and 2 . respectively. Then $N \in \mathcal{F}, \mu(N)=0$, and for all $\omega \in N^{c}$, we have $g_{n}(\omega) \rightarrow g(\omega)$ and $\left|g_{n}(\omega)\right| \leq h_{1}(\omega)$ for all $n \geq 1$.
4. $\left(g_{n} 1_{N^{c}}\right)_{n \geq 1}$ is a sequence of \mathbf{C}-valued (in fact \mathbf{R}-valued) measurable maps, such that $g_{n} 1_{N^{c}}(\omega) \rightarrow g 1_{N^{c}}(\omega)$ for all $\omega \in \Omega$. Moreover, $h_{1} 1_{N^{c}}$ is an element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that for all $n \geq 1,\left|g_{n} 1_{N^{c}}\right| \leq h_{1} 1_{N^{c}}$. Hence, we can apply the dominated convergence theorem (23).
5. When $f, f_{n} \in L^{1}$, we have $\left|f_{n}-f\right| \in L^{1}$, and $\int\left|f_{n}-f\right| d \mu$ is defined as $\int k d \mu$ where k is any element of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that $\left|f_{n}-f\right|=k \mu$-a.s. In fact, $\left|g_{n}-g\right| \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ and $\left|f_{n}-f\right|=\left|g_{n}-g\right| \mu$-a.s. So $\int\left|f_{n}-f\right| d \mu=\int\left|g_{n}-g\right| d \mu$.
6. From 4., and the dominated convergence theorem (23), we have $\lim \int 1_{N^{c}}\left|g_{n}-g_{n}\right| d \mu=0$ and consequently, $\int\left|g_{n}-g\right| d \mu \rightarrow 0$. It follows from 5 . that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$.

Exercise 15

Exercise 16.

1. We define $A=\left\{\omega_{1} \in \Omega_{1}: \int_{\Omega_{2}}\left|f\left(\omega_{1}, x\right)\right| d \mu_{2}(x)<+\infty\right\}$. From theorem (30), the map $\phi: \omega_{1} \rightarrow \int_{\Omega_{2}}\left|f\left(\omega_{1}, x\right)\right| d \mu_{2}(x)$ is measurable with respect to \mathcal{F}_{1} and $\mathcal{B}(\overline{\mathbf{R}})$. It follows that:

$$
A=\phi^{-1}\left(\left[-\infty,+\infty[) \in \mathcal{F}_{1}\right.\right.
$$

From theorem (31), we have:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}}\left|f\left(\omega_{1}, x\right)\right| d \mu_{2}(x)\right) d \mu_{1}\left(\omega_{1}\right)=\int_{\Omega_{1} \times \Omega_{2}}|f| d \mu_{1} \otimes \mu_{2}<+\infty
$$

Using exercise (7) (11.) of Tutorial 5, we have $\mu_{1}\left(A^{c}\right)=0$.
2. For all $\omega_{1} \in A$, we have $\int_{\Omega_{2}}\left|f\left(\omega_{1}, x\right)\right| d \mu_{2}(x)<+\infty$. From theorem (29), the map $f\left(\omega_{1},.\right)$ is measurable with respect to \mathcal{F}_{2}, for all $\omega_{1} \in \mathcal{F}_{1}$. f being \mathbf{R}-valued, we conclude that for all $\omega_{1} \in A, f\left(\omega_{1},.\right) \in L_{\mathbf{R}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$.
3. For all $\omega_{1} \in A$, the map $f\left(\omega_{1},.\right)$ lies in $L_{\mathbf{R}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$. Hence, $\bar{I}\left(\omega_{1}\right)=\int_{\Omega_{2}} f\left(\omega_{1}, x\right) d \mu_{2}(x)$ is well-defined for all $\omega_{1} \in A$.
4. If $\omega \in A$, then $J(\omega)=I(\omega)=\bar{I}(\omega)=\int_{\Omega_{2}} f(\omega, x) d \mu_{2}(x)$. Hence:

$$
J(\omega)=1_{A}(\omega) \int_{\Omega_{2}} f^{+}(\omega, x) d \mu_{2}(x)-1_{A}(\omega) \int_{\Omega_{2}} f^{-}(\omega, x) d \mu_{2}(x)
$$

This equation still holds if $\omega \notin A$.
5. $\int_{\Omega_{2}} f^{+}(\omega, x) d \mu_{2}(x)<+\infty$ and $\int_{\Omega_{2}} f^{-}(\omega, x) d \mu_{2}(x)<+\infty$, for all $\omega \in A$. If $\omega \notin A$, then $J(\omega)=0$. It follows that $J(\omega) \in \mathbf{R}$, for all $\omega \in \Omega_{1}$. From theorem (30), $\omega \rightarrow \int_{\Omega_{2}} f^{+}(\omega, x) d \mu_{2}(x)$ and $\omega \rightarrow \int_{\Omega_{2}} f^{-}(\omega, x) d \mu_{2}(x)$ are \mathcal{F}_{1}-measurable maps. Furthermore, $A \in \mathcal{F}_{1}$. So 1_{A} is also an \mathcal{F}_{1}-measurable map. From 4. we conclude that J is itself \mathcal{F}_{1}-measurable.
6. For all $\omega \in \Omega_{1}$, using 4., we have:

$$
|J(\omega)| \leq \int_{\Omega_{2}} f^{+} d \mu_{2}+\int_{\Omega_{2}} f^{-} d \mu_{2}=\int_{\Omega_{2}}|f(\omega, x)| d \mu_{2}(x)
$$

and therefore:

$$
\int_{\Omega_{1}}|J(\omega)| d \mu_{1}(\omega) \leq \int_{\Omega_{1}}\left(\int_{\Omega_{2}}|f(\omega, x)| d \mu_{2}(x)\right) d \mu_{1}(\omega)<+\infty
$$

Since J is \mathbf{R}-valued and \mathcal{F}_{1}-measurable, $J \in L_{\mathbf{R}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu\right)$. Furthermore, for all $\omega \in A$, we have $J(\omega)=I(\omega)$. Since $\mu_{1}\left(A^{c}\right)=0$, we conclude that $J=I \mu_{1}$-a.s.
7. The map $x \rightarrow \int_{\Omega_{2}} f(x, y) d \mu_{2}(y)$ is defined for all $x \in A$, but may not be defined for all $x \in \Omega_{1}$. Hence, strictly speaking, the integral $\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f d \mu_{2}\right) d \mu_{1}$ may not be meaningful. However, whichever way we choose to extend $x \rightarrow \int_{\Omega_{2}} f(x, y) d \mu_{2}(y)$ (the map I), we have $J=I, \mu_{1}-$ a.s. where $J \in L_{\mathbf{R}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$. Following the previous exercise, we see that $I \in L^{1}$, and the integral $\int_{\Omega_{1}} I(x) d \mu_{1}(x)$ can in fact be defined as:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x) \triangleq \int_{\Omega_{1}} J(x) d \mu_{1}(x)
$$

8. Since $\mu_{1}\left(A^{c}\right)=0$, we have:

$$
\int_{\Omega_{1}}\left(1_{A} \int_{\Omega_{2}} f^{+} d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f^{+} d \mu_{2}\right) d \mu_{1}
$$

Using theorem (31), we conclude that:

$$
\int_{\Omega_{1}}\left(1_{A} \int_{\Omega_{2}} f^{+} d \mu_{2}\right) d \mu_{1}=\int_{\Omega_{1} \times \Omega_{2}} f^{+} d \mu_{1} \otimes \mu_{2}
$$

9. Using 4., 8. and its counterpart for f^{-}, we obtain:

$$
\int_{\Omega_{1}} J(x) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} f^{+} d \mu_{1} \otimes \mu_{2}-\int_{\Omega_{1} \times \Omega_{2}} f^{-} d \mu_{1} \otimes \mu_{2}
$$

In other words:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
$$

10. Suppose that $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$, i.e. we no longer assume that f is \mathbf{R}-valued. Then $f=u+i v$ where
both u and v are elements of $L_{\mathbf{R}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$. Applying 6. the map $\omega_{1} \rightarrow \int_{\Omega_{2}} u\left(\omega_{1}, x\right) d \mu_{2}(x)$ and the map $\omega_{1} \rightarrow \int_{\Omega_{2}} v\left(\omega_{1}, x\right) d \mu_{2}(x)$ are μ_{1}-almost surely equal to elements of $L_{\mathbf{R}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$ (say J_{u} and J_{v} respectively). Furthermore, from (1) we have:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} u(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} u d \mu_{1} \otimes \mu_{2}
$$

and:

$$
\int_{\Omega_{1}}\left(\int_{\Omega_{2}} v(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int_{\Omega_{1} \times \Omega_{2}} v d \mu_{1} \otimes \mu_{2}
$$

It follows that $\omega_{1} \rightarrow \int_{\Omega_{2}} f\left(\omega_{1}, x\right) d \mu_{2}(x)$ is μ_{1}-almost surely equal to $J_{u}+i J_{v} \in L_{\mathbf{C}}^{1}\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right)$, and:
$\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x) \triangleq \int_{\Omega_{1}}\left(J_{u}+i J_{v}\right) d \mu_{1}$

$$
\begin{aligned}
& =\int_{\Omega_{1}} J_{u} d \mu_{1}+i \int_{\Omega_{1}} J_{v} d \mu_{1} \\
& =\int_{\Omega_{1}}\left(\int_{\Omega_{2}} u(x, y) d \mu_{2}(y)\right) d \mu_{1}(x) \\
& +i \int_{\Omega_{1}}\left(\int_{\Omega_{2}} v(x, y) d \mu_{2}(y)\right) d \mu_{1}(x) \\
& =\int_{\Omega_{1} \times \Omega_{2}} u d \mu_{1} \otimes \mu_{2} \\
& +i \int_{\Omega_{1} \times \Omega_{2}} v d \mu_{1} \otimes \mu_{2} \\
& =\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
\end{aligned}
$$

This proves equation (1).
11. From 5. of exercise (1), the map θ is measurable. It follows that $f \circ \theta:\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}\right) \rightarrow[0,+\infty]$ is indeed non-negative and
measurable. Furthermore, from theorem (31), we have:

$$
\begin{aligned}
\int_{\Omega_{2} \times \Omega_{1}} f \circ \theta d \mu_{2} \otimes \mu_{1} & =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f \circ \theta\left(\omega_{2}, \omega_{1}\right) d \mu_{1}\left(\omega_{1}\right)\right) d \mu_{2}\left(\omega_{2}\right) \\
& =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) d \mu_{1}\left(\omega_{1}\right)\right) d \mu_{2}\left(\omega_{2}\right) \\
\text { Theorem }(31) \rightarrow & =\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
\end{aligned}
$$

12. From 5. of exercise (1), the map θ is measurable. So $f \circ \theta$ is itself measurable. Applying 11. to $|f|$ we obtain:

$$
\begin{aligned}
\int_{\Omega_{2} \times \Omega_{1}}|f \circ \theta| d \mu_{2} \otimes \mu_{1} & =\int_{\Omega_{2} \times \Omega_{1}}|f| \circ \theta d \mu_{2} \otimes \mu_{1} \\
& =\int_{\Omega_{1} \times \Omega_{2}}|f| d \mu_{1} \otimes \mu_{2}<+\infty
\end{aligned}
$$

So $f \circ \theta \in L_{\mathbf{C}}^{1}\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}, \mu_{2} \otimes \mu_{1}\right)$. If $u=\operatorname{Re}(f)$ and
$v=\operatorname{Im}(f)$, using 11. once more, we obtain:

$$
\begin{aligned}
\int_{\Omega_{2} \times \Omega_{1}} f \circ \theta d \mu_{2} \otimes \mu_{1} & =\int_{\Omega_{2} \times \Omega_{1}} u^{+} \circ \theta d \mu_{2} \otimes \mu_{1} \\
& -\int_{\Omega_{2} \times \Omega_{1}} u^{-} \circ \theta d \mu_{2} \otimes \mu_{1} \\
& +i \int_{\Omega_{2} \times \Omega_{1}} v^{+} \circ \theta d \mu_{2} \otimes \mu_{1} \\
& -i \int_{\Omega_{2} \times \Omega_{1}} v^{-} \circ \theta d \mu_{2} \otimes \mu_{1} \\
& =\int_{\Omega_{1} \times \Omega_{2}} u^{+} d \mu_{1} \otimes \mu_{2}-\int_{\Omega_{1} \times \Omega_{2}} u^{-} d \mu_{1} \otimes \mu_{2} \\
& +i \int_{\Omega_{1} \times \Omega_{2}} v^{+} d \mu_{1} \otimes \mu_{2}-i \int_{\Omega_{1} \times \Omega_{2}} v^{-} d \mu_{1} \otimes \mu_{2} \\
& =\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
\end{aligned}
$$

13. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \otimes \mathcal{F}_{2}, \mu_{1} \otimes \mu_{2}\right)$. From 12. $g=f \circ \theta$ is an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2} \times \Omega_{1}, \mathcal{F}_{2} \otimes \mathcal{F}_{1}, \mu_{2} \otimes \mu_{1}\right)$. Applying 10. to g, it follows that the map $\omega_{2} \rightarrow \int_{\Omega_{1}} g\left(\omega_{2}, x\right) d \mu_{1}(x)$ is μ_{2}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$. In other words, the map $\omega_{2} \rightarrow \int_{\Omega_{1}} f\left(x, \omega_{2}\right) d \mu_{1}(x)$ is μ_{2}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$. Furthermore, we have:

$$
\begin{aligned}
\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y) & =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} g(y, x) d \mu_{1}(x)\right) d \mu_{2}(y) \\
\text { From 10. } \rightarrow & =\int_{\Omega_{2} \times \Omega_{1}} g d \mu_{2} \otimes \mu_{1} \\
\text { From 12. } \rightarrow & =\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \otimes \mu_{2}
\end{aligned}
$$

This completes the proof of theorem (33).
Exercise 16

Exercise 17.

1. Let $f \in L_{\mathbf{C}}^{1}\left(\Omega_{1} \times \ldots \times \Omega_{n}, \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}, \mu_{1} \otimes \ldots \otimes \mu_{n}\right)$. Define $E_{1}=\Pi_{i \neq \sigma(1)} \Omega_{i}, E_{2}=\Omega_{\sigma(1)}, \mathcal{E}_{1}=\otimes_{i \neq \sigma(1)} \mathcal{F}_{i}$ and $\mathcal{E}_{2}=\mathcal{F}_{\sigma(1)}$. Let $\nu_{1}=\otimes_{i \neq \sigma(1)} \mu_{i}$ and $\nu_{2}=\mu_{\sigma(1)}$. Then:

$$
f \in L_{\mathbf{C}}^{1}\left(E_{1} \times E_{2}, \mathcal{E}_{1} \otimes \mathcal{E}_{2}, \nu_{1} \otimes \nu_{2}\right)
$$

From theorem (33), the map $\omega \rightarrow \int_{E_{2}} f(\omega, x) d \nu_{2}(x)$ (defined ν_{1}-almost surely and arbitrarily extended on E_{1}), is ν_{1}-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(E_{1}, \mathcal{E}_{1}, \nu_{1}\right)$. In other words:

$$
J_{1}(\omega) \triangleq \int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)
$$

is almost surely ${ }^{2}$ equal to an element of $L_{\mathbf{C}}^{1}\left(\Pi_{i \neq \sigma(1)} \Omega_{i}\right)^{3}$.
2. J_{k+1} is a.s. equal to an element of $L_{\mathbf{C}}^{1}\left(\Pi_{i \notin\{\sigma(1), \ldots, \sigma(k+1)\}} \Omega_{i}\right)$.

[^0]3. From 1., $J_{1}(\omega)=\int_{\Omega_{\sigma(1)}} f(\omega, x) d \mu_{\sigma(1)}(x)$ is almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Pi_{i \neq \sigma(1)} \Omega_{i}\right)$, say \bar{J}_{1}. Similarly, from 2., $J_{2}(\omega)=\int_{\Omega_{\sigma(2)}} \bar{J}_{1}(\omega, x) d \mu_{\sigma(2)}(x)$ is almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Pi_{i \notin\{\sigma(1), \sigma(2)\}} \Omega_{i}\right)$, say \bar{J}_{2}. By induction, we obtain a map J_{n-1} defined on $\Omega_{\sigma(n)}$, and $\mu_{\sigma(n)}$-almost surely equal to an element of $L_{\mathbf{C}}^{1}\left(\Omega_{\sigma(n)}\right)$, say \bar{J}_{n-1}. We define:
$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)} \triangleq \int_{\Omega_{\sigma(n)}} \bar{J}_{n-1} d \mu_{\sigma(n)}
$$

This multiple integral is a well-defined complex number. It is easy to check by induction that which ever choice is made of $\bar{J}_{1}, \ldots, \bar{J}_{n-2}$, the map \bar{J}_{n-1} is unique up to $\mu_{\sigma(n)}$-almost sure equality. Hence, this multiple integral is uniquely defined.
4. From theorem (33), we have:

$$
\int_{\Pi_{i \neq \sigma(1)} \Omega_{i}} \bar{J}_{1}(\omega) d \otimes_{i \neq \sigma(1)} \mu_{i}=\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}
$$

Following an induction argument, we obtain:

$$
\int_{\Omega_{\sigma(n)}} \bar{J}_{n-1} d \mu_{\sigma(n)}=\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}
$$

i.e.

$$
\int_{\Omega_{\sigma(n)}} \ldots \int_{\Omega_{\sigma(1)}} f d \mu_{\sigma(1)} \ldots d \mu_{\sigma(n)}=\int_{\Omega_{1} \times \ldots \times \Omega_{n}} f d \mu_{1} \otimes \ldots \otimes \mu_{n}
$$

This solution is not as detailed as it could have been...
Exercise 17

[^0]: ${ }^{2}$ A case of sloppy terminology: we are trying to make the whole thing readable. ${ }^{3}$ A case of sloppy notations.

