17. Image Measure

In the following, \mathbf{K} denotes \mathbf{R} or \mathbf{C}. We denote $\mathcal{M}_{n}(\mathbf{K}), n \geq 1$, the set of all $n \times n$-matrices with \mathbf{K}-valued entries. We recall that for all $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K}), M$ is identified with the linear map $M: \mathbf{K}^{n} \rightarrow \mathbf{K}^{n}$ uniquely determined by:

$$
\forall j=1, \ldots, n, M e_{j} \triangleq \sum_{i=1}^{n} m_{i j} e_{i}
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{K}^{n}, i.e. $e_{i} \triangleq(0, . \overbrace{1}^{i}, ., 0)$.
Exercise 1. For all $\alpha \in \mathbf{K}$, let $H_{\alpha} \in \mathcal{M}_{n}(\mathbf{K})$ be defined by:

$$
H_{\alpha} \triangleq\left(\begin{array}{cccc}
\alpha & & & \\
& 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

i.e. by $H_{\alpha} e_{1}=\alpha e_{1}, H_{\alpha} e_{j}=e_{j}$, for all $j \geq 2$. Note that H_{α} is obtained from the identity matrix, by multiplying the top left entry by α. For $k, l \in\{1, \ldots, n\}$, we define the matrix $\Sigma_{k l} \in \mathcal{M}_{n}(\mathbf{K})$ by $\Sigma_{k l} e_{k}=e_{l}, \Sigma_{k l} e_{l}=e_{k}$ and $\Sigma_{k l} e_{j}=e_{j}$, for all $j \in\{1, \ldots, n\} \backslash\{k, l\}$. Note that $\Sigma_{k l}$ is obtained from the identity matrix, by interchanging column k and column l. If $n \geq 2$, we define the matrix $U \in \mathcal{M}_{n}(\mathbf{K})$ by:

$$
U \triangleq\left(\begin{array}{cccc}
1 & 0 & & \\
1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

i.e. by $U e_{1}=e_{1}+e_{2}, U e_{j}=e_{j}$ for all $j \geq 2$. Note that the matrix U is obtained from the identity matrix, by adding column 2 to column 1. If $n=1$, we put $U=1$. We define $\mathcal{N}_{n}(\mathbf{K})=\left\{H_{\alpha}: \alpha \in \mathbf{K}\right\} \cup\left\{\Sigma_{k l}\right.$: $k, l=1, \ldots, n\} \cup\{U\}$, and $\mathcal{M}_{n}^{\prime}(\mathbf{K})$ to be the set of all finite products
of elements of $\mathcal{N}_{n}(\mathbf{K})$:
$\mathcal{M}_{n}^{\prime}(\mathbf{K}) \triangleq\left\{M \in \mathcal{M}_{n}(\mathbf{K}): M=Q_{1} \ldots . Q_{p}, p \geq 1, Q_{j} \in \mathcal{N}_{n}(\mathbf{K}), \forall j\right\}$
We shall prove that $\mathcal{M}_{n}(\mathbf{K})=\mathcal{M}_{n}^{\prime}(\mathbf{K})$.

1. Show that if $\alpha \in \mathbf{K} \backslash\{0\}, H_{\alpha}$ is non-singular with $H_{\alpha}^{-1}=H_{1 / \alpha}$
2. Show that if $k, l=1, \ldots, n, \Sigma_{k l}$ is non-singular with $\Sigma_{k l}^{-1}=\Sigma_{k l}$.
3. Show that U is non-singular, and that for $n \geq 2$:

$$
U^{-1}=\left(\begin{array}{cccc}
1 & 0 & & \\
-1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

Tutorial 17: Image Measure
4. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$. Let R_{1}, \ldots, R_{n} be the rows of M :

$$
M \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Show that for all $\alpha \in \mathbf{K}$:

$$
H_{\alpha} \cdot M=\left(\begin{array}{c}
\alpha R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α.
5. Show that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α.
6. Show that multiplying M by $\Sigma_{k l}$ from the left, amounts to interchanging the rows R_{l} and R_{k}.
7. Show that multiplying M by $\Sigma_{k l}$ from the right, amounts to interchanging the columns C_{l} and C_{k}.
8. Show that multiplying M by U^{-1} from the left ($n \geq 2$), amounts to subtracting R_{1} from R_{2}, i.e.:

$$
U^{-1} \cdot\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)=\left(\begin{array}{c}
R_{1} \\
R_{2}-R_{1} \\
\vdots \\
R_{n}
\end{array}\right)
$$

9. Show that multiplying M by U^{-1} from the right (for $n \geq 2$), amounts to subtracting C_{2} from C_{1}.
10. Define $U^{\prime}=\Sigma_{12} \cdot U^{-1} \cdot \Sigma_{12},(n \geq 2)$. Show that multiplying M by U^{\prime} from the right, amounts to subtracting C_{1} from C_{2}.
11. Show that if $n=1$, then indeed we have $\mathcal{M}_{1}(\mathbf{K})=\mathcal{M}_{1}^{\prime}(\mathbf{K})$.

Exercise 2. Further to exercise (1), we now assume that $n \geq 2$, and make the induction hypothesis that $\mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K})$.

1. Let $O_{n} \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix with all entries equal to zero. Show the existence of $Q_{1}^{\prime}, \ldots, Q_{p}^{\prime} \in \mathcal{N}_{n-1}(\mathbf{K}), p \geq 1$, such that:

$$
O_{n-1}=Q_{1}^{\prime} \ldots . Q_{p}^{\prime}
$$

2. For $k=1, \ldots, p$, we define $Q_{k} \in \mathcal{M}_{n}(\mathbf{K})$, by:

$$
Q_{k} \triangleq\left(\begin{array}{cccc}
& & & 0 \\
& Q_{k}^{\prime} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Show that $Q_{k} \in \mathcal{N}_{n}(\mathbf{K})$, and that we have:

$$
\Sigma_{1 n} \cdot Q_{1} \ldots \ldots Q_{p} \cdot \Sigma_{1 n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & O_{n-1} & \\
0 & & &
\end{array}\right)
$$

3. Conclude that $O_{n} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$.
4. We now consider $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K}), M \neq O_{n}$. We want to show that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Show that for some $k, l \in\{1, \ldots, n\}$:

$$
H_{m_{k l}}^{-1} \cdot \Sigma_{1 k} \cdot M \cdot \Sigma_{1 l}=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
\vdots & & * & \\
* & & &
\end{array}\right)
$$

5. Show that if $H_{m_{k l}}^{-1} \cdot \Sigma_{1 k} \cdot M \cdot \Sigma_{1 l} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, then $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Conclude that without loss of generality, in order to prove that
M lies in $\mathcal{M}_{n}^{\prime}(\mathbf{K})$ we can assume that $m_{11}=1$.
6. Let $i=2, \ldots, n$. Show that if $m_{i 1} \neq 0$, we have:

$$
H_{m_{i 1}}^{-1} \cdot \Sigma_{2 i} \cdot U^{-1} \cdot \Sigma_{2 i} \cdot H_{1 / m_{i 1}}^{-1} \cdot M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
0 & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

7. Conclude that without loss of generality, we can assume that $m_{i 1}=0$ for all $i \geq 2$, i.e. that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right)
$$

8. Show that in order to prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, without loss of

Tutorial 17: Image Measure
generality, we can assume that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & M^{\prime} & \\
0 & & &
\end{array}\right)
$$

9. Prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$ and conclude with the following:

Theorem 103 Given $n \geq 2$, any $n \times n$-matrix with values in \mathbf{K} is a finite product of matrices Q of the following types:
(i) $Q e_{1}=\alpha e_{1}, Q e_{j}=e_{j}, \forall j=2, \ldots, n,(\alpha \in \mathbf{K})$
(ii) $\quad Q e_{l}=e_{k}, Q e_{k}=e_{l}, Q e_{j}=e_{j}, \forall j \neq k, l,\left(k, l \in \mathbf{N}_{n}\right)$
(iii) $\quad Q e_{1}=e_{1}+e_{2}, Q e_{j}=e_{j}, \forall j=2, \ldots, n$
where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{K}^{n}.

Definition 123 Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are two measurable spaces. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}). Then, we call distribution of X under μ, or image measure of μ by X, or even law of X under μ, the (possibly complex) measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, denoted $\mu^{X}, X(\mu)$ or $\mathcal{L}_{\mu}(X)$, and defined by:

$$
\forall B \in \mathcal{F}^{\prime}, \mu^{X}(B) \triangleq \mu(\{X \in B\})=\mu\left(X^{-1}(B)\right)
$$

Exercise 3. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are two measurable spaces.

1. Let $B \in \mathcal{F}^{\prime}$. Show that if $\left(B_{n}\right)_{n \geq 1}$ is a measurable partition of B, then $\left(X^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$.
2. Show that if μ is a measure on $(\Omega, \mathcal{F}), \mu^{X}$ is a well-defined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
3. Show that if μ is a complex measure on $(\Omega, \mathcal{F}), \mu^{X}$ is a welldefined complex measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
4. Show that if μ is a complex measure on (Ω, \mathcal{F}), then $\left|\mu^{X}\right| \leq|\mu|^{X}$.
5. Let $Y:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ be a measurable map, where $\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ is another measurable space. Show that for all (possibly complex) measure μ on (Ω, \mathcal{F}), we have:

$$
Y(X(\mu))=(Y \circ X)(\mu)=\left(\mu^{X}\right)^{Y}=\mu^{(Y \circ X)}
$$

Definition 124 Let μ be a (possibly complex) measure on $\mathbf{R}^{n}, n \geq 1$. We say that μ is invariant by translation, if and only if $\tau_{a}(\mu)=\mu$ for all $a \in \mathbf{R}^{n}$, where $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the translation mapping defined by $\tau_{a}(x)=a+x$, for all $x \in \mathbf{R}^{n}$.

EXERCISE 4. Let μ be a (possibly complex) measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.

1. Show that $\tau_{a}:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is measurable.
2. Show $\tau_{a}(\mu)$ is therefore a well-defined (possibly complex) measure on ($\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)$), for all $a \in \mathbf{R}^{n}$.
3. Show that $\tau_{a}(d x)=d x$ for all $a \in \mathbf{R}^{n}$.
4. Show the Lebesgue measure on \mathbf{R}^{n} is invariant by translation.

Exercise 5 . Let $k_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $k_{\alpha}(x)=\alpha x, \alpha>0$.

1. Show that $k_{\alpha}:\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right) \rightarrow\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$ is measurable.
2. Show that $k_{\alpha}(d x)=\alpha^{-n} d x$.

Exercise 6. Show the following:

Theorem 104 (Integral Projection 1) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Then, for all $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ non-negative and measurable, we have:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 7. Show the following:
Theorem 105 (Integral Projection 2) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Then, for all $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ measurable, we have the equivalence:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Leftrightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

in which case, we have:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 8. Further to theorem (105), suppose μ is in fact a complex measure on (Ω, \mathcal{F}). Show that:

$$
\begin{equation*}
\int_{\Omega^{\prime}}|f| d|X(\mu)| \leq \int_{\Omega}|f \circ X| d|\mu| \tag{1}
\end{equation*}
$$

Conclude with the following:
Theorem 106 (Integral Projection 3) Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where $(\Omega, \mathcal{F}),\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a complex measure on (Ω, \mathcal{F}). Then, for all measurable maps $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$, we have:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

and when the left-hand side of this implication is satisfied:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

Exercise 9. Let $X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be a measurable map with distribution $\mu=X(P)$, where (Ω, \mathcal{F}, P) is a probability space.

1. Show that X is integrable, i.e. $\int|X| d P<+\infty$, if and only if:

$$
\int_{-\infty}^{+\infty}|x| d \mu(x)<+\infty
$$

2. Show that if X is integrable, then:

$$
E[X]=\int_{-\infty}^{+\infty} x d \mu(x)
$$

3. Show that:

$$
E\left[X^{2}\right]=\int_{-\infty}^{+\infty} x^{2} d \mu(x)
$$

EXERCISE 10. Let μ be a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$, which is invariant by translation. For all $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbf{R}^{+}\right)^{n}$, we define $Q_{a}=\left[0, a_{1}\left[\times \ldots \times\left[0, a_{n}\left[\right.\right.\right.\right.$, and in particular $Q=Q_{(1, \ldots, 1)}=\left[0,1\left[^{n}\right.\right.$.

1. Show that $\mu\left(Q_{a}\right)<+\infty$ for all $a \in\left(\mathbf{R}^{+}\right)^{n}$, and $\mu(Q)<+\infty$.
2. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ where $p_{i} \geq 1$ is an integer for all i 's. Show:

$$
\begin{aligned}
Q_{p}= & \biguplus_{\substack{k \in \mathbf{N}^{n}}}\left[k_{1}, k_{1}+1\left[\times \ldots \times\left[k_{n}, k_{n}+1[\right.\right.\right. \\
& 0 \leq k_{i}<p_{i}
\end{aligned}
$$

3. Show that $\mu\left(Q_{p}\right)=p_{1} \ldots p_{n} \mu(Q)$.
4. Let $q_{1}, \ldots, q_{n} \geq 1$ be n positive integers. Show that:

$$
\begin{aligned}
Q_{p}= & \biguplus_{\substack{k \in \mathbf{N}^{n}}}\left[\frac{k_{1} p_{1}}{q_{1}}, \frac{\left(k_{1}+1\right) p_{1}}{q_{1}}\left[\times \ldots \times\left[\frac{k_{n} p_{n}}{q_{n}}, \frac{\left(k_{n}+1\right) p_{n}}{q_{n}}[\right.\right.\right. \\
& 0 \leq k_{i}<q_{i}
\end{aligned}
$$

5. Show that $\mu\left(Q_{p}\right)=q_{1} \ldots q_{n} \mu\left(Q_{\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)}\right)$
6. Show that $\mu\left(Q_{r}\right)=r_{1} \ldots r_{n} \mu(Q)$, for all $r \in\left(\mathbf{Q}^{+}\right)^{n}$.
7. Show that $\mu\left(Q_{a}\right)=a_{1} \ldots a_{n} \mu(Q)$, for all $a \in\left(\mathbf{R}^{+}\right)^{n}$.

Tutorial 17: Image Measure
8. Show that $\mu(B)=\mu(Q) d x(B)$, for all $B \in \mathcal{C}$, where:

$$
\mathcal{C} \triangleq\left\{\left[a_{1}, b_{1}\left[\times \ldots \times\left[a_{n}, b_{n}\left[, a_{i}, b_{i} \in \mathbf{R}, a_{i} \leq b_{i}, \forall i \in \mathbf{N}^{n}\right\}\right.\right.\right.\right.
$$

9. Show that $B\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{C})$.
10. Show that $\mu=\mu(Q) d x$, and conclude with the following:

Theorem 107 Let μ be a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$. If μ is invariant by translation, then there exists $\alpha \in \mathbf{R}^{+}$such that:

$$
\mu=\alpha d x
$$

Exercise 11. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection.

1. Show that T and T^{-1} are continuous.
2. Show that for all $B \subseteq \mathbf{R}^{n}$, the inverse image $T^{-1}(B)=\{T \in B\}$ coincides with the direct image:

$$
T^{-1}(B) \triangleq\left\{y: y=T^{-1}(x) \text { for some } x \in B\right\}
$$

3. Show that for all $B \subseteq \mathbf{R}^{n}$, the direct image $T(B)$ coincides with the inverse image $\left(T^{-1}\right)^{-1}(B)=\left\{T^{-1} \in B\right\}$.
4. Let $K \subseteq \mathbf{R}^{n}$ be compact. Show that $\{T \in K\}$ is compact.
5. Show that $T(d x)$ is a locally finite measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
6. Let τ_{a} be the translation of vector $a \in \mathbf{R}^{n}$. Show that:

$$
T \circ \tau_{T^{-1}(a)}=\tau_{a} \circ T
$$

7. Show that $T(d x)$ is invariant by translation.
8. Show the existence of $\alpha \in \mathbf{R}^{+}$, such that $T(d x)=\alpha d x$. Show that such constant is unique, and denote it by $\Delta(T)$.
9. Show that $Q=T\left([0,1]^{n}\right) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and that we have:

$$
\Delta(T) d x(Q)=T(d x)(Q)=1
$$

10. Show that $\Delta(T) \neq 0$.
11. Let $T_{1}, T_{2}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be two linear bijections. Show that:

$$
\left(T_{1} \circ T_{2}\right)(d x)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right) d x
$$

and conclude that $\Delta\left(T_{1} \circ T_{2}\right)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right)$.

Exercise 12. Let $\alpha \in \mathbf{R} \backslash\{0\}$. Let $H_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $H_{\alpha}\left(e_{1}\right)=\alpha e_{1}, H_{\alpha}\left(e_{j}\right)=e_{j}$ for $j \geq 2$.

1. Show that $H_{\alpha}(d x)\left([0,1]^{n}\right)=|\alpha|^{-1}$.
2. Conclude that $\Delta\left(H_{\alpha}\right)=\left|\operatorname{det} H_{\alpha}\right|^{-1}$.

Exercise 13. Let $k, l \in \mathbf{N}_{n}$ and $\Sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $\Sigma\left(e_{k}\right)=e_{l}, \Sigma\left(e_{l}\right)=e_{k}, \Sigma\left(e_{j}\right)=e_{j}$, for $j \neq k, l$.

1. Show that $\Sigma(d x)\left([0,1]^{n}\right)=1$.
2. Show that $\Sigma . \Sigma=I_{n}$. (Identity mapping on \mathbf{R}^{n}).
3. Show that $|\operatorname{det} \Sigma|=1$.
4. Conclude that $\Delta(\Sigma)=|\operatorname{det} \Sigma|^{-1}$.

ExERCISE 14. Let $n \geq 2$ and $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection uniquely defined by $U\left(e_{1}\right)=e_{1}+e_{2}$ and $U\left(e_{j}\right)=e_{j}$ for $j \geq 2$. Let $Q=\left[0,1\left[{ }^{n}\right.\right.$.

1. Show that:

$$
U^{-1}(Q)=\left\{x \in \mathbf{R}^{n}: 0 \leq x_{1}+x_{2}<1,0 \leq x_{i}<1, \forall i \neq 2\right\}
$$

2. Define:

$$
\begin{aligned}
& \Omega_{1} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2} \geq 0\right\} \\
& \Omega_{2} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2}<0\right\}
\end{aligned}
$$

Show that $\Omega_{1}, \Omega_{2} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
3. Let $\tau_{e_{2}}$ be the translation of vector e_{2}. Draw a picture of Q, Ω_{1}, Ω_{2} and $\tau_{e_{2}}\left(\Omega_{2}\right)$ in the case when $n=2$.
4. Show that if $x \in \Omega_{1}$, then $0 \leq x_{2}<1$.
5. Show that $\Omega_{1} \subseteq Q$.
6. Show that if $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$, then $0 \leq x_{2}<1$.
7. Show that $\tau_{e_{2}}\left(\Omega_{2}\right) \subseteq Q$.
8. Show that if $x \in Q$ and $x_{1}+x_{2}<1$ then $x \in \Omega_{1}$.
9. Show that if $x \in Q$ and $x_{1}+x_{2} \geq 1$ then $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$.

Tutorial 17: Image Measure
10. Show that if $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$ then $x_{1}+x_{2} \geq 1$.
11. Show that $\tau_{e_{2}}\left(\Omega_{2}\right) \cap \Omega_{1}=\emptyset$.
12. Show that $Q=\Omega_{1} \uplus \tau_{e_{2}}\left(\Omega_{2}\right)$.
13. Show that $d x(Q)=d x\left(U^{-1}(Q)\right)$.
14. Show that $\Delta(U)=1$.
15. Show that $\Delta(U)=|\operatorname{det} U|^{-1}$.

Exercise 15. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection, $(n \geq 1)$.

1. Show the existence of linear bijections $Q_{1}, \ldots, Q_{p}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, $p \geq 1$, with $T=Q_{1} \circ \ldots \circ Q_{p}, \Delta\left(Q_{i}\right)=\left|\operatorname{det} Q_{i}\right|^{-1}$ for all $i \in \mathbf{N}_{p}$.
2. Show that $\Delta(T)=|\operatorname{det} T|^{-1}$.
3. Conclude with the following:

Theorem 108 Let $n \geq 1$ and $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. Then, the image measure $T(d x)$ of the Lebesgue measure on \mathbf{R}^{n} is:

$$
T(d x)=|\operatorname{det} T|^{-1} d x
$$

ExERCISE 16. Let $f:\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ such that $a d-b c \neq 0$. Show that:

$$
\int_{\mathbf{R}^{2}} f(a x+b y, c x+d y) d x d y=|a d-b c|^{-1} \int_{\mathbf{R}^{2}} f(x, y) d x d y
$$

Exercise 17. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. Show that for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have $T(B) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and:

$$
d x(T(B))=|\operatorname{det} T| d x(B)
$$

Exercise 18. Let V be a linear subspace of \mathbf{R}^{n} and $p=\operatorname{dim} V$. We assume that $1 \leq p \leq n-1$. Let u_{1}, \ldots, u_{p} be an orthonormal basis of
V, and u_{p+1}, \ldots, u_{n} be such that u_{1}, \ldots, u_{n} is an orthonormal basis of \mathbf{R}^{n}. For $i \in \mathbf{N}_{n}$, Let $\phi_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be defined by $\phi_{i}(x)=\left\langle u_{i}, x\right\rangle$.

1. Show that all ϕ_{i} 's are continuous.
2. Show that $V=\bigcap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$.
3. Show that V is a closed subset of \mathbf{R}^{n}.
4. Let $Q=\left(q_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ be the matrix uniquely defined by $Q e_{j}=u_{j}$ for all $j \in \mathbf{N}_{n}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the canonical basis of \mathbf{R}^{n}. Show that for all $i, j \in \mathbf{N}_{n}$:

$$
\left\langle u_{i}, u_{j}\right\rangle=\sum_{k=1}^{n} q_{k i} q_{k j}
$$

5. Show that $Q^{t} \cdot Q=I_{n}$ and conclude that $|\operatorname{det} Q|=1$.
6. Show that $d x(\{Q \in V\})=d x(V)$.
7. Show that $\{Q \in V\}=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right) .{ }^{1}$
8. For all $m \geq 1$, we define:

$$
E_{m} \triangleq \overbrace{[-m, m] \times \ldots \times[-m, m]}^{n-1} \times\{0\}
$$

Show that $d x\left(E_{m}\right)=0$ for all $m \geq 1$.
9. Show that $d x\left(\operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)\right)=0$.
10. Conclude with the following:

Theorem 109 Let $n \geq 1$. Any linear subspace V of \mathbf{R}^{n} is a closed subset of \mathbf{R}^{n}. Moreover, if $\operatorname{dim} V \leq n-1$, then $d x(V)=0$.

[^0]
Solutions to Exercises

Exercise 1.

1. Let $\alpha \in \mathbf{K} \backslash\{0\}$. Then, we have:

$$
H_{1 / \alpha} \circ H_{\alpha} e_{1}=H_{1 / \alpha}\left(\alpha e_{1}\right)=\alpha H_{1 / \alpha} e_{1}=\alpha(1 / \alpha) e_{1}=e_{1}
$$

and for all $j \geq 2, H_{1 / \alpha} \circ H_{\alpha} e_{j}=H_{1 / \alpha} e_{j}=e_{j}$. If I_{n} denotes the identity matrix of $\mathcal{M}_{n}(\mathbf{K})$, then I_{n} and $H_{1 / \alpha} \circ H_{\alpha}$ coincide on the basis $\left(e_{1}, \ldots, e_{n}\right)$ of \mathbf{K}^{n}. It follows that I_{n} and $H_{1 / \alpha} \circ H_{\alpha}$ are in fact equal. So H_{α} is non-singular and $H_{\alpha}^{-1}=H_{1 / \alpha}$.
2. The linear map $\Sigma_{k l}: \mathbf{K}^{n} \rightarrow \mathbf{K}^{n}$ is defined by $\Sigma_{k l} e_{k}=e_{l}$, $\Sigma_{k l} e_{l}=e_{k}$ and $\Sigma_{k l} e_{j}=e_{j}$ for all $j \notin\{k, l\}$. Hence, it is clear that $\Sigma_{k l} \circ \Sigma_{k l} e_{j}=e_{j}$ for all $j \in \mathbf{N}_{n}$, and consequently $\Sigma_{k l} \circ \Sigma_{k l}=I_{n}$. So $\Sigma_{k l}$ is non-singular and $\Sigma_{k l}^{-1}=\Sigma_{k l}$.
3. If $n=1$, then $U=1$ and U is indeed non-singular. We assume that $n \geq 2$. Then U is defined by $U e_{1}=e_{1}+e_{2}$ and $U e_{j}=e_{j}$
for all $j \geq 2$. Consider the linear map $U^{\prime}: \mathbf{K}^{n} \rightarrow \mathbf{K}^{n}$ defined by $U^{\prime} e_{1}=e_{1}-e_{2}$ and $U^{\prime} e_{j}=e_{j}$ for all $j \geq 2$. Then, we have:

$$
U^{\prime} \circ U e_{1}=U^{\prime}\left(e_{1}+e_{2}\right)=U^{\prime} e_{1}+U^{\prime} e_{2}=e_{1}-e_{2}+e_{2}=e_{1}
$$

and it is clear that $U^{\prime} \circ U e_{j}=e_{j}$ for all $j \geq 2$. It follows that $U^{\prime} \circ U e_{j}=e_{j}$ for all $j \in \mathbf{N}_{n}$ and consequently $U^{\prime} \circ U=I_{n}$. We have proved that U is invertible and $U^{-1}=U^{\prime}$, i.e.:

$$
U^{-1}=\left(\begin{array}{cccc}
1 & 0 & & \\
-1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)
$$

4. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$, and R_{1}, \ldots, R_{n} be the rows of M,
i.e.

$$
M \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Specifically, for all $i \in \mathbf{N}_{n}$, each R_{i} is the row vector:

$$
R_{i}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i n}\right)
$$

Let $\alpha \in \mathbf{K}$, and consider the matrix $M^{\prime} \in \mathcal{M}_{n}(\mathbf{K})$ defined by:

$$
M^{\prime} \triangleq\left(\begin{array}{c}
\alpha R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

i.e. $M^{\prime} e_{j}=\alpha m_{1 j} e_{1}+\sum_{i=2}^{n} m_{i j} e_{i}$ for all $j \in \mathbf{N}_{n}$. Then:

$$
\begin{aligned}
H_{\alpha} \circ M e_{j} & =H_{\alpha}\left(\sum_{i=1}^{n} m_{i j} e_{i}\right) \\
& =\sum_{i=1}^{n} m_{i j} H_{\alpha} e_{i} \\
& =m_{1 j} H_{\alpha} e_{1}+\sum_{i=2}^{n} m_{i j} H_{\alpha} e_{i} \\
& =\alpha m_{1 j} e_{1}+\sum_{i=2}^{n} m_{i j} e_{i} \\
& =M^{\prime} e_{j}
\end{aligned}
$$

This being true for all $j \in \mathbf{N}_{n}$, we have proved that $H_{\alpha} M=M^{\prime}$,
i.e.

$$
H_{\alpha} M=\left(\begin{array}{c}
\alpha R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

We conclude that multiplying M by H_{α} from the left, amounts to multiplying the first row of M by α.
5. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$, and C_{1}, \ldots, C_{n} be the columns of M :

$$
M \triangleq\left(C_{1}, C_{2}, \ldots, C_{n}\right)
$$

Specifically, for all $j \in \mathbf{N}_{n}$, each C_{j} is the column vector:

$$
C_{j}=\left(\begin{array}{c}
m_{1 j} \\
m_{2 j} \\
\vdots \\
m_{n j}
\end{array}\right)
$$

Let $\alpha \in \mathbf{K}$, and consider the matrix M^{\prime} defined by:

$$
M^{\prime}=\left(\alpha C_{1}, C_{2}, \ldots, C_{n}\right)
$$

i.e. $M^{\prime} e_{1}=\sum_{i=1}^{n} \alpha m_{i 1} e_{i}$ and $M^{\prime} e_{j}=\sum_{i=1}^{n} m_{i j} e_{i}$ for $j \geq 2$:

$$
M \circ H_{\alpha} e_{1}=M\left(\alpha e_{1}\right)=\alpha M e_{1}=\sum_{i=1}^{n} \alpha m_{i 1} e_{i}=M^{\prime} e_{1}
$$

and furthermore, for all $j \geq 2$:

$$
M \circ H_{\alpha} e_{j}=M e_{j}=\sum_{i=1}^{n} m_{i j} e_{i}=M^{\prime} e_{j}
$$

So $M \circ H_{\alpha} e_{j}=M^{\prime} e_{j}$ for all $j \in \mathbf{N}_{n}$, i.e. $M H_{\alpha}=M^{\prime}$. Hence:

$$
M H_{\alpha}=\left(\alpha C_{1}, C_{2}, \ldots, C_{n}\right)
$$

We conclude that multiplying M by H_{α} from the right, amounts to multiplying the first column of M by α.
6. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$ and R_{1}, \ldots, R_{n} be the rows of M, i.e.

$$
M \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Specifically, for all $i \in \mathbf{N}_{n}, R_{i}$ is the row vector:

$$
R_{i}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i n}\right)
$$

Let $M^{\prime}=\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix defined by:

$$
M^{\prime} \triangleq\left(\begin{array}{c}
R_{1}^{\prime} \\
R_{2}^{\prime} \\
\vdots \\
R_{n}^{\prime}
\end{array}\right)
$$

where $R_{k}^{\prime}=R_{l}, R_{l}^{\prime}=R_{k}$ and $R_{i}^{\prime}=R_{i}$ for all $i \notin\{k, l\}$. In other words, the matrix M^{\prime} is nothing but the matrix M, where
the rows R_{k} and R_{l} have been interchanged. Note that for all $i, j \in \mathbf{N}_{n}, m_{k j}^{\prime}=m_{l j}, m_{l j}^{\prime}=m_{k j}$ and $m_{i j}^{\prime}=m_{i j}$ for all $i \notin\{k, l\}$. Now, given $j \in \mathbf{N}_{n}$, we have:

$$
\begin{aligned}
\Sigma_{k l} \circ M e_{j} & =\Sigma_{k l}\left(\sum_{i=1}^{n} m_{i j} e_{i}\right) \\
& =\sum_{i=1}^{n} m_{i j} \Sigma_{k l} e_{i} \\
& =\sum_{i \neq k, l} m_{i j} e_{i}+m_{k j} e_{l}+m_{l j} e_{k} \\
& =\sum_{i \neq k, l} m_{i j}^{\prime} e_{i}+m_{l j}^{\prime} e_{l}+m_{k j}^{\prime} e_{k} \\
& =\sum_{i=1}^{n} m_{i j}^{\prime} e_{i}=M^{\prime} e_{j}
\end{aligned}
$$

This being true for all $j \in \mathbf{N}_{n}, \Sigma_{k l} M=M^{\prime}$. We conclude that
multiplying M by $\Sigma_{k l}$ from the left, amounts to interchanging the rows R_{l} and R_{k} of M.
7. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$, and C_{1}, \ldots, C_{n} be the columns of M :

$$
M \triangleq\left(C_{1}, C_{2}, \ldots, C_{n}\right)
$$

Specifically, for all $j \in \mathbf{N}_{n}$, each C_{j} is the column vector:

$$
C_{j}=\left(\begin{array}{c}
m_{1 j} \\
m_{2 j} \\
\vdots \\
m_{n j}
\end{array}\right)
$$

Let $M^{\prime}=\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix defined by:

$$
M^{\prime} \triangleq\left(C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}\right)
$$

where $C_{k}^{\prime}=C_{l}, C_{l}^{\prime}=C_{k}$ and $C_{j}^{\prime}=C_{j}$ for all $j \notin\{k, l\}$. In other words, the matrix M^{\prime} is nothing but the matrix M, where the
columns C_{k} and C_{l} have been interchanged. For all $i, j \in \mathbf{N}_{n}$, $m_{i k}^{\prime}=m_{i l}, m_{i l}^{\prime}=m_{i k}$ and $m_{i j}^{\prime}=m_{i j}$ for all $j \notin\{k, l\}$. Now:

$$
\begin{aligned}
M \circ \Sigma_{k l} e_{k} & =M e_{l} \\
& =\sum_{i=1}^{n} m_{i l} e_{i} \\
& =\sum_{i=1}^{n} m_{i k}^{\prime} e_{i}=M^{\prime} e_{k}
\end{aligned}
$$

and similarly $M \circ \Sigma_{k l} e_{l}=M^{\prime} e_{l}$. Furthermore, if $j \neq k, l$:

$$
\begin{aligned}
M \circ \Sigma_{k l} e_{j} & =M e_{j} \\
& =\sum_{i=1}^{n} m_{i j} e_{i} \\
& =\sum_{i=1}^{n} m_{i j}^{\prime} e_{i}=M^{\prime} e_{j}
\end{aligned}
$$

It follows that $M \circ \Sigma_{k l} e_{j}=M^{\prime} e_{j}$ for all $j \in \mathbf{N}_{n}$. We conclude that $M \Sigma_{k l}=M^{\prime}$ and consequently, multiplying M by $\Sigma_{k l}$ from the right, amounts to interchanging the columns C_{l} and C_{k} of M.
8. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$ and R_{1}, \ldots, R_{n} be the rows of M, i.e.

$$
M \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Specifically, for all $i \in \mathbf{N}_{n}, R_{i}$ is the row vector:

$$
R_{i}=\left(m_{i 1}, m_{i 2}, \ldots, m_{i n}\right)
$$

Let $M^{\prime}=\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix defined by:

$$
M^{\prime} \triangleq\left(\begin{array}{c}
R_{1} \\
R_{2}-R_{1} \\
\vdots \\
R_{n}
\end{array}\right)
$$

Specifically, M^{\prime} is exactly the matrix M, where the second row R_{2} has been replaced by $R_{2}-R_{1}$, i.e. where the first row R_{1} has been subtracted from the second row R_{2}. Recall from 3 . that U^{-1} is given by $U^{-1} e_{1}=e_{1}-e_{2}$ and $U^{-1} e_{j}=e_{j}$ for all $j \geq 2$. Note that for all $i, j \in \mathbf{N}_{n}$, we have $m_{i j}^{\prime}=m_{i j}$ if $i \neq 2$, and $m_{2 j}^{\prime}=m_{2 j}-m_{1 j}$. Now for all $j \in \mathbf{N}_{n}$:

$$
\begin{aligned}
U^{-1} M e_{j} & =U^{-1}\left(\sum_{i=1}^{n} m_{i j} e_{i}\right) \\
& =\sum_{i=1}^{n} m_{i j} U^{-1} e_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =m_{1 j}\left(e_{1}-e_{2}\right)+\sum_{i=2}^{n} m_{i j} e_{i} \\
& =\sum_{i \neq 2} m_{i j} e_{i}+\left(m_{2 j}-m_{1 j}\right) e_{2} \\
& =\sum_{i=1}^{n} m_{i j}^{\prime} e_{i}=M^{\prime} e_{j}
\end{aligned}
$$

It follows that $U^{-1} M=M^{\prime}$, and we conclude that multiplying M by U^{-1} from the left, amounts to subtracting R_{1} from R_{2}.
9. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$, and C_{1}, \ldots, C_{n} be the columns of M :

$$
M \triangleq\left(C_{1}, C_{2}, \ldots, C_{n}\right)
$$

Specifically, for all $j \in \mathbf{N}_{n}$, each C_{j} is the column vector:

$$
C_{j}=\left(\begin{array}{c}
m_{1 j} \\
m_{2 j} \\
\vdots \\
m_{n j}
\end{array}\right)
$$

Let $M^{\prime}=\left(m_{i j}^{\prime}\right) \in \mathcal{M}_{n}(\mathbf{K})$ be the matrix defined by:

$$
M^{\prime} \triangleq\left(C_{1}-C_{2}, C_{2}, \ldots, C_{n}\right)
$$

Specifically, M^{\prime} is exactly the matrix M, where the second column C_{2} has been subtracted from the first column C_{1}. For all $i, j \in \mathbf{N}_{n}$, we have $m_{i j}^{\prime}=m_{i j}$ if $j \neq 1$ and $m_{i 1}^{\prime}=m_{i 1}-m_{i 2}$. Furthermore:

$$
\begin{aligned}
M U^{-1} e_{1} & =M\left(e_{1}-e_{2}\right) \\
& =M e_{1}-M e_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} m_{i 1} e_{i}-\sum_{i=1}^{n} m_{i 2} e_{i} \\
& =\sum_{i=1}^{n}\left(m_{i 1}-m_{i 2}\right) e_{i} \\
& =\sum_{i=1}^{n} m_{i 1}^{\prime} e_{i}=M^{\prime} e_{1}
\end{aligned}
$$

and for all $j \geq 2$:

$$
\begin{aligned}
M U^{-1} e_{j} & =M e_{j} \\
& =\sum_{i=1}^{n} m_{i j} e_{i} \\
& =\sum_{i=1}^{n} m_{i j}^{\prime} e_{i}=M^{\prime} e_{j}
\end{aligned}
$$

Having proved that $M U^{-1} e_{j}=M^{\prime} e_{j}$ for all $j \in \mathbf{N}_{n}$, we con-
clude that $M U^{-1}=M^{\prime}$, or equivalently that multiplying M by U^{-1} from the right, amounts to subtracting C_{2} from C_{1}.
10. Let $U^{\prime}=\Sigma_{12} U^{-1} \Sigma_{12}$. Let C_{1}, \ldots, C_{2} be the column vectors of $M \in \mathcal{M}_{n}(\mathbf{K})$. It follows from 7. and 9. that:

$$
\begin{aligned}
M U^{\prime} & =M \Sigma_{12} U^{-1} \Sigma_{12} \\
& =\left(C_{1}, C_{2}, \ldots, C_{n}\right) \Sigma_{12} U^{-1} \Sigma_{12} \\
& =\left(C_{2}, C_{1}, \ldots, C_{n}\right) U^{-1} \Sigma_{12} \\
& =\left(C_{2}-C_{1}, C_{1}, \ldots, C_{n}\right) \Sigma_{12} \\
& =\left(C_{1}, C_{2}-C_{1}, \ldots, C_{n}\right)
\end{aligned}
$$

We conclude that multiplying M by U^{\prime} from the right, amounts to subtracting C_{1} from C_{2}.
11. Suppose $n=1$. It is clear that $\mathcal{M}_{n}^{\prime}(\mathbf{K}) \subseteq \mathcal{M}_{n}(\mathbf{K})$ for all $n \geq 1$, and in particular $\mathcal{M}_{1}^{\prime}(\mathbf{K}) \subseteq \mathcal{M}_{1}(\mathbf{K})$. Suppose $M \in \mathcal{M}_{1}(\mathbf{K})$. Then $M=(\alpha)$ for some $\alpha \in \mathbf{K}$. However, $(\alpha)=H_{\alpha}$ (onedimensional). Hence, defining $Q_{1}=H_{\alpha}$, we have $Q_{1} \in \mathcal{N}_{1}(\mathbf{K})$
with $M=Q_{1}$. In particular, M is a finite product of elements of $\mathcal{N}_{1}(\mathbf{K})$. So $M \in \mathcal{M}_{1}^{\prime}(\mathbf{K})$ and we have proved the equality $\mathcal{M}_{1}(\mathbf{K})=\mathcal{M}_{1}^{\prime}(\mathbf{K})$.

Exercise 1

Exercise 2.

1. Our induction hypothesis is $\mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K}), n \geq 2$. For all $n \geq 1, O_{n} \in \mathcal{M}_{n}(\mathbf{K})$ denotes the matrix with all entries equal to $0 \in \mathbf{K}$. Since $O_{n-1} \in \mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K}), O_{n-1}$ is a finite product of elements of $\mathcal{N}_{n-1}(\mathbf{K})$. Hence, there exist $p \geq 1$ and $Q_{1}^{\prime}, \ldots, Q_{p}^{\prime}$ elements of $\mathcal{N}_{n-1}(\mathbf{K})$ such that:

$$
O_{n-1}=Q_{1}^{\prime} \ldots Q_{p}^{\prime}
$$

2. Given $k \in\{1, \ldots, p\}=\mathbf{N}_{p}$, we define $Q_{k} \in \mathcal{M}_{n}(\mathbf{K})$ by:

$$
Q_{k} \triangleq\left(\begin{array}{cccc}
& & & 0 \\
& Q_{k}^{\prime} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Since $Q_{k}^{\prime} \in \mathcal{N}_{n-1}(\mathbf{K}), Q_{k}^{\prime}$ can be of three different forms: If Q_{k}^{\prime} is of the form H_{α} (of dimension $n-1$) for some $\alpha \in \mathbf{K}$, it is clear
that $Q_{k}=H_{\alpha}$ (of dimension n). If Q_{k}^{\prime} is of the form $\Sigma_{l m}$ for some $l, m \in \mathbf{N}_{n-1}$, then $Q_{k}^{\prime} e_{l}=e_{m}, Q_{k}^{\prime} e_{m}=e_{l}$ and $Q_{k}^{\prime} e_{j}=e_{j}$ for all $j \in \mathbf{N}_{n-1} \backslash\{l, m\}$. Hence, it is clear that $Q_{k} e_{l}=e_{m}$, $Q_{k} e_{m}=e_{l}$ and $Q_{k} e_{j}=e_{j}$ for all $j \in \mathbf{N}_{n} \backslash\{l, m\}$. So Q_{k} is of the form $\Sigma_{l m}$ (of dimension n) for some $l, m \in \mathbf{N}_{n}$ (in fact, for some $\left.l, m \in \mathbf{N}_{n-1}\right)$. Note that we have used the same notation e_{1}, \ldots, e_{n-1} and e_{1}, \ldots, e_{n} to denote successively the canonical basis of \mathbf{K}^{n-1} and \mathbf{K}^{n}. Now, if $Q_{k}^{\prime}=U$ (of dimension $n-1$), it is clear that $Q_{k}=U$ (of dimension n) in the case when $n-1 \geq 2$. In the case when $n-1=1$, we have $Q_{k}^{\prime}=(1)$ and consequently $Q_{k}=I_{2}=H_{1}$ (of dimension 2). In any case, we see that Q_{k} is an element of $\mathcal{N}_{n-1}(\mathbf{K})$. Now, using 6 . and 7. together with block matrix multiplication, we obtain:

$$
\Sigma_{1 n} Q_{1} \ldots Q_{p} \Sigma_{1 n}=\Sigma_{1 n} \cdot\left(\begin{array}{cccc}
& & & 0 \\
& Q_{1}^{\prime} \ldots Q_{p}^{\prime} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right) \cdot \Sigma_{1 n}
$$

$$
\begin{aligned}
& =\Sigma_{1 n} \cdot\left(\begin{array}{cccc}
& & & 0 \\
& O_{n-1} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right) \cdot \Sigma_{1 n} \\
& =\Sigma_{1 n} \cdot\left(\begin{array}{cccc}
0 & & \\
\vdots & & O_{n-1} & \\
0 & & \\
1 & 0 & \ldots & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \\
\vdots & O_{n-1} \\
0 &
\end{array}\right)
\end{aligned}
$$

which is exactly what we intended to prove.
3. Having proved that:

$$
\Sigma_{1 n} \cdot Q_{1} \ldots \ldots Q_{p} \cdot \Sigma_{1 n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & O_{n-1} & \\
0 & & &
\end{array}\right)
$$

since H_{0} can be written as:

$$
H_{0}=\left(\begin{array}{cccc}
0 & & & \\
& 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & I_{n-1} & \\
0 & & &
\end{array}\right)
$$

we obtain:

$$
H_{0} \cdot \Sigma_{1 n} \cdot Q_{1} \ldots . . Q_{p} \cdot \Sigma_{1 n}=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & O_{n-1} & \\
0 & &
\end{array}\right)=O_{n}
$$

We have been able to express O_{n} as a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$. We conclude that $O_{n} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$.
4. Let $M=\left(m_{i j}\right) \in \mathcal{M}_{n}(\mathbf{K})$. We assume that $M \neq O_{n}$. Then, there exist $k, l \in \mathbf{N}_{n}$ such that $m_{k l} \neq 0$. From 7. of exercise (1), multiplying M by $\Sigma_{1 l}$ from the right, amounts to interchanging column l with column 1 . So $m_{k l}$ appears in the matrix $M \Sigma_{1 l}$ as the k-th element of the first column. Multiplying $M \Sigma_{1 l}$ by $\Sigma_{1 k}$ from the left, amounts to interchanging row k with row 1 . So $m_{k l}$ now appears in the matrix $\Sigma_{1 k} M \Sigma_{1 l}$ at the intersection of the first row and the first column, i.e. at the top left position. In other words, $\Sigma_{1 k} M \Sigma_{1 l}$ is of the form:

$$
\Sigma_{1 k} M \Sigma_{1 l}=\left(\begin{array}{cccc}
m_{k l} & * & \ldots & * \\
* & & & \\
\vdots & & * & \\
* & & &
\end{array}\right)
$$

Multiplying by $H_{m_{k l}}^{-1}=H_{1 / m_{k l}}$ from the left, amounts to mul-
tiplying the first row by $1 / m_{k l}$. We conclude that:

$$
H_{m_{k l}}^{-1} \Sigma_{1 k} M \Sigma_{1 l}=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
\vdots & & * & \\
* & & &
\end{array}\right)
$$

5. Suppose we have proved $H_{m_{k l}}^{-1} \Sigma_{1 k} M \Sigma_{1 l} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Then this matrix is a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$. In other words, there exist $p \geq 1$ and Q_{1}, \ldots, Q_{p} elements of $\mathcal{N}_{n}(\mathbf{K})$ with:

$$
H_{m_{k l}}^{-1} \Sigma_{1 k} M \Sigma_{1 l}=Q_{1} \ldots Q_{p}
$$

Since $\Sigma_{1 k}^{-1}=\Sigma_{1 k}$ and $\Sigma_{1 l}^{-1}=\Sigma_{1 l}$, we obtain:

$$
M=\Sigma_{1 k} H_{m_{k l}} Q_{1} \ldots Q_{p} \Sigma_{1 l}
$$

So M is therefore also a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$, i.e. $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. Hence, in order to prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$ it is sufficient to prove that $H_{m_{k l}}^{-1} \Sigma_{1 k} M \Sigma_{1 l}$ is an element of $\mathcal{M}_{n}^{\prime}(\mathbf{K})$.

It follows from 4. that without loss of generality, we may assume that $m_{11}=1$.
6. Let $i \in\{2, \ldots, n\}$ and suppose $m_{i 1} \neq 0$. So M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
m_{i 1} & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

with $m_{i 1} \neq 0$. Since $H_{1 / m_{i 1}}^{-1}=H_{m_{i 1}}$, multiplying M by $H_{1 / m_{i 1}}^{-1}$ from the left amounts to multiplying the first row of M by $m_{i 1}$. So $H_{1 / m_{i 1}}^{-1} M$ is of the form:

$$
H_{1 / m_{i 1}}^{-1} M=\left(\begin{array}{cccc}
m_{i 1} & * & \ldots & * \\
* & & & \\
m_{i 1} & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

Multiplying by $\Sigma_{2 i}$ from the left amounts to interchanging row

2 with row i. Multiplying by U^{-1} from the left amounts to subtracting row 1 from row 2. Multiplying once more by $\Sigma_{2 i}$ from the left amounts to switching back row 2 and row i. It follows that $\Sigma_{2 i} U^{-1} \Sigma_{2 i} H_{1 / m_{i 1}}^{-1} M$ is of the form:

$$
\Sigma_{2 i} U^{-1} \Sigma_{2 i} H_{1 / m_{i 1}}^{-1} M=\left(\begin{array}{cccc}
m_{i 1} & * & \cdots & * \\
* & & & \\
0 & \leftarrow i & * & \\
* & &
\end{array}\right)
$$

Multiplying once more by $H_{m_{i 1}}^{-1}=H_{1 / m_{i 1}}$ from the left amounts to multiplying the first row by $1 / m_{i 1}$. We conclude that:

$$
H_{m_{i 1}}^{-1} \Sigma_{2 i} U^{-1} \Sigma_{2 i} H_{1 / m_{i 1}}^{-1} M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
0 & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

7. If we prove that the matrix:

$$
H_{m_{i 1}}^{-1} \Sigma_{2 i} U^{-1} \Sigma_{2 i} H_{1 / m_{i 1}}^{-1} M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
* & & & \\
0 & \leftarrow i & * & \\
* & & &
\end{array}\right)
$$

is a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$, then clearly M is also a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$. Hence in order to show that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, without loss of generality we may assume that $m_{i 1}=0$. This being true of all $i \in\{2, \ldots, n\}$, without loss of generality we may assume that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right)
$$

8. So we now want to prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, where:

$$
M=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & & & \\
\vdots & & * & \\
0 & & &
\end{array}\right)
$$

Let $j \in\{2, \ldots, n\}$ and suppose that $m_{1 j} \neq 0$. From 5. of exercise (1), multiplying M by $H_{1 / m_{1 j}}^{-1}=H_{m_{1 j}}$ from the right, amounts to multiplying the first column of M by $m_{1 j}$. So $M H_{1 / m_{1 j}}^{-1}$ is of the form:

$$
M H_{1 / m_{1 j}}^{-1}=\left(\begin{array}{cccc}
m_{1 j} & * & m_{1 j} & * \\
0 & & j \uparrow & \\
\vdots & & * & \\
0 & & &
\end{array}\right)
$$

Multiplying by $\Sigma_{2 j}$ from the right amounts to interchanging column 2 with column j. From 10. of exercise (1), multiplying by
$U^{\prime}=\Sigma_{12} U^{-1} \Sigma_{12}$ from the right amounts to subtracting column 1 from column 2. Multiplying by $\Sigma_{2 j}$ once more from the right, amounts to switching back column 2 and column j. It follows that $M H_{1 / m_{1 j}}^{-1} \Sigma_{2 j} U^{\prime} \Sigma_{2 j}$ is of the form:

$$
M H_{1 / m_{1 j}}^{-1} \Sigma_{2 j} U^{\prime} \Sigma_{2 j}=\left(\begin{array}{cccc}
m_{1 j} & * & 0 & * \\
0 & j \uparrow & \\
\vdots & & * & \\
0 & &
\end{array}\right)
$$

Multiplying once more by $H_{m_{1 j}}^{-1}=H_{1 / m_{1 j}}$ from the right:

$$
M H_{1 / m_{1 j}}^{-1} \Sigma_{2 j} U^{\prime} \Sigma_{2 j} H_{m_{1 j}}^{-1}=\left(\begin{array}{cccc}
1 & * & 0 & * \\
0 & & j \uparrow & \\
\vdots & & * & \\
0 & &
\end{array}\right)
$$

Since $U^{\prime}=\Sigma_{12} U^{-1} \Sigma_{12}$, it is clear that in order to prove that
M is a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$, it is sufficient to prove that the above matrix is itself a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$. Hence, in order to prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, without loss of generality we may assume that $m_{1 j}=0$. This being true for all $j \in\{2, \ldots, n\}$, without loss of generality we may assume that M is of the form:

$$
M=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & M^{\prime} & \\
0 & & &
\end{array}\right)
$$

where $M^{\prime} \in \mathcal{M}_{n-1}(\mathbf{K})$.
9. So we now assume that $M \in \mathcal{M}_{n}(\mathbf{K})$ is of the form:

$$
M=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & M^{\prime} & \\
0 & & &
\end{array}\right)
$$

and we shall prove that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, i.e. that M can be expressed as a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$. Now since $M^{\prime} \in \mathcal{M}_{n-1}(\mathbf{K})$, and $\mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K})$ being true from our induction hypothesis, M^{\prime} can be expressed as a finite product of elements of $\mathcal{N}_{n-1}(\mathbf{K})$. Hence, there exist $p \geq 1$ and $Q_{1}^{\prime}, \ldots, Q_{p}^{\prime}$ elements of $\mathcal{N}_{n-1}(\mathbf{K})$ such that:

$$
M^{\prime}=Q_{1}^{\prime} \ldots Q_{p}^{\prime}
$$

For all $k \in \mathbf{N}_{p}$, we define:

$$
Q_{k} \triangleq\left(\begin{array}{cccc}
& & & 0 \\
& Q_{k}^{\prime} & & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Following an argument identical to that contained in 2., each Q_{k} is an element of $\mathcal{N}_{n}(\mathbf{K})$. Furthermore, we have:

$$
\begin{aligned}
Q_{1} \ldots Q_{p} & =\left(\begin{array}{cccc}
& & & 0 \\
& Q_{1}^{\prime} \ldots Q_{p}^{\prime} & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
& & 0 \\
& M^{\prime} & \vdots \\
& & & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)
\end{aligned}
$$

and consequently:

$$
\Sigma_{1 n} Q_{1} \ldots Q_{p} \Sigma_{1 n}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & M^{\prime} & \\
0 & &
\end{array}\right)=M
$$

It follows that M is indeed a finite product of elements of $\mathcal{N}_{n}(\mathbf{K})$, and we have proved that $M \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$. In 11. of exercise (1), we have proved that $\mathcal{M}_{1}(\mathbf{K})=\mathcal{M}_{1}^{\prime}(\mathbf{K})$. Having assumed that $n \geq 2$ and $\mathcal{M}_{n-1}(\mathbf{K})=\mathcal{M}_{n-1}^{\prime}(\mathbf{K})$, we have shown that $O_{n} \in \mathcal{M}_{n}^{\prime}(\mathbf{K})$, and furthermore that if $M \neq O_{n}$, then M is also an element of $\mathcal{M}_{n}^{\prime}(\mathbf{K})$. This shows that the equality $\mathcal{M}_{n}(\mathbf{K})=\mathcal{M}_{n}^{\prime}(\mathbf{K})$ holds, and completes our induction argument. We conclude that $\mathcal{M}_{n}(\mathbf{K})=\mathcal{M}_{n}^{\prime}(\mathbf{K})$ is true for all $n \geq 1$. In particular, it is true for all $n \geq 2$, which is the statement of theorem (103).

Exercise 2

Exercise 3.

1. Let $B \in \mathcal{F}^{\prime}$ and $\left(B_{n}\right)_{n>1}$ be a measurable partition of B, i.e from definition (91), a sequence of pairwise disjoint elements of \mathcal{F}^{\prime} such that $B=\uplus_{n \geq 1} B_{n}$. Then, we claim that $\left(X^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$. Since X is measurable, $X^{-1}(B)$ and each $X^{-1}\left(B_{n}\right)$ is an element of \mathcal{F}. So we only need to prove that:

$$
X^{-1}(B)=\biguplus_{n=1}^{+\infty} X^{-1}\left(B_{n}\right)
$$

Since $B_{n} \subseteq B$ for all $n \geq 1$, it is clear that $X^{-1}\left(B_{n}\right) \subseteq X^{-1}(B)$, which establishes the inclusion \supseteq. Let $\omega \in X^{-1}(B)$. Then $X(\omega) \in B=\cup_{n \geq 1} B_{n}$. There exists $n \geq 1$ such that $X(\omega) \in B_{n}$, i.e. $\omega \in X^{-1}\left(B_{n}\right)$. This proves the inclusion \subseteq. In order to show that the $X^{-1}\left(B_{n}\right)$'s are pairwise disjoint, suppose we have $\omega \in X^{-1}\left(B_{n}\right) \cap X^{-1}\left(B_{m}\right)$. Then $X(\omega) \in B_{n} \cap B_{m}$, and since the B_{n} 's are pairwise disjoint, we conclude that $n=m$.
2. Let μ be a measure on (Ω, \mathcal{F}). Then $\mu: \mathcal{F} \rightarrow[0,+\infty]$ is a map such that $\mu(\emptyset)=0$, and which is countably additive. Since X is measurable, for all $B \in \mathcal{F}^{\prime}, X^{-1}(B)$ is an element of \mathcal{F}, and:

$$
\mu^{X}(B) \triangleq \mu\left(X^{-1}(B)\right)
$$

is therefore well-defined. So $\mu^{X}: \mathcal{F}^{\prime} \rightarrow[0,+\infty]$ is a well-defined map. Since $X^{-1}(\emptyset)=\emptyset$, it is clear that $\mu^{X}(\emptyset)=0$. To show that μ^{X} is a measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, we only need to show that μ^{X} is countably additive. Let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of pairwise disjoint elements of \mathcal{F}^{\prime}, and $B=\uplus_{n \geq 1} B_{n}$. Then:

$$
X^{-1}(B)=\biguplus_{n=1}^{+\infty} X^{-1}\left(B_{n}\right)
$$

and consequently, μ being countable additive:

$$
\mu^{X}(B)=\mu\left(X^{-1}(B)\right)
$$

$$
\begin{aligned}
& =\sum_{n=1}^{+\infty} \mu\left(X^{-1}\left(B_{n}\right)\right) \\
& =\sum_{n=1}^{+\infty} \mu^{X}\left(B_{n}\right)
\end{aligned}
$$

So μ^{X} is countably additive, and we have proved that μ^{X} is indeed a well-defined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
3. Suppose that μ is a complex measure on (Ω, \mathcal{F}). Then from definition (92), $\mu: \mathcal{F} \rightarrow \mathbf{C}$ is a map such that for any $B \in \mathcal{F}$ and $\left(B_{n}\right)_{n \geq 1}$ measurable partition of B, the series $\sum_{n \geq 1} \mu\left(B_{n}\right)$ converges to $\mu(B)$. Since X is measurable, for all $\bar{B} \in \mathcal{F}^{\prime}$, $X^{-1}(B) \in \mathcal{F}$ and consequently:

$$
\mu^{X}(B) \triangleq \mu\left(X^{-1}(B)\right)
$$

is well-defined. So $\mu^{X}: \mathcal{F}^{\prime} \rightarrow \mathbf{C}$ is a well-defined map. Let $B \in \mathcal{F}^{\prime}$ and $\left(B_{n}\right)_{n \geq 1}$ be a measurable partition of B. Then
$\left(X^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$, and so:

$$
\begin{aligned}
\mu^{X}(B) & =\mu\left(X^{-1}(B)\right) \\
& =\lim _{N \rightarrow+\infty} \sum_{n=1}^{N} \mu\left(X^{-1}\left(B_{n}\right)\right) \\
& =\lim _{N \rightarrow+\infty} \sum_{n=1}^{N} \mu^{X}\left(B_{n}\right)
\end{aligned}
$$

Hence, the series $\sum_{n \geq 1} \mu^{X}\left(B_{n}\right)$ converges to $\mu^{X}(B)$, and μ^{X} is indeed a well-defined complex measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$.
4. Suppose μ is a complex measure on (Ω, \mathcal{F}). Let $B \in \mathcal{F}^{\prime}$ and $\left(B_{n}\right)_{n \geq 1}$ be a measurable partition of B. Then, $\left(X^{-1}\left(B_{n}\right)\right)_{n \geq 1}$ is a measurable partition of $X^{-1}(B)$. From definition (94), since $|\mu|\left(X^{-1}(B)\right)$ is an upper-bound of all sums $\sum_{n \geq 1}\left|\mu\left(E_{n}\right)\right|$, as
$\left(E_{n}\right)_{n \geq 1}$ ranges through all measurable partitions of $X^{-1}(B)$:

$$
\begin{aligned}
\sum_{n=1}^{+\infty}\left|\mu^{X}\left(B_{n}\right)\right| & =\sum_{n=1}^{+\infty}\left|\mu\left(X^{-1}\left(B_{n}\right)\right)\right| \\
& \leq|\mu|\left(X^{-1}(B)\right)=|\mu|^{X}(B)
\end{aligned}
$$

So $|\mu|^{X}(B)$ is an upper-bound of all sums $\sum_{n \geq 1}\left|\mu^{X}\left(B_{n}\right)\right|$, as $\left(B_{n}\right)_{n \geq 1}$ ranges through all measurable partitions of B. Since $\left|\mu^{X}\right|(B)$ is the smallest of such upper-bounds, we obtain:

$$
\left|\mu^{X}\right|(B) \leq|\mu|^{X}(B)
$$

This being true for all $B \in \mathcal{F}^{\prime}$, we have $\left|\mu^{X}\right| \leq|\mu|^{X}$.
5. Let $Y:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ be a measurable map, where $\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$ is another measurable space. Let μ be a (possibly complex) measure on (Ω, \mathcal{F}). Then $X(\mu)$ is a well-defined (possibly complex) measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$. So $Y(X(\mu))$ is a well-defined
(possibly complex) measure on $\left(\Omega^{\prime \prime}, \mathcal{F}^{\prime \prime}\right)$. For all $B \in \mathcal{F}^{\prime \prime}$:

$$
\begin{aligned}
Y(X(\mu))(B) & =X(\mu)\left(Y^{-1}(B)\right) \\
& =\mu\left(X^{-1}\left(Y^{-1}(B)\right)\right) \\
& =\mu\left((Y \circ X)^{-1}(B)\right) \\
& =(Y \circ X)(\mu)(B)
\end{aligned}
$$

This being true for all $B \in \mathcal{F}^{\prime \prime}, Y(X(\mu))=(Y \circ X)(\mu)$. From definition (123), we obtain immediately:

$$
\left(\mu^{X}\right)^{Y}=Y\left(\mu^{X}\right)=Y(X(\mu))=(Y \circ X)(\mu)=\mu^{(Y \circ X)}
$$

Exercise 3

Exercise 4.

1. Let $a \in \mathbf{R}^{n}$ and $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the associated translation mapping. Since $\left\|\tau_{a}(x)-\tau_{a}(y)\right\|=\|x-y\|$ for all $x, y \in \mathbf{R}^{n}$, it is clear that τ_{a} is continuous. It is therefore Borel measurable.
2. Let μ be a (possibly complex) measure on \mathbf{R}^{n}. Let $a \in \mathbf{R}^{n}$. Since $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is measurable, $\tau_{a}(\mu)$ is a well-defined (possibly complex) measure on \mathbf{R}^{n}.
3. Let $a \in \mathbf{R}^{n}$ and $u, v \in \mathbf{R}^{n}$ with $u_{i} \leq v_{i}$ for all $i \in \mathbf{N}_{n}$. Then:

$$
\begin{aligned}
\tau_{a}(d x)\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right) & =d x\left(\tau_{a}^{-1}\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right)\right) \\
& =d x\left(\prod_{i=1}^{n}\left[u_{i}-a_{i}, v_{i}-a_{i}\right]\right) \\
& =\prod_{i=1}^{n}\left(v_{i}-u_{i}\right)
\end{aligned}
$$

$$
=d x\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right)
$$

From the uniqueness property of definition (63), $\tau_{a}(d x)=d x$.
4. Having proved that $\tau_{a}(d x)=d x$ for all $a \in \mathbf{R}^{n}$, we conclude from definition (124) that the Lebesgue measure $d x$ on \mathbf{R}^{n} is invariant by translation.

Exercise 4

Exercise 5.

1. Let $\alpha>0$, and $k_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be defined by $k_{\alpha}(x)=\alpha x$. Since $\left\|k_{\alpha}(x)-k_{\alpha}(y)\right\|=\alpha\|x-y\|$ for all $x, y \in \mathbf{R}^{n}$, it is clear that k_{α} is continuous and consequently Borel measurable.
2. Since k_{α} is measurable, $k_{\alpha}(d x)$ is a well-defined measure on \mathbf{R}^{n}, and so is $\alpha^{n} k_{\alpha}(d x)$. Let $u, v \in \mathbf{R}^{n}$ with $u_{i} \leq v_{i}$ for all $i \in \mathbf{N}_{n}$:

$$
\begin{aligned}
\alpha^{n} k_{\alpha}(d x)\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right) & =\alpha^{n} d x\left(k_{\alpha}^{-1}\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right)\right) \\
& =\alpha^{n} d x\left(\prod_{i=1}^{n}\left[\frac{u_{i}}{\alpha}, \frac{v_{i}}{\alpha}\right]\right) \\
& =\alpha^{n} \prod_{i=1}^{n}\left(\frac{v_{i}}{\alpha}-\frac{u_{i}}{\alpha}\right) \\
& =\prod_{i=1}^{n}\left(v_{i}-u_{i}\right)
\end{aligned}
$$

$$
=d x\left(\prod_{i=1}^{n}\left[u_{i}, v_{i}\right]\right)
$$

From the uniqueness property of definition (63), $\alpha^{n} k_{\alpha}(d x)=d x$. It follows that $k_{\alpha}(d x)=\alpha^{-n} d x$.

Exercise 5

Exercise 6. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Let $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. We claim that:

$$
\begin{equation*}
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu) \tag{2}
\end{equation*}
$$

Note that X being measurable, $X(\mu)$ is a well-defined measure on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ and consequently the right-hand-side of (2) is perfectly meaningful. Furthermore, $f \circ X$ is a non-negative and measurable map on (Ω, \mathcal{F}) and the left-hand-side of (2) is also perfectly meaningful. In the case when $f=1_{A}$ for some $A \in \mathcal{F}^{\prime}$, equation (2) reduces to:

$$
\begin{aligned}
\int_{\Omega} f \circ X d \mu & =\int_{\Omega} 1_{A} \circ X d \mu \\
& =\int_{\Omega} 1_{X^{-1}(A)} d \mu \\
& =\mu\left(X^{-1}(A)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =X(\mu)(A) \\
& =\int_{\Omega^{\prime}} 1_{A} d X(\mu) \\
& =\int_{\Omega^{\prime}} f d X(\mu)
\end{aligned}
$$

which is true by virtue of $X(\mu)(A)=\mu\left(X^{-1}(A)\right)$ of definition (123). When $f=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is a simple function on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$, we have:

$$
\begin{aligned}
\int_{\Omega} f \circ X d \mu & =\int_{\Omega}\left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}\right) \circ X d \mu \\
& =\int_{\Omega}\left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}} \circ X\right) d \mu \\
& =\sum_{i=1}^{n} \alpha_{i} \int_{\Omega} 1_{A_{i}} \circ X d \mu
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \alpha_{i} \int_{\Omega^{\prime}} 1_{A_{i}} d X(\mu) \\
& =\int_{\Omega^{\prime}}\left(\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}\right) d X(\mu) \\
& =\int_{\Omega^{\prime}} f d X(\mu)
\end{aligned}
$$

Hence equation (2) is also true in the case when f is a simple function on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$. We now assume that f is an arbitrary non-negative and measurable function on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$. From theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ such that $s_{n} \uparrow f$, i.e. $s_{n} \leq s_{n+1} \leq f$ for all $n \geq 1$ and $s_{n}(\omega) \rightarrow f(\omega)$ for all $\omega \in \Omega^{\prime}$. Then it is clear that $s_{n} \circ X \uparrow f \circ X$, and from the monotone convergence theorem (19), we obtain:

$$
\int_{\Omega} f \circ X d \mu=\lim _{n \rightarrow+\infty} \int_{\Omega} s_{n} \circ X d \mu
$$

Solutions to Exercises

$$
\begin{aligned}
& =\lim _{n \rightarrow+\infty} \int_{\Omega^{\prime}} s_{n} d X(\mu) \\
& =\int_{\Omega^{\prime}} f d X(\mu)
\end{aligned}
$$

This completes the proof of theorem (104).
Exercise 6

Exercise 7. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a measure on (Ω, \mathcal{F}). Let $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map. Then, the map $f \circ X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is also measurable. Applying theorem (104) to the non-negative and measurable map $|f|$, we obtain:

$$
\begin{aligned}
\int_{\Omega}|f \circ X| d \mu & =\int_{\Omega}|f| \circ X d \mu \\
& =\int_{\Omega^{\prime}}|f| d X(\mu)
\end{aligned}
$$

It follows that $\int_{\Omega}|f \circ X| d \mu<+\infty \Leftrightarrow \int_{\Omega^{\prime}}|f| d X(\mu)<+\infty$, or equivalently, all maps involved being measurable:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Leftrightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

We now assume that $f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)$. Let $u=\operatorname{Re}(f)$ and $v=$ $\operatorname{Im}(f)$. Then $f=u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)$, and applying theorem (104)
to each non-negative and measurable map $u^{ \pm}, v^{ \pm}$, we obtain:

$$
\begin{aligned}
\int_{\Omega} f \circ X d \mu & =\int_{\Omega^{\prime}}\left[u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)\right] \circ X d \mu \\
& =\int_{\Omega} u^{+} \circ X d \mu-\int_{\Omega} u^{-} \circ X d \mu \\
& +i\left(\int_{\Omega} v^{+} \circ X d \mu-\int_{\Omega} v^{-} \circ X d \mu\right) \\
& =\int_{\Omega^{\prime}} u^{+} d X(\mu)-\int_{\Omega^{\prime}} u^{-} d X(\mu) \\
& +i\left(\int_{\Omega^{\prime}} v^{+} d X(\mu)-\int_{\Omega^{\prime}} v^{-} d X(\mu)\right) \\
& =\int_{\Omega^{\prime}}\left[u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)\right] d X(\mu) \\
& =\int_{\Omega^{\prime}} f d X(\mu)
\end{aligned}
$$

Solutions to Exercises

Note that this derivation is perfectly legitimate, as all the integrals involved are finite. This completes the proof of theorem (105).

Exercise 7

Exercise 8. Let $X:(\Omega, \mathcal{F}) \rightarrow\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ be a measurable map, where (Ω, \mathcal{F}) and $\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right)$ are measurable spaces. Let μ be a complex measure on (Ω, \mathcal{F}). Let $f:\left(\Omega^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be measurable. From 4. of exercise (3), we have $\left|\mu^{X}\right| \leq|\mu|^{X}$, or equivalently $|X(\mu)| \leq X(|\mu|)$. Using exercise (18) of Tutorial 12 together with theorem (104):

$$
\begin{aligned}
\int_{\Omega^{\prime}}|f| d|X(\mu)| & \leq \int_{\Omega^{\prime}}|f| d X(|\mu|) \\
& =\int_{\Omega}|f| \circ X d|\mu| \\
& =\int_{\Omega}|f \circ X| d|\mu|
\end{aligned}
$$

So $\int_{\Omega}|f \circ X| d|\mu|<+\infty \Rightarrow \int_{\Omega^{\prime}}|f| d|X(\mu)|<+\infty$ and consequently:

$$
f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu) \Rightarrow f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X(\mu)\right)
$$

We now assume that $f \circ X \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Let $\mu_{1}=\operatorname{Re}(\mu)$ and $\mu_{2}=\operatorname{Im}(\mu)$. Then, we have $\mu=\mu_{1}^{+}-\mu_{1}^{-}+i\left(\mu_{2}^{+}-\mu_{2}^{-}\right)$, and from
exercise (19) of Tutorial $12, f \circ X \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{F}, \mu_{k}^{ \pm}\right), k=1$, 2 , with:

$$
\begin{align*}
\int_{\Omega} f \circ X d \mu & =\int_{\Omega} f \circ X d \mu_{1}^{+}-\int_{\Omega} f \circ X d \mu_{1}^{-} \\
& +i\left(\int_{\Omega} f \circ X d \mu_{2}^{+}-\int_{\Omega} f \circ X d \mu_{2}^{-}\right) \tag{3}
\end{align*}
$$

Applying theorem (105) to each measure $\mu_{k}^{ \pm}$, we obtain:

$$
\begin{equation*}
\int_{\Omega} f \circ X d \mu_{k}^{ \pm}=\int_{\Omega^{\prime}} f d X\left(\mu_{k}^{ \pm}\right), k=1,2 \tag{4}
\end{equation*}
$$

Moreover, for all $B \in \mathcal{F}^{\prime}$, we have:

$$
\begin{aligned}
X(\mu)(B) & =\mu\left(X^{-1}(B)\right) \\
& =\mu_{1}^{+}\left(X^{-1}(B)\right)-\mu_{1}^{-}\left(X^{-1}(B)\right) \\
& +i\left(\mu_{2}^{+}\left(X^{-1}(B)\right)-\mu_{2}^{-}\left(X^{-1}(B)\right)\right) \\
& =X\left(\mu_{1}^{+}\right)(B)-X\left(\mu_{1}^{-}\right)(B)+i\left(X\left(\mu_{2}^{+}\right)(B)-X\left(\mu_{2}^{-}\right)(B)\right)
\end{aligned}
$$

and consequently:

$$
X(\mu)=X\left(\mu_{1}^{+}\right)-X\left(\mu_{1}^{-}\right)+i\left(X\left(\mu_{2}^{+}\right)-X\left(\mu_{2}^{-}\right)\right)
$$

Since $f \in L_{\mathbf{C}}^{1}\left(\Omega^{\prime}, \mathcal{F}^{\prime}, X\left(\mu_{k}^{ \pm}\right)\right)$, from exercise (17) of Tutorial 12 :

$$
\begin{align*}
\int_{\Omega^{\prime}} f d X(\mu) & =\int_{\Omega^{\prime}} f d X\left(\mu_{1}^{+}\right)-\int_{\Omega^{\prime}} f d X\left(\mu_{1}^{-}\right) \\
& +i\left(\int_{\Omega^{\prime}} f d X\left(\mu_{2}^{+}\right)-\int_{\Omega^{\prime}} f d X\left(\mu_{2}^{-}\right)\right) \tag{5}
\end{align*}
$$

From (3), (4) and (5), we conclude that:

$$
\int_{\Omega} f \circ X d \mu=\int_{\Omega^{\prime}} f d X(\mu)
$$

which completes the proof of theorem (106).
Exercise 8

Exercise 9.

1. Let $X:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be a random variable with distribution $\mu=X(P)$ under P, where (Ω, \mathcal{F}, P) is a probability space. Recall that the notions of probability space, random variable and expectation are defined in (70), (71) and (72) respectively. Let $i: \mathbf{R} \rightarrow \mathbf{R}$ be the identity mapping. Applying theorem (104), we have:

$$
\begin{aligned}
\int_{\Omega}|X| d P & =\int_{\Omega}|i \circ X| d P \\
& =\int_{\Omega}|i| \circ X d P \\
& =\int_{\mathbf{R}}|i| d X(P) \\
& =\int_{-\infty}^{+\infty}|x| d \mu(x)
\end{aligned}
$$

So X is integrable, if and only if $\int_{\mathbf{R}}|x| d \mu(x)<+\infty$.
2. If $\int|X| d P<+\infty$, applying theorem (105) we obtain:

$$
\begin{aligned}
E[X]=\int_{\Omega} X d P & =\int_{\Omega} i \circ X d P \\
& =\int_{\mathbf{R}} i d X(P)=\int_{-\infty}^{+\infty} x d \mu(x)
\end{aligned}
$$

3. Let $f: x \rightarrow x^{2}$. From theorem (104), we have:

$$
\begin{aligned}
E\left[X^{2}\right]=\int_{\Omega} X^{2} d P & =\int_{\Omega} f \circ X d P \\
& =\int_{\mathbf{R}} f d X(P)=\int_{-\infty}^{+\infty} x^{2} d \mu(x)
\end{aligned}
$$

Exercise 9

Exercise 10.

1. Let μ be a locally finite measure on \mathbf{R}^{n}, which is invariant by translation. Given $a \in \mathbf{R}^{n}$, let $Q_{a}=\left[0, a_{1}\left[\times \ldots \times\left[0, a_{n}[\right.\right.\right.$. Let $K_{a}=\left[0, a_{1}\right] \times \ldots \times\left[0, a_{n}\right]$. Then K_{a} is a closed subset of \mathbf{R}^{n}. Indeed, it can be written as $K_{a}=\cap_{i=1}^{n} p_{i}^{-1}\left(\left[0, a_{i}\right]\right)$, where $p_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ denotes the i-th canonical projection, which is a continuous map. Since $\left[0, a_{i}\right]$ is closed in \mathbf{R}, each $p_{i}^{-1}\left(\left[0, a_{i}\right]\right)$ is closed in \mathbf{R}^{n}, and K_{a} is closed. Moreover, for all $x, y \in K_{a}$:

$$
\|x-y\| \leq\|x\|+\|y\| \leq 2\|a\|
$$

Taking the supremum as $x, y \in K_{a}$, we obtain $\delta\left(K_{a}\right) \leq 2\|a\|$, and in particular $\delta\left(K_{a}\right)<+\infty$, where $\delta\left(K_{a}\right)$ is the diameter of K_{a}, as defined in (68). So K_{a} is a closed and bounded subset of \mathbf{R}^{n}. From theorem (48), K_{a} is a compact subset of \mathbf{R}^{n}. Hence, from exercise (10) of Tutorial 13, since μ is locally finite, we have $\mu\left(K_{a}\right)<+\infty$. We conclude from $Q_{a} \subseteq K_{a}$ that:

$$
\mu\left(Q_{a}\right) \leq \mu\left(K_{a}\right)<+\infty
$$

In particular, if $Q=Q_{(1, \ldots, 1)}$ then $\mu(Q)<+\infty$.
2. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ where $p_{i} \in \mathbf{N}^{*}$ for all $i \in \mathbf{N}_{n}$. We claim:

$$
\begin{aligned}
Q_{p}= & \biguplus_{\substack{k \in \mathbf{N}^{n}}}\left[k_{1}, k_{1}+1\left[\times \ldots \times\left[k_{n}, k_{n}+1[\right.\right.\right. \\
& 0 \leq k_{i}<p_{i}
\end{aligned}
$$

Let $k \in \mathbf{N}^{n}$ with $0 \leq k_{i}<p_{i}$ for all $i \in \mathbf{N}_{n}$. Let $x \in \mathbf{R}^{n}$ and suppose that $k_{i} \leq x_{i}<k_{i}+1$ for all $i \in \mathbf{N}_{n}$. Then, we have:

$$
0 \leq k_{i} \leq x_{i}<k_{i}+1 \leq p_{i}, \forall i \in \mathbf{N}_{n}
$$

So in particular $x \in Q_{p}$. This shows the inclusion \supseteq. To show the reverse inclusion, suppose $x \in Q_{p}$. Given $i \in \mathbf{N}_{n}$, consider the set $X_{i}=\left\{k \in \mathbf{N}: 0 \leq x_{i}<k+1\right\}$. Since $0 \leq x_{i}<p_{i}$ and $p_{i} \geq 1$, it is clear that $p_{i}-1 \in X_{i}$. So X_{i} is a non-empty subset of \mathbf{N} which therefore has a smallest element $k_{i} \leq p_{i}-1$. Defining $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}$, we have $0 \leq k_{i}<p_{i}$ for all
$i \in \mathbf{N}_{n}$, and furthermore:

$$
k_{i} \leq x_{i}<k_{i}+1, \forall i \in \mathbf{N}_{n}
$$

This shows the inclusion \subseteq. It remains to show that the above union is indeed a union of pairwise disjoint sets. Let $k, k^{\prime} \in \mathbf{N}^{n}$ and suppose that $x \in \mathbf{R}^{n}$ is such that:

$$
x \in\left(\prod _ { i = 1 } ^ { n } \left[k_{i}, k_{i}+1[) \bigcap\left(\prod _ { i = 1 } ^ { n } \left[k_{i}^{\prime}, k_{i}^{\prime}+1[)\right.\right.\right.\right.
$$

Then for all $i \in \mathbf{N}_{n}, x_{i} \in\left[k_{i}, k_{i}+1\left[\cap\left[k_{i}^{\prime}, k_{i}^{\prime}+1[\right.\right.\right.$ and consequently $k_{i}=k_{i}^{\prime}$. So $k=k^{\prime}$.
3. For all $k \in \mathbf{N}^{n}$ with $0 \leq k_{i}<p_{i}$, define:

$$
A_{k}=\left[k_{1}, k_{1}+1\left[\times \ldots \times\left[k_{n}, k_{n}+1[\right.\right.\right.
$$

Let $\tau_{k}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation mapping of vector k, defined by $\tau_{k}(x)=k+x$ for all $x \in \mathbf{R}^{n}$. Since μ is invariant by
translation, $\tau_{k}(\mu)=\mu$ and consequently:

$$
\begin{aligned}
\mu\left(A_{k}\right) & =\tau_{k}(\mu)\left(A_{k}\right) \\
& =\mu\left(\tau_{k}^{-1}\left(A_{k}\right)\right) \\
& =\mu\left(\left\{\tau_{k} \in A_{k}\right\}\right) \\
& =\mu\left(\left\{x: k_{i} \leq k_{i}+x_{i}<k_{i}+1, \forall i \in \mathbf{N}^{n}\right\}\right) \\
& =\mu\left(\left\{x: 0 \leq x_{i}<1, \forall i \in \mathbf{N}_{n}\right\}\right) \\
& =\mu(Q)
\end{aligned}
$$

Having proved in 2 that $Q_{p}=\uplus_{k} A_{k}$, we obtain:

$$
\mu\left(Q_{p}\right)=\sum_{k} \mu\left(A_{k}\right)=\sum_{k} \mu(Q)=p_{1} \ldots p_{n} \mu(Q)
$$

where we have used the fact that:

$$
\operatorname{card}\left\{k \in \mathbf{N}^{n}: 0 \leq k_{i}<p_{i}, \forall i \in \mathbf{N}_{n}\right\}=p_{1} \ldots p_{n}
$$

4. Let $q_{1}, \ldots, q_{n} \geq 1$ be positive integers. We claim that:

$$
\begin{aligned}
Q_{p}= & \biguplus_{k \in \mathbf{N}^{n}}\left[\frac{k_{1} p_{1}}{q_{1}}, \frac{\left(k_{1}+1\right) p_{1}}{q_{1}}\left[\times \ldots \times\left[\frac{k_{n} p_{n}}{q_{n}}, \frac{\left(k_{n}+1\right) p_{n}}{q_{n}}[\right.\right.\right. \\
& 0 \leq k_{i}<q_{i}
\end{aligned}
$$

Let $k \in \mathbf{N}^{n}$ with $0 \leq k_{i}<q_{i}$ for all $i \in \mathbf{N}_{n}$. Let $x \in \mathbf{R}^{n}$ with:

$$
\frac{k_{i} p_{i}}{q_{i}} \leq x_{i}<\frac{\left(k_{i}+1\right) p_{i}}{q_{i}}, \forall i \in \mathbf{N}_{n}
$$

Then in particular $0 \leq x_{i}<p_{i}$ for all i 's and consequently $x \in Q_{p}$. This shows the inclusion \supseteq. To show the reverse inclusion, suppose $x \in Q_{p}$. Given $i \in \mathbf{N}_{n}$, consider the set:

$$
X_{i}=\left\{k \in \mathbf{N}: x_{i}<\frac{(k+1) p_{i}}{q_{i}}\right\}
$$

Since $0 \leq x_{i}<p_{i}$ and $q_{i} \geq 1$, it is clear that $q_{i}-1 \in X_{i}$. So X_{i} is a non-empty subset of \mathbf{N}, which therefore has a smallest
element $k_{i} \leq q_{i}-1$. Defining $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}$, it is clear that $0 \leq k_{i}<q_{i}$ for all $i \in \mathbf{N}_{n}$ and furthermore:

$$
\frac{k_{i} p_{i}}{q_{i}} \leq x_{i}<\frac{\left(k_{i}+1\right) p_{i}}{q_{i}}, \forall i \in \mathbf{N}_{n}
$$

This shows the inclusion \subseteq. It remains to show that the above union is indeed a union a pairwise disjoint sets. But if $k, k^{\prime} \in \mathbf{N}^{n}$ are such that there exists $x \in \mathbf{R}^{n}$ with:

$$
x_{i} \in\left[\frac{k_{i} p_{i}}{q_{i}}, \frac{\left(k_{i}+1\right) p_{i}}{q_{i}}\left[\bigcap \left[\frac{k_{i}^{\prime} p_{i}}{q_{i}}, \frac{\left(k_{i}^{\prime}+1\right) p_{i}}{q_{i}}[\right.\right.\right.
$$

for all $i \in \mathbf{N}_{n}$, then $k_{i}=k_{i}^{\prime}$ for all i 's and consequently $k=k^{\prime}$.
5. Given $i \in \mathbf{N}_{n}$, define $r_{i}=p_{i} / q_{i}$. Let $r=\left(r_{1}, \ldots, r_{n}\right)$. Given $k \in \mathbf{N}^{n}$ with $0 \leq k_{i}<q_{i}$ for all $i \in \mathbf{N}_{n}$, define:

$$
A_{k}=\left[k_{1} r_{1},\left(k_{1}+1\right) r_{1}\left[\times \ldots \times\left[k_{n} r_{n},\left(k_{n}+1\right) r_{n}[\right.\right.\right.
$$

Let $\tau: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation mapping associated with the vector $u=\left(k_{1} r_{1}, \ldots, k_{n} r_{n}\right)$, and defined by $\tau(x)=u+x$
for all $x \in \mathbf{R}^{n}$. Since μ is invariant by translation, we have $\tau(\mu)=\mu$, and consequently:

$$
\begin{aligned}
\mu\left(A_{k}\right) & =\tau(\mu)\left(A_{k}\right) \\
& =\mu\left(\tau^{-1}\left(A_{k}\right)\right) \\
& =\mu\left(\left\{\tau \in A_{k}\right\}\right) \\
& =\mu\left(\left\{x: k_{i} r_{i} \leq k_{i} r_{i}+x_{i}<\left(k_{i}+1\right) r_{i}, \forall i \in \mathbf{N}_{n}\right\}\right) \\
& =\mu\left(\left\{x: 0 \leq x_{i}<r_{i}, \forall i \in \mathbf{N}_{n}\right\}\right) \\
& =\mu\left(Q_{r}\right)
\end{aligned}
$$

Having proved in 4 . that $Q_{p}=\uplus_{k} A_{k}$, we obtain:

$$
\mu\left(Q_{p}\right)=\sum_{k} \mu\left(A_{k}\right)=\sum_{k} \mu\left(Q_{r}\right)=q_{1} \ldots q_{n} \mu\left(Q_{r}\right)
$$

where we have used the fact that:

$$
\operatorname{card}\left\{k \in \mathbf{N}^{n}: 0 \leq k_{i}<q_{i}, \forall i \in \mathbf{N}_{n}\right\}=q_{1} \ldots q_{n}
$$

Hence, we have proved that:

$$
\mu\left(Q_{p}\right)=q_{1} \ldots q_{n} \mu\left(Q_{\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)}\right)
$$

6. Let $r \in\left(\mathbf{Q}^{+}\right)^{n}$. We claim that:

$$
\begin{equation*}
\mu\left(Q_{r}\right)=r_{1} \ldots r_{n} \mu(Q) \tag{6}
\end{equation*}
$$

If $r_{i}=0$ for some $i \in \mathbf{N}_{n}$, then it is clear that $Q_{r}=\emptyset$ and (6) is satisfied. So we assume that $r_{i}>0$ for all $i \in \mathbf{N}_{n}$. There exist integers $p_{1}, \ldots, p_{n} \geq 1$ and $q_{1}, \ldots, q_{n} \geq 1$ such that $r_{i}=p_{i} / q_{i}$ for all $i \in \mathbf{N}_{n}$. Using 5 . and 3 . we obtain:

$$
\mu\left(Q_{r}\right)=\frac{\mu\left(Q_{p}\right)}{q_{1} \ldots q_{n}}=\frac{p_{1} \ldots p_{n}}{q_{1} \ldots q_{n}} \mu(Q)=r_{1} \ldots r_{n} \mu(Q)
$$

which establishes our claim of equation (6).
7. Let $a \in\left(\mathbf{R}^{+}\right)^{n}$. We claim that:

$$
\begin{equation*}
\mu\left(Q_{a}\right)=a_{1} \ldots a_{n} \mu(Q) \tag{7}
\end{equation*}
$$

If $a_{i}=0$ for some $i \in \mathbf{N}_{n}$, then (7) is obviously true. So we assume that $a_{i}>0$ for all $i \in \mathbf{N}_{n}$. Let $\left(r^{p}\right)_{p \geq 1}$ be a sequence in $\left(\mathbf{Q}^{+}\right)^{n}$ such that $r_{i}^{p} \uparrow \uparrow a_{i}$ for all $i \in \mathbf{N}_{n}$, i.e. $r_{i}^{p} \leq r_{i}^{p+1}<a_{i}$ for all $p \geq 1$ and $r_{i}^{p} \rightarrow a_{i}$ as $p \rightarrow+\infty$. The map $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined by $\phi(x)=x_{1} \ldots x_{n}$ can be written as $\phi=p_{1} \ldots p_{n}$ where $p_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the i-th canonical projection. Since each p_{i} is continuous, ϕ is itself continuous. Furthermore, since $r_{i}^{p} \rightarrow a_{i}$ for all $i \in \mathbf{N}_{n}$, we have $r^{p} \rightarrow a$ with respect to the product topology of \mathbf{R}^{n} (which is also the usual topology of \mathbf{R}^{n}). Hence:

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} r_{1}^{p} \ldots r_{n}^{p}=\lim _{p \rightarrow+\infty} \phi\left(r^{p}\right)=\phi(a)=a_{1} \ldots a_{n} \tag{8}
\end{equation*}
$$

We now claim that $Q_{r^{p}} \uparrow Q_{a}$. Since $r_{i}^{p} \leq r_{i}^{p+1}$ for all $i \in \mathbf{N}_{n}$ and $p \geq 1$, it is clear that $Q_{r^{p}} \subseteq Q_{r^{p+1}}$ for all $p \geq 1$. So we only need to prove that $Q_{a}=\cup_{p \geq 1} Q_{r^{p}}$. From $r_{i}^{p}<a_{i}$ (and in particular $r_{i}^{p} \leq a_{i}$) for all $i \in \mathbf{N}_{n}$ and $p \geq 1$, we obtain $Q_{r^{p}} \subseteq Q_{a}$ for all $p \geq 1$. This shows the inclusion \supseteq. To show the reverse inclusion, let $x \in Q_{a}$. Given $i \in \mathbf{N}_{n}$, we have $0 \leq x_{i}<a_{i}$. Since
$r_{i}^{p} \rightarrow a_{i}$ as $p \rightarrow+\infty$, there exist $N_{i} \geq 1$ such that:

$$
p \geq N_{i} \Rightarrow x_{i}<r_{i}^{p}<a_{i}
$$

Taking $p=\max \left(N_{1}, \ldots, N_{n}\right)$ we obtain $0 \leq x_{i}<r_{i}^{p}$ for all $i \in \mathbf{N}_{n}$, and consequently $x \in Q_{r^{p}}$. This shows the inclusion \subseteq. Having proved that $Q_{r^{p}} \uparrow Q_{a}$, from theorem (7) we have:

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} \mu\left(Q_{r^{p}}\right)=\mu\left(Q_{a}\right) \tag{9}
\end{equation*}
$$

Using 6. together with (8) and (9) we obtain:

$$
\begin{aligned}
\mu\left(Q_{a}\right) & =\lim _{p \rightarrow+\infty} \mu\left(Q_{r^{p}}\right) \\
& =\lim _{p \rightarrow+\infty} r_{1}^{p} \ldots r_{n}^{p} \mu(Q) \\
& =a_{1} \ldots a_{n} \mu(Q)
\end{aligned}
$$

which establishes our claim of equation (7). Note that the third equality is legitimate from $\mu(Q)<+\infty$ and the continuity of the map $\psi: \mathbf{R}^{+} \rightarrow \mathbf{R}$ defined by $\psi(x)=x \mu(Q)$. If we had
$\mu(Q)=+\infty$, the conclusion would remain valid (the sequence $r_{1}^{p} \ldots r_{n}^{p}$ is non-decreasing), but it would no longer be true that ψ (with values in $[0,+\infty]$) is continuous, (recall that $(1 / p) \cdot(+\infty)$ does not converge to $0 \cdot(+\infty)$ as $p \rightarrow+\infty)$.
8. We define the set of subsets of \mathbf{R}^{n} :

$$
\mathcal{C} \triangleq\left\{\left[a_{1}, b_{1}\left[\times \ldots \times\left[a_{n}, b_{n}\left[, a_{i}, b_{i} \in \mathbf{R}, a_{i} \leq b_{i}, \forall i \in \mathbf{N}^{n}\right\}\right.\right.\right.\right.
$$

Let $B=\left[a_{1}, b_{1}\left[\times \ldots \times\left[a_{n}, b_{n}\left[\in \mathcal{C}\right.\right.\right.\right.$. Let $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{R}^{n}$ and $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$. Let $c=b-a \in\left(\mathbf{R}^{+}\right)^{n}$. Let $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation mapping of vector a, defined by $\tau_{a}(x)=a+x$ for all $x \in \mathbf{R}^{n}$. Since μ is invariant by translation, we have $\tau_{a}(\mu)=\mu$. Using 7. we obtain:

$$
\begin{aligned}
\mu(B) & =\tau_{a}(\mu)(B) \\
& =\mu\left(\tau_{a}^{-1}(B)\right) \\
& =\mu\left(\left\{\tau_{a} \in B\right\}\right) \\
& =\mu\left(\left\{x: a_{i} \leq a_{i}+x_{i}<b_{i}, \forall i \in \mathbf{N}_{n}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mu\left(\left\{x: 0 \leq x_{i}<c_{i}, \forall i \in \mathbf{N}_{n}\right\}\right) \\
& =\mu\left(Q_{c}\right) \\
& =c_{1} \ldots c_{n} \mu(Q) \\
& =\mu(Q) \prod_{i=1}^{n}\left(b_{i}-a_{i}\right) \\
& \left.\left.=\mu(Q) \prod_{i=1}^{n} d x^{i}(] a_{i}, b_{i}\right]\right) \\
& =\mu(Q) \prod_{i=1}^{n} d x^{i}\left(\left[a_{i}, b_{i}[)\right.\right. \\
& =\mu(Q) d x^{1} \otimes \ldots \otimes d x^{n}(B) \\
& =\mu(Q) d x(B)
\end{aligned}
$$

So we have proved that $\mu(B)=\mu(Q) d x(B)$ for all $B \in \mathcal{C}$. Note that in obtaining this equality, we have refrained from writing
directly:

$$
\begin{equation*}
\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)=d x\left(\prod _ { i = 1 } ^ { n } \left[a_{i}, b_{i}[)=d x(B)\right.\right. \tag{10}
\end{equation*}
$$

as this equality has not been proved anywhere in the Tutorials. Indeed, definition (63) of the Lebesgue measure on \mathbf{R}^{n}, defines it as the unique measure with the property (given $a, b \ldots$):

$$
\prod_{i=1}^{n}\left(b_{i}-a_{i}\right)=d x\left(\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right)
$$

which is not quite the same as (10). However, if $d x^{i}$ denotes the Lebesgue measure on \mathbf{R}, then it is clear that:

$$
\left.\left.d x^{i}\left(\left[a_{i}, b_{i}\right]\right)=d x^{i}(] a_{i}, b_{i}\right]\right)=d x^{i}\left(\left[a_{i}, b_{i}[)\right.\right.
$$

and furthermore, it is not difficult from the uniqueness property of definition (63) to establish the fact that the Lebesgue measure $d x$ on \mathbf{R}^{n} is the product measure $d x=d x^{1} \otimes \ldots \otimes d x^{n}$.
9. Let $\mathcal{C}_{1}=\{[a, b[: a, b \in \mathbf{R}\}$. It is by now a standard exercise to show that $\mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{C}_{1}\right)$. Let $\mathcal{C}_{1}^{\amalg n}$ be the n-fold product $\mathcal{C}_{1} \amalg \ldots \amalg \mathcal{C}_{1}$, i.e. the set of rectangles, as per definition (52):

$$
\mathcal{C}_{1}^{\amalg n}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{C}_{1} \cup\{\mathbf{R}\}, \forall i \in \mathbf{N}_{n}\right\}
$$

Since \mathbf{R} is separable (has a countable base), from exercise (18) of Tutorial 6 , we have $\mathcal{B}\left(\mathbf{R}^{n}\right)=\mathcal{B}(\mathbf{R})^{\otimes n}$ and consequently from theorem (26):

$$
\mathcal{B}\left(\mathbf{R}^{n}\right)=\mathcal{B}(\mathbf{R})^{\otimes n}=\sigma\left(\mathcal{C}_{1}\right)^{\otimes n}=\sigma\left(\mathcal{C}_{1}^{\amalg n}\right)
$$

Hence, in order to prove that $\mathcal{B}\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{C})$, we only need to show that $\sigma(\mathcal{C})=\sigma\left(\mathcal{C}_{1}^{\amalg n}\right)$. It is clear that $\mathcal{C} \subseteq \mathcal{C}_{1}^{\amalg n}$ which establishes the inclusion \subseteq. To show the reverse inclusion, it is sufficient to prove that $\mathcal{C}_{1}^{\amalg n} \subseteq \sigma(\mathcal{C})$. Let $B=A_{1} \times \ldots \times A_{n}$ be a rectangle of $\mathcal{C}_{1}^{\amalg n}$. Suppose $A_{1}=\mathbf{R}$. Then, we have:

$$
B=\bigcup_{p=1}^{+\infty}\left[-p, p\left[\times A_{2} \times \ldots \times A_{n}\right.\right.
$$

and in order to prove that $B \in \sigma(\mathcal{C})$, it is sufficient to prove that each $\left[-p, p\left[\times A_{2} \times \ldots \times A_{n}\right.\right.$ is an element of $\sigma(\mathcal{C})$. Hence, without loss of generality, we may assume that $A_{1} \in \mathcal{C}_{1}$. Likewise, we may assume that $A_{2} \in \mathcal{C}_{1}$, and in fact we may assume without loss of generality that $A_{i} \in \mathcal{C}_{1}$ for all $i \in \mathbf{N}_{n}$, in which case $B \in \mathcal{C} \subseteq \sigma(\mathcal{C})$. This completes our proof, and $\mathcal{B}\left(\mathbf{R}^{n}\right)=\sigma(\mathcal{C})$.
10. Given $p \geq 1$ we define:

$$
\mathcal{D}_{p}=\left\{B \in \mathcal{B}\left(\mathbf{R}^{n}\right): \mu\left(B \cap \left[-p, p\left[^{n}\right)=\mu(Q) d x\left(B \cap\left[-p, p\left[^{n}\right)\right\}\right.\right.\right.\right.
$$

Having proved in 8 . that $\mu(B)=\mu(Q) d x(B)$ for all $B \in \mathcal{C}$, since \mathcal{C} is closed under finite intersection and $\left[-p, p\left[^{n} \in \mathcal{C}\right.\right.$, it is clear that $\mathcal{C} \subseteq \mathcal{D}_{p}$ and $\mathbf{R}^{n} \in \mathcal{D}_{p}$. Furthermore, if $A, B \in \mathcal{D}_{p}$ are such that $A \subseteq B$, then:

$$
\begin{aligned}
\mu\left((B \backslash A) \cap \left[-p, p\left[^{n}\right)\right.\right. & =\mu\left(B \cap \left[-p, p\left[^{n}\right)-\mu\left(A \cap \left[-p, p\left[^{n}\right)\right.\right.\right.\right. \\
& =\mu(Q) d x\left(B \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& -\mu(Q) d x\left(A \cap \left[-p, p\left[^{n}\right)\right.\right.
\end{aligned}
$$

$$
=\mu(Q) d x\left((B \backslash A) \cap \left[-p, p\left[^{n}\right)\right.\right.
$$

So $B \backslash A \in \mathcal{D}_{p}$. Note that the above derivation is legitimate, as all the quantities involved are finite since $\mu(Q)<+\infty$. This is a very important point, and is in fact the very reason why we have localized the problem on $\left[-p, p\left[{ }^{n}\right.\right.$ by defining \mathcal{D}_{p}, rather than considering directly:

$$
\mathcal{D}=\left\{B \in \mathcal{B}\left(\mathbf{R}^{n}\right): \mu(B)=\mu(Q) d x(B)\right\}
$$

for which the property $B \backslash A \in \mathcal{D}$ whenever $A, B \in \mathcal{D}, A \subseteq B$, may not be easy to establish, if at all true. Let $\left(B_{k}\right)_{k \geq 1}$ be a sequence of elements of \mathcal{D}_{p} such that $B_{k} \uparrow B$. From theorem (7):

$$
\begin{aligned}
\mu\left(B \cap \left[-p, p\left[^{n}\right)\right.\right. & =\lim _{k \rightarrow+\infty} \mu\left(B _ { k } \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\lim _{k \rightarrow+\infty} \mu(Q) d x\left(B _ { k } \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\mu(Q) \lim _{k \rightarrow+\infty} d x\left(B _ { k } \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\mu(Q) d x\left(B \cap \left[-p, p\left[^{n}\right)\right.\right.
\end{aligned}
$$

So $B \in \mathcal{D}_{p}$, and we have proved that \mathcal{D}_{p} is a Dynkin system on \mathbf{R}^{n}. Since $\mathcal{C} \subseteq \mathcal{D}_{p}$ and \mathcal{C} is closed under finite intersection, from the Dynkin system theorem (1), we obtain $\sigma(\mathcal{C}) \subseteq \mathcal{D}_{p}$. Having proved in 9. that $\sigma(\mathcal{C})=\mathcal{B}\left(\mathbf{R}^{n}\right)$, it follows that $\mathcal{B}\left(\mathbf{R}^{n}\right) \subseteq$ \mathcal{D}_{p} for all $p \geq 1$. Hence, given $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, using theorem (7):

$$
\begin{aligned}
\mu(B) & =\lim _{p \rightarrow+\infty} \mu\left(B \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\lim _{p \rightarrow+\infty} \mu(Q) d x\left(B \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\mu(Q) \lim _{p \rightarrow+\infty} d x\left(B \cap \left[-p, p\left[^{n}\right)\right.\right. \\
& =\mu(Q) d x(B)
\end{aligned}
$$

So $\mu=\mu(Q) d x$. Given a locally finite measure μ on \mathbf{R}^{n}, which is invariant by translation, we have found $\alpha=\mu(Q) \in \mathbf{R}^{+}$, such that $\mu=\alpha d x$. This completes the proof of theorem (107).

Exercise 10

Exercise 11.

1. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. In particular, T is a linear map defined on a finite dimensional normed space. So T is continuous. Likewise, T^{-1} is a linear map defined on a finite dimensional normed space, so T^{-1} is continuous. The fact that a linear map defined on a finite dimensional normed space is continuous, has not yet been proved in these Tutorials (we have not even defined what a normed space is, see Tutorial 18). For those not familiar with the result, the proof in the case \mathbf{R}^{n} (together with its usual inner-product) goes as follows: Let e_{1}, \ldots, e_{n} be the canonical basis of \mathbf{R}^{n} and $x, y \in \mathbf{R}^{n}$. We have:

$$
\begin{aligned}
\|T(x)-T(y)\| & =\left\|T\left(\sum_{i=1}^{n} x_{i} e_{i}\right)-T\left(\sum_{i=1}^{n} y_{i} e_{i}\right)\right\| \\
& =\left\|\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) T\left(e_{i}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \cdot\left\|T\left(e_{i}\right)\right\| \\
& \leq\left(\sum_{i=1}^{n}\left\|T\left(e_{i}\right)\right\|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{1 / 2} \\
& =M\|x-y\|
\end{aligned}
$$

where $M=\left(\sum_{i=1}^{n}\left\|T\left(e_{i}\right)\right\|^{2}\right)^{1 / 2}$, and we have used the CauchySchwarz inequality (50). Having proved the existence of $M \in$ \mathbf{R}^{+}such that $\|T(x)-T(y)\| \leq M\|x-y\|$ for all $x, y \in \mathbf{R}^{n}$, it is clear that T is continuous. Similarly, there exists $M^{\prime} \in \mathbf{R}^{+}$ such that $\left\|T^{-1}(x)-T^{-1}(y)\right\| \leq M^{\prime}\|x-y\|$ for all $x, y \in \mathbf{R}^{n}$. So T^{-1} is continuous.
2. Let $B \subseteq \mathbf{R}^{n}$. The notation $T^{-1}(B)$ is potentially ambiguous, as it may refer to the inverse image of B by T as defined in (26), or the direct image of B by T^{-1} as defined in (25). Let $S=T^{-1}$, and let $S(B)$ denote the direct image, whereas $T^{-1}(B)$ denotes
the inverse image. We claim that $T^{-1}(B)=S(B)$. Indeed, suppose that $x \in T^{-1}(B)$. Then $T(x) \in B$. Let $y=T(x)$. Then $y \in B$ and $S(y)=T^{-1}(T(x))=x$. So $x \in S(B)$. This shows that $T^{-1}(B) \subseteq S(B)$. To show the reverse inclusion, suppose $x \in S(B)$. There exists $y \in B$ such that $x=S(y)$. So $T(x)=$ $T(S(y))=y$. So $T(x) \in B$, and $x \in T^{-1}(B)$. This shows that $S(B) \subseteq T^{-1}(B)$. We have proved that $T^{-1}(B)=S(B)$, and it follows that whether we view $T^{-1}(B)$ as an inverse image (that of B by T) or a direct image (that of B by T^{-1}) makes no difference, as the two sets are in fact equal. The notation $T^{-1}(B)$ is no longer ambiguous.
3. Let $B \subseteq \mathbf{R}^{n}$. Since $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear bijection, T^{-1} is also a linear bijection. Applying 2. to T^{-1}, it follows that the direct image $T(B)$ of B by $T=\left(T^{-1}\right)^{-1}$ coincides with the inverse image $\left(T^{-1}\right)^{-1}(B)$ of B by T^{-1}, i.e. $T(B)=\left(T^{-1}\right)^{-1}(B)$.
4. Let $K \subseteq \mathbf{R}^{n}$ be a compact subset of \mathbf{R}^{n}. $\{T \in K\}=T^{-1}(K)$ denotes the inverse image of K by T. However from 2. it can also
be viewed as the direct image of K by T^{-1}. Having proved that $T^{-1}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is continuous and K being compact, it follows from exercise (8) of Tutorial 8 that $T^{-1}(K)$ is a compact subset of \mathbf{R}^{n}. We conclude that $\{T \in K\}$ is a compact subset of \mathbf{R}^{n}.
5. The Lebesgue measure $d x$ on \mathbf{R}^{n} is clearly locally finite, as can be seen from definition (102). Indeed, given $x \in \mathbf{R}^{n}$, the set $\left.U=\Pi_{i=1}^{n}\right] x_{i}-1, x_{i}+1[$ is an open neighborhood of x with finite Lebesgue measure $\left(d x(U)=2^{n}<+\infty\right)$. From exercise (10) of Tutorial 13, if K^{\prime} is a compact subset of \mathbf{R}^{n}, then we have $d x\left(K^{\prime}\right)<+\infty$. Furthermore, \mathbf{R}^{n} is locally compact, as can be seen from definition (105). Indeed, given $x \in \mathbf{R}^{n}, x$ has an open neighborhood with compact closure: taking U as above, the closure $K=\bar{U}$ is closed and bounded, and therefore compact from theorem (48). Having proved in 4 . that $K^{\prime}=\{T \in K\}$ is itself compact, it follows that:

$$
T(d x)(U) \leq T(d x)(K)=d x(\{T \in K\})=d x\left(K^{\prime}\right)<+\infty
$$

Given $x \in \mathbf{R}^{n}$, we have shown the existence of U open, such that $x \in U$ and $T(d x)(U)<+\infty$. We conclude from definition (102) that $T(d x)$ (which is well-defined since T is continuous, hence Borel measurable) is a locally finite measure on \mathbf{R}^{n}.
6. Given $a \in \mathbf{R}^{n}$, let $\tau_{a}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the translation mapping of vector a, defined by $\tau_{a}(x)=a+x$ for all $x \in \mathbf{R}^{n}$. We have:

$$
\begin{aligned}
T \circ \tau_{T^{-1}(a)}(x) & =T\left(T^{-1}(a)+x\right) \\
& =T\left(T^{-1}(a)\right)+T(x) \\
& =a+T(x) \\
& =\tau_{a}(T(x))=\tau_{a} \circ T(x)
\end{aligned}
$$

This being true for all $x \in \mathbf{R}^{n}, T \circ \tau_{T^{-1}(a)}=\tau_{a} \circ T$.
7. Using 6. together with 5 . of exercise (3), we have:

$$
\begin{aligned}
\tau_{a}(T(d x)) & =\left(\tau_{a} \circ T\right)(d x) \\
& =\left(T \circ \tau_{T^{-1}(a)}\right)(d x)
\end{aligned}
$$

$$
=T\left(\tau_{T^{-1}(a)}(d x)\right)=T(d x)
$$

where the last equality stems from the fact that the Lebesgue measure $d x$ is invariant by translation. Having proved that $\tau_{a}(T(d x))=T(d x)$ for all $a \in \mathbf{R}^{n}$, we conclude that $T(d x)$ is itself invariant by translation.
8. From 5. $T(d x)$ is a locally finite measure on \mathbf{R}^{n}. From 7. it is invariant by translation. It follows from theorem (107) that there exists $\alpha \in \mathbf{R}^{+}$such that $T(d x)=\alpha d x$. Suppose β is another element of \mathbf{R}^{+}such that $T(d x)=\beta d x$. Then:

$$
\alpha=\alpha d x\left([0,1]^{n}\right)=\beta d x\left([0,1]^{n}\right)=\beta
$$

Hence, α is unique and we denote it $\Delta(T)$, so that $\Delta(T)$ is the unique element of \mathbf{R}^{+}such that $T(d x)=\Delta(T) d x$.
9. Let $Q=T\left([0,1]^{n}\right)$. Then Q is the direct image of $[0,1]^{n}$ by T. However from 3. it can also be viewed as the inverse image $\left(T^{-1}\right)^{-1}\left([0,1]^{n}\right)$ of $[0,1]^{n}$ by T^{-1}. Since T^{-1} is continuous, in
particular it is Borel measurable. It follows from $[0,1]^{n} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ that $\left(T^{-1}\right)^{-1}\left([0,1]^{n}\right) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. So $Q \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. Furthermore, denoting $S=T^{-1}$, we have:

$$
\begin{aligned}
\Delta(T) d x(Q) & =T(d x)(Q) \\
& =d x\left(T^{-1}(Q)\right) \\
& =d x\left(T^{-1}\left(T\left([0,1]^{n}\right)\right)\right) \\
& =d x\left(S\left(T\left([0,1]^{n}\right)\right)\right) \\
& =d x\left((S \circ T)\left([0,1]^{n}\right)\right) \\
& =d x\left([0,1]^{n}\right)=1
\end{aligned}
$$

10. Since $\Delta(T) d x(Q)=1$ for some $Q \in \mathcal{B}\left(\mathbf{R}^{n}\right), \Delta(T) \neq 0$.
11. Let $T_{1}, T_{2}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be two linear bijections. If $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$:

$$
\begin{aligned}
\left(T_{1} \circ T_{2}\right)(d x)(B) & =T_{1}\left(T_{2}(d x)\right)(B) \\
& =T_{1}\left(\Delta\left(T_{2}\right) d x\right)(B) \\
& =\left(\Delta\left(T_{2}\right) d x\right)\left(T_{1}^{-1}(B)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\Delta\left(T_{2}\right) d x\left(T_{1}^{-1}(B)\right) \\
& =\Delta\left(T_{2}\right) T_{1}(d x)(B) \\
& =\Delta\left(T_{2}\right)\left(\Delta\left(T_{1}\right) d x(B)\right) \\
& =\Delta\left(T_{1}\right) \Delta\left(T_{2}\right) d x(B)
\end{aligned}
$$

This being true for all $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have:

$$
\left(T_{1} \circ T_{2}\right)(d x)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right) d x
$$

Since $\Delta\left(T_{1} \circ T_{2}\right)$ is the unique element of \mathbf{R}^{+}with the property $\left(T_{1} \circ T_{2}\right)(d x)=\Delta\left(T_{1} \circ T_{2}\right) d x$, we conclude that:

$$
\Delta\left(T_{1} \circ T_{2}\right)=\Delta\left(T_{1}\right) \Delta\left(T_{2}\right)
$$

Exercise 12.

1. Let $\alpha \in \mathbf{R} \backslash\{0\}$ and $H_{\alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection defined by $H_{\alpha} e_{1}=\alpha e_{1}$ and $H_{\alpha} e_{j}=e_{j}$ for $j \geq 2$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbf{R}^{n}. If $\alpha>0$, we have:

$$
\begin{aligned}
H_{\alpha}(d x)\left([0,1]^{n}\right) & =d x\left(H_{\alpha}^{-1}\left([0,1]^{n}\right)\right) \\
& =d x\left(\left\{x: H_{\alpha} x \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left\{x: \sum_{j=1}^{n} x_{j} H_{\alpha} e_{j} \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left\{x:\left(\alpha x_{1}, x_{2}, \ldots, x_{n}\right) \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left[0, \alpha^{-1}\right] \times[0,1]^{n-1}\right)=\alpha^{-1}
\end{aligned}
$$

If $\alpha<0$, we have similarly:

$$
H_{\alpha}(d x)\left([0,1]^{n}\right)=d x\left(\left[\alpha^{-1}, 0\right] \times[0,1]^{n-1}\right)=-\alpha^{-1}
$$

In any case we obtain $H_{\alpha}(d x)\left([0,1]^{n}\right)=|\alpha|^{-1}$.
2. The determinant $\operatorname{det} H_{\alpha}$ of H_{α} has not been defined in these Tutorials. Until we do so, we will have to accept that:

$$
\operatorname{det} H_{\alpha}=\operatorname{det}\left(\begin{array}{cccc}
\alpha & & & \\
& 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)=\alpha
$$

This being granted, using 1. we have:

$$
\begin{aligned}
\Delta\left(H_{\alpha}\right) & =\Delta\left(H_{\alpha}\right) d x\left([0,1]^{n}\right) \\
& =H_{\alpha}(d x)\left([0,1]^{n}\right) \\
& =|\alpha|^{-1}=\left|\operatorname{det} H_{\alpha}\right|^{-1}
\end{aligned}
$$

Exercise 12

Exercise 13.

1. Let $k, l \in \mathbf{N}_{n}$ and $\Sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection defined by $\Sigma e_{k}=e_{l}, \Sigma e_{l}=e_{k}$ and $\Sigma e_{j}=e_{j}$ for $j \neq k, l$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbf{R}^{n}. Let $\sigma: \mathbf{N}_{n} \rightarrow \mathbf{N}_{n}$ be the permutation of \mathbf{N}_{n} defined by $\sigma(k)=l, \sigma(l)=k$ and $\sigma(j)=j$ for $j \neq k, l$. Then $\Sigma e_{j}=e_{\sigma(j)}$ for all $j \in \mathbf{N}_{n}$. We have:

$$
\begin{aligned}
\Sigma(d x)\left([0,1]^{n}\right) & =d x\left(\Sigma^{-1}\left([0,1]^{n}\right)\right) \\
& =d x\left(\left\{x: \Sigma x \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left\{x: \sum_{j=1}^{n} x_{j} \Sigma e_{j} \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left\{x: \sum_{j=1}^{n} x_{\sigma^{-1}(j)} \Sigma e_{\sigma^{-1}(j)} \in[0,1]^{n}\right\}\right) \\
& =d x\left(\left\{x:\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right) \in[0,1]^{n}\right\}\right) \\
& =d x\left([0,1]^{n}\right)=1
\end{aligned}
$$

2. Since $\Sigma \cdot \Sigma e_{j}=e_{j}$ for all $j \in \mathbf{N}_{n}$, we have $\Sigma \cdot \Sigma=I_{n}$.
3. Until we have a Tutorial on the determinant, we shall have to accept that given $A, B \in \mathcal{M}_{n}(\mathbf{K})$, we have:

$$
\operatorname{det} A B=\operatorname{det} A \operatorname{det} B
$$

This being granted, using 2. we obtain:

$$
1=\operatorname{det} I_{n}=\operatorname{det} \Sigma \Sigma=(\operatorname{det} \Sigma)^{2}
$$

from which we conclude that $|\operatorname{det} \Sigma|=1$.
4. Using 1. we have:

$$
\begin{aligned}
\Delta(\Sigma) & =\Delta(\Sigma) d x\left([0,1]^{n}\right) \\
& =\Sigma(d x)\left([0,1]^{n}\right) \\
& =1=|\operatorname{det} \Sigma|^{-1}
\end{aligned}
$$

Exercise 13

Exercise 14.

1. Let $n \geq 2$ and $U: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear bijection defined by $U e_{1}=e_{1}+e_{2}$ and $U e_{j}=e_{j}$ for $j \geq 2$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbf{R}^{n}. Let $Q=\left[0,1\left[{ }^{n}\right.\right.$. Given $x \in \mathbf{R}^{n}$, we have:

$$
\begin{aligned}
U x & =U\left(\sum_{j=1}^{n} x_{j} e_{j}\right) \\
& =\sum_{j=1}^{n} x_{j} U e_{j} \\
& =x_{1}\left(e_{1}+e_{2}\right)+\sum_{j=2}^{n} x_{j} e_{j} \\
& =\left(x_{1}, x_{1}+x_{2}, x_{3}, \ldots, x_{n}\right)
\end{aligned}
$$

Since $U^{-1}(Q)=\left\{x \in \mathbf{R}^{n}: U x \in\left[0,1\left[^{n}\right\}\right.\right.$ we conclude that:

$$
U^{-1}(Q)=\left\{x \in \mathbf{R}^{n}: 0 \leq x_{1}+x_{2}<1,0 \leq x_{i}<1, \forall i \neq 2\right\}
$$

2. We define:

$$
\begin{aligned}
& \Omega_{1} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2} \geq 0\right\} \\
& \Omega_{2} \triangleq U^{-1}(Q) \cap\left\{x \in \mathbf{R}^{n}: x_{2}<0\right\}
\end{aligned}
$$

Given $i \in \mathbf{N}_{n}$, let $p_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be the i-th canonical projection. Then each p_{i} is continuous and therefore Borel measurable. From 1. we obtain:

$$
U^{-1}(Q)=\left(p_{1}+p_{2}\right)^{-1}\left(\left[0,1[) \cap\left(\bigcap_{i \neq 2} p_{i}^{-1}([0,1[))\right.\right.\right.
$$

So it is clear that $U^{-1}(Q) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. From:

$$
\begin{aligned}
& \Omega_{1}=U^{-1}(Q) \cap p_{2}^{-1}([0,+\infty[) \\
& \Omega_{2}=U^{-1}(Q) \cap p_{2}^{-1}(]-\infty, 0[)
\end{aligned}
$$

we conclude that $\Omega_{1}, \Omega_{2} \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
3. It is impossible for me to draw a picture with Latex. Some people can do it, but I can't. A picture is not a proof of anything, and is therefore not essential. However, if you have spent the time drawing it, it should be clear to you that $\left\{\Omega_{1}, \tau_{e_{2}}\left(\Omega_{2}\right)\right\}$ forms a partition of Q, which we shall prove formally in this exercise.
4. Suppose $x \in \Omega_{1}$. Then $x_{2} \geq 0$ and furthermore $x \in U^{-1}(Q)$. So $0 \leq x_{1}+x_{2}<1$ while $0 \leq x_{1}<1$. Hence, we have:

$$
0 \leq x_{2} \leq x_{1}+x_{2}<1
$$

We have proved that $x \in \Omega_{1} \Rightarrow 0 \leq x_{2}<1$.
5. If $x \in \Omega_{1}$ then in particular $x \in U^{-1}(Q)$. So $0 \leq x_{i}<1$ for all $i \in \mathbf{N}_{n}, i \neq 2$. However from 4. we have $0 \leq x_{2}<1$. It follows that $0 \leq x_{i}<1$ for all $i \in \mathbf{N}_{n}$. So $x \in Q=\left[0,1\left[{ }^{n}\right.\right.$. We have proved that $\Omega_{1} \subseteq Q$.
6. Suppose $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$. There exists $y \in \Omega_{2}$ such that $x=$
$\tau_{e_{2}}(y)=e_{2}+y$. In particular, $x_{1}=y_{1}$ and $x_{2}=1+y_{2}$ for some $y \in \Omega_{2}$. The fact that $y \in \Omega_{2}$ implies in particular that $y_{2}<0$ and $y \in U^{-1}(Q)$. So $0 \leq y_{1}<1$ and $0 \leq y_{1}+y_{2}<1$. Hence:

$$
0 \leq y_{1}+y_{2}<1+y_{2}=x_{2}<1+0=1
$$

We have proved that $x \in \tau_{e_{2}}\left(\Omega_{2}\right) \Rightarrow 0 \leq x_{2}<1$. In fact, we have proved the stronger inequality $0<x_{2}<1$, but we shall not need it.
7. Suppose $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$. There exists $y \in \Omega_{2}$ such that $x=$ $\tau_{e_{2}}(y)=e_{2}+y$. So $x_{2}=1+y_{2}$ and $x_{i}=y_{i}$ for all $i \neq 2$. The fact that $y \in \Omega_{2}$ implies in particular that $y \in U^{-1}(Q)$. So $0 \leq y_{i}<1$ for all $i \neq 2$ and consequently $0 \leq x_{i}<1$ for all $i \neq 2$. However, we have proved in 6 . that $0 \leq x_{2}<1$. So $0 \leq x_{i}<1$ for all $i \in \mathbf{N}_{n}$, i.e. $x \in Q=\left[0,1\left[^{n}\right.\right.$. We have proved that $\tau_{e_{2}}\left(\Omega_{2}\right) \subseteq Q$.
8. Suppose $x \in Q$ and $x_{1}+x_{2}<1$. Then for all $i \in \mathbf{N}_{n}$, we have $0 \leq x_{i}<1$ and furthermore $x_{1}+x_{2}<1$. In particular, we have
$x_{2} \geq 0$ and $0 \leq x_{1}+x_{2}<1$, while $0 \leq x_{i}<1$ for all $i \neq 2$. So $x \in U^{-1}(Q)$ while $x_{2} \geq 0$, i.e. $x \in \Omega_{1}$. We have proved that $x \in Q$ and $x_{1}+x_{2}<1$ implies that $x \in \Omega_{1}$.
9. Suppose $x \in Q$ and $x_{1}+x_{2} \geq 1$. Then for all $i \in \mathbf{N}_{n}$ we have $0 \leq x_{i}<1$ and furthermore $x_{1}+x_{2} \geq 1$. Define $y=$ $\left(x_{1},-1+x_{2}, x_{3}, \ldots, x_{n}\right)$. Then it is clear that $e_{2}+y=x$. So $x=\tau_{e_{2}}(y)$. We claim that $y \in \Omega_{2}$. From $x_{2}<1$ we obtain $y_{2}=-1+x_{2}<0$. Furthermore, for all $i \neq 2$ we have $x_{i}=y_{i}$ and consequently $0 \leq y_{i}<1$. Finally, from $x_{1}+x_{2} \geq 1$, we obtain:

$$
0 \leq x_{1}+x_{2}-1=y_{1}+y_{2}<1+0=1
$$

Hence, we see that $y \in U^{-1}(Q)$ while $y_{2}<0$. So $y \in \Omega_{2}$ and since $x=\tau_{e_{2}}(y)$, we have $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$. We have proved that $x \in Q$ and $x_{1}+x_{2} \geq 1$ implies that $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$.
10. Suppose $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$. There exists $y \in \Omega_{2}$ such that $x=$ $\tau_{e_{2}}(y)=e_{2}+y$. In particular, $x_{1}=y_{1}$ and $x_{2}=1+y_{2}$ for
some $y \in \Omega_{2}$. The fact that $y \in \Omega_{2}$ implies that $y \in U^{-1}(Q)$ and $0 \leq y_{1}+y_{2}<1$. Hence, we have:

$$
1 \leq 1+y_{1}+y_{2}=x_{1}+x_{2}
$$

We have proved that $x \in \tau_{e_{2}}\left(\Omega_{2}\right) \Rightarrow x_{1}+x_{2} \geq 1$.
11. Suppose $x \in \tau_{e_{2}}\left(\Omega_{2}\right) \cap \Omega_{1}$. From $x \in \Omega_{1}$ we have in particular $x \in U^{-1}(Q)$ and consequently $x_{1}+x_{2}<1$. From $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$ using 10. we have $x_{1}+x_{2} \geq 1$. This is a contradiction. We have proved that $\tau_{e_{2}}\left(\Omega_{2}\right) \cap \Omega_{1}=\emptyset$.
12. From 5. we have $\Omega_{1} \subseteq Q$ while from 7 . we have $\tau_{e_{2}}\left(\Omega_{2}\right) \subseteq Q$. This shows that $\Omega_{1} \cup \tau_{e_{2}}\left(\Omega_{2}\right) \subseteq Q$. To show the reverse inclusion, suppose $x \in Q$. If $x_{1}+x_{2}<1$ from 8 . we have $x \in \Omega_{1}$. If $x_{1}+x_{2} \geq 1$ from 9 . we have $x \in \tau_{e_{2}}\left(\Omega_{2}\right)$. In any case, we have $x \in \Omega_{1} \cup \tau_{e_{2}}\left(\Omega_{2}\right)$. This shows that $Q \subseteq \Omega_{1} \cup \tau_{e_{2}}\left(\Omega_{2}\right)$, and we have proved that $Q=\Omega_{1} \cup \tau_{e_{2}}\left(\Omega_{2}\right)$. Having proved that Ω_{1} and $\tau_{e_{2}}\left(\Omega_{2}\right)$ are disjoint, we conclude that $Q=\Omega_{1} \uplus \tau_{e_{2}}\left(\Omega_{2}\right)$.
13. Noting that $\tau_{e_{2}}\left(\Omega_{2}\right)=\tau_{-e_{2}}^{-1}\left(\Omega_{2}\right) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, we have:

$$
\begin{aligned}
d x(Q) & =d x\left(\Omega_{1} \uplus \tau_{e_{2}}\left(\Omega_{2}\right)\right) \\
& =d x\left(\Omega_{1}\right)+d x\left(\tau_{e_{2}}\left(\Omega_{2}\right)\right) \\
& =d x\left(\Omega_{1}\right)+d x\left(\Omega_{2}\right) \\
& =d x\left(U^{-1}(Q) \cap\left\{x_{2} \geq 0\right\}\right)+d x\left(U^{-1}(Q) \cap\left\{x_{2}<0\right\}\right) \\
& =d x\left(U^{-1}(Q)\right)
\end{aligned}
$$

where the third equality stems from the fact that the Lebesgue measure $d x$ is invariant by translation.
14. It follows from 13. that:

$$
\Delta(U)=\Delta(U) d x(Q)=U(d x)(Q)=d x\left(U^{-1}(Q)\right)=d x(Q)=1
$$

15. Until we have a Tutorial on determinants, we shall accept:

$$
\operatorname{det} U=\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & & \\
1 & 1 & 0 & \\
& 0 & \ddots & \\
& & & 1
\end{array}\right)=1
$$

This being granted, we conclude from 14. that:

$$
\Delta(U)=1=|\operatorname{det} U|^{-1}
$$

Exercise 14

Exercise 15.

1. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection where $n \geq 1$. If $n=1$ then T is of the form $T=H_{\alpha}$ as defined in exercise (12), where $\alpha \neq 0$. In particular, we have $\Delta(T)=|\operatorname{det} T|^{-1}$. We now assume that $n \geq 2$. From theorem (103), there exist $p \geq 1$ and $Q_{1}, \ldots, Q_{p} \in \mathcal{M}_{n}(\mathbf{R})$ such that:

$$
\begin{equation*}
T=Q_{1} \circ \ldots \circ Q_{p} \tag{11}
\end{equation*}
$$

and each Q_{i} is of the form H_{α} of exercise (12), or of the form Σ of exercise (13), or is equal to U as defined in exercise (14). From (11) we obtain $\operatorname{det} T=\operatorname{det} Q_{1} \ldots \operatorname{det} Q_{p}$ and since T is a bijection, $\operatorname{det} T \neq 0$. It follows that $\operatorname{det} Q_{i} \neq 0$ for all $i \in \mathbf{N}_{p}$, and in particular that $\alpha \neq 0$ whenever Q_{i} is of the form $Q_{i}=H_{\alpha}$ of exercise (12). This shows that exercise (12) can be applied as much as exercise (13) and exercise (14), from which we see that $\Delta\left(Q_{i}\right)=\left|\operatorname{det} Q_{i}\right|^{-1}$ for all $i \in \mathbf{N}_{p}$. We have proved that T can be decomposed as (11), where each $Q_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a linear bijection satisfying $\Delta\left(Q_{i}\right)=\left|\operatorname{det} Q_{i}\right|^{-1}$ for all $i \in \mathbf{N}_{p}$.
2. Using 11. of exercise (11), we obtain:

$$
\begin{aligned}
\Delta(T) & =\Delta\left(Q_{1} \circ \ldots \circ Q_{p}\right) \\
& =\Delta\left(Q_{1}\right) \ldots \Delta\left(Q_{p}\right) \\
& =\left|\operatorname{det} Q_{1}\right|^{-1} \ldots\left|\operatorname{det} Q_{p}\right|^{-1} \\
& =\left|\operatorname{det} Q_{1} \ldots \operatorname{det} Q_{p}\right|^{-1} \\
& =\left|\operatorname{det}\left(Q_{1} \ldots Q_{p}\right)\right|^{-1} \\
& =|\operatorname{det} T|^{-1}
\end{aligned}
$$

3. Given $n \geq 1$ and a linear bijection $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, we have proved in exercise (11) that $T(d x)=\Delta(T) d x$ for a unique constant $\Delta(T) \in \mathbf{R}^{+}$. However, it follows from 2. that $\Delta(T)=|\operatorname{det} T|^{-1}$. So $T(d x)=|\operatorname{det} T|^{-1} d x$, which completes the proof of theorem (108).

Exercise 15

Exercise 16. Let $f:\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Let $a, b, c, d \in \mathbf{R}$ be such that $a d-b c \neq 0$. Let $T \in \mathcal{M}_{2}(\mathbf{R})$ be defined by:

$$
T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear map, and $\operatorname{det} T=a d-b c \neq 0$. So T is a linear bijection. Using theorem (104) with theorem (108):

$$
\begin{aligned}
\int_{\mathbf{R}^{2}} f(a x+b y, c x+d y) d x d y & =\int_{\mathbf{R}^{2}} f \circ T(x, y) d x d y \\
& =\int_{\mathbf{R}^{2}} f \circ T d x \\
& =\int_{\mathbf{R}^{2}} f T(d x) \\
& =\int_{\mathbf{R}^{2}} f\left(|\operatorname{det} T|^{-1} d x\right)
\end{aligned}
$$

Solutions to Exercises

$$
\begin{aligned}
& =|\operatorname{det} T|^{-1} \int_{\mathbf{R}^{2}} f d x \\
& =|a d-b c|^{-1} \int_{\mathbf{R}^{2}} f(x, y) d x d y
\end{aligned}
$$

where the fifth equality stems from exercise (18) of Tutorial 12.
Exercise 16

Exercise 17. Let $B \in \mathcal{B}\left(\mathbf{R}^{n}\right)$ and $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear bijection. From 3. of exercise (11), the direct image $T(B)$ is also the inverse image $\left(T^{-1}\right)^{-1}(B)$ of B by T^{-1}. Since T^{-1} is continuous, in particular it is Borel measurable, and consequently $T(B) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$. From $T T^{-1}=I_{n}$, we obtain $\operatorname{det} T \operatorname{det} T^{-1}=1$, and it follows that $\operatorname{det} T^{-1}=(\operatorname{det} T)^{-1}$. Applying theorem (108) to T^{-1}, we obtain:

$$
\begin{aligned}
d x(T(B)) & =d x\left(\left(T^{-1}\right)^{-1}(B)\right) \\
& =T^{-1}(d x)(B) \\
& =\left|\operatorname{det} T^{-1}\right|^{-1} d x(B) \\
& =\left|(\operatorname{det} T)^{-1}\right|^{-1} d x(B) \\
& =|\operatorname{det} T| d x(B)
\end{aligned}
$$

Exercise 17

Exercise 18.

1. Let V be a linear subspace of \mathbf{R}^{n}, and $p=\operatorname{dim} V$. We assume that $1 \leq p \leq n-1$. Let u_{1}, \ldots, u_{p} be an orthonormal basis of V, and u_{p+1}, \ldots, u_{n} be such that $u_{1}, \ldots u_{n}$ is an orthonormal basis of \mathbf{R}^{n}. Note that the existence of an orthonormal basis of V, and the fact that such basis can be extended to an orthonormal basis of \mathbf{R}^{n}, has not been proved in these Tutorials. So we shall have to accept it for the time being. Given $i \in \mathbf{N}_{n}$, we define $\phi_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by $\phi_{i}(x)=\left\langle u_{i}, x\right\rangle$ for all $x \in \mathbf{R}^{n}$, where $\langle\cdot, \cdot\rangle$ denotes the usual inner-product of \mathbf{R}^{n}. From the CauchySchwarz inequality (50), for all $x, y \in \mathbf{R}^{n}$, we have:

$$
\begin{aligned}
\left|\phi_{i}(x)-\phi_{i}(y)\right| & =\left|\left\langle u_{i}, x\right\rangle-\left\langle u_{i}, y\right\rangle\right| \\
& =\left|\left\langle u_{i}, x-y\right\rangle\right| \\
& \leq\left\|u_{i}\right\| \cdot\|x-y\|
\end{aligned}
$$

So it is clear that $\phi_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is continuous.
2. Let $x \in \mathbf{R}^{n}$. Since u_{1}, \ldots, u_{n} is a basis of \mathbf{R}^{n}, there exists a unique $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{R}^{n}$ such that:

$$
x=\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}
$$

Now suppose that $x \in \cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$. Then for all $j \geq p+1$ we have $\phi_{j}(x)=0$, i.e.:

$$
\begin{aligned}
0 & =\phi_{j}(x) \\
& =\left\langle u_{j}, x\right\rangle \\
& =\left\langle u_{j}, \alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}\right\rangle \\
& =\sum_{i=1}^{n} \alpha_{i}\left\langle u_{j}, u_{i}\right\rangle \\
& =\alpha_{j}\left\langle u_{j}, u_{j}\right\rangle \\
& =\alpha_{j}
\end{aligned}
$$

where we have used the fact that u_{1}, \ldots, u_{n} is an orthonormal basis of \mathbf{R}^{n}. Since $\alpha_{j}=0$ for all $j \geq p+1$, we obtain $x=\alpha_{1} u_{1}+$
$\ldots+\alpha_{p} u_{p} \in V$. This shows that $\cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\}) \subseteq V$. To show the reverse inclusion, suppose $x \in V$. Since u_{1}, \ldots, u_{p} is a basis of V, there exists $\alpha_{1}, \ldots, \alpha_{p} \in \mathbf{R}$ such that $x=\alpha_{1} u_{1}+\ldots+\alpha_{p} u_{p}$, and since u_{1}, \ldots, u_{n} is orthogonal, it is clear that $\left\langle u_{j}, x\right\rangle=0$ for all $j \geq p+1$. Hence, we have $x \in \cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$ and we have proved that $V \subseteq \cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$. We conclude that $V=\cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$.
3. Since ϕ_{j} is continuous for all $j \in \mathbf{N}_{n}$, in particular $\phi_{j}^{-1}(\{0\})$ is a closed subset of \mathbf{R}^{n} for all $j \in \mathbf{N}_{n}$. It follows from 2. that $V=\cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})$ is a closed subset of \mathbf{R}^{n}.
4. Let $Q=\left(q_{i j}\right) \in \mathcal{M}_{n}(\mathbf{R})$ be the matrix defined by $Q e_{j}=u_{j}$ for all $j \in \mathbf{N}_{n}$, where e_{1}, \ldots, e_{n} is the canonical basis of \mathbf{R}^{n}. For all $i, j \in \mathbf{N}_{n}$, we have:

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle Q e_{i}, Q e_{j}\right\rangle
$$

$$
\begin{aligned}
& =\left\langle\sum_{k=1}^{n} q_{k i} e_{k}, \sum_{l=1}^{n} q_{l j} e_{l}\right\rangle \\
& =\sum_{k=1}^{n} \sum_{l=1}^{n} q_{k i} q_{l j}\left\langle e_{k}, e_{l}\right\rangle \\
& =\sum_{k=1}^{n} q_{k i} q_{k j}\left\langle e_{k}, e_{k}\right\rangle \\
& =\sum_{k=1}^{n} q_{k i} q_{k j}
\end{aligned}
$$

5. Using 4. for all $i, j \in \mathbf{N}_{n}$, we obtain:

$$
\begin{aligned}
\left(Q^{t} Q\right)_{i j} & =\sum_{k=1}^{n}\left(Q^{t}\right)_{i k}(Q)_{k j} \\
& =\sum_{k=1}^{n} q_{k i} q_{k j}
\end{aligned}
$$

$$
=\left\langle u_{i}, u_{j}\right\rangle=\left(I_{n}\right)_{i j}
$$

This being true for all $i, j \in \mathbf{N}_{n}, Q^{t} \cdot Q=I_{n}$. Accepting the fact that $\operatorname{det} Q^{t}=\operatorname{det} Q$, we obtain:

$$
1=\operatorname{det} I_{n}=\operatorname{det} Q^{t} \cdot Q=\operatorname{det} Q^{t} \operatorname{det} Q=(\operatorname{det} Q)^{2}
$$

We conclude that $|\operatorname{det} Q|=1$.
6. Applying theorem (108) to Q, we obtain:

$$
\begin{aligned}
d x(\{Q \in V\}) & =Q(d x)(V) \\
& =|\operatorname{det} Q|^{-1} d x(V)=d x(V)
\end{aligned}
$$

7. Let $\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$ denote the linear subspace of \mathbf{R}^{n} generated by e_{1}, \ldots, e_{p}, i.e. the set:

$$
\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)=\left\{\alpha_{1} e_{1}+\ldots+\alpha_{p} e_{p}: \alpha_{i} \in \mathbf{R}, \forall i \in \mathbf{N}_{p}\right\}
$$

We claim that $\{Q \in V\}=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$. Let $x \in\{Q \in V\}$. Then $Q(x) \in V$. Given $j \in\{p+1, \ldots, n\}$, it follows from 2 .
that $\phi_{j}(Q(x))=0$, i.e.:

$$
\begin{aligned}
0 & =\phi_{j}(Q(x)) \\
& =\left\langle u_{j}, x_{1} Q e_{1}+\ldots+x_{n} Q e_{n}\right\rangle \\
& =\left\langle u_{j}, x_{1} u_{1}+\ldots+x_{n} u_{n}\right\rangle \\
& =x_{j}\left\langle u_{j}, u_{j}\right\rangle=x_{j}
\end{aligned}
$$

So $x_{j}=0$ for all $j \geq p+1$ and consequently:

$$
x=\sum_{i=1}^{n} x_{i} e_{i}=\sum_{i=1}^{p} x_{i} e_{i} \in \operatorname{span}\left(e_{1}, \ldots, e_{p}\right)
$$

This shows the inclusion \subseteq. To show the reverse inclusion, suppose $x \in \operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$. Then $x_{j}=0$ for all $j \geq p+1$, and going back through the preceding calculation, it is clear that $\phi_{j}(Q(x))=0$ for all $j \geq p+1$. So $Q(x) \in \cap_{j=p+1}^{n} \phi_{j}^{-1}(\{0\})=V$, i.e. $x \in\{Q \in V\}$. This shows the inclusion \supseteq, and we have proved that $\{Q \in V\}=\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)$.
8. Let $m \geq 1$ be an integer. We define:

$$
E_{m} \triangleq \overbrace{[-m, m] \times \ldots \times[-m, m]}^{n-1} \times\{0\}
$$

It is clear from definition (63) that $d x\left(E_{m}\right)=0$ for all $m \geq 1$.
9. Since $E_{m} \uparrow \operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)$, i.e. $E_{m} \subseteq E_{m+1}$ for all $m \geq 1$ and $\cup_{m \geq 1} E_{m}=\operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)$, from theorem (7) we obtain:

$$
d x\left(\operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)\right)=\lim _{m \rightarrow+\infty} d x\left(E_{m}\right)=0
$$

10. Using 6. and 7. together with 9. we have:

$$
\begin{aligned}
d x(V) & =d x(\{Q \in V\})=d x\left(\operatorname{span}\left(e_{1}, \ldots, e_{p}\right)\right) \\
& \leq d x\left(\operatorname{span}\left(e_{1}, \ldots, e_{n-1}\right)\right)=0
\end{aligned}
$$

This completes the proof of theorem (109) in the case when $1 \leq \operatorname{dim} V \leq n-1$. The case $\operatorname{dim} V=0$, i.e. $V=\{0\}$ is clear.

Exercise 18

[^0]: ${ }^{1}$ i.e. the linear subspace of \mathbf{R}^{n} generated by e_{1}, \ldots, e_{p}.

