Tutorial 17: Image Measure 1

17. Image Measure

In the following, K denotes R or C. We denote M, (K), n > 1,
the set of all n x n-matrices with K-valued entries. We recall that
for all M = (m;;) € Mu(K), M is identified with the linear map
M : K" — K" uniquely determined by:

n
. A
Vj :1,...,1’L, Mej :Zmijei
i=1

i
. . . . A ~=
where (eq,...,e,) is the canonical basis of K", i.e. ¢; = (0,., 1,.,0).

EXERCISE 1. For all a € K, let H, € M,,(K) be defined by:
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ie. by Hoer = aer, Hyej = ¢j, for all j > 2. Note that H, is
obtained from the identity matrix, by multiplying the top left entry
by a. For k,l € {1,...,n}, we define the matrix Xy, € M, (K) by
Yrer = e;, Ype; = e and Yre; = ej, for all j € {1, . ..,n} \ {k,l}
Note that Xj; is obtained from the identity matrix, by interchanging
column k and column [. If n > 2, we define the matrix U € M, (K)
by:

1 0

1 1 0

[1>
o

1

i.e. by Uey = ey +e2, Ue; = ¢ for all 7 > 2. Note that the matrix U
is obtained from the identity matrix, by adding column 2 to column 1.
Ifn=1,weput U=1 We define N;,(K) ={Hy: a € K} U{Z :
k,l=1,...,n}U{U}, and M/ (K) to be the set of all finite products
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of elements of N, (K):
M(K) E{MEM(K):M =Q1....Qp, p>1, Q; € No(K) , Vi}
We shall prove that M,,(K) = M/ (K).
1. Show that if « € K\ {0}, H, is non-singular with H;' = Hy ,
2. Show that if k&, = 1,...,7n, ¥ is non-singular with ¥, = 3y;.

3. Show that U is non-singular, and that for n > 2:
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4. Let M = (m;;) € My, (K). Let Ry, ..., R, be the rows of M:

Ry
Ry

>

R,
Show that for all o € K:

Conclude that multiplying M by H, from the left, amounts to
multiplying the first row of M by c.

5. Show that multiplying M by H, from the right, amounts to
multiplying the first column of M by c.
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6.

10.

Show that multiplying M by Xy, from the left, amounts to in-
terchanging the rows R; and Ry.

Show that multiplying M by Xy from the right, amounts to
interchanging the columns C; and Cy.

. Show that multiplying M by U~ from the left (n > 2), amounts

to subtracting Ry from Ra, i.e.:

R R
oo | B2 Ry — Ry
R, R,

. Show that multiplying M by U~Y from the right (for n > 2),

amounts to subtracting Cy from CY.

Define U’ = %15.U 1.5, (n > 2). Show that multiplying M
by U’ from the right, amounts to subtracting C; from Cs.
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11. Show that if n = 1, then indeed we have M;(K) = M/ (K).

EXERCISE 2. Further to exercise (1), we now assume that n > 2, and
make the induction hypothesis that M,,_1(K) = M/, _, (K).

n—1

1. Let O,, € M,,(K) be the matrix with all entries equal to zero.
Show the existence of Q1,...,Q;, € N,—1(K), p > 1, such that:

On_1=0Q..... Q,
2. For k=1,...,p, we define Q; € M, (K), by:
0
Or 2 Q. 5
0
0 0 1
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Show that Q) € N,,(K), and that we have:
1 0 ... 0

Eln.Ql ..... Q,,.Eln =

3. Conclude that O,, € M/, (K).

4. We now consider M = (m;;) € M,(K), M # O,. We want to
show that M € M/ (K). Show that for some k,l € {1,...,n}:

1 % ... x
. *
H;M.Elk.M.Eu =
*
*

5. Show that if H,! .31x.M.Xy; € M, (K), then M € M/, (K).

Ml
Conclude that without loss of generality, in order to prove that
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M lies in M/ (K) we can assume that mq; = 1.

6. Let i = 2,...,n. Show that if m;; # 0, we have:

1+ .0 o«
H,! o U 'S0 HOE M= "

1/mix 0 «—i =

*

7. Conclude that without loss of generality, we can assume that
m41 = 0 for all ¢ > 2, i.e. that M is of the form:

1 % ... =

8. Show that in order to prove that M € M/ (K), without loss of
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generality, we can assume that M is of the form:

10 ... 0

0
M f—

: M’

0

9. Prove that M € M/ (K) and conclude with the following:

Theorem 103 Given n > 2, any n X n-matriz with values in K is
a finite product of matrices Q of the following types:

(7) Qer=ae1, Qej=¢; ,¥i=2,...,n, (0 € K)
(i) Qer=er, Qex=e,, Qej=e; , Vj#kll, (k1 €N,)
(ii7) Qer=er+e, Qej=¢; ,Vj=2,....n

where (e1,...,e,) is the canonical basis of K.
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Definition 123 Let X : (Q,F) — (', F) be a measurable map,
where (0, F) and (Q', F') are two measurable spaces. Let u be a (pos-
sibly complex) measure on (Q,F). Then, we call distribution of X
under p, or image measure of u by X, or even law of X under
w, the (possibly complex) measure on (', F'), denoted u~, X (u) or
L,(X), and defined by:

vB e F , X (B) £ u({X € B}) = u(X}(B))

EXERCISE 3. Let X : (Q,F) — (@', F) be a measurable map, where
(2, F) and (Q', F') are two measurable spaces.

1. Let B € F'. Show that if (B,),>1 is a measurable partition of
B, then (X ~Y(B,,))n>1 is a measurable partition of X ~1(B).

2. Show that if y is a measure on (2, F), puX is a well-defined
measure on (€', F').

X

3. Show that if p is a complex measure on (2, F), u* is a well-

defined complex measure on (€', F7).
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4. Show that if ;1 is a complex measure on (Q, F), then |pX| < |u|*.

5. Let Y : (', F) — (Q",F") be a measurable map, where
(Q", F") is another measurable space. Show that for all (possi-
bly complex) measure p on (€2, F), we have:

Y (X () = (Y o X)(p) = ()Y = p¥eX

Definition 124 Let p be a (possibly complex) measure on R™, n > 1.
We say that p is invariant by translation, if and only if 7o(1) = p
for all a € R™, where 7, : R" — R" 1is the translation mapping
defined by 1,(x) = a + x, for all x € R™.

EXERCISE 4. Let u be a (possibly complex) measure on (R™, B(R")).

1. Show that 7, : (R™, B(R")) — (R", B(R")) is measurable.
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2. Show 7, () is therefore a well-defined (possibly complex) mea-
sure on (R™, B(R")), for all « € R™.

3. Show that 7,(dz) = dx for all a € R™.

4. Show the Lebesgue measure on R™ is invariant by translation.
EXERCISE 5. Let ko : R™ — R™ be defined by k. (z) = ax, a > 0.
1. Show that k. : (R™, B(R")) — (R™, B(R"™)) is measurable.

2. Show that k,(dx) = a™™dx.

EXERCISE 6. Show the following:
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Theorem 104 (Integral Projection 1) Let X:(Q,F) — (', F)
be a measurable map, where (0, F), (', F') are measurable spaces.
Let i be a measure on (2, F). Then, for all f: (', F") — [0, +]
non-negative and measurable, we have:

[ roxau= [ raxq

EXERCISE 7. Show the following:

Theorem 105 (Integral Projection 2) Let X:(Q,F) — (Q,F)
be a measurable map, where (0, F), (Q',F') are measurable spaces.
Let pi be a measure on (Q, F). Then, for all f: (Q,F') — (C,B(C))
measurable, we have the equivalence:

foX eL(Q,F, ) & feLg(Q,F X ()

in which case, we have:

/Qfonu - /Q fdX (p)
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EXERCISE 8. Further to theorem (105), suppose p is in fact a complex
measure on (§2, F). Show that:

FlIX ()] < / 1 o X|dlyl (1)
Q Q
Conclude with the following:

Theorem 106 (Integral Projection 3) Let X:(Q,F) — (', F)
be a measurable map, where (Q, F), (', F') are measurable spaces.

Let p be a complex measure on (2, F). Then, for all measurable maps
f:(Q,F) — (C,B(C)), we have:

foX €Lg(QF,u) = feLo@,F X(w)
and when the left-hand side of this implication is satisfied:

[ roxdu= [ sax)
Q Q

EXERCISE 9. Let X : (2, F) — (R, B(R)) be a measurable map with
distribution g = X (P), where (2, F, P) is a probability space.
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1. Show that X is integrable, i.e. [|X|dP < +oo, if and only if:
+oo

/ |z|dp(r) < o0

2. Show that if X is integrable, then:
“+o0

BIX) = [ wdula)

3. Show that:

E[X? = /+0<> 2 dp(z)

— 00

EXERCISE 10. Let p be a locally finite measure on (R™, B(R™)), which
is invariant by translation. For alla = (ay,...,a,) € (RT)", we define
Qa =1[0,a1[x ... x [0,a,[, and in particular @ = Q... 1) = [0, 1[".

1. Show that u(Q,) < +oo for all a € (R*)", and u(Q) < +oo.
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2. Let p = (p1,...,pn) where p; > 1 is an integer for all i’s. Show:

Qp = H‘J (o1, by + 1o x [k, ke + 1]
ke N"
0<Fk <ps

3. Show that u(Qp) = p1...pap(Q).
4. Let q1,...,q, > 1 be n positive integers. Show that:
klpl (kl + 1)]71 knpn (kn + 1)pn
Q= W = —=x... x| , [

ke N® q1 q1 qn qn
0<ki<gqg

5. Show that 1(Qp) = q1 - @i (Qpy Jqr,....pm Jan))
6. Show that u(Q,) =71 ...r,u(Q), for all r € (Q1)™.

7. Show that u(Qq) = a1 ...a,u(Q), for all a € (R*)™.

www.probability.net


http://www.probability.net

Tutorial 17: Image Measure 17
8. Show that u(B) = pu(Q)dz(B), for all B € C, where:
C 2 {[ar,bi[X ... X [an,bn] , ai,b; €ER , a; <b; , Vi € N"}
9. Show that B(R™) = o(C).
10. Show that pu = u(Q)dz, and conclude with the following:

Theorem 107 Let v be a locally finite measure on (R™, B(R™)). If
1 is invariant by translation, then there exists o € RV such that:

uw= adx

EXERCISE 11. Let T': R™ — R" be a linear bijection.

1. Show that 7" and 7~! are continuous.
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2. Show that for all B C R™, the inverse image T~!(B) = {T € B}
coincides with the direct image:

T-YB) & {y: y=T"'(x) for some z € B}

3. Show that for all B C R", the direct image T'(B) coincides with
the inverse image (T~')~Y(B) = {T~! € B}.

4. Let K C R"™ be compact. Show that {T" € K} is compact.

5. Show that T'(dz) is a locally finite measure on (R", B(R")).

6. Let 7, be the translation of vector a € R"™. Show that:
Torp-1(y)=Ta0T

7. Show that T'(dx) is invariant by translation.

8. Show the existence of @ € R, such that 7'(dz) = adz. Show
that such constant is unique, and denote it by A(T).
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9. Show that @ = T'([0,1]™) € B(R"™) and that we have:
A(T)dz(Q) = T(dx)(Q) = 1
10. Show that A(T") # 0.

11. Let 71,75 : R™ — R™ be two linear bijections. Show that:
(Tl o Tg)(dﬂj) = A(Tl)A(TQ)dZ'
and conclude that A(Ty o Tp) = A(T1)A(T3).

EXERCISE 12. Let @ € R\ {0}. Let H, : R — R"™ be the linear
bijection uniquely defined by Hn(e1) = aer, Ho(ej) = e; for j > 2.

1. Show that H, (dz)([0,1]") = |a|~t.
2. Conclude that A(H,) = |det H, |7t
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EXERCISE 13. Let k,l € Nyand X : R™ — R" be the linear bijection
uniquely defined by X(ex) = e;, X(e;) = ex, X(ej) = e, for j # k, 1.

1. Show that X(dz)([0,1]") = 1.

2. Show that ¥.3 = I,,. (Identity mapping on R"™).
3. Show that |det X| = 1.

4. Conclude that A(Y) = |det 3|1,

EXERCISE 14. Let n > 2 and U : R” — R"™ be the linear bijection
uniquely defined by U(e1) = e1 + ez and U(e;) = e; for j > 2. Let
Q=1[0,1]".
1. Show that:
U NQ)={zcR": 0<a1+a2<1,0<a;,<1,Vi#2}
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2. Define:
N U Q) n{zeR": x3 >0}
Qs U Qn{zeR": 3 <0}
Show that €, € B(R").

e e

3. Let 7., be the translation of vector ea. Draw a picture of @, 1,
Qo and 7, (22) in the case when n = 2.

4. Show that if x € , then 0 < x5 < 1.

5. Show that ; C Q.

Show that if x € 7¢,(€Q2), then 0 < x5 < 1.
Show that 7., (Q2) C Q.

Show that if z € Q and x1 4+ 22 < 1 then z € Q5.

© 0 N @

Show that if x € @ and z1 + x2 > 1 then x € 7, (Q2).
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10. Show that if z € 7., () then 1 + x2 > 1.
11. Show that 7, (Q2) N Q; = 0.

12. Show that Q = Q; W 7, ().

13. Show that dz(Q) = dz(U~1(Q)).

14. Show that A(U) = 1.

15. Show that A(U) = |det U| 1.

EXERCISE 15. Let T : R™ — R™ be a linear bijection, (n > 1).

1. Show the existence of linear bijections @1,...,Q, : R" — R",
p>1,withT = Qq0...0Q,, A(Q;) = |det Q;| ! for alli € N,,.

2. Show that A(T) = |det T|~L.

3. Conclude with the following:
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Theorem 108 Letn > 1 and T : R™ — R™ be a linear bijection.
Then, the image measure T'(dx) of the Lebesgue measure on R™ is:

T(dr) = |det T| 'dx

EXERCISE 16. Let f: (R? B(R?)) — [0, +00] be a non-negative and
measurable map. Let a,b, ¢, d € R such that ad — bc # 0. Show that:

flaz + by, cx + dy)dxdy = |ad — be| ™ / fx,y)dzdy
R2 R2

EXERCISE 17. Let T : R™ — R be a linear bijection. Show that for
all B € B(R"), we have T(B) € B(R™) and:

dz(T(B)) = | det T|dz(B)

EXERCISE 18. Let V' be a linear subspace of R™ and p = dim V. We
assume that 1 <p <n—1. Let uy,...,u, be an orthonormal basis of
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V, and upy1,...,u, be such that uy,...,u, is an orthonormal basis
of R™. For i € Ny, Let ¢; : R™ — R be defined by ¢;(z) = (u;, z).

1.
2.
3.

Show that all ¢;’s are continuous.

Show that V = (/_,,, ¢; ' ({0}).
Show that V is a closed subset of R™.

. Let Q@ = (gij) € Myn(R) be the matrix uniquely defined by

Qe; = u; for all j € N, where (e1,...,e,) is the canonical
basis of R™. Show that for all 4,5 € N,,

uzauj Z(szqu

. Show that Q'.Q = I,, and conclude that |det Q| = 1.
. Show that dz({Q € V}) = dz(V).
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7. Show that {Q € V} = span(ey,...,ep).!

8. For all m > 1, we define:

n—1

E, 2

Show that dz(E,,) =0 for all m > 1.

[-m,m] x ... x [-m,m] x{0}

9. Show that dz(span(es,...,ep—1)) =0.

10. Conclude with the following:

Theorem 109 Let n > 1. Any linear subspace V' of R™ is a closed
subset of R™. Moreover, if dimV <mn — 1, then dz(V) = 0.

Hi.e. the linear subspace of R™ generated by eq, ... ,€ep.
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Solutions to Exercises

Exercise 1.

1. Let @ € K\ {0}. Then, we have:
Hyjo 0o Hoey = Hyjo(aer) = alyjner = a(l/ajer = e

and for all j > 2, Hy /o0 Hoej = Hy/qej = ej. If I, denotes the
identity matrix of M,,(K), then I,, and H,, o H, coincide on
the basis (e1,...,e,) of K". It follows that I, and Hy/, 0 H,
are in fact equal. So H, is non-singular and H, ' = Hy ,.

2. The linear map Yy : K” — K" is defined by Xper = e,
Yuer = e and Xye; = e; for all j & {k,l}. Hence, it is
clear that Xy o ¥ye; = e; for all j € N, and consequently
Y1 0 g = I,. So Xg; is non-singular and E,;ll =Y.

3. If n =1, then U =1 and U is indeed non-singular. We assume
that n > 2. Then U is defined by Ue; = e1 + €2 and Ue; = ¢;
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for all 7 > 2. Consider the linear map U’ : K" — K" defined
by U'er = e1 — eg and U'e; = ¢; for all j > 2. Then, we have:

UoUer=U'(e1+ex) =U'e; +U'ea=e1 —ea+e3=¢

and it is clear that U’ o Uej = ej for all j > 2. It follows that
U'oUej = e; for all j € N, and consequently U’ oU = I,,. We
have proved that U is invertible and U~! = U, i.e.:

1 0
-1 1 0

0

U-—t=
1

4. Let M = (my;) € M, (K), and Ry, ..., R, be the rows of M,
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i.e.

Ry
we|
Ry,
Specifically, for all i € N,,, each R; is the row vector:
R; = (mi1, mag, ..., Min)
Let @ € K, and consider the matrix M’ € M,,(K) defined by:
aRl
wel|
Ry,
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Le. M'ej = amyjer + > ., myje; for all j € N,,. Then:

Ha @) Mej = Ha (Zm”ez>
i=1
= Zminaei
=1
= mleael + Zminaei
=2
= amyje; + Zmijei
=2
= M'ej
This being true for all j € N,,, we have proved that H,M = M’,
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i.e.

We conclude that multiplying M by H, from the left, amounts
to multiplying the first row of M by .

5. Let M = (m;j) € My, (K), and C1,. .., C, be the columns of M:
M2 (Cy,Ca,...,C)
Specifically, for all j € N,,, each C} is the column vector:

mij
mgj
C; =

Mnj
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Let o € K, and consider the matrix M’ defined by:
M = (0101,02, e 7Cn)
ie. Mey =3 1" amiie; and M'e; = >0 myje; for j > 2:
Mo Hyey = M(aer) = aMe, = Zamﬂei = M'e;
i=1

and furthermore, for all j > 2:
MOHaej = Mej = Zmijei = M’ej
i=1
So M o Hpej = M'ej for all j € N,,, i.e. MH, = M’. Hence:

MHa = (O[Cl,CQ,...,Cn)

We conclude that multiplying M by H, from the right, amounts
to multiplying the first column of M by c.
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6. Let M = (m;;) € M, (K) and Ry,..., R, be the rows of M, i.e.

Ry
Ry

>

R,
Specifically, for all i € N,,, R; is the row vector:
Ri = (mi1,mag, ..., min)
Let M’ = (mj;) € M, (K) be the matrix defined by:
i
we|
R
where R), = R;, Rj = Ry and R} = R; for all i ¢ {k,l}. In

other words, the matrix M’ is nothing but the matrix M, where

www.probability.net


http://www.probability.net

Solutions to Exercises 33
the rows Rp and R; have been interchanged. Note that for

all 3,5 € N, mzj = my;j, mfj = my; and m;; = my; for all
1 ¢ {k,l}. Now, given j € N,,, we have:

EklOMej = Ekl (Zm”Q)
i=1

n
= E My L€
i1

= E m4;€; + mgjer + my;eg
ik,

= Z my;ei +myjer + my;ex
oy
n
= Zm;jei = M'e,
i=1
This being true for all j € N,,, ¥y M = M’. We conclude that
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multiplying M by X from the left, amounts to interchanging
the rows R; and Ry of M.

7. Let M = (m;;) € M,(K), and C1, ..., C, be the columns of M:
ME(Cy,Cy,...,C)
Specifically, for all j € N,,, each C} is the column vector:
mij
maj
C; =
Mg
Let M’ = (mj;) € M, (K) be the matrix defined by:
M E(C),Ch,.... )
where C}, = Cy, €} = Cy and C} = C; for all j & {k,[}. In other

words, the matrix M’ is nothing but the matrix M, where the
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35

columns C} and C; have been interchanged. For all 4,5 € N,,,

I I
my,. = My, My = Mg, and

M o Xper

and similarly M o Xye; =

M o Eklej

m;; = my; for all j ¢ {k,l}. Now:

= Mel

n

§ m;ieq

i=1

n

/ _ M/
my.e; = Mey,

i=1

M'e;. Furthermore, if j # k, I
= Mej

n
= E mijé;
i=1

n
— / . — / .
= E mie; = M'e;
i=1
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It follows that M o Xye; = M'e; for all j € N,,. We conclude
that MYy, = M’ and consequently, multiplying M by Xy from
the right, amounts to interchanging the columns C; and Cy of
M.

8. Let M = (my;) € M, (K) and Ry, ..., R, be the rows of M, i.e.

Ry
Ry

1>

R,
Specifically, for all i € N,,, R; is the row vector:

R; = (mi1, miz, ..., Mip)
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Let M' = (mj;) € M, (K) be the matrix defined by:

Ry
e Ry — Ry

R,
Specifically, M’ is exactly the matrix M, where the second row
Ry has been replaced by R — Ry, i.e. where the first row R,
has been subtracted from the second row Rs. Recall from 3.
that U~! is given by U 'e; = e; — ey and U’lej = ¢; for all
j > 2. Note that for all 4,7 € Ny, we have m;; = m;; if i # 2,
and m’2j = mg; —ma;. Now for all j € N,

U_lMej = Ut (imijei>
i=1
= imijUflei
i=1
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n
= myjer —e2) + Zmijei
i=2

= Zmijei + (mgj — mlj)eg
i#2

n
— / Jpp— / .
= Emijel—Me]
i=1

It follows that U~'M = M’, and we conclude that multiplying
M by U™ from the left, amounts to subtracting Ry from Rs.

9. Let M = (m;;) € M,(K), and C4,...,C, be the columns of M:

M2 (C1,Cy,...,Cn)
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Specifically, for all j € N,,, each C} is the column vector:

mij
mayj

C; =
Mnj

Let M' = (mj;) € M, (K) be the matrix defined by:

M/é(01—02,02’~-,0n)

Specifically, M’ is exactly the matrix M, where the second col-
umn Cs has been subtracted from the first column Cy. For all
1,7 € N, we have mgj =my; if j # 1 and m}; = m;1 — myo.
Furthermore:
MU7161 = M(61 —62)
= M61 — M€2
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n n
= § mi1€; — § mi2€;
i=1 i=1
n

= ) (mi —ma)e;

i=1
n
= e =M
— milei — 61
i=1

and for all j > 2:
MU te; = Me;

n
i=1
n
= Zm;jei = M'e;
i1
Having proved that MU 'e; = M'e; for all j € N,,, we con-
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10.

11.

41

clude that MU' = M’, or equivalently that multiplying M by
U~ from the right, amounts to subtracting Cy from Ci.

Let U' = £15U'%15. Let C4,...,Cs be the column vectors of
M e M, (K). It follows from 7. and 9. that:

MU' =

MY, U 15,
(C1,Cy,...,Co)E10U 181,
(Cy,C1,...,C U '8y
(Cy— C1,Ch,y. .., Cp) 210
(Cy,Cy —C4,...,Cy)

We conclude that multiplying M by U’ from the right, amounts
to subtracting C1 from Cs.

Suppose n = 1. It is clear that M/, (K) C M,,(K) for alln > 1,
and in particular M} (K) € M;(K). Suppose M € M;(K).
Then M = («) for some a € K. However, (o) = H, (one-
dimensional). Hence, defining Q1 = H,, we have Q1 € Nj(K)
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with M = Q1. In particular, M is a finite product of elements
of M1(K). So M € M| (K) and we have proved the equality
M (K) = M{(K).

Exercise 1
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Exercise 2.

1. Our induction hypothesis is M,,_1(K) = M},_,(K), n > 2. For
alln > 1, 0, € M,(K) denotes the matrix with all entries
equal to 0 € K. Since O,,—1 € M,,_1(K) = M! _1(K), O,_1
is a finite product of elements of A, _1(K). Hence, there exist
p>1land Q,...,Q) elements of ,,_;(K) such that:

OnfleiQ;
2. Given k € {1,...,p} = N,, we define Qy € M, (K) by:
0
Qi 2 Q
0
0 ... 01

Since @), € N,,—1(K), @}, can be of three different forms: If Q)
is of the form H, (of dimension n—1) for some a € K, it is clear
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that Qr = H, (of dimension n). If Q) is of the form ¥, for
some [,m € N,,_1, then Q}.e; = e, Q)em = € and Qre; = ¢;
for all j € N,,_1 \ {I,m}. Hence, it is clear that Qre; = e,
Qrem = ¢ and Qre; = e; for all j € N, \ {l,m}. So Qy is of
the form ¥, (of dimension n) for some [, m € N,, (in fact, for
some [, m € N,,_1). Note that we have used the same notation
€1,...,en—1 and eq,..., e, to denote successively the canonical
basis of K"~ ! and K". Now, if Q) = U (of dimension n — 1), it
is clear that Q = U (of dimension n) in the case when n—1 > 2.
In the case when n —1 = 1, we have @}, = (1) and consequently
Qr = I = H; (of dimension 2). In any case, we see that Q
is an element of V,_1(K). Now, using 6. and 7. together with
block matrix multiplication, we obtain:

Ean]_ PR szln = El’n . Qll e Q;/D . Eln
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0
- Eln' On—l 'Eln
0
0 1
— Eln‘ On,1
1 0 0
1 0 0
0
- On—l
0

which is exactly what we intended to prove.

www.probability.net


http://www.probability.net

Solutions to Exercises 46

3. Having proved that:

1 0 0
Eln Ql ..... Q,,.Eln = .
: On—l
0
since Hy can be written as:
0 00 ... O
1 0 0
Hy = . = .
0 . . 1,1
1 0
we obtain:
0 0 0
0
Ho . Eln.Ql ..... Q,,.Eln = . = On
: On—l
0

www.probability.net


http://www.probability.net

Solutions to Exercises 47

We have been able to express O,, as a finite product of elements
of M,,(K). We conclude that O,, € M/ (K).

4. Let M = (my;) € M,(K). We assume that M # O,,. Then,
there exist k,l € N,, such that my; # 0. From 7. of exercise (1),
multiplying M by ¥q; from the right, amounts to interchanging
column [ with column 1. So my; appears in the matrix M >q; as
the k-th element of the first column. Multiplying M>1; by 31k
from the left, amounts to interchanging row k with row 1. So
mp; now appears in the matrix Y1, M >1; at the intersection of
the first row and the first column, i.e. at the top left position.
In other words, X1, M>q; is of the form:

mp; * ... 0k
*

XMy =
*
Multiplying by H! = H, Jmy, from the left, amounts to mul-

mEi
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tiplying the first row by 1/my;. We conclude that:

1 % ... *
*

HJLLEMMEU =

*

5. Suppose we have proved H, ! 31, MY, € M, (K). Then this

Ml
matrix is a finite product of elements of N, (K). In other words,

there exist p > 1 and Q1, ..., Q, elements of N, (K) with:
H ' SuMEy = Q1 ...Qp

Since El_k,l = Y and El_ll = X¥q;, we obtain:
M =%1,Hp,,Q1...QpXyy

So M is therefore also a finite product of elements of NV, (K), i.e.
M e M/, (K). Hence, in order to prove that M € M/ (K) it is
sufficient to prove that H, ! 31, MYy, is an element of M/, (K).
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It follows from 4. that without loss of generality, we may assume
that mi1 = 1.

6. Let i € {2,...,n} and suppose m;1 # 0. So M is of the form:

1 * L. %
M= .
mi1 — 1 *
*
with m;; # 0. Since Hy, / = H,,,,, multiplying M by Hl/m .

from the left amounts to multiplymg the first row of M by mj;.
So H1_/1m1M is of the form:

m;1 * R
*
H} M= ,
/mll mi1 — 1 *
sk

Multiplying by ¥o; from the left amounts to interchanging row
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2 with row i. Multiplying by U~! from the left amounts to
subtracting row 1 from row 2. Multiplying once more by Xo;
from the left amounts to switching back row 2 and row 7. It
follows that EgiUflEgiHl_/lmilM is of the form:

m;1 * R
_ _ *
SoU'SoHy, M= o .,
k

Multiplying once more by Hnﬁl = H\/p,, from the left amounts
to multiplying the first row by 1/m;;. We conclude that:

1 * L.k

*

H,! So,U 'S Hy

1 _
l/m“M -

* O
T
~.
*
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7. If we prove that the matrix:

—1 —1 -1
Hyl SoiU ™ 0 Hy L M =

* O % =
T
~
*

is a finite product of elements of N, (K), then clearly M is also
a finite product of elements of N, (K). Hence in order to show
that M € M., (K), without loss of generality we may assume
that m;; = 0. This being true of all i € {2,...,n}, without loss
of generality we may assume that M is of the form:

1 % ... =
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8. So we now want to prove that M € M/ (K), where:

1 = *
0
M = .
: *
0
Let j € {2,...,n} and suppose that m;; # 0. From 5. of ex-
ercise (1), multiplying M by Hf/tnlj = H,,,; from the right,

amounts to multiplying the first column of M by m;. So
MH} s of the form:

l/mlj

mij * mi; *
MH-D - 0 J1

1/777,1]' %

0
Multiplying by ¥; from the right amounts to interchanging
column 2 with column j. From 10. of exercise (1), multiplying by
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U' = 315U 135 from the right amounts to subtracting column
1 from column 2. Multiplying by >3; once more from the right,
amounts to switching back column 2 and column j. It follows

that MHp;,  $3;U'Ss; is of the form:

maiy * 0 *
. I 0 J1
MH b $,U'S = |

1/ma; %

0
Multiplying once more by H,.,! = Hjpn,,, from the right:

1 x 0 =x
. o 0 47
MHl/mu 225U EZmeu = : *
0

Since U’ = £15U 134, it is clear that in order to prove that
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M is a finite product of elements of N, (K), it is sufficient to
prove that the above matrix is itself a finite product of elements
of M, (K). Hence, in order to prove that M € M’ (K), without
loss of generality we may assume that m;; = 0. This being true
for all j € {2,...,n}, without loss of generality we may assume
that M is of the form:

where M’ € M,,_1(K).
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9. So we now assume that M € M,,(K) is of the form:

10 ... 0

0
M =

: M’

0
and we shall prove that M € M/ (K), i.e. that M can be ex-
pressed as a finite product of elements of N;,(K). Now since
M e M;_1(K), and M,,_1(K) = M/, _,(K) being true from
our induction hypothesis, M’ can be expressed as a finite prod-
uct of elements of N,,_1(K). Hence, there exist p > 1 and
Q1. -, Q) elements of NV, _1(K) such that:

M =qQ...Q,
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For all k € N, we define:

0

Or 2 Qk :
0

0O ... 01

Following an argument identical to that contained in 2., each
Qy is an element of N,,(K). Furthermore, we have:

0

/!

Q...Q, = Qr...Q,
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and consequently:

E1nQ1 cee szln = . e =M
0

It follows that M is indeed a finite product of elements of
N, (K), and we have proved that M € M/ (K). In 11. of
exercise (1), we have proved that M;(K) = M/ (K). Hav-
ing assumed that n > 2 and M,,_1(K) = M/ _,(K), we have
shown that O,, € M/, (K), and furthermore that if M # O,,
then M is also an element of M/ (K). This shows that the
equality M,,(K) = M/ (K) holds, and completes our induction
argument. We conclude that M, (K) = M/, (K) is true for all
n > 1. In particular, it is true for all n > 2, which is the
statement of theorem (103).

Exercise 2
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Exercise 3.

1. Let B € ' and (B,),>1 be a measurable partition of B, i.e
from definition (91), a sequence of pairwise disjoint elements of
F' such that B = W, >1 B,,. Then, we claim that (X ~'(B,))n>1
is a measurable partition of X ~!(B). Since X is measurable,
X~1(B) and each X (B,,) is an element of F. So we only need
to prove that:

X~(B) = @O X~Y(By)

Since B,, C B for all n > 1, it is clear that X ~!(B,) C X~ 1(B),
which establishes the inclusion O. Let w € X~1(B). Then
X(w) € B =Up>1B,. There exists n > 1 such that X (w) € B,,
ie. w € X YB,). This proves the inclusion C. In order to
show that the X ~1(B,,)’s are pairwise disjoint, suppose we have
we X (B, NXYB,). Then X (w) € B, N By, and since
the B,,’s are pairwise disjoint, we conclude that n = m.
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2. Let u be a measure on (€, F). Then p: F — [0, +00] is a map
such that (@) = 0, and which is countably additive. Since X
is measurable, for all B € F', X ~1(B) is an element of F, and:

pX(B) 2 w(XY(B))

is therefore well-defined. So ™ : F/ — [0, +0c] is a well-defined
map. Since X 1()) = 0, it is clear that u~ () = 0. To show
that p is a measure on (', F’), we only need to show that pu*X
is countably additive. Let (B,),>1 be a sequence of pairwise
disjoint elements of 7/, and B = W,,>1B,,. Then:

+oo
X~(B) = [} Xx~1(B.)
n=1

and consequently, © being countable additive:

pX(B) = u(X~H(B))
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—+oo
= > X (Bn)
n=1

“+o00
= Z MX (Bn)
n=1

So u*X is countably additive, and we have proved that pu*X is
indeed a well-defined measure on (Q', F').

3. Suppose that p is a complex measure on (€, F). Then from
definition (92), u : F — C is a map such that for any B € F
and (B )n>1 measurable partition of B, the series } -, u(By)
converges to p(B). Since X is measurable, for all B € F,
X ~Y(B) € F and consequently:

pX(B) 2 w(XY(B))

is well-defined. So p* : 7/ — C is a well-defined map. Let
B € F' and (By)n>1 be a measurable partition of B. Then
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(X~1(B,))n>1 is a measurable partition of X ~*(B), and so:
pX(B) = M(X_l(B))

Hence, the series ), -, uX(Bn) converges to u”~ (B), and pX
indeed a well-defined complex measure on (', /).

4. Suppose p is a complex measure on (2, F). Let B € F' and
(Bn)n>1 be a measurable partition of B. Then, (X ~1(B,))n>1
is a measurable partition of X ~!(B). From definition (94), since
|u|/(X~1(B)) is an upper-bound of all sums Y, <, |u(E,)l, as
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(En)n>1 ranges through all measurable partitions of X ~1(B):

“+o0 +oo
DN Bl = Y (X TH(B))]
n=1 n=1

< ul(xXH(B) = |ul* (B)
So |u|¥(B) is an upper-bound of all sums Y, -, [u*(B,)], as
(Bpn)n>1 ranges through all measurable partitions of B. Since
| |(B) is the smallest of such upper-bounds, we obtain:
¥ I(B) < |ul* (B)
This being true for all B € F, we have |u~| < |u|X.

5. Let Y : (Q,F) — (Q',F") be a measurable map, where
(Q", F") is another measurable space. Let u be a (possibly com-
plex) measure on (€2, F). Then X (u) is a well-defined (possibly
complex) measure on (', F’). So Y (X(u)) is a well-defined
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(possibly complex) measure on (", F”). For all B € F":
Y(X(w)(B) = XY~ '(B))
= wX(Y~H(B)))
= u((Y o X)7X(B))
= (Yo X)(u)(B)

This being true for all B € F”, Y(X(u)) = (Y o X)(u). From
definition (123), we obtain immediately:

(W)Y =Y () = V(X (1) = (Y 0 X)() = p¥°

Exercise 3
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Exercise 4.

1. Let ¢« € R™ and 7, : R™ — R" be the associated translation
mapping. Since ||7,(z) — 7o (y)| = ||z — y|| for all z,y € R", it
is clear that 7, is continuous. It is therefore Borel measurable.

2. Let u be a (possibly complex) measure on R™. Let a € R™.
Since 7, : R” — R™ is measurable, 7, (p) is a well-defined (pos-
sibly complex) measure on R"™.

3. Let a € R™ and u,v € R™ with u; < wv; for all i € N,,. Then:

To(dx) (H[W,%]) = dzx (Tal (H[uule)
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= dx (H[%,%])

i=1

From the uniqueness property of definition (63), 7,(dz) = dz.

4. Having proved that 7,(dz) = dz for all a« € R"™, we conclude
from definition (124) that the Lebesgue measure dz on R™ is
invariant by translation.

Exercise 4
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Exercise 5.

1.

Let a > 0, and k,

ko ()

66

:R™ — R" be defined by k,(x) = ax. Since
—ka()| = allx —yl for all z,y € R™, it is clear that kq

is continuous and consequently Borel measurable.

. Since k,, is measurable, k, (dz) is a well-defined measure on R",

and so is @k, (dz). Let u,v € R™ with u; <wv; for all i € N,

a"kq (dx) (H[u,, v,])

i=1

a™dx (kal (H[u“ v,]) >

(ﬁ[ l ZJ)

=1
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= dx (H[%,%])

i=1

From the uniqueness property of definition (63), o™k (dz) = dx.
It follows that k. (dz) = o "dx.

Exercise 5
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Exercise 6. Let X : (Q,F) — (', F’) be a measurable map, where
(Q,F) and (', F’) are measurable spaces. Let p be a measure on
(Q,F). Let f:(Q,F) — [0,+00] be a non-negative and measurable
map. We claim that:

[ roxan= [ pax) 2)

Note that X being measurable, X (u) is a well-defined measure on
(€Y, F') and consequently the right-hand-side of (2) is perfectly mean-
ingful. Furthermore, f o X is a non-negative and measurable map on
(©,F) and the left-hand-side of (2) is also perfectly meaningful. In
the case when f =14 for some A € F', equation (2) reduces to:

/fonu = /leXdu
Q Q

/Q 1X—1(A)d/J,
p(X7H(4))
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X()(A)
- / LadX ()

= fdX(p)
Q/

69

which is true by virtue of X (u)(A) = u(X~(A)) of definition (123).
When f =" a;1a, is a simple function on (', F’), we have:

/(iailAi>0XdM
2 \i=1
/{)(iailAioX>du

/Qfonu

i=1

Zai/ 1a, 0 Xdu
i=1 2
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Za,/ 1a,dX (u

/Q | (Z aiui> 4X (1)

fdX (p)

@
Hence equation (2) is also true in the case when f is a simple function
on (€, F"). We now assume that f is an arbitrary non-negative and
measurable function on (', F’). From theorem (18), there exists a
sequence (s, )n>1 of simple functions on (€', ') such that s, 1 f, i.e.
$p < spp1 < fforalln > 1 and s,(w) — f(w) for all w € Q. Then
it is clear that s, o X T f o X, and from the monotone convergence
theorem (19), we obtain:

/fon,u = lim Sp 0 Xdp
Q n—+oo Jo
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= lim sndX ()

n—-+oo

:/de

This completes the proof of theorem (104).
Exercise 6
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Exercise 7. Let X : (Q,F) — (', F’) be a measurable map, where
(Q,F) and (', F’) are measurable spaces. Let p be a measure on
(Q,F). Let f: (Q,F) — (C,B(C)) be a measurable map. Then,
the map fo X : (Q,F) — (C,B(C)) is also measurable. Applying
theorem (104) to the non-negative and measurable map |f|, we obtain:

o Xl|d = o Xd
/Q If o X|du /Q flo Xdp

FlAX (4)
N

It follows that [, |f o X|du < 400 & [, | fldX (1) < +o0, or equiva-
lently, all maps involved being measurable:

foX eL(Q,F,n) & feLe(,F L X (w)

We now assume that f € L§(Q, F', X(n)). Let u = Re(f) and v =
Im(f). Then f =ut —u~ +i(vt —v™), and applying theorem (104)
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to each non-negative and measurable map u®, v

/Qfonu

+

+

+

73

, we obtain:

/[u+ —u” +i(vT —v7)] o Xdu
Q

/Qu+onu—/Qu_on,u
z’(/Qondu—/Qvonu)
| wrax - [ wmax
i(/lerdX(,u) —/lvdX(,u)>

//[u+ —u” +i(vT —v7)]dX (1)

Q

fdX (p)
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Note that this derivation is perfectly legitimate, as all the integrals

involved are finite. This completes the proof of theorem (105).
Exercise 7
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Exercise 8. Let X : (Q,F) — (', F’) be a measurable map, where
(Q,F) and (Q, F') are measurable spaces. Let u be a complex mea-
sure on (Q,F). Let f: (Q,F") — (C,B(C)) be measurable. From 4.
of exercise (3), we have |uX| < |u|¥, or equivalently | X ()| < X (|u|).
Using exercise (18) of Tutorial 12 together with theorem (104):

FlAX ()] < / FlAX ()
Q Q

/ 1Flo Xdlul
Q

[ 1o Xldlu
Q
So [ |f o Xld|u] < +00 = [, |fld| X (1)| < +oo and consequently:

foX eLg(Q,F,n) = feLe(,F X (w)

We now assume that fo X € L§(Q,F,p). Let g = Re(u) and
po = Im(p). Then, we have p = puj — py +i(pug — py ), and from
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exercise (19) of Tutorial 12, fo X € LE(Q, F, i), k = 1,2, with:

/fonu = /Qfon,uf—/Qfon,uf
z‘(/ﬂfonu;—/Qfonuz) (3)

Applying theorem (105) to each measure uf, we obtain:

[ roxang= [ paxu), k=12 (4)
Q %
Moreover, for all B € F’, we have:
X(w)(B) = wX HB))
= u (X7Y(B)) = p (XH(B))
+ i(p3 (XTH(B)) — uy (X7H(B)))
= X(u)(B) = X (uy)(B) +i(X (u3)(B) = X (113 )(B))
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and consequently:
X(p) = X () = X(pg) +i(X(pg) — X ()
Since f € L&(Y, F', X (1)), from exercise (17) of Tutorial 12:

faxGo = [ faxqa)— [ pax)

([ saxen - [ saxen) o)
From (3), (4) and (5), we conclude that:

/Qfonu - /Q fdX (p)

which completes the proof of theorem (106).

Ql

Exercise 8
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Exercise 9.

1. Let X : (,F) — (R,B(R)) be a random variable with dis-
tribution p = X (P) under P, where (2, F, P) is a probability
space. Recall that the notions of probability space, random
variable and expectation are defined in (70), (71) and (72) re-
spectively. Let ¢ : R — R be the identity mapping. Applying
theorem (104), we have:

/\X|dP . /|ioX|dP
Q Q
= /|i|onP
Q
_ /WX(P)
R
“+o0
= [ lelduto)

So X is integrable, if and only if [; |z]du(z) < +oc.
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2. If [ |X|dP < +o0, applying theorem (105) we obtain:

X]:/XdP = /ionP
Q Q

= /RidX(P) = /_;OO xdu(x)

3. Let f: 2 — z2. From theorem (104), we have:

E[X2]=/QX2dP = /f o XdP

= /de /00 x2dp(z)

Exercise 9
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Exercise 10.

1. Let p be a locally finite measure on R™, which is invariant
by translation. Given a € R", let Q, = [0,a1[x ... X [0,a,][.
Let K, = [0,a1] x ... x [0,ay]. Then K, is a closed subset of
R". Indeed, it can be written as K, = N ,p; ([0, a;]), where
p; : R™ — R denotes the i-th canonical projection, which is a
continuous map. Since [0, a;] is closed in R, each p; *([0,a;]) is
closed in R", and K, is closed. Moreover, for all z,y € K,:

[z =yl < [l + [lyll < 2ol

Taking the supremum as z,y € K,, we obtain §(K,) < 2|all,
and in particular 0(K,) < 400, where §(K,) is the diameter of
K,, as defined in (68). So K|, is a closed and bounded subset of
R"™. From theorem (48), K, is a compact subset of R"™. Hence,
from exercise (10) of Tutorial 13, since p is locally finite, we
have pu(K,) < +00. We conclude from @, C K, that:

1(Qa) < p(K,) < +00
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In particular, if @ = Q(1,... 1) then p(Q) < +oo0.

2. Let p = (p1,...,pn) where p; € N* for all i € N,,. We claim:

Qp = H‘J (o1, by + 1o x [k, ke + 1]
ke N"
0<Fk <ps

Let £k € N™ with 0 < k; < p; for all i € N,,. Let x € R™ and
suppose that k; < x; < k; + 1 for all i € N,,. Then, we have:

0<ki <z <ki+1<p;,VieN,

So in particular x € Q,. This shows the inclusion 2. To show
the reverse inclusion, suppose € @,,. Given i € N,,, consider
the set X; ={k e N:0<z; <k+1}. Since 0 < z; < p;
and p; > 1, it is clear that p;, — 1 € X;. So X; is a non-empty
subset of N which therefore has a smallest element k; < p; — 1.
Defining k = (k1,...,k,) € N, we have 0 < k; < p; for all
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i € N,,, and furthermore:
ki <z <k;+1,VieN,

This shows the inclusion C. It remains to show that the above
union is indeed a union of pairwise disjoint sets. Let k, k' € N"
and suppose that x € R™ is such that:

S (ﬁ[km ki + 1[) ﬂ (ﬁ[k;, ki + 1[)

Then for all i € Ny, z; € [k;, ki +1[N[k], k;+1[ and consequently
ki =K. So k=K.

3. For all k € N™ with 0 < k; < p;, define:
Ak = []{31,]{11 —|—1[>< oo X []{Jn,k'n —|—1[

Let 7% : R™ — R"™ be the translation mapping of vector k,
defined by 74(z) = k 4 « for all z € R™. Since p is invariant by
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translation, 74 (u) = p and consequently:

w(Ag) = me(p )(Ak)
= (7, H(Ar))
= u({7e € Ar})
p{x ik <k +x;, <k +1,Vie N"})
p{x:0<z; <1,Vie N,})
= Q)

Having proved in 2 that @, = Wi Ay, we obtain:
=Y (AR =D Q) =p1 - pap(Q)
k k

where we have used the fact that:

card{k e N": 0<k; <p;, Vie N,} =p1...pn
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4. Let ¢q1,...,q, > 1 be positive integers. We claim that:

Qp _ H_J [@7 (kl + 1)pl « [knpn’ (kn + ]-)pn[

= [x...
q1 q1 dn dn
ke N"
0<k<q
Let k € N™ with 0 < k; < ¢; for all i € N,,. Let x € R" with:

kip; ki +1)p; )
—p§$i<w,VZENn
qi qi

Then in particular 0 < x; < p; for all i’s and consequently
x € Qp. This shows the inclusion O. To show the reverse
inclusion, suppose = € ),. Given ¢ € N,,, consider the set:

Xi:{keN:xi<M}
qi

Since 0 < x; < p; and ¢; > 1, it is clear that ¢; — 1 € X;. So
X, is a non-empty subset of N, which therefore has a smallest
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element k; < ¢; — 1. Defining k = (k1,...,k,) € N, it is clear
that 0 < k; < ¢; for all i € N,, and furthermore:
k‘i i ki 1 i
kipi o kit pi
qi qi
This shows the inclusion C. It remains to show that the above

union is indeed a union a pairwise disjoint sets. But if k, ¥’ € N"
are such that there exists x € R™ with:

qi qi qi q;
for all i € N,,, then k; = k. for all i’s and consequently k = k’.

, Vie N,

5. Given i € N, define r; = p;/q;. Let r = (r1,...,7,). Given
ke N™ with 0 < k; < ¢; for all i € N,,, define:

Ak = []{31’[“1, (k‘l + 1)T1[X o X [kn’/‘n, (kn + I)Tn[

Let 7 : R™ — R™ be the translation mapping associated with
the vector uw = (k17r1,...,k,ry), and defined by 7(z) = v+
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for all x € R™. Since p is invariant by translation, we have
7(p) = p, and consequently:

w(Ag) = 7(u)(Ax)
u(m (Ar))
1(
(
(

o {{L‘ ki < kirg +a; < (kz—l-l)?”“VZ S Nn})
= p{x:0<z; <r,VieN,})
= Q)

Having proved in 4. that @, = WAy, we obtain:
w(Qp) = ZN(Ak) = ZN(QT) =q - qnp(Qr)
k k

where we have used the fact that:

card{ke N":0<k; <¢q,VieN,}=q1...qn
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Hence, we have proved that:
w(@p) = a1 ant(Qp1 /g1 .90 fan))
6. Let r € (QT)"™. We claim that:

M(Qr) =Tr... Tn,U(Q) (6)

If r; = 0 for some i € N,,, then it is clear that Q, = 0 and (6) is
satisfied. So we assume that r; > 0 for all i € N,,. There exist
integers p1,...,pn > 1 and ¢1,...,¢, > 1 such that r; = p;/¢;
for all ¢ € N,,. Using 5. and 3. we obtain:

(@) = LG Plebny ) Q)

which establishes our claim of equation (6).

7. Let a € (RT)". We claim that:
M(Qa) =ayz... an,u(Q) (7)
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If a; = 0 for some ¢ € N,,, then (7) is obviously true. So we
assume that a; > 0 for all i € N,,. Let (r?),>1 be a sequence
in (QT)" such that r¥ 11 a; for all i € N,,, i.e. 77 < rf“ < a;
for all p > 1 and r¥ — a; as p — +oo. The map ¢ : R" — R
defined by ¢(x) = 21 ...z, can be written as ¢ = p; ... p, where
pi : R® — R is the i-th canonical projection. Since each p; is
continuous, ¢ is itself continuous. Furthermore, since ¥ — a;
for all i € N,,, we have r? — a with respect to the product
topology of R™ (which is also the usual topology of R™). Hence:

lim 77...r2 = lim ¢(r?)=¢(a)=ai...a, (8)

p—+o0 p——+0o0

We now claim that Q,» T Qq. Since 7 < rf“ for alli € N,, and
p > 1, it is clear that Q,» C Q,»+1 for all p > 1. So we only need
to prove that Q, = Up>1Qre. From ¥ < a; (and in particular
r? < a;) for all i € N,, and p > 1, we obtain Q,» C Q, for
all p > 1. This shows the inclusion D. To show the reverse
inclusion, let x € Q,. Given i € N,,, we have 0 < z; < a;. Since
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r? — a; as p — +o0, there exist N; > 1 such that:
p>N;, = x; <1l <aq

Taking p = max(Ny,...,N,) we obtain 0 < z; < ¥ for all
i € N, and consequently z € Q,». This shows the inclusion C.
Having proved that Q,» T Qq, from theorem (7) we have:

m (Qrr) = p(Qa) 9)

li

p—+00

Using 6. together with (8) and (9) we obtain:
Qo) = lim pu(Qr)

p——+0o0

= lim ... u(Q)
p——+o0

= ay...a,u(Q)

which establishes our claim of equation (7). Note that the third
equality is legitimate from u(Q) < +oo and the continuity of
the map ¢ : Rt — R defined by 9(x) = zu(Q). If we had
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1(Q) = +oo, the conclusion would remain valid (the sequence

ri...7P is non-decreasing), but it would no longer be true that

¥ (with values in [0, 4+00]) is continuous, (recall that (1/p)-(+0o0)
does not converge to 0 - (+00) as p — +00).

8. We define the set of subsets of R"™:
C 2 {[ar,bi[X ... X [an,bn[ , ai,b; €ER , a; < b; , Vi € N"}

Let B = [a1,b1[X ... X [apn,by]€ C. Let a = (a1,...,a,) € R"
and b = (by,...,b,) € R* Let ¢ = b—a € (RT)". Let
7, : R™ — R be the translation mapping of vector a, defined by
Ta(x) = a+x for all x € R™. Since p is invariant by translation,
we have 7, (u) = p. Using 7. we obtain:

u(B) = 7a(n)(B)
= w7 (B)
= u({r € B})
= p({zr:a; <a;i+x; <b,Vie NL})
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= p({z:0<z; <¢,Vie N}
= ,U(Qc)
= C1... CnM(Q)

n

= (@b —a)

i=1

= (@) [ de'(ai, b))
i=1

= Q) _dei([ai,bz-[)

= p(@Q)dz' ®...®dzs"(B)
= w(Q)dx(B)

So we have proved that u(B) = p(Q)dx(B) for all B € C. Note
that in obtaining this equality, we have refrained from writing
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directly:

as this equality has not been proved anywhere in the Tutorials.
Indeed, definition (63) of the Lebesgue measure on R", defines
it as the unique measure with the property (given a,b...):

which is not quite the same as (10). However, if dz* denotes the
Lebesgue measure on R, then it is clear that:

da'([ai, bi]) = dz'(Jai, b;]) = da* ([ai, bi)

and furthermore, it is not difficult from the uniqueness property
of definition (63) to establish the fact that the Lebesgue measure
dxz on R™ is the product measure dz = dz' @ ... ® dz™.
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9. Let C1 = {[a,b]: a,b € R}. It is by now a standard exercise
to show that B(R) = o(Cy). Let CI'™ be the n-fold product
CiIT...IICy, i.e. the set of rectangles, as per definition (52):

C{'[n:{AlxXAnA,LEClU{R},VZGNn}

Since R is separable (has a countable base), from exercise (18)
of Tutorial 6, we have B(R") = B(R)®" and consequently from
theorem (26):

BR") = B(R)*" = 0(C1)*" = o(C1'™)

Hence, in order to prove that B(R™) = ¢(C), we only need to
show that o(C) = o(CH™). It is clear that C C CH" which
establishes the inclusion C. To show the reverse inclusion, it is
sufficient to prove that CI'™ C ¢(C). Let B = A; x ... x A, be
a rectangle of CI'". Suppose 4; = R. Then, we have:

+oo
B = U[—p,p[xAg X ...X A,

p=1
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10.

and in order to prove that B € ¢(C), it is sufficient to prove that
each [—p,p[x A2 x...x A, is an element of o(C). Hence, without
loss of generality, we may assume that A, € C;. Likewise, we
may assume that As € Cq, and in fact we may assume without
loss of generality that A; € C; for all ¢ € N,,, in which case
B € C Co(C). This completes our proof, and B(R"™) = o(C).

Given p > 1 we define:
Dy ={B € B(R"): w(BN[~p,p[") = u(Q)dz(B N [~p,p[")}

Having proved in 8. that u(B) = u(Q)dxz(B) for all B € C, since
C is closed under finite intersection and [—p,p["€ C, it is clear
that C C D, and R" € D,,. Furthermore, if A, B € D, are such
that A C B, then:

w(BNA) N [=p,p[*) = wBO[=p,p[") = u(AN [=p,p[")
= w@)dx(B N [=p,p[")
w(@Q)dz(AN [=p,p[")
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= w(Q)dz((B\ A)N[—p,p[")

So B\ A € D,. Note that the above derivation is legitimate,
as all the quantities involved are finite since ;(Q) < +o0o. This
is a very important point, and is in fact the very reason why
we have localized the problem on [—p, p["* by defining D,, rather
than considering directly:

D ={B e B(R"): u(B) = u(Q)dx(B)}

for which the property B\ A € D whenever A,B € D, A C B,
may not be easy to establish, if at all true. Let (Bg)r>1 be a
sequence of elements of D), such that By, 1 B. From theorem (7):

uBNl=pp[") = lim pu(BeN[=p,p[")
= Jim p(@)dw(Br N [-p,p[")
= w(@Q)dx(B N [-p,p[")
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So B € D), and we have proved that D, is a Dynkin system
on R". Since C C D, and C is closed under finite intersection,
from the Dynkin system theorem (1), we obtain o(C) C D,.
Having proved in 9. that o(C) = B(R"), it follows that B(R"™) C
D, for all p > 1. Hence, given B € B(R"), using theorem (7):

w(B) = Tt p(BO[=pp[")
=l p(Q)d(B 0 [-p.p[")
= @) lim de(BN[-p,p[*)
= (Q)dz(B)

So u = p(Q)dz. Given a locally finite measure p on R"™, which
is invariant by translation, we have found a = u(Q) € R™, such
that p = adz. This completes the proof of theorem (107).

Exercise 10
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Exercise 11.

1. Let T : R™ — R" be a linear bijection. In particular, T is a
linear map defined on a finite dimensional normed space. So
T is continuous. Likewise, 77! is a linear map defined on a
finite dimensional normed space, so T~ is continuous. The fact
that a linear map defined on a finite dimensional normed space
is continuous, has not yet been proved in these Tutorials (we
have not even defined what a normed space is, see Tutorial 18).
For those not familiar with the result, the proof in the case
R" (together with its usual inner-product) goes as follows: Let
e1,...,en be the canonical basis of R and z,y € R™. We have:

r(See) 7 (S|

n

D (@i —y)T(e)

i=1

IT(x) = T(y)l
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< Sl -yl - TG
i=1
n /2 , o, 1/2
= (ZT(ei)2> (lei—yf)
i=1 i=1

= Mz -y

where M = (31" [|T(e;)||?)/2, and we have used the Cauchy-
Schwarz inequality (50). Having proved the existence of M €
R such that | T'(z) — T'(y)|| < M|z —y|| for all z,y € R", it
is clear that T is continuous. Similarly, there exists M’ € R*
such that [|T-(z) =T~ (y)|| < M'||x —y| for all z,y € R™. So
T~ is continuous.

2. Let B C R™. The notation T~!(B) is potentially ambiguous, as
it may refer to the inverse image of B by T as defined in (26), or
the direct image of B by T~ as defined in (25). Let S =T},
and let S(B) denote the direct image, whereas T~!(B) denotes
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the inverse image. We claim that 7-1(B) = S(B). Indeed,
suppose that x € T7*(B). Then T'(z) € B. Let y = T'(z). Then
y € Band S(y) = T"Y(T(x)) = 2. So x € S(B). This shows
that 7-1(B) C S(B). To show the reverse inclusion, suppose
x € S(B). There exists y € B such that z = S(y). So T'(z) =
T(S(y)) =y. So T(x) € B, and z € T~(B). This shows that
S(B) C T7Y(B). We have proved that T-1(B) = S(B), and
it follows that whether we view T~!(B) as an inverse image
(that of B by T) or a direct image (that of B by T~!) makes
no difference, as the two sets are in fact equal. The notation
T~Y(B) is no longer ambiguous.

3. Let B C R™. Since T : R® — R" is a linear bijection, T~ is
also a linear bijection. Applying 2. to T, it follows that the di-
rect image T'(B) of B by T = (T~!')~! coincides with the inverse
image (T7')"Y(B) of Bby T}, i.e. T(B) = (T~')"%(B).

4. Let K C R" be a compact subset of R". {T' € K} = T7}(K)
denotes the inverse image of K by T'. However from 2. it can also
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be viewed as the direct image of K by T—!. Having proved that
T-!:R"™ — R" is continuous and K being compact, it follows
from exercise (8) of Tutorial 8 that T71(K) is a compact subset
of R™. We conclude that {T" € K} is a compact subset of R".

5. The Lebesgue measure dr on R" is clearly locally finite, as can
be seen from definition (102). Indeed, given x € R™, the set
U =1",]z; —1,2;+ 1] is an open neighborhood of z with finite
Lebesgue measure (dz(U) = 2" < 400). From exercise (10)
of Tutorial 13, if K’ is a compact subset of R™, then we have
dx(K') < +o0o. Furthermore, R" is locally compact, as can be
seen from definition (105). Indeed, given z € R™, x has an open
neighborhood with compact closure: taking U as above, the
closure K = U is closed and bounded, and therefore compact
from theorem (48). Having proved in 4. that K’ = {T € K} is
itself compact, it follows that:

T(dz)(U) <T(dx)(K)=dz({T € K}) = dz(K') < 400
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Given z € R", we have shown the existence of U open, such that
z € U and T(dz)(U) < +oo. We conclude from definition (102)
that T'(dz) (which is well-defined since T is continuous, hence
Borel measurable) is a locally finite measure on R”.

6. Given a € R", let 7, : R™ — R" be the translation mapping of
vector a, defined by 7,(z) = a + « for all x € R". We have:

To TT—l(a) (:L‘) =

T(T™}(a) + )
T(T(a)) + T(x)
a+T(x)

Ta(T'(x)) = Ta 0 T'(x)

This being true for all 2 € R™, T o 7p-1(q) = Ta 0 T.

7. Using 6. together with 5. of exercise (3), we have:
To(T(dx)) = (740T)(dx)
= (TOTTfl(a))(dx)
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= T(rp-1(a)(dr)) = T(dz)

where the last equality stems from the fact that the Lebesgue
measure dx is invariant by translation. Having proved that
To(T(dzx)) = T(dx) for all a € R™, we conclude that T'(dz)
is itself invariant by translation.

8. From 5. T'(dz) is a locally finite measure on R”. From 7. it
is invariant by translation. It follows from theorem (107) that
there exists @ € R such that T'(dz) = adx. Suppose [ is
another element of Rt such that T'(dz) = Bdx. Then:

a = adx([0,1]") = 8dz([0,1]") = 8

Hence, « is unique and we denote it A(T), so that A(T") is the
unique element of R such that T'(dz) = A(T)dx.

9. Let @ = T'([0,1]"). Then Q is the direct image of [0,1]" by
T. However from 3. it can also be viewed as the inverse image
(T=H71([0,1]™) of [0,1]™ by T—L. Since T~ is continuous, in
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particular it is Borel measurable. It follows from [0, 1]™ € B(R™)
that (T-1)=1([0,1]") € B(R"™). So Q € B(R"™). Furthermore,

denoting S = T~!, we have:
A(T)dz(Q) =

10. Since A(T)dz(Q) = 1 for some Q € B(R™), A(T) # 0.

11. Let T1,T> : R™ — R™ be two linear bijections. If B € B(R"):

(T1 o Tg)(dx)(B)

= Ti(Tz(dz))(B)

T1(A(T»)dz)(B)
(A(T2)dz) (T (B))
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This being true for all B € B(R"™), we have:

(T1 o Tu)(dz) = A(T))A(Ty)da

Since A(Ty o T3) is the unique element of R™ with the property
(T 0 To)(dx) = A(Ty o Ty)dz, we conclude that:

A(Tl (] TQ) = A(Tl)A(TQ)

Exercise 11
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Exercise 12.

1. Let « € R\ {0} and H, : R™ — R"™ be the linear bijection de-
fined by Hoe1 = aeq and Hye; = e; for j > 2, where eq, ..., e,
is the canonical basis of R". If a > 0, we have:

Ha(dz)([0,1]") dz(H;'([0,1]™))
= dx({z: Hax €[0,1]"})

= de|Quz: zn:xjHaej e o, 1"
j=1
= de({z: (az,22,...,2,) € [0,1]"})
= dz([0,a" ] x [0,1]" H =a!
If @ < 0, we have similarly:
Ho(dz)([0,1]") = da([a",0] x [0,1]"7") = —a~!
In any case we obtain H, (dz)([0,1]") = |a| 7.
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2. The determinant det H, of H, has not been defined in these
Tutorials. Until we do so, we will have to accept that:

«

det H, = det

I
Q

This being granted, using 1. we have:
A(Ha) A( o)dz([0,1]")

Ho(d)([0,1]")
la| ™! = |det H,| ™"

Exercise 12
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Exercise 13.

1. Let k,l € N, and ¥ : R” — R" be the linear bijection de-
fined by Ye, = e, Ye; = e, and Xe; = e; for j # k,l, where
e1,...,en is the canonical basis of R™. Let o : N,, — N,, be the
permutation of N,, defined by o(k) =1, o(l) = k and o(j) = j
for j # k,l. Then Ye; = ey ) for all j € N,,. We have:
E(d)([0,1]") dz(271([0,1]™))

= dx({z: Xz €[0,1]"})

= dx | z: ijzej € [0,1]"
j=1

= dz ( T Za:[,_l(j)ze[,_l(j) e [0,1]"

j=1
= d.%'({:b‘ : (.%'0—1(1), R ,:L'U—l(n)) S [0, 1]“})
= dz([0,1]") =1
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2. Since ¥ - Ye; = ¢; for all j € N,,, we have ¥ - ¥ = I,.

3. Until we have a Tutorial on the determinant, we shall have to
accept that given A, B € M,,(K), we have:

det AB = det Adet B
This being granted, using 2. we obtain:

1 =det], = detX¥ = (det X)?

from which we conclude that | det X| = 1.

4. Using 1. we have:

A®) = A®)da(0,1]
E(dx)([0, 1))
= 1=|dety|™*

")

Exercise 13
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Exercise 14.

1. Let n > 2 and U : R" — R" be the linear bijection defined by
Ueir = e1 + ez and Uej = ¢; for j > 2, where ey, ..., e, is the
canonical basis of R™. Let @ = [0,1[". Given « € R", we have:

n
U E xjej
Jj=1
n
= E l‘jU@j
j=1

Ux

n
= xi(e; +e2) + ijej
j=2

= (z1,71 +22,23,...,25)
Since U=H(Q) = {z € R": Uz € [0,1["} we conclude that:
U Q) ={zcR": 0<a1+a9<1,0<m <1, Vi#2}
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2. We define:
971
Qy

U @Q)n{zcR": x5 >0}
U @Q)n{zcR": x5 <0}

e e

Given ¢ € N, let p; : R” — R be the i-th canonical projec-
tion. Then each p; is continuous and therefore Borel measurable.
From 1. we obtain:

U™HQ) = (pr +p2)~ n{ (e
1#£2

So it is clear that U~1(Q) € B(R"). From:

0 = U Q) Npy ([0, 400f)
Q = U Q) Npy'(] —o0,0])
S

we conclude that Q, Qs € B(R").
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3. It is impossible for me to draw a picture with Latex. Some
people can do it, but I can’t. A picture is not a proof of anything,
and is therefore not essential. However, if you have spent the
time drawing it, it should be clear to you that {1, 7., (22)}
forms a partition of @, which we shall prove formally in this
exercise.

4. Suppose z € Q7. Then 2o > 0 and furthermore z € U~(Q).
So 0 < x1+ 22 <1 while 0 <z < 1. Hence, we have:

0<zo<a1+a2<1

We have proved that z € Q1 = 0 < x5 < 1.

5. If x € Q; then in particular z € U71(Q). So 0 < x; < 1 for all
i € N, © # 2. However from 4. we have 0 < 25 < 1. It follows
that 0 < z; < 1 for alli € N,,. Soz € Q = [0,1[". We have
proved that 7 C Q.

6. Suppose © € Te,(2). There exists y € Qg such that z =
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Tes (Y) = €2 +y. In particular, 27 = y; and zo = 1 + yo for
some y € Q9. The fact that y € Q9 implies in particular that
yo < Oandy € U Q). So0<y; <land 0 <y +y < 1.
Hence:
O0<y14+y2<l4+y=20<14+0=1

We have proved that x € 7.,(Q2) = 0 < 29 < 1. In fact, we
have proved the stronger inequality 0 < x5 < 1, but we shall
not need it.

7. Suppose © € T.,(Q2). There exists y € o such that x =
Tes(Y) = €2 +y. So g = 1+ yp and z; = y; for all i # 2.
The fact that y € Qp implies in particular that y € U~Y(Q).
So 0 <y, <1 forall i # 2 and consequently 0 < z; < 1 for
all © # 2. However, we have proved in 6. that 0 < zo < 1. So
0<uz; <1lforallieN,,ie ze€@=]I0,1[". We have proved
that 7., () C Q.

8. Suppose x € Q and x1 + x5 < 1. Then for all i € N,,, we have
0 < z; < 1 and furthermore x1 + x5 < 1. In particular, we have
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10.

zo > 0and 0 < 7 4+ 29 < 1, while 0 < x; < 1 for all 4 # 2. So
x € U7HQ) while x5 > 0, i.e. € Q. We have proved that
r € Q and x1 + xo < 1 implies that x € Q.

. Suppose z € @ and z1 + o > 1. Then for all i € N, we

have 0 < z; < 1 and furthermore x; + x5 > 1. Define y =
(x1,—1+ x2,23,...,2,). Then it is clear that es +y = z. So
T = Tey(y). We claim that y € s. From z3 < 1 we obtain
y2 = —1 + 29 < 0. Furthermore, for all ¢ # 2 we have z; = y;
and consequently 0 < y; < 1. Finally, from z; + x5 > 1, we
obtain:
0<zi+to—1l=y1+y2<14+0=1

Hence, we see that y € U~1(Q) while yo < 0. So y € Q3 and
since & = 7., (y), we have x € 7,,(£22). We have proved that
z € Q and z1 + x2 > 1 implies that z € 7., (2).

Suppose = € Te,(22). There exists y € Qg such that z =
Tes (y) = €2 +y. In particular, 217 = y; and zo = 1 + yo for
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11.

12.

some y € Qy. The fact that y € Qy implies that y € U~1(Q)
and 0 < y; + y2 < 1. Hence, we have:

1<14+y1+y2 =21+ 22
We have proved that « € 7, (€2) = 21 + z2 > 1.

Suppose x € T, (22) N Q1. From x € Q; we have in particular
x € U7HQ) and consequently 1 + 2o < 1. From z € 7, (Q2)
using 10. we have x1 4+ x2 > 1. This is a contradiction. We have
proved that 7., (Q2) N Qy = 0.

From 5. we have Q; C @ while from 7. we have 7., () C Q.
This shows that 1 U7, (22) € @. To show the reverse inclusion,
suppose € Q. If 1 + 29 < 1 from 8. we have x € Q. If
1 + 22 > 1 from 9. we have z € 7., (2). In any case, we have
x € Q4 UTe,(2). This shows that @@ C Q1 U e, (Q2), and we
have proved that @ = Q1 U7, (2). Having proved that €; and
Te, (22) are disjoint, we conclude that @ = Q1 W7, ().
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13. Noting that 7,(€Q2) = 7':612(92) € B(R"™), we have:
dz(Q) = dz(1 ¥ 7e,(2))
= dx() + do(1e,(Q2))
= dxz(h) + dz(Q2)
= dz(U1(Q) N{xz > 0}) +dz(U 1(Q) N {2 < 0})
dz(U~1(Q))

where the third equality stems from the fact that the Lebesgue
measure dx is invariant by translation.

14. Tt follows from 13. that:
A(U) = A(U)dz(Q) = U(dx)(Q) = de(U~1(Q)) = dz(Q) = 1
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15. Until we have a Tutorial on determinants, we shall accept:

10
11 0
det U = det . =1
0 .

1
This being granted, we conclude from 14. that:
A(U)=1=|detU|™!

Exercise 14
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Exercise 15.

1. Let T': R™ — R" be a linear bijection where n > 1. If n =1
then T is of the form T' = H,, as defined in exercise (12), where
a # 0. In particular, we have A(T) = |detT|~!. We now
assume that n > 2. From theorem (103), there exist p > 1 and
Q1,...,Qp € My,(R) such that:

T=Qi0...00Q, (11)

and each @; is of the form H, of exercise (12), or of the form
¥ of exercise (13), or is equal to U as defined in exercise (14).
From (11) we obtain detT = det Q1 ...det Q, and since T is a
bijection, detT" # 0. It follows that det Q; # 0 for all i € N,
and in particular that o ## 0 whenever @Q); is of the form Q; = H,
of exercise (12). This shows that exercise (12) can be applied as
much as exercise (13) and exercise (14), from which we see that
A(Q;) = |det Q;|7! for all i € N,,. We have proved that 7' can
be decomposed as (11), where each @; : R — R" is a linear
bijection satisfying A(Q;) = |det Q;|~! for all i € N,.
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2. Using 11. of exercise (11), we obtain:

A(T) = A(Qio...0Q,)
= A(Q1) .- A(Qp)
= |detQq|™'...|detQ,| "
= |detQq...detQ,|™"
= [det(Q1...Qp)|™"
= |detT|!

3. Givenn > 1 and alinear bijection 7' : R™ — R"™, we have proved
in exercise (11) that T'(dz) = A(T)dz for a unique constant
A(T) € R*. However, it follows from 2. that A(T) = |det T'|~*.
So T(dxr) = |det T|~tdx, which completes the proof of theo-
rem (108).

Exercise 15
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Exercise 16. Let f: (R? B(R?)) — [0, +0c0] be a non-negative and
measurable map. Let a,b,¢,d € R be such that ad — be # 0. Let
T € M3(R) be defined by:

a b
=)
Then T : R? — R? is a linear map, and detT = ad — bc # 0. So T is
a linear bijection. Using theorem (104) with theorem (108):

flaz + by, cx + dy)dzdy = foT(z,y)dzdy
R? R2

= foTdx
R?2

= fT(dz)
R2

= / f(|det T | 'dx)
R2
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= \detT|—1/ fdx
R2

= \ad—bCI_l/ f(z,y)dzdy
R2

where the fifth equality stems from exercise (18) of Tutorial 12.
Exercise 16
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Exercise 17. Let B € B(R") and T : R” — R” be a linear bi-
jection. From 3. of exercise (11), the direct image T'(B) is also the
inverse image (T7!)~(B) of B by T~!. Since T~ is continuous, in
particular it is Borel measurable, and consequently T'(B) € B(R").
From 77" = I,,, we obtain det T'det 7~! = 1, and it follows that
det T—1! = (det T)~!. Applying theorem (108) to T~!, we obtain:
dz(T(B)) = dz((T~")7'(B))

= T '(dx)(B)

= |detT | 'dz(B)

= |(detT)" !~ tdx(B)

| det T'|dx(B)

Exercise 17
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Exercise 18.

1. Let V be a linear subspace of R", and p = dim V. We assume
that 1 <p <n—1. Let uq,...,u, be an orthonormal basis of V,
and Up41, ..., U, be such that uy, ... u, is an orthonormal basis
of R™. Note that the existence of an orthonormal basis of V,
and the fact that such basis can be extended to an orthonormal
basis of R™, has not been proved in these Tutorials. So we
shall have to accept it for the time being. Given i € N, we
define ¢; : R™ — R by ¢;(x) = (u;,z) for all z € R™, where
(+,+) denotes the usual inner-product of R™. From the Cauchy-
Schwarz inequality (50), for all z,y € R™, we have:

¢i(x) = di(y)l = [{us, @) — (us, )
|<uiv$_y>|
Juil| - [l =y

So it is clear that ¢; : R™ — R is continuous.

IN
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2. Let x € R™. Since uq,...,u, is a basis of R", there exists a
unique (aq, ..., ay,) € R™ such that:
rT=aur + ... +ayu,

Now suppose that z € ﬂ?:erl(;Sj_l({O}). Then for all j > p+1
we have ¢;(z) =0, i.e.

0 = ¢,
= <Uj,.’L‘>

(uj, 1ur + ... + apty)

n
= Z (67} <’U,j, ’U,l>
i=1
= ay{uj,uy)
a;
where we have used the fact that wuq,...,u, is an orthonormal

basis of R"™. Since a; = 0 for all j > p+1, we obtain © = aju, +
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...Fapuy, € V. This shows that ﬁj:p+1¢;1({0}) C V. To show
the reverse inclusion, suppose x € V. Since u1,...,u, is a basis
of V, there exists vy, ..., ap € Rsuch that x = ajui+. . .4apup,
and since u1,...,u, is orthogonal, it is clear that (u;,z) = 0
for all j > p+ 1. Hence, we have x € ﬂ;’:pﬂqﬁj_l({O}) and
we have proved that V' C N7, +1¢;1({0}). We conclude that

V= mj:p+1¢;1({0})~
3. Since ¢; is continuous for all j € N, in particular ¢;1({0}) is

a closed subset of R™ for all j € N,,. It follows from 2. that
V= ﬂj:p+1¢;1({0}) is a closed subset of R™.

4. Let Q = (¢;5) € M, (R) be the matrix defined by Qe; = u; for
all j € N, where ey,...,e, is the canonical basis of R™. For
all 7,7 € N,,, we have:

<ui7uj> = <Qei7er>
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n
Zkaekazcﬂjel>
n n
= Z Z (Jm(Jlg ek, er)
k=11=1

= ZQkiij (ex, ex)
k=1
n
= Z qriqkj
k=1

5. Using 4. for all 7, j € N,,, we obtain:

|
/\

S

(Q'Q)i; = Z(Qt)ik(Q)kj

k=1

M=

QkiQkj

B
Il

1
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= (ui,u;) = (In)i;
This being true for all i,5 € N,,, Q' - Q = I,,. Accepting the
fact that det Q' = det Q, we obtain:

1=detl, =detQ" - Q = det Q" det Q = (det Q)?
We conclude that |det Q| = 1.

6. Applying theorem (108) to @, we obtain:

dz({Q € V}) = Q(dx)(V)
= |det Q| 'dx(V) = dz(V)
7. Let span(eq, ..., e,) denote the linear subspace of R™ generated
by e1,...,ep, ie. the set:

span(er,...,ep) = {are1 + ...+ apep t o € R, Vi € Ny}

We claim that {Q € V} = span(eq,...,ep,). Let z € {Q € V}.
Then Q(z) € V. Given j € {p+1,...,n}, it follows from 2.
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that ¢;(Q(x)) =0, i.e.
0 = ¢;(Qx))
= (uj,z1Qe1 + ...+ 2,Qey)
= (uj,z1ur + ...+ Tpup)
= zj(uj,uj) = ;

So z; = 0 for all j > p+ 1 and consequently:

n P
T = inei = inei € span(ei, ..., ep)
i=1 i=1
This shows the inclusion C. To show the reverse inclusion, sup-
pose = € span(ei,...,ep). Then x; =0 for all j > p+ 1, and
going back through the preceding calculation, it is clear that
¢j(Q(z)) =0forall j > p+1. So Q(z) € ﬂ?:erl(;S;l({O}) =V,
ie. x € {Q € V}. This shows the inclusion D, and we have
proved that {Q € V} =span(eq,...,ep).
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8.

10.

Let m > 1 be an integer. We define:

n—1

Epn 2T-m,m] x ... x [-m,m] x{0}

It is clear from definition (63) that dx(E,,) =0 for all m > 1.

. Since E,, 1 span(e1,...,en—1), i.e. By C E,qq for allm > 1

and U,,>1E,, = span(eq, ..., e,—1), from theorem (7) we obtain:

dx(span(ey,...,en—1)) = liril dx(Ep) =0

Using 6. and 7. together with 9. we have:

dz(V) = dz({Q € V}) = dxz(span(es,...,ep))
< dx(span(ei,...,en—1)) =0

This completes the proof of theorem (109) in the case when
1<dimV <n—1. The case dimV =0, i.e. V = {0} is clear.

Exercise 18
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