5. Lebesgue Integration

In the following, $(\Omega, \mathcal{F}, \mu)$ is a measure space.
Definition 39 Let $A \subseteq \Omega$. We call characteristic function of A, the map $1_{A}: \Omega \rightarrow \mathbf{R}$, defined by:

$$
\forall \omega \in \Omega, 1_{A}(\omega) \triangleq\left\{\begin{array}{lll}
1 & \text { if } & \omega \in A \\
0 & \text { if } & \omega \notin A
\end{array}\right.
$$

Exercise 1. Given $A \subseteq \Omega$, show that $1_{A}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable if and only if $A \in \mathcal{F}$.

Definition 40 Let (Ω, \mathcal{F}) be a measurable space. We say that a map $s: \Omega \rightarrow \mathbf{R}^{+}$is a simple function on (Ω, \mathcal{F}), if and only if s is of the form :

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{R}^{+}$and $A_{i} \in \mathcal{F}$, for all $i=1, \ldots, n$.

Exercise 2. Show that $s:(\Omega, \mathcal{F}) \rightarrow\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right)\right)$is measurable, whenever s is a simple function on (Ω, \mathcal{F}).

ExERCISE 3. Let s be a simple function on (Ω, \mathcal{F}) with representation $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$. Consider the map $\phi: \Omega \rightarrow\{0,1\}^{n}$ defined by $\phi(\omega)=\left(1_{A_{1}}(\omega), \ldots, 1_{A_{n}}(\omega)\right)$. For each $y \in s(\Omega)$, pick one $\omega_{y} \in \Omega$ such that $y=s\left(\omega_{y}\right)$. Consider the map $\psi: s(\Omega) \rightarrow\{0,1\}^{n}$ defined by $\psi(y)=\phi\left(\omega_{y}\right)$.

1. Show that ψ is injective, and that $s(\Omega)$ is a finite subset of \mathbf{R}^{+}.
2. Show that $s=\sum_{\alpha \in s(\Omega)} \alpha 1_{\{s=\alpha\}}$
3. Show that any simple function s can be represented as:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{R}^{+}, A_{i} \in \mathcal{F}$ and $\Omega=A_{1} \uplus \ldots \uplus A_{n}$.

Definition 41 Let (Ω, \mathcal{F}) be a measurable space, and s be a simple function on (Ω, \mathcal{F}). We call partition of the simple function s, any representation of the form:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}
$$

where $n \geq 1, \alpha_{i} \in \mathbf{R}^{+}, A_{i} \in \mathcal{F}$ and $\Omega=A_{1} \uplus \ldots \uplus A_{n}$.

EXERCISE 4. Let s be a simple function on (Ω, \mathcal{F}) with two partitions:

$$
s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}=\sum_{j=1}^{m} \beta_{j} 1_{B_{j}}
$$

1. Show that $s=\sum_{i, j} \alpha_{i} 1_{A_{i} \cap B_{j}}$ is a partition of s.
2. Recall the convention $0 \times(+\infty)=0$ and $\alpha \times(+\infty)=+\infty$ if $\alpha>0$. For all a_{1}, \ldots, a_{p} in $[0,+\infty], p \geq 1$ and $x \in[0,+\infty]$, prove the distributive property: $x\left(a_{1}+\ldots+a_{p}\right)=x a_{1}+\ldots+x a_{p}$.
3. Show that $\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)=\sum_{j=1}^{m} \beta_{j} \mu\left(B_{j}\right)$.
4. Explain why the following definition is legitimate.

Definition 42 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and s be a simple function on (Ω, \mathcal{F}). We define the integral of s with respect to μ, as the sum, denoted $I^{\mu}(s)$, defined by:

$$
I^{\mu}(s) \triangleq \sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right) \in[0,+\infty]
$$

where $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is any partition of s.

Exercise 5 . Let s, t be two simple functions on (Ω, \mathcal{F}) with partitions $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ and $t=\sum_{j=1}^{m} \beta_{j} 1_{B_{j}}$. Let $\alpha \in \mathbf{R}^{+}$.

1. Show that $s+t$ is a simple function on (Ω, \mathcal{F}) with partition:

$$
s+t=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i}+\beta_{j}\right) 1_{A_{i} \cap B_{j}}
$$

2. Show that $I^{\mu}(s+t)=I^{\mu}(s)+I^{\mu}(t)$.
3. Show that αs is a simple function on (Ω, \mathcal{F}).
4. Show that $I^{\mu}(\alpha s)=\alpha I^{\mu}(s)$.
5. Why is the notation $I^{\mu}(\alpha s)$ meaningless if $\alpha=+\infty$ or $\alpha<0$.
6. Show that if $s \leq t$ then $I^{\mu}(s) \leq I^{\mu}(t)$.

Exercise 6. Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map. For all $n \geq 1$, we define:

$$
\begin{equation*}
s_{n} \triangleq \sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} 1_{\left\{\frac{k}{2^{n}} \leq f<\frac{k+1}{2^{n}}\right\}}+n 1_{\{n \leq f\}} \tag{1}
\end{equation*}
$$

1. Show that s_{n} is a simple function on (Ω, \mathcal{F}), for all $n \geq 1$.
2. Show that equation (1) is a partition s_{n}, for all $n \geq 1$.
3. Show that $s_{n} \leq s_{n+1} \leq f$, for all $n \geq 1$.
4. Show that $s_{n} \uparrow f$ as $n \rightarrow+\infty^{1}$.

1 i.e. for all $\omega \in \Omega$, the sequence $\left(s_{n}(\omega)\right)_{n \geq 1}$ is non-decreasing and converges
to $f(\omega) \in[0,+\infty]$.

Theorem 18 Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map, where (Ω, \mathcal{F}) is a measurable space. There exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on (Ω, \mathcal{F}) such that $s_{n} \uparrow f$.

Definition 43 Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map, where $(\Omega, \mathcal{F}, \mu)$ is a measure space. We define the Lebesgue integral of f with respect to μ, denoted $\int f d \mu$, as:

$$
\int f d \mu \triangleq \sup \left\{I^{\mu}(s): s \text { simple function on }(\Omega, \mathcal{F}), s \leq f\right\}
$$

where, given any simple function s on $(\Omega, \mathcal{F}), I^{\mu}(s)$ denotes its integral with respect to μ.

Exercise 7. Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map.

1. Show that $\int f d \mu \in[0,+\infty]$.
2. Show that $\int f d \mu=I^{\mu}(f)$, whenever f is a simple function.
3. Show that $\int g d \mu \leq \int f d \mu$, whenever $g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is non-negative and measurable map with $g \leq f$.
4. Show that $\int(c f) d \mu=c \int f d \mu$, if $0<c<+\infty$. Explain why both integrals are well defined. Is the equality still true for $c=0$.
5. For $n \geq 1$, put $A_{n}=\{f>1 / n\}$, and $s_{n}=(1 / n) 1_{A_{n}}$. Show that s_{n} is a simple function on (Ω, \mathcal{F}) with $s_{n} \leq f$. Show that $A_{n} \uparrow\{f>0\}$.
6. Show that $\int f d \mu=0 \Rightarrow \mu(\{f>0\})=0$.
7. Show that if s is a simple function on (Ω, \mathcal{F}) with $s \leq f$, then $\mu(\{f>0\})=0$ implies $I^{\mu}(s)=0$.
8. Show that $\int f d \mu=0 \Leftrightarrow \mu(\{f>0\})=0$.
9. Show that $\int(+\infty) f d \mu=(+\infty) \int f d \mu$. Explain why both integrals are well defined.

Tutorial 5: Lebesgue Integration
10. Show that $(+\infty) 1_{\{f=+\infty\}} \leq f$ and:

$$
\int(+\infty) 1_{\{f=+\infty\}} d \mu=(+\infty) \mu(\{f=+\infty\})
$$

11. Show that $\int f d \mu<+\infty \Rightarrow \mu(\{f=+\infty\})=0$.
12. Suppose that $\mu(\Omega)=+\infty$ and take $f=1$. Show that the converse of the previous implication is not true.

Exercise 8. Let s be a simple function on (Ω, \mathcal{F}). Let $A \in \mathcal{F}$.

1. Show that $s 1_{A}$ is a simple function on (Ω, \mathcal{F}).
2. Show that for any partition $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ of s, we have:

$$
I^{\mu}\left(s 1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap A\right)
$$

3. Let $\nu: \mathcal{F} \rightarrow[0,+\infty]$ be defined by $\nu(A)=I^{\mu}\left(s 1_{A}\right)$. Show that ν is a measure on \mathcal{F}.
4. Suppose $A_{n} \in \mathcal{F}, A_{n} \uparrow A$. Show that $I^{\mu}\left(s 1_{A_{n}}\right) \uparrow I^{\mu}\left(s 1_{A}\right)$.

Exercise 9. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of non-negative and measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$, such that $f_{n} \uparrow f$.

1. Recall what the notation $f_{n} \uparrow f$ means.
2. Explain why $f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
3. Let $\alpha=\sup _{n \geq 1} \int f_{n} d \mu$. Show that $\int f_{n} d \mu \uparrow \alpha$.
4. Show that $\alpha \leq \int f d \mu$.

5 . Let s be any simple function on (Ω, \mathcal{F}) such that $s \leq f$. Let $c \in] 0,1\left[\right.$. For $n \geq 1$, define $A_{n}=\left\{c s \leq f_{n}\right\}$. Show that $A_{n} \in \mathcal{F}$ and $A_{n} \uparrow \Omega$.

Tutorial 5: Lebesgue Integration
6. Show that $c I^{\mu}\left(s 1_{A_{n}}\right) \leq \int f_{n} d \mu$, for all $n \geq 1$.
7. Show that $c I^{\mu}(s) \leq \alpha$.
8. Show that $I^{\mu}(s) \leq \alpha$.
9. Show that $\int f d \mu \leq \alpha$.
10. Conclude that $\int f_{n} d \mu \uparrow \int f d \mu$.

Theorem 19 (Monotone Convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(f_{n}\right)_{n>1}$ be a sequence of non-negative and measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ such that $f_{n} \uparrow f$. Then $\int f_{n} d \mu \uparrow \int f d \mu$.

Exercise 10. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Let $a, b \in[0,+\infty]$.

1. Show that if $\left(f_{n}\right)_{n \geq 1}$ and $\left(g_{n}\right)_{n \geq 1}$ are two sequences of nonnegative and measurable maps such that $f_{n} \uparrow f$ and $g_{n} \uparrow g$, then $f_{n}+g_{n} \uparrow f+g$.
2. Show that $\int(f+g) d \mu=\int f d \mu+\int g d \mu$.
3. Show that $\int(a f+b g) d \mu=a \int f d \mu+b \int g d \mu$.

ExERCISE 11. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of non-negative and measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$. Define $f=\sum_{n=1}^{+\infty} f_{n}$.

1. Explain why $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ is well defined, non-negative and measurable.
2. Show that $\int f d \mu=\sum_{n=1}^{+\infty} \int f_{n} d \mu$.

Definition 44 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $\mathcal{P}(\omega)$ be a property depending on $\omega \in \Omega$. We say that the property $\mathcal{P}(\omega)$ holds μ-almost surely, and we write $\mathcal{P}(\omega) \mu$-a.s., if and only if:

$$
\exists N \in \mathcal{F}, \mu(N)=0, \forall \omega \in N^{c}, \mathcal{P}(\omega) \text { holds }
$$

Exercise 12. Let $\mathcal{P}(\omega)$ be a property depending on $\omega \in \Omega$, such that $\{\omega \in \Omega: \mathcal{P}(\omega)$ holds $\}$ is an element of the σ-algebra \mathcal{F}.

1. Show that $\mathcal{P}(\omega), \mu$-a.s. $\Leftrightarrow \mu\left(\{\omega \in \Omega: \mathcal{P}(\omega) \text { holds }\}^{c}\right)=0$.
2. Explain why in general, the right-hand side of this equivalence cannot be used to defined μ-almost sure properties.

Exercise 13. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F}. Show that $\mu\left(\cup_{n=1}^{+\infty} A_{n}\right) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)$.

Exercise 14. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of maps $f_{n}: \Omega \rightarrow[0,+\infty]$.

1. Translate formally the statement $f_{n} \uparrow f \mu$-a.s.
2. Translate formally $f_{n} \rightarrow f \mu$-a.s. and $\forall n,\left(f_{n} \leq f_{n+1} \mu\right.$-a.s. $)$
3. Show that the statements 1 . and 2 . are equivalent.

Exercise 15. Suppose that $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ are non-negative and measurable with $f=g \mu$-a.s.. Let $N \in \mathcal{F}, \mu(N)=0$ such that $f=g$ on N^{c}. Explain why $\int f d \mu=\int\left(f 1_{N}\right) d \mu+\int\left(f 1_{N^{c}}\right) d \mu$, all integrals being well defined. Show that $\int f d \mu=\int g d \mu$.

Exercise 16. Suppose $\left(f_{n}\right)_{n \geq 1}$ is a sequence of non-negative and measurable maps and f is a non-negative and measurable map, such that $f_{n} \uparrow f \mu$-a.s.. Let $N \in \mathcal{F}, \mu(N)=0$, such that $f_{n} \uparrow f$ on N^{c}. Define $\bar{f}_{n}=f_{n} 1_{N^{c}}$ and $\bar{f}=f 1_{N^{c}}$.

1. Explain why \bar{f} and the \bar{f}_{n} 's are non-negative and measurable.

Tutorial 5: Lebesgue Integration
2. Show that $\bar{f}_{n} \uparrow \bar{f}$.
3. Show that $\int f_{n} d \mu \uparrow \int f d \mu$.

Exercise 17. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of non-negative and measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$. For $n \geq 1$, we define $g_{n}=\inf _{k \geq n} f_{k}$.

1. Explain why the g_{n} 's are non-negative and measurable.
2. Show that $g_{n} \uparrow \lim \inf f_{n}$.
3. Show that $\int g_{n} d \mu \leq \int f_{n} d \mu$, for all $n \geq 1$.
4. Show that if $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ are two sequences in $\overline{\mathbf{R}}$ with $u_{n} \leq v_{n}$ for all $n \geq 1$, then $\lim \inf u_{n} \leq \lim \inf v_{n}$.
5. Show that $\int\left(\liminf f_{n}\right) d \mu \leq \liminf \int f_{n} d \mu$, and recall why all integrals are well defined.

Theorem 20 (Fatou Lemma) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of non-negative and measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$. Then:

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}\right) d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu
$$

Exercise 18. Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map. Let $A \in \mathcal{F}$.

1. Recall what is meant by the induced measure space $\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right)$. Why is it important to have $A \in \mathcal{F}$. Show that the restriction of f to $A, f_{\mid A}:\left(A, \mathcal{F}_{\mid A}\right) \rightarrow[0,+\infty]$ is measurable.
2. We define the map $\mu^{A}: \mathcal{F} \rightarrow[0,+\infty]$ by $\mu^{A}(E)=\mu(A \cap E)$, for all $E \in \mathcal{F}$. Show that $\left(\Omega, \mathcal{F}, \mu^{A}\right)$ is a measure space.
3. Consider the equalities:

$$
\begin{equation*}
\int\left(f 1_{A}\right) d \mu=\int f d \mu^{A}=\int\left(f_{\mid A}\right) d \mu_{\mid A} \tag{2}
\end{equation*}
$$

For each of the above integrals, what is the underlying measure space on which the integral is considered. What is the map being integrated. Explain why each integral is well defined.
4. Show that in order to prove (2), it is sufficient to consider the case when f is a simple function on (Ω, \mathcal{F}).
5. Show that in order to prove (2), it is sufficient to consider the case when f is of the form $f=1_{B}$, for some $B \in \mathcal{F}$.
6. Show that (2) is indeed true.

Definition 45 Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map, where $(\Omega, \mathcal{F}, \mu)$ is a measure space. let $A \in \mathcal{F}$. We call partial Lebesgue integral of f with respect to μ over A, the integral denoted $\int_{A} f d \mu$, defined as:

$$
\int_{A} f d \mu \triangleq \int\left(f 1_{A}\right) d \mu=\int f d \mu^{A}=\int\left(f_{\mid A}\right) d \mu_{\mid A}
$$

where μ^{A} is the measure on $(\Omega, \mathcal{F}), \mu^{A}=\mu(A \cap \bullet), f_{\mid A}$ is the restriction of f to A and $\mu_{\mid A}$ is the restriction of μ to $\mathcal{F}_{\mid A}$, the trace of \mathcal{F} on A.

Exercise 19. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. Let $\nu: \mathcal{F} \rightarrow[0,+\infty]$ be defined by $\nu(A)=\int_{A} f d \mu$, for all $A \in \mathcal{F}$.

1. Show that ν is a measure on \mathcal{F}.
2. Show that:

$$
\int g d \nu=\int g f d \mu
$$

Theorem 21 Let $f:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be a non-negative and measurable map, where $(\Omega, \mathcal{F}, \mu)$ is a measure space. Let $\nu: \mathcal{F} \rightarrow[0,+\infty]$ be defined by $\nu(A)=\int_{A} f d \mu$, for all $A \in \mathcal{F}$. Then, ν is a measure on \mathcal{F}, and for all $g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ non-negative and measurable, we have:

$$
\int g d \nu=\int g f d \mu
$$

Definition 46 The L^{1}-spaces on a measure space $(\Omega, \mathcal{F}, \mu)$, are:

$$
\begin{aligned}
& L_{\mathbf{R}}^{1}\left(\Omega, \mathcal{F}, \mu \triangleq \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R})) \text { measurable, } \int|f| d \mu<+\infty\right\}\right. \\
& L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{F}, \mu \triangleq \triangleq\left\{f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C})) \text { measurable, } \int|f| d \mu<+\infty\right\}\right.
\end{aligned}
$$

Exercise 20. Let $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ be a measurable map.

1. Explain why the integral $\int|f| d \mu$ makes sense.
2. Show that $f:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ is measurable, if $f(\Omega) \subseteq \mathbf{R}$.
3. Show that $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu) \subseteq L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
4. Show that $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu), f(\Omega) \subseteq \mathbf{R}\right\}$
5. Show that $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{R}-linear combinations.
6. Show that $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ is closed under \mathbf{C}-linear combinations.

Definition 47 Let $u: \Omega \rightarrow \mathbf{R}$ be a real-valued function defined on a set Ω. We call positive part and negative part of u the maps u^{+} and u^{-}respectively, defined as $u^{+}=\max (u, 0)$ and $u^{-}=\max (-u, 0)$.

Exercise 21. Let $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Let $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$.

1. Show that $u=u^{+}-u^{-}, v=v^{+}-v^{-}, f=u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)$.
2. Show that $|u|=u^{+}+u^{-},|v|=v^{+}+v^{-}$
3. Show that $u^{+}, u^{-}, v^{+}, v^{-},|f|, u, v,|u|,|v|$ all lie in $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.
4. Explain why the integrals $\int u^{+} d \mu, \int u^{-} d \mu, \int v^{+} d \mu, \int v^{-} d \mu$ are all well defined.
5. We define the integral of f with respect to μ, denoted $\int f d \mu$, as $\int f d \mu=\int u^{+} d \mu-\int u^{-} d \mu+i\left(\int v^{+} d \mu-\int v^{-} d \mu\right)$. Explain why $\int f d \mu$ is a well defined complex number.
6. In the case when $f(\Omega) \subseteq \mathbf{C} \cap[0,+\infty]=\mathbf{R}^{+}$, explain why this new definition of the integral of f with respect to μ is consistent with the one already known (43) for non-negative and measurable maps.
7. Show that $\int f d \mu=\int u d \mu+i \int v d \mu$ and explain why all integrals involved are well defined.

Definition 48 Let $f=u+i v \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ where $(\Omega, \mathcal{F}, \mu)$ is a measure space. We define the Lebesgue integral of f with respect to μ, denoted $\int f d \mu$, as:

$$
\int f d \mu \triangleq \int u^{+} d \mu-\int u^{-} d \mu+i\left(\int v^{+} d \mu-\int v^{-} d \mu\right)
$$

Exercise 22. Let $f=u+i v \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and $A \in \mathcal{F}$.

1. Show that $f 1_{A} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
2. Show that $f \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{F}, \mu^{A}\right)$.
3. Show that $f_{\mid A} \in L_{\mathbf{C}}^{1}\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right)$
4. Show that $\int\left(f 1_{A}\right) d \mu=\int f d \mu^{A}=\int f_{\mid A} d \mu_{\mid A}$.
5. Show that 4. is: $\int_{A} u^{+} d \mu-\int_{A} u^{-} d \mu+i\left(\int_{A} v^{+} d \mu-\int_{A} v^{-} d \mu\right)$.

Definition 49 Let $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$, where $(\Omega, \mathcal{F}, \mu)$ is a measure space. let $A \in \mathcal{F}$. We call partial Lebesgue integral of f with respect to μ over A, the integral denoted $\int_{A} f d \mu$, defined as:

$$
\int_{A} f d \mu \triangleq \int\left(f 1_{A}\right) d \mu=\int f d \mu^{A}=\int\left(f_{\mid A}\right) d \mu_{\mid A}
$$

where μ^{A} is the measure on $(\Omega, \mathcal{F}), \mu^{A}=\mu(A \cap \bullet), f_{\mid A}$ is the restriction of f to A and $\mu_{\mid A}$ is the restriction of μ to $\mathcal{F}_{\mid A}$, the trace of \mathcal{F} on A.

Exercise 23. Let $f, g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ and let $h=f+g$

1. Show that:

$$
\int h^{+} d \mu+\int f^{-} d \mu+\int g^{-} d \mu=\int h^{-} d \mu+\int f^{+} d \mu+\int g^{+} d \mu
$$

2. Show that $\int h d \mu=\int f d \mu+\int g d \mu$.
3. Show that $\int(-f) d \mu=-\int f d \mu$
4. Show that if $\alpha \in \mathbf{R}$ then $\int(\alpha f) d \mu=\alpha \int f d \mu$.
5. Show that if $f \leq g$ then $\int f d \mu \leq \int g d \mu$
6. Show the following theorem.

Theorem 22 For all $f, g \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and $\alpha \in \mathbf{C}$, we have:

$$
\int(\alpha f+g) d \mu=\alpha \int f d \mu+\int g d \mu
$$

ExErcise 24. Let f, g be two maps, and $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$, such that:

$$
\begin{aligned}
\text { (i) } & \forall \omega \in \Omega, \lim _{n \rightarrow+\infty} f_{n}(\omega)=f(\omega) \text { in } \mathbf{C} \\
(\text { ii) } & \forall n \geq 1,\left|f_{n}\right| \leq g \\
\text { (iii) } & g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)
\end{aligned}
$$

Let $\left(u_{n}\right)_{n \geq 1}$ be an arbitrary sequence in $\overline{\mathbf{R}}$.

1. Show that $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and $f_{n} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ for all $n \geq 1$.
2. For $n \geq 1$, define $h_{n}=2 g-\left|f_{n}-f\right|$. Explain why Fatou lemma (20) can be applied to the sequence $\left(h_{n}\right)_{n \geq 1}$.
3. Show that $\lim \inf \left(-u_{n}\right)=-\lim \sup u_{n}$.
4. Show that if $\alpha \in \mathbf{R}$, then $\lim \inf \left(\alpha+u_{n}\right)=\alpha+\liminf u_{n}$.
5. Show that $u_{n} \rightarrow 0$ as $n \rightarrow+\infty$ if and only if $\lim \sup \left|u_{n}\right|=0$.
6. Show that $\int(2 g) d \mu \leq \int(2 g) d \mu-\lim \sup \int\left|f_{n}-f\right| d \mu$
7. Show that $\lim \sup \int\left|f_{n}-f\right| d \mu=0$.
8. Conclude that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$ as $n \rightarrow+\infty$.

Theorem 23 (Dominated Convergence) Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable maps $f_{n}:(\Omega, \mathcal{F}) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ such that $f_{n} \rightarrow f$ in \mathbf{C}^{2}. Suppose that there exists some $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ such that $\left|f_{n}\right| \leq g$ for all $n \geq 1$. Then $f, f_{n} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ for all $n \geq 1$, and:

$$
\lim _{n \rightarrow+\infty} \int\left|f_{n}-f\right| d \mu=0
$$

Exercise 25. Let $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and put $z=\int f d \mu$. Let $\alpha \in \mathbf{C}$, be such that $|\alpha|=1$ and $\alpha z=|z|$. Put $u=\operatorname{Re}(\alpha f)$.

1. Show that $u \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$
2. Show that $u \leq|f|$
3. Show that $\left|\int f d \mu\right|=\int(\alpha f) d \mu$.
4. Show that $\int(\alpha f) d \mu=\int u d \mu$.
${ }^{2}$ i.e. for all $\omega \in \Omega$, the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ converges to $f(\omega) \in \mathbf{C}$

Tutorial 5: Lebesgue Integration
5. Prove the following theorem.

Theorem 24 Let $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ where $(\Omega, \mathcal{F}, \mu)$ is a measure space. We have:

$$
\left|\int f d \mu\right| \leq \int|f| d \mu
$$

Solutions to Exercises

Exercise 1. Let $A \subseteq \Omega$. Suppose 1_{A} is measurable. Then in particu$\operatorname{lar} A=\left(1_{A}\right)^{-1}(\{1\}) \in \mathcal{F}$. Conversely, suppose $A \in \mathcal{F}$. Let $B \in \mathcal{B}(\overline{\mathbf{R}})$. If $\{0,1\} \subseteq B$, then $\left(1_{A}\right)^{-1}(B)=\Omega$. If $\{0,1\} \cap B=\{1\}$, then $\left(1_{A}\right)^{-1}(B)=A$. If $\{0,1\} \cap B=\{0\}$, then $\left(1_{A}\right)^{-1}(B)=A^{c}$. Finally, if $\{0,1\} \cap B=\emptyset$, then $\left(1_{A}\right)^{-1}(B)=\emptyset$. In any case, $\left(1_{A}\right)^{-1}(B) \in \mathcal{F}$. We have proved that $1_{A}:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, if and only if $A \in \mathcal{F}$.

Exercise 1

Exercise 2. Let $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ be a simple function on (Ω, \mathcal{F}). For all $i=1, \ldots, n, A_{i} \in \mathcal{F}$. From exercise (1), each characteristic function $1_{A_{i}}$ is measurable. Using exercise (19) of the previous tutorial, each $\alpha_{i} 1_{A_{i}}$ is measurable. In fact, since $\alpha_{i} \in \mathbf{R}^{+}, \alpha_{i} 1_{A_{i}}$ is a measurable map with values in \mathbf{R}, (it is also a non-negative and measurable map). It follows from exercise (19), that $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbf{R})$. However, s has values in \mathbf{R}^{+}, and $\mathcal{B}\left(\mathbf{R}^{+}\right) \subseteq \mathcal{B}(\overline{\mathbf{R}})$. So s is also measurable with respect to \mathcal{F} and $\mathcal{B}\left(\mathbf{R}^{+}\right)$.

Exercise 2

Exercise 3.

1. Suppose $x, y \in s(\Omega)$ and $\psi(x)=\psi(y)$. Then $\phi\left(\omega_{x}\right)=\phi\left(\omega_{y}\right)$. So for all $i=1, \ldots, n, 1_{A_{i}}\left(\omega_{x}\right)=1_{A_{i}}\left(\omega_{y}\right)$. Hence, $s\left(\omega_{x}\right)=s\left(\omega_{y}\right)$. However, ω_{x} and ω_{y} have been chosen to be such that $x=s\left(\omega_{x}\right)$ and $y=s\left(\omega_{y}\right)$. It follows that $x=y$, and $\psi: s(\Omega) \rightarrow\{0,1\}^{n}$ is an injective map. Since $\{0,1\}^{n}$ is a finite set, we conclude that $s(\Omega)$ is itself a finite set. By definition (40), it is also a subset of \mathbf{R}^{+}.
2. Let $t=\sum_{\alpha \in s(\Omega)} \alpha 1_{\{s=\alpha\}}$. From 1., $s(\Omega)$ is a finite set, and t is therefore well defined as a finite sum of weighted characteristic functions. Let $\omega \in \Omega$. Let $\alpha^{\prime}=s(\omega)$. Then, $1_{\left\{s=\alpha^{\prime}\right\}}(\omega)=1$, and $1_{\{s=\alpha\}}(\omega)=0$ for all $\alpha \in s(\Omega)$ such that $\alpha \neq \alpha^{\prime}$. It follows that $t(\omega)=\alpha^{\prime}$. Hence, $t(\omega)=s(\omega)$. This being true for all $\omega \in \Omega$, we have proved that $t=s$.
3. From 2., s can be represented as $s=\sum_{\alpha \in s(\Omega)} \alpha 1_{\{s=\alpha\}} . s(\Omega)$ being a finite set, there exists a bijection $\gamma:\{1, \ldots, n\} \rightarrow s(\Omega)$,
for some $n \geq 1{ }^{3}$. For all $i=1, \ldots, n$, we define $\alpha_{i}=\gamma(i)$ and $A_{i}=\{s=\gamma(i)\}$. Then, it is clear that $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$. Moreover, each α_{i} is an element of \mathbf{R}^{+}. From exercise (2), s is a measurable map, and $A_{i} \in \mathcal{F}$ for all $i=1, \ldots, n$. Let $\omega \in \Omega$ and $\alpha=s(\omega) . \gamma$ being onto, there exists $i \in\{1, \ldots, n\}$ such that $\gamma(i)=\alpha$. So $\omega \in\{s=\gamma(i)\}=A_{i}$ and we have proved that $\Omega \subseteq A_{1} \cup \ldots \cup A_{n}$. Each A_{i} being a subset of Ω, we have $\Omega=A_{1} \cup \ldots \cup A_{n}$. Finally, suppose there exists $\omega \in A_{i} \cap A_{j}$. Then, $s(\omega)=\gamma(i)$ and $s(\omega)=\gamma(j) . \quad \gamma$ being injective, $i=j$. It follows that the A_{i} 's are pairwise disjoint, and therefore $\Omega=A_{1} \uplus \ldots \uplus A_{n}$. We have proved that any simple function s on (Ω, \mathcal{F}), can be expressed as $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$, where $n \geq 1, \alpha_{i} \in \mathbf{R}^{+}, A_{i} \in \mathcal{F}$ and $\Omega=A_{1} \uplus \ldots \uplus A_{n}$.

Exercise 3
${ }^{3}$ If $\Omega=\emptyset$ and $s(\Omega)=\emptyset$, write $s=1_{\emptyset}$ and there is nothing else to prove.

Exercise 4.

1. Let $t=\sum_{i, j} \alpha_{i} 1_{A_{i} \cap B_{j}}$. For each $(i, j), \alpha_{i} \in \mathbf{R}^{+}$and $A_{i} \cap B_{j} \in \mathcal{F}$. If $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$, then $i \neq i^{\prime}$ or $j \neq j^{\prime}$. In the first case, the A_{i} 's being pairwise disjoint, $A_{i} \cap A_{i^{\prime}}=\emptyset$. In the second case, $B_{j} \cap B_{j^{\prime}}=\emptyset$. In any case, $\left(A_{i} \cap B_{j}\right) \cap\left(A_{i^{\prime}} \cap B_{j^{\prime}}\right)=\emptyset$. It follows that the $A_{i} \cap B_{j}$'s are pairwise disjoint, and $\Omega=\uplus_{i, j} A_{i} \cap B_{j}$. Let $\omega \in \Omega$. There exists a unique (i, j) such that $\omega \in A_{i} \cap B_{j}$. We have $t(\omega)=\alpha_{i}=s(\omega)$. It follows that $s=t$. We have proved that $t=\sum_{i, j} \alpha_{i} 1_{A_{i} \cap B_{j}}$ is a partition of the simple function s.
2. Let \mathcal{P} be the property $x\left(a_{1}+\ldots+a_{p}\right)=x a_{1}+\ldots+x a_{p}$. Suppose $x=0$. Then $x\left(a_{1}+\ldots+a_{p}\right)=0$. Moreover, for all $i=1, \ldots, p$, we have $x a_{i}=0$. It follows that property \mathcal{P} is true. Suppose $x=+\infty$ and $a_{i}=0$ for all $i=1, \ldots, p$. Then $a_{1}+\ldots+a_{p}=0$, and $x\left(a_{1}+\ldots+a_{p}\right)=0$. Moreover, $x a_{i}=0$ for all i and property \mathcal{P} is true. Suppose $x=+\infty$ and $a_{i}>0$ for some $i=1, \ldots, p$. Then $x a_{i}=+\infty$, and therefore $x a_{1}+\ldots+x a_{p}=+\infty$. However, $a_{1}+\ldots+a_{p}$ is also strictly
positive with $x=+\infty$. Hence, $x\left(a_{1}+\ldots+a_{p}\right)=+\infty$ and property \mathcal{P} is true. Suppose $0<x<+\infty$. If $a_{i}<+\infty$ for all i, then property \mathcal{P} is true by virtue of the distributive law in R. Suppose $a_{i}=+\infty$ for some i. Then $x a_{i}=+\infty$ and $x a_{1}+\ldots+x a_{p}=+\infty$. However, $a_{1}+\ldots+a_{p}$ is also equal to $+\infty$, with $x>0$. So $x\left(a_{1}+\ldots+a_{p}\right)=+\infty$ and property \mathcal{P} is true. We have proved that property \mathcal{P} is true in all cases.
3. Since $\Omega=B_{1} \uplus \ldots \uplus B_{m}$, we have $A_{i}=\uplus_{j=1}^{m}\left(A_{i} \cap B_{j}\right)$, for all $i=1, \ldots, n$. μ being a measure on (Ω, \mathcal{F}), it follows that $\mu\left(A_{i}\right)=\sum_{j=1}^{m} \mu\left(A_{i} \cap B_{j}\right)$. Hence:

$$
\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)=\sum_{i=1}^{n} \alpha_{i}\left(\sum_{j=1}^{m} \mu\left(A_{i} \cap B_{j}\right)\right)
$$

From the distributive property proved in 2., we obtain:

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu\left(A_{i} \cap B_{j}\right) \tag{3}
\end{equation*}
$$

Similarly, we have:

$$
\begin{equation*}
\sum_{j=1}^{m} \beta_{j} \mu\left(B_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{j} \mu\left(A_{i} \cap B_{j}\right) \tag{4}
\end{equation*}
$$

Suppose $A_{i} \cap B_{j}=\emptyset$. Then in particular, $\mu\left(A_{i} \cap B_{j}\right)=0$ and $\alpha_{i} \mu\left(A_{i} \cap B_{j}\right)=\beta_{j} \mu\left(A_{i} \cap B_{j}\right)$. If $A_{i} \cap B_{j} \neq \emptyset$, there exists $\omega \in A_{i} \cap B_{j}$ in which case, $\alpha_{i}=s(\omega)=\beta_{j}$. In any case, $\alpha_{i} \mu\left(A_{i} \cap B_{j}\right)=\beta_{j} \mu\left(A_{i} \cap B_{j}\right)$, and we conclude from (3) and (4) that:

$$
\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)=\sum_{j=1}^{m} \beta_{j} \mu\left(B_{j}\right)
$$

4. Given a simple function s on (Ω, \mathcal{F}), the integral of s with respect to μ is defined from (42) as $I^{\mu}(s)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)$, where $\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is an arbitrary partition of s. We know from exercise (3) that such partition exists, but it may not be unique. However, since we proved in 3. that the sum $\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)$ is invariant across all partitions of s, there is no ambiguity as to what $I^{\mu}(s)$ actually refers to, and definition (42) is therefore legitimate.

Exercise 4

Exercise 5.

1. From definition (40), $s+t=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}+\sum_{j=1}^{m} \beta_{j} 1_{B_{j}}$ is clearly a simple function on (Ω, \mathcal{F}). Since $\Omega=\uplus_{i=1}^{n} A_{i}$ and $\Omega=\uplus_{j=1}^{m} B_{j}$, we have $\Omega=\uplus_{i, j} A_{i} \cap B_{j}$. Furthermore:

$$
\begin{equation*}
s=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} 1_{A_{i} \cap B_{j}} \tag{5}
\end{equation*}
$$

and:

$$
\begin{equation*}
t=\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{j} 1_{A_{i} \cap B_{j}} \tag{6}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
s+t=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i}+\beta_{j}\right) 1_{A_{i} \cap B_{j}} \tag{7}
\end{equation*}
$$

As a finite sum involving $\alpha_{i}+\beta_{j} \in \mathbf{R}^{+}$and $A_{i} \cap B_{j} \in \mathcal{F}$, with $\Omega=\uplus_{i, j} A_{i} \cap B_{j}$, equation (7) defines a partition of $\mathrm{s}+\mathrm{t}$.
2. Since $\Omega=\uplus_{i, j} A_{i} \cap B_{j}$, equations (5), (6) and (7) are partitions of s, t and $s+t$ respectively. From definition (42), we obtain:

$$
I^{\mu}(s+t)=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\alpha_{i}+\beta_{j}\right) \mu\left(A_{i} \cap B_{j}\right)=I^{\mu}(s)+I^{\mu}(t)
$$

3. $\alpha s=\sum_{i=1}^{n} \alpha \alpha_{i} 1_{A_{i}}$. Since $\alpha \in \mathbf{R}^{+}$, each $\alpha \alpha_{i} \in \mathbf{R}^{+}$. It follows from definition (40) that αs is a simple function on (Ω, \mathcal{F}).
4. $\sum_{i=1}^{n} \alpha \alpha_{i} 1_{A_{i}}$ being a partition of αs, From definition (42) and the distributive property of exercise (4), we have:

$$
I^{\mu}(\alpha s)=\sum_{i=1}^{n} \alpha \alpha_{i} \mu\left(A_{i}\right)=\alpha\left(\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)\right)=\alpha I^{\mu}(s)
$$

5. If $\alpha=+\infty$ or $\alpha<0$, the map αs may not have values in \mathbf{R}^{+}. In particular, αs may not be a simple function. As definition (42) only defines the integral of simple functions, $I^{\mu}(\alpha s)$ may not be meaningful.
6. Suppose $s \leq t$. Equations (5) and (6) being partitions of s and t respectively, from definition (42), we have:

$$
I^{\mu}(s)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \mu\left(A_{i} \cap B_{j}\right)
$$

and:

$$
I^{\mu}(t)=\sum_{i=1}^{n} \sum_{j=1}^{m} \beta_{j} \mu\left(A_{i} \cap B_{j}\right)
$$

If $A_{i} \cap B_{j}=\emptyset$, then in particular $\mu\left(A_{i} \cap B_{j}\right)=0$, and we have $\alpha_{i} \mu\left(A_{i} \cap B_{j}\right) \leq \beta_{j} \mu\left(A_{i} \cap B_{j}\right)$. If $A_{i} \cap B_{j} \neq \emptyset$, then there exists $\omega \in A_{i} \cap B_{j}$, in which case, $\alpha_{i}=s(\omega) \leq t(\omega)=\beta_{j}$. In any case, we have $\alpha_{i} \mu\left(A_{i} \cap B_{j}\right) \leq \beta_{j} \mu\left(A_{i} \cap B_{j}\right)$. This being true for all (i, j), it follows that $I^{\mu}(s) \leq I^{\mu}(t)$.

Exercise 5

Exercise 6.

1. Since f is measurable, each set $\left\{k / 2^{n} \leq f<(k+1) / 2^{n}\right\}$ belongs to \mathcal{F}, for $n \geq 1$ and $k=0, \ldots, n 2^{n}-1 . \quad\{n \leq f\}$ is also an element of \mathcal{F}. Moreover, $k / 2^{n} \in \mathbf{R}^{+}$and $n \in \mathbf{R}^{+}$. It follows from definition (40) that each s_{n} as defined by (1), is indeed a simple function on (Ω, \mathcal{F}).
2. $[0,+\infty]=\left(\uplus_{k=0}^{n 2^{n}-1}\left[k / 2^{n},(k+1) / 2^{n}[) \uplus[n,+\infty]\right.\right.$. Hence:

$$
\Omega=f^{-1}([0,+\infty])=\left(\biguplus_{k=0}^{n 2^{n}-1}\left\{\frac{k}{2^{n}} \leq f<\frac{k+1}{2^{n}}\right\}\right) \uplus\{n \leq f\}
$$

It follows that equation (1) is indeed a partition of s_{n}.
3. Let $n \geq 1$ and $\omega \in \Omega$. Suppose $f(\omega) \in[0, n[$. Then, there exists $k \in\left\{0, \ldots, n 2^{n}-1\right\}$, such that $f(\omega) \in\left[k / 2^{n},(k+1) / 2^{n}[\right.$. In particular, $s_{n}(\omega)=k / 2^{n} \leq f(\omega)$. If $f(\omega) \in[n,+\infty]$, then $s_{n}(\omega)=n \leq f(\omega)$. In any case, $s_{n}(\omega) \leq f(\omega)$. This being
true for all $\omega \in \Omega, s_{n} \leq f$. Suppose $f(\omega) \in\left[k / 2^{n},(k+1) / 2^{n}[\right.$. Then, $f(\omega) \in\left[(2 k) / 2^{n+1},(2 k+1) / 2^{n+1}[\right.$ or alternatively, we have $f(\omega) \in\left[(2 k+1) / 2^{n+1},(2 k+2) / 2^{n+1}[\right.$. In the first case, $s_{n}(\omega)=k / 2^{n}=(2 k) / 2^{n+1}=s_{n+1}(\omega)$. In the second case, $s_{n}(\omega)=k / 2^{n} \leq(2 k+1) / 2^{n+1}=s_{n+1}(\omega)$. In both cases, we have $s_{n}(\omega) \leq s_{n+1}(\omega)$. Suppose that $f(\omega) \in[n,+\infty]$. Then, either $f(\omega) \in[n, n+1[$ or $f(\omega) \in[n+1,+\infty]$. In the first case, $s_{n+1}(\omega)=k / 2^{n+1}$ for some $k \in\left\{n 2^{n+1}, \ldots,(n+1) 2^{n+1}-1\right\}$, and in particular, $s_{n}(\omega)=n \leq k / 2^{n+1}=s_{n+1}(\omega)$. In the second case, $s_{n}(\omega)=n \leq n+1=s_{n+1}(\omega)$. In both cases, we have $s_{n}(\omega) \leq s_{n+1}(\omega)$. We have proved that $s_{n} \leq s_{n+1} \leq f$.
4. Let $\omega \in \Omega$. If $f(\omega)=+\infty$, then $\omega \in\{n \leq f\}$, for all $n \geq 1$. It follows that $s_{n}(\omega)=n$ for all $n \geq 1$, and $s_{n}(\omega) \rightarrow+\infty=f(\omega)$. If $f(\omega)<+\infty$, then $f(\omega) \in[0, N[$ for some integer $N \geq 1$. For all $n \geq N, f(\omega) \in\left[0, n\left[\right.\right.$, and therefore $s_{n}(\omega)=k / 2^{n}$, for some $k \in\left\{0, \ldots, n 2^{n}-1\right\}$, such that $k / 2^{n} \leq f(\omega)<(k+1) / 2^{n}$. In particular, $0 \leq f(\omega)-s_{n}(\omega)<1 / 2^{n}$. This being true for all
$n \geq N$, we see that $s_{n}(\omega) \rightarrow f(\omega)$. We have proved that for all $\omega \in \Omega$, the sequence $\left(s_{n}(\omega)\right)_{n \geq 1}$ converges to $f(\omega)$. From 3., this sequence is non-decreasing. Finally, we have $s_{n} \uparrow f$. The purpose of this exercise is to prove theorem (18).

Exercise 6

Exercise 7.

1. $0=0.1_{\Omega}$ is a simple function on (Ω, \mathcal{F}). Since f is non-negative, $0 \leq f$. From definition (43), it follows that $I^{\mu}(0) \leq \int f d \mu$. Since $I^{\mu}(0)=0$, we conclude that $\int f d \mu \in[0,+\infty]$.
2. Suppose f is a simple function on (Ω, \mathcal{F}). Let s be another simple function on (Ω, \mathcal{F}), such that $s \leq f$. From exercise (5), we have $I^{\mu}(s) \leq I^{\mu}(f)$. It follows that $I^{\mu}(f)$ is an upper-bound of all $I^{\mu}(s)$ for s simple function on (Ω, \mathcal{F}) with $s \leq f$. The Lebesgue integral $\int f d \mu$ being the smallest of such upper-bound, we have $\int f d \mu \leq I^{\mu}(f)$. However, since $f \leq f$ and f is a simple function on (Ω, \mathcal{F}), from definition (43), $I^{\mu}(f) \leq \int f d \mu$. We conclude that $\int f d \mu=I^{\mu}(f)$.
3. Let $g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be non-negative and measurable such that $g \leq f$. Let s be a simple function on (Ω, \mathcal{F}) such that $s \leq g$. Then in particular, $s \leq f$, and it follows from definition (43) that $I^{\mu}(s) \leq \int f d \mu$. Hence, $\int f d \mu$ is an upper-bound of all
$I^{\mu}(s)$, for s simple function on (Ω, \mathcal{F}) with $s \leq g$. The Lebesgue integral $\int g d \mu$ being the smallest of such upper-bound, we have $\int g d \mu \leq \int f d \mu$.
4. Let $0<c<+\infty$. Since f is non-negative and measurable, $\int f d \mu$ is well-defined by virtue of definition (43). However, $c f$ is also non-negative and measurable ${ }^{4}$. So $\int(c f) d \mu$ is also welldefined. Let s be a simple function on (Ω, \mathcal{F}) such that $s \leq f$. Since $c \in \mathbf{R}^{+}$, from exercise (5), cs is also a simple function on (Ω, \mathcal{F}). We have $c s \leq c f$. From definition (43), it follows that $I^{\mu}(c s) \leq \int(c f) d \mu$. However, from exercise (5), $I^{\mu}(c s)=c I^{\mu}(s)$. Since $c>0$, we have $I^{\mu}(s) \leq c^{-1} \int(c f) d \mu$. Hence, $c^{-1} \int(c f) d \mu$ is an upper-bound of all $I^{\mu}(s)$, for s simple function on (Ω, \mathcal{F}) with $s \leq f$. The Lebesgue integral $\int f d \mu$ being the smallest of such upper-bound, we have $\int f d \mu \leq c^{-1} \int(c f) d \mu$. Multiplying both sides by c, we obtain that $c \int f d \mu \leq \int(c f) d \mu$. Similarly, since $0<1 / c<+\infty$, we have $c^{-1} \int(c f) d \mu \leq \int c^{-1}(c f) d \mu$, i.e.

[^0]$\int(c f) d \mu \leq c \int f d \mu$. We conclude that $\int(c f) d \mu=c \int f d \mu$. If $c=0$, whether or not $\int f d \mu=+\infty$, we have $c \int f d \mu=0$. Since 0 is a simple function on (Ω, \mathcal{F}), we have $\int 0 d \mu=I^{\mu}(0)=0$. It follows that the equality $\int(c f) d \mu=c \int f d \mu$ is still true in the case when $c=0$.
5. f being measurable, $A_{n}=\{f>1 / n\}$ is an element of the σ-algebra \mathcal{F}. Since $1 / n \in \mathbf{R}^{+}$, from definition (40) it follows that $s_{n}=(1 / n) 1_{A_{n}}$ is a simple function on (Ω, \mathcal{F}). Suppose that $\omega \in \Omega$. If $\omega \notin A_{n}$, then $s_{n}(\omega)=0 \leq f(\omega)$. If $\omega \in A_{n}$, then $s_{n}(\omega)=1 / n<f(\omega)$. In any case, $s_{n}(\omega) \leq f(\omega)$. It follows that $s_{n} \leq f$. Let $n \geq 1$, if $\omega \in A_{n}$, then $f(\omega)>1 / n$ and in particular $f(\omega)>1 /(n+1)$. So $\omega \in A_{n+1}$ and we see that $A_{n} \subseteq A_{n+1}$. For all $n \geq 1, A_{n} \subseteq\{f>0\}$. It follows that $\cup_{n=1}^{+\infty} A_{n} \subseteq\{f>0\}$. Conversely, if $f(\omega)>0$, then there exists $n \geq 1$ such that $f(\omega)>1 / n$. So $\{f>0\} \subseteq \cup_{n=1}^{+\infty} A_{n}$. We have proved that $A_{n} \subseteq A_{n+1}$ with $\cup_{n=1}^{+\infty} A_{n}=\{f>0\}$, i.e. $A_{n} \uparrow\{f>0\}$.
6. Suppose that $\int f d \mu=0$. Given $n \geq 1$, let s_{n} and A_{n} be defined as in 5 . s_{n} being a simple function on (Ω, \mathcal{F}) with $s_{n} \leq f$, from definition (43) we have $I^{\mu}\left(s_{n}\right) \leq \int f d \mu=0$. Hence, we have $I^{\mu}\left(s_{n}\right)=0$. From definition (42), $I^{\mu}\left(s_{n}\right)=(1 / n) \mu\left(A_{n}\right)$. It follows that $\mu\left(A_{n}\right)=0$ for all $n \geq 1$. However, from 5., we have $A_{n} \uparrow\{f>0\}$. Using theorem (7), $\mu\left(A_{n}\right) \uparrow \mu(\{f>0\})$. It follows that $\mu(\{f>0\})=\lim _{n \rightarrow+\infty} \mu\left(A_{n}\right)=0$. We have proved that $\int f d \mu=0 \Rightarrow \mu(\{f>0\})=0$.
7. Let s be a simple function on (Ω, \mathcal{F}) with $s \leq f$. Suppose that $\mu(\{f>0\})=0$. Let $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ be a partition of the simple function s. From definition (42), $I^{\mu}(s)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)$. Let $i \in\{1, \ldots, n\}$. If $\alpha_{i}>0$ and $\omega \in A_{i}, A_{1}, \ldots, A_{n}$ being pairwise disjoint, $\alpha_{i}=s(\omega) \leq f(\omega)$. In particular, $0<f(\omega)$. Hence, $A_{i} \subseteq\{f>0\}$. μ being a measure on \mathcal{F}, we have ${ }^{5}$ $\mu\left(A_{i}\right) \leq \mu(\{f>0\})$. It follows that $\mu\left(A_{i}\right)=0$. In particular, $\alpha_{i} \mu\left(A_{i}\right)=0$. If $\alpha_{i}=0$, whether or not $\mu\left(A_{i}\right)=+\infty$, we still

[^1]have $\alpha_{i} \mu\left(A_{i}\right)=0$. We conclude that $I^{\mu}(s)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i}\right)=0$.
8. $\int f d \mu=0 \Rightarrow \mu(\{f>0\})=0$ was proved in 6 . Suppose conversely that $\mu(\{f>0\})=0$. Let s be a simple function on (Ω, \mathcal{F}) such that $s \leq f$. From 7 ., $I^{\mu}(s)=0$. It follows that 0 is an upper-bound of all $I^{\mu}(s)$ for s simple function on (Ω, \mathcal{F}) with $s \leq f$. The Lebesgue integral $\int f d \mu$ being the smallest of such upper-bound, we have $\int f d \mu \leq 0$. However, from 1., $\int f d \mu \geq 0$. We have proved that $\int f d \mu=0$, if and only if $\mu(\{f>0\}=0$.
9. f being non-negative and measurable, $\int f d \mu$ is well-defined, by virtue of definition (43). However, $(+\infty) f$ is also non-negative and measurable ${ }^{6}$. So $\int(+\infty) f d \mu$ is also well-defined. Suppose that $\int f d \mu=0$. Then, $(+\infty) \int f d \mu=0$. From 8. (or 6.), we have $\mu(\{f>0\})=0$. However, $\{f>0\}=\{(+\infty) f>0\}$. So $\mu(\{(+\infty) f>0\})=0$. Hence, from 8., $\int(+\infty) f d \mu=0$. It follows that $\int(+\infty) f d \mu=(+\infty) \int f d \mu$. Suppose $\int f d \mu>0$.

[^2]Then, $(+\infty) \int f d \mu=+\infty$. However, from 8., $\mu(\{f>0\})>0$. Let $A=\{f>0\}=\{(+\infty) f=+\infty\}$. For all $n \geq 1$, we have $n 1_{A} \leq(+\infty) f$. Using 3., 2., and the fact that $n 1_{A}$ is a simple function on (Ω, \mathcal{F}), we see that $n \mu(A) \leq \int(+\infty) f d \mu$, for all $n \geq 1$. Since $\mu(A)>0$, we have $\int(+\infty) f d \mu=+\infty$. We conclude that $\int(+\infty) f d \mu=(+\infty) \int f d \mu$ is true in all possible cases. Looking back at 4., $\int(c f) d \mu=c \int f d \mu$ is therefore true for all $c \in[0,+\infty]$.
10. If $\omega \in\{f=+\infty\}$, then $(+\infty) 1_{\{f=+\infty\}}(\omega)=+\infty=f(\omega)$. If $\omega \notin\{f=+\infty\}$, then $(+\infty) 1_{\{f=+\infty\}}(\omega)=0 \leq f(\omega)$. In any case, $(+\infty) 1_{\{f=+\infty\}}(\omega) \leq f(\omega)$. Using 9. and 2., we have:

$$
\int(+\infty) 1_{\{f=+\infty\}} d \mu=(+\infty) \int 1_{\{f=+\infty\}} d \mu=(+\infty) \mu(\{f=+\infty\})
$$

11. Suppose $\int f d \mu<+\infty$. From 10., $(+\infty) 1_{\{f=+\infty\}} \leq f$. Using 3 . and 10., we have $(+\infty) \mu(\{f=+\infty\}) \leq \int f d \mu$. It follows that $(+\infty) \mu(\{f=+\infty\})<+\infty$. Hence, $\mu(\{f=+\infty\})=0$.
12. If $f=1$, then $f=1.1_{\Omega}$ and $\int f d \mu=I^{\mu}(f)=\mu(\Omega)=+\infty$. However, $\mu(\{f=+\infty\})=\mu(\emptyset)=0$. Hence, the converse of 11 . is not true in general.

Exercise 7

Exercise 8.

1. If $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is a simple function on (Ω, \mathcal{F}), then we have $s 1_{A}=\sum_{i=1}^{n} \alpha_{i} 1_{A \cap A_{i}}$ with $\alpha_{i} \in \mathbf{R}^{+}$and $A \cap A_{i} \in \mathcal{F}$. From definition (40), $s 1_{A}$ is indeed a simple function on (Ω, \mathcal{F}).
2. If $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ is a partition of s, from definition (41), we have $\Omega=\uplus_{i=1}^{n} A_{i}$. It follows that $\Omega=\left(\uplus_{i=1}^{n}\left(A \cap A_{i}\right)\right) \uplus A^{c}$. Hence, $s 1_{A}=\sum_{i=1}^{n} \alpha_{i} 1_{A \cap A_{i}}+0.1_{A^{c}}$ is a partition of $s 1_{A}$. From definition (42), we have:

$$
I^{\mu}\left(s 1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A \cap A_{i}\right)+0 . \mu\left(A^{c}\right)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A \cap A_{i}\right)
$$

3. $\nu(\emptyset)=I^{\mu}(0)=0$. Let $\left(B_{k}\right)_{k \geq 1}$ be a sequence of pairwise disjoint elements of \mathcal{F}. Let $A=\uplus_{k=1}^{+\infty} B_{k}$. Let $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ be a partition of s. For all $i=1, \ldots, n, A \cap A_{i}=\uplus_{k=1}^{+\infty}\left(B_{k} \cap A_{i}\right)$. μ being a measure on \mathcal{F}, we have $\mu\left(A \cap A_{i}\right)=\sum_{k=1}^{+\infty} \mu\left(B_{k} \cap A_{i}\right)$.

Hence, using 2.:
$I^{\mu}\left(s 1_{A}\right)=\sum_{i=1}^{n} \alpha_{i} \mu\left(A \cap A_{i}\right)=\sum_{k=1}^{+\infty} \sum_{i=1}^{n} \alpha_{i} \mu\left(B_{k} \cap A_{i}\right)=\sum_{k=1}^{+\infty} I^{\mu}\left(s 1_{B_{k}}\right)$
It follows that $\nu(A)=\sum_{k=1}^{+\infty} \nu\left(B_{k}\right)$. We have proved that ν is indeed a measure on \mathcal{F}^{7}.
4. From 3., ν is a measure on \mathcal{F}. If $\left(A_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, such that $A_{n} \uparrow A$, using theorem (7), we have $\nu\left(A_{n}\right) \uparrow \nu(A)$. In other words, $I^{\mu}\left(s 1_{A_{n}}\right) \uparrow I^{\mu}\left(s 1_{A}\right)$.

Exercise 8

[^3]
Exercise 9.

1. $f_{n} \uparrow f$ means that for all $\omega \in \Omega, f_{n}(\omega) \uparrow f(\omega)$. In other words, the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ is non-decreasing and converges to $f(\omega)$ in $\overline{\mathbf{R}}$.
2. The fact that $f:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, is a consequence of exercise (15), and the fact that $f=\sup _{n \geq 1} f_{n}$. One can also apply theorem (17), and argue that as a limit of measurable maps with values in the metrizable space $\overline{\mathbf{R}}, f$ is itself a measurable map.
3. Let $\alpha=\sup _{n \geq 1} \int f_{n} d \mu$. Since $f_{n} \leq f_{n+1}$ for all $n \geq 1$, from ex$\operatorname{ercise}(7), \int \overline{f_{n}} d \mu \leq \int f_{n+1} d \mu$. Being a non-decreasing sequence in $\overline{\mathbf{R}},\left(\int f_{n} d \mu\right)_{n \geq 1}$ converges to its supremum. So $\int f_{n} d \mu \uparrow \alpha$.
4. Since $f=\sup _{n>1} f_{n}$, for all $n \geq 1, f_{n} \leq f$. From exercise (7), $\int f_{n} d \mu \leq \int f d \mu$. It follows that $\int f d \mu$ is an upper-bound of all $\int f_{n} d \mu$ for $n \geq 1$. Since α is the smallest of such upper-bound, we have $\alpha \leq \int f d \mu$.
5. From exercise (5), cs is itself a simple function on (Ω, \mathcal{F}). From exercise (2), it is therefore measurable. Hence, given $n \geq 1$, both $c s$ and f_{n} are measurable. It follows that ${ }^{8} A_{n}=\left\{c s \leq f_{n}\right\} \in \mathcal{F}$. Let $n \geq 1$. Suppose $\omega \in A_{n}$. Then, $\operatorname{cs}(\omega) \leq f_{n}(\omega) \leq f_{n+1}(\omega)$. So $\omega \in A_{n+1}$ and $A_{n} \subseteq A_{n+1}$. Let $\omega \in \Omega$. If $s(\omega)=0$, then $\omega \in A_{n}$ for all $n \geq 1$. Suppose $s(\omega)>0$. Then, we have $0<s(\omega)<+\infty$. Since $c \in] 0,1[$, we have $c s(\omega)<s(\omega)$. It follows that $\operatorname{cs}(\omega)<f(\omega)=\sup _{n>1} f_{n}(\omega)$. Since $f(\omega)$ is the smallest upper-bound of all $f_{n}(\omega)$ for $n \geq 1$, we see that $\operatorname{cs}(\omega)$ cannot be such upper-bound. There exists $n \geq 1$ such that $\operatorname{cs}(\omega)<f_{n}(\omega)$. In particular, there exists $n \geq 1$, such that $\omega \in A_{n}$. Hence, $\Omega=\cup_{n=1}^{+\infty} A_{n}$, with $A_{n} \subseteq A_{n+1}$, i.e. $A_{n} \uparrow \Omega$.
6. For all $n \geq 1$, we have $c s 1_{A_{n}} \leq f_{n}$. Hence, using exercise (7), $\int c s 1_{A_{n}} d \mu \leq \int f_{n} d \mu$. But $\int c s 1_{A_{n}} d \mu=c \int s 1_{A_{n}} d \mu$. From exercise (8), $s 1_{A_{n}}$ is a simple function on (Ω, \mathcal{F}). Using exercise (7) once more, $\int s 1_{A_{n}} d \mu=I^{\mu}\left(s 1_{A_{n}}\right)$. We conclude that

[^4]$c I^{\mu}\left(s 1_{A_{n}}\right) \leq \int f_{n} d \mu$ for all $n \geq 1$.
7. From exercise (8), since $A_{n} \uparrow \Omega, I^{\mu}\left(s 1_{A_{n}}\right) \uparrow I^{\mu}(s)$. In particular, $c I^{\mu}\left(s 1_{A_{n}}\right) \uparrow c I^{\mu}(s)^{9}$. From 3., $\int f_{n} d \mu \uparrow \alpha$. From 6., $c I^{\mu}\left(s 1_{A_{n}}\right) \leq \int f_{n} d \mu$ for all $n \geq 1$. Taking the limit as $n \rightarrow+\infty$, we conclude that $c I^{\mu}(s) \leq \alpha$.
8. Since $c I^{\mu}(s) \leq \alpha$ for all $\left.c \in\right] 0,1\left[\right.$, we have $I^{\mu}(s) \leq \alpha$.
9. From 8., α is an upper-bound of all $I^{\mu}(s)$ for s simple function on (Ω, \mathcal{F}), such that $s \leq f$. The Lebesgue integral $\int f d \mu$ being the smallest of such upper-bound, we have $\int f d \mu \leq \alpha$.
10. From 4. and 9., we have $\alpha=\int f d \mu$. Using 3., we conclude that $\int f_{n} d \mu \uparrow \int f d \mu$. In other words, $\left(\int f_{n} d \mu\right)_{n \geq 1}$ is a nondecreasing sequence in $[0,+\infty]$, converging to $\int f d \mu$. The purpose of this exercise is to prove theorem (19).

Exercise 9
${ }^{9}$ If we had $c=+\infty$ and $\alpha_{n}=1 / n$, then $\alpha_{n} \downarrow 0$, but $c \alpha_{n} \downarrow 0$ fails to be true.

Exercise 10.

1. Given two sequences $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(\beta_{n}\right)_{n \geq 1}$ in \mathbf{R} converging to $\alpha \in \mathbf{R}$ and $\beta \in \mathbf{R}$ respectively, the fact that $\alpha_{n}+\beta_{n} \rightarrow \alpha+\beta$ is known and easy to prove. However, when we allow $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(\beta_{n}\right)_{n \geq 1}$ to be sequences in $\overline{\mathbf{R}}$, with limits α, β in $\overline{\mathbf{R}}$, problems may occur. For a start, the sum $\alpha_{n}+\beta_{n}$ may not be meaningful. Or indeed, even if $\alpha_{n}+\beta_{n}$ does make sense, it is possible that the sum $\alpha+\beta$ doesn't. In the case when $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(\beta_{n}\right)_{n \geq 1}$ are sequences in $[0,+\infty]$, then all $\alpha_{n}+\beta_{n}$'s and $\alpha+\beta$ are meaningful. If both α and β are finite, then $\alpha_{n}+\beta_{n} \rightarrow \alpha+\beta$ stems from the known real case ${ }^{10}$. If $\alpha=+\infty$ or $\beta=+\infty$, then $\alpha+\beta=+\infty$, and it is easy to prove that $\alpha_{n}+\beta_{n} \rightarrow+\infty$. Now, if $f_{n} \uparrow f$ and $g_{n} \uparrow g$, then for all $\omega \in \Omega,\left(f_{n}(\omega)\right)_{n \geq 1}$ and $\left(g_{n}(\omega)\right)_{n \geq 1}$ are non-decreasing sequences in $[0,+\infty]$ converging to $f(\omega)$ and $g(\omega)$ respectively. So $\left(f_{n}(\omega)+g_{n}(\omega)\right)_{n \geq 1}$ is non-decreasing, and converges to $f(\omega)+g(\omega)$, i.e. $f_{n}+g_{n} \uparrow f+g$.

[^5]2. Let $f, g:(\Omega, \mathcal{F}) \rightarrow[0,+\infty]$ be two non-negative and measurable maps. From theorem (18), there exist two sequences $\left(s_{n}\right)_{n \geq 1}$ and $\left(t_{n}\right)_{n \geq 1}$ of simple functions on (Ω, \mathcal{F}), such that $s_{n} \uparrow f$ and $t_{n} \uparrow g$. Hence, $s_{n}+t_{n} \uparrow f+g$. From the monotone convergence theorem (19), we have $\int\left(s_{n}+t_{n}\right) d \mu \uparrow \int(f+g) d \mu$. From exercise (5), $s_{n}+t_{n}$ is a simple function on (Ω, \mathcal{F}). It follows from exercise (7) that $\int\left(s_{n}+t_{n}\right) d \mu=I^{\mu}\left(s_{n}+t_{n}\right)$. Hence, $I^{\mu}\left(s_{n}+t_{n}\right) \uparrow \int(f+g) d \mu$. Similarly, $I^{\mu}\left(s_{n}\right) \uparrow \int f d \mu$ and $I^{\mu}\left(t_{n}\right) \uparrow \int g d \mu$. However from exercise (5), we have:
$$
I^{\mu}\left(s_{n}+t_{n}\right)=I^{\mu}\left(s_{n}\right)+I^{\mu}\left(t_{n}\right)
$$

Taking the limit as $n \rightarrow+\infty$, we obtain:

$$
\int(f+g) d \mu=\int f d \mu+\int g d \mu
$$

3. This is an immediate application of 2 . and exercise (7).

Exercise 11.

1. Given $\omega \in \Omega, f(\omega)=\sum_{k=1}^{+\infty} f_{k}(\omega)$ is a series of non-negative terms. It is therefore well-defined and non-negative. Given $n \geq 1$, all f_{k} 's being measurable, the partial sum $g_{n}=\sum_{k=1}^{n} f_{k}$ is itself measurable ${ }^{11}$. So $f=\sup _{n \geq 1} g_{n}$ is measurable ${ }^{12}$. We conclude that $f=\sum_{k=1}^{+\infty} f_{k}$ is well-defined, non-negative and measurable.
2. Given $n \geq 1$, let $g_{n}=\sum_{k=1}^{n} f_{k}$. Since $g_{n} \uparrow f$, from the monotone convergence theorem (19), we have $\int g_{n} d \mu \uparrow \int f d \mu$. However, from exercise (10), $\int g_{n} d \mu=\sum_{k=1}^{n} \int f_{k} d \mu$. Hence, we see that the sequence $\left(\sum_{k=1}^{n} \int f_{k} d \mu\right)_{n \geq 1}$ converges to $\int f d \mu$. In other words, we have $\int f d \mu=\sum_{k=1}^{+\infty} \int f_{k} d \mu$.

Exercise 11

[^6]
Exercise 12.

1. Let $M=\{\omega \in \Omega: \mathcal{P}(\omega) \text { holds }\}^{c}$. By assumption, $M \in \mathcal{F}$. Suppose that $\mathcal{P}(\omega)$ holds μ-almost surely. From definition (44), there exists $N \in \mathcal{F}$ such that $\mu(N)=0$ and $\mathcal{P}(\omega)$ holds for all $\omega \in N^{c}$. In particular, $N^{c} \subseteq M^{c}$. So $M \subseteq N$, and therefore $\mu(M) \leq \mu(N)^{13}$. Since $\mu(N)=0$, we see that $\mu(M)=0$. Conversely, suppose that $\mu(M)=0$. From the very definition of M, for all $\omega \in M^{c}, \mathcal{P}(\omega)$ holds. From definition (44), it follows that $\mathcal{P}(\omega)$ holds μ-almost surely. We have proved that $\mathcal{P}(\omega)$ holds μ-almost surely, if and only if $\mu(M)=0$.
2. In all generality, the set $\{\omega \in \Omega: \mathcal{P}(\omega)$ holds $\}$ may not be an element of \mathcal{F}. Hence, a notation such as $\mu\left(\{\omega \in \Omega: \mathcal{P}(\omega) \text { holds }\}^{c}\right)$ may not be meaningful. It follows that such notation cannot be used in any criterion defining μ-almost sure properties.

Exercise 12
${ }^{13}$ See exercise (9) of Tutorial 2. (Beware of external links !)

Exercise 13. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\left(A_{n}\right)_{n \geq 1}$ be a sequence of elements of \mathcal{F}. Define $B_{1}=A_{1}$ and for all $n \geq 1$, $B_{n+1}=A_{n+1} \backslash\left(B_{1} \cup \ldots \cup B_{n}\right)$. Then $\left(B_{n}\right)_{n \geq 1}$ is a sequence of elements of \mathcal{F}, and we claim that $\cup_{n \geq 1} A_{n}=\uplus_{n \geq 1} B_{n}$. Indeed, it is clear that $B_{n} \subseteq A_{n}$ for all $n \geq 1$ and consequently $\cup_{n \geq 1} B_{n} \subseteq \cup_{n \geq 1} A_{n}$. Furthermore, if $x \in \cup_{n \geq 1} A_{n}$ there exists $n \geq 1$ such that $x \in A_{n}$. The set $\left\{n \in \mathbf{N}: x \in A_{n}\right\}$ is therefore a non-empty subset of \mathbf{N} and has a smallest element, say $p \geq 1$. Then $x \in A_{p}$ and for all $k<p$ we have $x \notin A_{k}$. In particular for all $k<p, x \notin B_{k}$. Hence, it is clear that $x \in B_{p}$. We have proved that $\cup_{n \geq 1} A_{n} \subseteq \cup_{n \geq 1} B_{n}$ and finally $\cup_{n \geq 1} A_{n}=\cup_{n \geq 1} B_{n}$. It remains to show that the B_{n} 's are pairwise disjoint. Suppose $n \neq m$ and $x \in B_{n} \cap B_{m}$. Without loss of generality, we may assume that $n<m$. But $x \in B_{m}$ implies $x \notin B_{n}$ which is a contradiction. So the B_{n} 's are indeed pairwise disjoint. Having proved that $\cup_{n \geq 1} A_{n}=\uplus_{n \geq 1} B_{n}$, we conclude from the fact

Solutions to Exercises
that $B_{n} \subseteq A_{n}$ implies $\mu\left(B_{n}\right) \leq \mu\left(A_{n}\right)^{14}$ and:

$$
\mu\left(\bigcup_{n=1}^{+\infty} A_{n}\right)=\mu\left(\biguplus_{n=1}^{+\infty} B_{n}\right)=\sum_{n=1}^{+\infty} \mu\left(B_{n}\right) \leq \sum_{n=1}^{+\infty} \mu\left(A_{n}\right)
$$

Exercise 13
${ }^{14}$ See exercise (9) of Tutorial 2.

Exercise 14.

1. From definition (44), the statement $f_{n} \uparrow f \mu$-a.s. is formally translated as follows: there exists $N \in \mathcal{F}$ such that $\mu(N)=0$, and for all $\omega \in N^{c}$, we have $f_{n}(\omega) \uparrow f(\omega)$, i.e. the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ is non-decreasing and converges to $f(\omega)$.
2. From definition (44), $f_{n} \rightarrow f \mu$-a.s. and $f_{n} \leq f_{n+1} \mu$-a.s. for all $n \geq 1$, is formally translated as follows: there exist $N \in \mathcal{F}$ and a sequence $\left(N_{n}\right)_{n \geq 1}$ of elements of \mathcal{F}, such that $\mu(N)=0$ and $\mu\left(N_{n}\right)=0$ for all $n \geq 1$, and for all $\omega \in N^{c}, f_{n}(\omega) \rightarrow f(\omega)$, and given $n \geq 1$ and $\omega \in N_{n}^{c}, f_{n}(\omega) \leq f_{n+1}(\omega)$.
3. Suppose that $f_{n} \uparrow f \mu$-a.s., i.e. that statement 1 . is satisfied. Taking $N_{n}=N$ for all $n \geq 1$, it is clear that statement 2 . is also satisfied. Conversely, suppose that statement 2. is satisfied. Define $M=N \cup\left(\cup_{n=1}^{+\infty} N_{n}\right)$. Then $M \in \mathcal{F}$, and from exercise (13), we have $\mu(M) \leq \mu(N)+\sum_{n=1}^{+\infty} \mu\left(N_{n}\right)$. So $\mu(M)=0$. Moreover, for all $\omega \in M^{c}$, it is clear that $f_{n}(\omega) \uparrow f(\omega)$. It follows that
$f_{n} \uparrow f \mu$-a.s. is true. We have proved that both statements 1 . and 2 . are equivalent. This exercise is pretty important. More generally, if a condition $\mathcal{P}(\omega)$ is true μ-a.s and another condition $\mathcal{Q}(\omega)$ is true μ-a.s., then $(\mathcal{P}(\omega)$ and $\mathcal{Q}(\omega))$ is also true μ-a.s.. In fact, we have just seen that this factoring of ' μ-a.s.' is valid for a countable number of conditions, which is a straightforward application of the fact that a countable union of measurable sets (belonging to \mathcal{F}) of μ-measure 0 , is itself measurable (belonging to \mathcal{F}) of μ-measure 0 .

Exercise 14

Exercise 15. Given $B \in \mathcal{B}(\overline{\mathbf{R}}),\left\{f 1_{N} \in B\right\}$ is equal to $\{f \in B\} \cap N$ if $0 \notin B$, or equal to $(\{f \in B\} \cap N) \cup N^{c}$ if $0 \in B$. In any case, $\left\{f 1_{N} \in B\right\} \in \mathcal{F}$ and $f 1_{N}$ is therefore non-negative and measurable. Similarly $f 1_{N^{c}}$ is non-negative and measurable. So both integrals $\int f 1_{N} d \mu$ and $\int f 1_{N^{c}} d \mu$ are well-defined by virtue of definition (43). Since $f=f 1_{N}+f 1_{N^{c}}$, we have $\int f d \mu=\int f 1_{N} d \mu+\int f 1_{N^{c}} d \mu$, from exercise (10). Similarly, $\int g d \mu=\int g 1_{N} d \mu+\int g 1_{N^{c}} d \mu$. However, for all $\omega \in N^{c}, f(\omega)=g(\omega)$. It follows that $f 1_{N^{c}}=g 1_{N^{c}}$. Moreover, $\mu(N)=0$. Since $\left\{f 1_{N}>0\right\} \subseteq N$, we see that $\mu\left(\left\{f 1_{N}>0\right\}\right)=0$. Hence, from exercise (7), $\int f 1_{N} d \mu=0$. Similarly, $\int g 1_{N} d \mu=0$. We conclude that:

$$
\int f d \mu=\int f 1_{N^{c}} d \mu=\int g 1_{N^{c}} d \mu=\int g d \mu
$$

Exercise 15

Exercise 16.

1. Given $B \in \mathcal{B}(\overline{\mathbf{R}}),\left\{f 1_{N^{c}} \in B\right\}$ is either equal to $\{f \in B\} \cap N^{c}$ or $\left(\{f \in B\} \cap N^{c}\right) \cup N$, depending on whether $0 \in B$ or not. In any case $\left\{f 1_{N^{c}} \in B\right\} \in \mathcal{F}$, and $\bar{f}=f 1_{N^{c}}$ is therefore nonnegative and measurable. Similarly, for all $n \geq 1, \bar{f}_{n}=f_{n} 1_{N^{c}}$ is non-negative and measurable.
2. If $\omega \in N^{c}$, then $\bar{f}_{n}(\omega)=f_{n}(\omega) \uparrow f(\omega)=\bar{f}(\omega)$. If $\omega \in N$, then $\bar{f}_{n}(\omega)=0$ for all $n \geq 1$, and $\bar{f}(\omega)=0$. In any case, $\bar{f}_{n}(\omega) \uparrow \bar{f}(\omega)$. We have proved that $\bar{f}_{n} \uparrow \bar{f}$.
3. From 2., we have $\bar{f}_{n} \uparrow \bar{f}$. Hence, from the monotone convergence theorem (19), $\int \bar{f}_{n} d \mu \uparrow \int \bar{f} d \mu$. However, from the very definition of \bar{f} and \bar{f}_{n}, there exists $N \in \mathcal{F}$ with $\mu(N)=0$, such that for all $\omega \in N^{c}, \bar{f}(\omega)=f(\omega)$ and $\bar{f}_{n}(\omega)=f_{n}(\omega)$. In other words, from definition (44), $\bar{f}=f \mu$-a.s. and $\bar{f}_{n}=f_{n} \mu$-a.s.. From exercise (15), it follows that $\int \bar{f} d \mu=\int f d \mu$ and $\int \bar{f}_{n} d \mu=\int f_{n} d \mu$ for all $n \geq 1$. We conclude that $\int f_{n} d \mu \uparrow \int f d \mu$. Although it
may not appear to be the case, this exercise is very important. The monotone convergence theorem (19) states that whenever $f_{n} \uparrow f$, we have $\int f_{n} d \mu \uparrow \int f d \mu$. In this exercise, we proved that in fact, a weaker condition of $f_{n} \uparrow f \mu$-a.s. is sufficient to ensure that $\int f_{n} d \mu \uparrow \int f d \mu$. We obtained that result with a standard technique of cleaning up our functions f and f_{n} 's, to ensure that $f_{n} \uparrow f$ everywhere, as opposed to μ-a.s.. It is important to be familiar with this technique. In my experience, theorems with almost sure conditions are confusing to students, and are an encouragement to poor rigor and sloppy reasoning ${ }^{15}$. Hence, most theorems in these tutorials, at least in the early stages, will be stated with everywhere conditions. So you may need to clean up your assumptions again in the future...

Exercise 16

[^7]
Exercise 17.

1. Since $g_{n}=\inf _{k \geq n} f_{k}, g_{n}$ is a countable infimum of measurable maps. It is therefore measurable ${ }^{16}$, and is obviously nonnegative.
2. Let $\omega \in \Omega$ and $n \geq 1$. For all $k \geq n$, we have $g_{n}(\omega) \leq$ $f_{k}(\omega)$. In particular, $g_{n}(\omega)$ is a lower-bound of all $f_{k}(\omega)$ for $k \geq n+1$. Since $g_{n+1}(\omega)$ is the greatest of such lower-bound, we have $g_{n}(\omega) \leq g_{n+1}(\omega)$. It follows that $\left(g_{n}(\omega)\right)_{n \geq 1}$ is a nondecreasing sequence in $\overline{\mathbf{R}}$, which therefore converges to its supremum. Hence, $g_{n} \uparrow \sup _{n \geq 1} g_{n}=\liminf f_{n}{ }^{17}$.
3. For all $n \geq 1$, we have $g_{n} \leq f_{n}$. From exercise (7), it follows that $\int g_{n} d \mu \leq \int f_{n} d \mu$.
4. Let $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ be two sequences in $\overline{\mathbf{R}}$ with $u_{n} \leq v_{n}$ for all $n \geq 1$. For all $k \geq n$, we have $\inf _{k \geq n} u_{k} \leq u_{k} \leq v_{k}$.
[^8]Hence, $\inf _{k \geq n} u_{k}$ is a lower-bound of all v_{k} 's for $k \geq n$. It follows that $\inf _{k \geq n} u_{k} \leq \inf _{k \geq n} v_{k}$. Hence, for all $n \geq 1$, we have $\inf _{k \geq n} u_{k} \leq \sup _{n \geq 1} \inf _{k \geq n} v_{k}=\liminf v_{n}$. In other words, $\lim \inf v_{n}$ is an upper-bound of all $\inf _{k \geq n} u_{k}$ for $n \geq 1$. It follows that $\sup _{n \geq 1} \inf _{k \geq 1} u_{k} \leq \lim \inf v_{n}$, i.e. $\lim \inf u_{n} \leq \lim \inf v_{n}$.
5. $\lim \inf f_{n}$ is measurable ${ }^{18}$, and is obviously non-negative. The integral $\int\left(\lim \inf f_{n}\right) d \mu$ is therefore well-defined by virtue of definition (43). The same can be said of $\int f_{n} d \mu$ for all $n \geq 1$. From 3., we have $\int g_{n} d \mu \leq \int f_{n} d \mu$, for all $n \geq 1$. It follows from 4 . that:

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \int g_{n} d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu \tag{8}
\end{equation*}
$$

However, from 2., $g_{n} \uparrow \lim \inf f_{n}$. From the monotone convergence theorem (19), $\int g_{n} d \mu \uparrow \int\left(\lim \inf f_{n}\right) d \mu$. In particular, the sequence $\left(\int g_{n} d \mu\right)_{n \geq 1}$ converges to $\int\left(\liminf f_{n}\right) d \mu$. It follows

[^9]from theorem (16), that:
\[

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \int g_{n} d \mu=\int\left(\liminf _{n \rightarrow+\infty} f_{n}\right) d \mu \tag{9}
\end{equation*}
$$

\]

Comparing (8) with (9), we conclude that:

$$
\int\left(\liminf _{n \rightarrow+\infty} f_{n}\right) d \mu \leq \liminf _{n \rightarrow+\infty} \int f_{n} d \mu
$$

The purpose of this exercise is to prove Fatou lemma (20).

Exercise 18.

1. $\mathcal{F}_{\mid A}=\{A \cap B: B \in \mathcal{F}\}$ is the trace on A of the σ-algebra \mathcal{F}^{19}, which is a σ-algebra on A^{20}. Since $A \in \mathcal{F}, \mathcal{F}_{\mid A} \subseteq \mathcal{F}$. It is therefore meaningful to define $\mu_{\mid A}$ as the restriction of μ to $\mathcal{F}_{\mid A}$, which is a measure ${ }^{21}$ on $\mathcal{F}_{\mid A}$. It is important that we have $A \in \mathcal{F}$, since otherwise, $\mu_{\mid A}$ would not be meaningful. Let $B \in \mathcal{B}(\overline{\mathbf{R}}) . \quad f_{\mid A}$ being the restriction of f to A, we have $\left(f_{\mid A}\right)^{-1}(B)=\{x \in A: f(x) \in B\}=A \cap f^{-1}(B)$. Since f is measurable, $f^{-1}(B) \in \mathcal{F}$. It follows that $\left(f_{\mid A}\right)^{-1}(B) \in \mathcal{F}_{\mid A}$. We have proved that $f_{\mid A}:\left(A, \mathcal{F}_{\mid A}\right) \rightarrow[0,+\infty]$ is measurable.
2. Let $\left(E_{n}\right)_{n \geq 1}$ be a sequence of pairwise disjoint elements of \mathcal{F}. Let $E=\uplus_{n=1}^{+\infty} E_{n}$. Then, $A \cap E=\uplus_{n=1}^{+\infty}\left(A \cap E_{n}\right) . \mu$ being a measure on $\mathcal{F}, \mu(A \cap E)=\sum_{n=1}^{+\infty} \mu\left(A \cap E_{n}\right)$. It follows that $\mu^{A}(E)=\sum_{n=1}^{+\infty} \mu^{A}\left(E_{n}\right)$. It is clear that $\mu^{A}(\emptyset)=0$. We have

[^10]proved that μ^{A} is a measure on $\mathcal{F} .\left(\Omega, \mathcal{F}, \mu^{A}\right)$ is therefore a measure space ${ }^{22}$.
3. Consider the following equality:
\[

$$
\begin{equation*}
\int\left(f 1_{A}\right) d \mu=\int f d \mu^{A}=\int\left(f_{\mid A}\right) d \mu_{\mid A} \tag{10}
\end{equation*}
$$

\]

$\int\left(f 1_{A}\right) d \mu$ is an integral defined on $(\Omega, \mathcal{F}, \mu)$. The map being integrated is $f 1_{A}$ which is non-negative and measurable. The integral is therefore well-defined. $\int f d \mu^{A}$ is an integral defined on ($\Omega, \mathcal{F}, \mu^{A}$). The map being integrated is f which is nonnegative and measurable. The integral is therefore well-defined. $\int\left(f_{\mid A}\right) d \mu_{\mid A}$ is an integral defined on $\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right)$. The map being integrated is the restriction $f_{\mid A}$ which is non-negative and measurable with respect to $\mathcal{F}_{\mid A}$. The integral is therefore welldefined. At this stage, we do not know whether equation (10) is true, but at least, all its terms are meaningful...

[^11]4. Suppose that equation (10) is true, whenever f is a simple function on (Ω, \mathcal{F}). Suppose that f is an arbitrary non-negative and measurable map. From theorem (18), f can be approximated by a non-decreasing sequence of simple functions on (Ω, \mathcal{F}). In other words, there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions on (Ω, \mathcal{F}), such that $s_{n} \uparrow f$. In particular, $s_{n} 1_{A} \uparrow f 1_{A}$ and $\left(s_{n}\right)_{\mid A} \uparrow f_{\mid A}$. Having assumed that equation (10) is true for all simple functions on (Ω, \mathcal{F}), for all $n \geq 1$, we have:
\[

$$
\begin{equation*}
\int\left(s_{n} 1_{A}\right) d \mu=\int s_{n} d \mu^{A}=\int\left(s_{n}\right)_{\mid A} d \mu_{\mid A} \tag{11}
\end{equation*}
$$

\]

From the monotone convergence theorem (19), taking the limit as $n \rightarrow+\infty$ in (11), we obtain equation (10). We conclude that in order to prove equation (10), it is sufficient to consider the case when f is a simple function on (Ω, \mathcal{F}).
5. Suppose that equation (10) is true whenever f is of the form $f=1_{B}$, for $B \in \mathcal{F}$. Let $s=\sum_{i=1}^{n} \alpha_{i} 1_{A_{i}}$ be a simple function on
(Ω, \mathcal{F}). Then, $s 1_{A}=\sum_{i=1}^{n} \alpha_{i}\left(1_{A_{i}} 1_{A}\right)$ and $s_{\mid A}=\sum_{i=1}^{n} \alpha_{i}\left(1_{A_{i}}\right)_{\mid A}$. Using the linearity of the integral proved in exercise (10):

$$
\begin{align*}
\int s 1_{A} d \mu & =\sum_{i=1}^{n} \alpha_{i} \int 1_{A_{i}} 1_{A} d \mu \tag{12}\\
\int s d \mu^{A} & =\sum_{i=1}^{n} \alpha_{i} \int 1_{A_{i}} d \mu^{A} \tag{13}\\
\int s_{\mid A} d \mu_{\mid A} & =\sum_{i=1}^{n} \alpha_{i} \int\left(1_{A_{i}}\right)_{\mid A} d \mu_{\mid A} \tag{14}
\end{align*}
$$

Having assumed that equation (10) is true for all measurable characteristic functions, for all $i=1, \ldots, n$, we have:

$$
\begin{equation*}
\int 1_{A_{i}} 1_{A} d \mu=\int 1_{A_{i}} d \mu^{A}=\int\left(1_{A_{i}}\right)_{\mid A} d \mu_{\mid A} \tag{15}
\end{equation*}
$$

We conclude from (12), (13), (14) and (15) that equation (10) is true for all simple functions s on (Ω, \mathcal{F}). Using, 4., equation (10)
is therefore true for any non-negative and measurable map f. Hence, in order to prove equation (10), it is sufficient to consider the case when f is of the form $f=1_{B}$ for $B \in \mathcal{F}$.
6. Suppose f is of the form $f=1_{B}$ with $B \in \mathcal{F}$. Then, we have $f 1_{A}=1_{A \cap B}$, and $\int f 1_{A} d \mu=\mu(A \cap B)$. Moreover, we have $\int f d \mu^{A}=\mu^{A}(B)=\mu(A \cap B)$. Finally, since ${ }^{23}\left(1_{B}\right)_{\mid A}=1_{A \cap B}^{*}$, we have $\int\left(1_{B}\right)_{\mid A} d \mu_{\mid A}=\mu_{\mid A}(A \cap B)=\mu(A \cap B)$. We conclude that equation (10) is true for f. From 5 ., it follows that equation (10) is true for all non-negative and measurable maps. The purpose of this exercise is to justify definition (45). The techniques used in this exercise will be used over and over again in the future. Very often, when an equality between integrals has to be proved, one starts by verifying such equality for characteristic functions. By linearity, the equality can be extended

[^12]to all simple functions. Using theorem (18) and the monotone convergence theorem (19), it can then be proved to be true for all non-negative and measurable maps.

Exercise 18

Exercise 19.

1. Let $\left(A_{n}\right)_{n>1}$ be a sequence of pairwise disjoint elements of \mathcal{F}. Let $A=\uplus_{n=1}^{+\infty} A_{n}$. Then, $1_{A}=\sum_{n=1}^{+\infty} 1_{A_{n}}$, and consequently $f 1_{A}=\sum_{n=1}^{+\infty} f 1_{A_{n}}$. Hence, $\int f 1_{A} d \mu=\sum_{n=1}^{+\infty} \int f 1_{A_{n}} d \mu$, as proved in exercise (11). It follows that $\nu(A)=\sum_{n=1}^{+\infty} \nu\left(A_{n}\right)$. It is clear that $\nu(\emptyset)=\int f 1_{\emptyset} d \mu=0$. We conclude that ν is indeed a measure on \mathcal{F}.
2. Suppose g is of the form $g=1_{B}$ with $B \in \mathcal{F}$. Then, we have $\int g d \nu=\nu(B)=\int_{B} f d \mu=\int f 1_{B} d \mu=\int f g d \mu$. By linearity, it follows that $\int g d \nu=\int g f d \mu$ is true whenever g is a simple function on (Ω, \mathcal{F}). If g is an arbitrary non-negative and measurable map, from theorem (18), there exists a sequence $\left(s_{n}\right)_{n \geq 1}$ of simple functions in (Ω, \mathcal{F}), such that $s_{n} \uparrow g$. From $\int s_{n} d \nu=\int s_{n} f d \mu$ and the monotone convergence theorem (19), taking the limit as $n \rightarrow+\infty$, we conclude that $\int g d \nu=\int g f d \mu$.

Exercise 19

Exercise 20.

1. $|f|$ is non-negative and measurable. The integral $\int|f| d \mu$ is therefore well-defined.
2. if f is real-valued, and measurable with respect to $\mathcal{B}(\mathbf{C})$, then it is also measurable with respect to $\mathcal{B}(\mathbf{R})$, since $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{B}(\mathbf{C})$. We have not proved this inclusion before. Here is one way of doing it: the usual metric on \mathbf{R} is the metric induced by the usual metric on \mathbf{C}. From theorem (12), $\mathcal{T}_{\mathbf{R}}=\left(\mathcal{T}_{\mathbf{C}}\right)_{\mid \mathbf{R}}$, i.e. the usual topology on \mathbf{R} is induced from the usual topology on \mathbf{C}. From the trace theorem (10), it follows that $\mathcal{B}(\mathbf{R})=\mathcal{B}(\mathbf{C})_{\mid \mathbf{R}}$, i.e. that the Borel σ-algebra on \mathbf{R} is the trace on \mathbf{R}, of the Borel σ-algebra on \mathbf{C}. In particular, since $\mathbf{R} \in \mathcal{B}(\mathbf{C})$ (it is closed in \mathbf{C}), we have $\mathcal{B}(\mathbf{R}) \subseteq \mathcal{B}(\mathbf{C})$.
3. If f is measurable with respect to $\mathcal{B}(\mathbf{R})$, then it is also measurable with respect to $\mathcal{B}(\mathbf{C})$. Indeed, given $B \in \mathcal{B}(\mathbf{C})$, we have $B \cap \mathbf{R} \in \mathcal{B}(\mathbf{R})$ and therefore, $f^{-1}(B)=f^{-1}(B \cap \mathbf{R}) \in \mathcal{F}$. It
follows that $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu) \subseteq L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
4. If $f \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, then it is real-valued, and from 3., it is also an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Conversely, if f is real-valued and belongs to $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$, then from 2., it is also measurable with respect to $\mathcal{B}(\mathbf{R})$, and therefore lies in $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. We have proved that $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)=\left\{f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu): f(\Omega) \subseteq \mathbf{R}\right\}$.
5. Let $f, g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$ and $\alpha, \beta \in \mathbf{R}$. Then $\alpha f+\beta g$ is measurable ${ }^{24}$. Moreover, since $|\alpha f+\beta g| \leq|\alpha||f|+|\beta||g|$, from exercise (7), and by linearity, we have:

$$
\int|\alpha f+\beta g| d \mu \leq|\alpha| \int|f| d \mu+|\beta| \int|g| d \mu<+\infty
$$

We conclude that $\alpha f+\beta g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.
6. Let $f, g \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and $\alpha, \beta \in \mathbf{C}$. Then, $\alpha f+\beta g$ is mea-

[^13]surable ${ }^{25}$. Moreover, since $|\alpha f+\beta g| \leq|\alpha||f|+|\beta||g|$, from exercise (7), and by linearity, we have:
$$
\int|\alpha f+\beta g| d \mu \leq|\alpha| \int|f| d \mu+|\beta| \int|g| d \mu<+\infty
$$

We conclude that $\alpha f+\beta g \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
Exercise 20

[^14]
Exercise 21.

1. $u^{+}-u^{-}=\max (u, 0)-\max (-u, 0)=\max (u, 0)+\min (u, 0)$. Hence, $u^{+}-u^{-}=u+0=u$, and similarly, $v^{+}-v^{-}=v$. Finally, we have $f=u+i v=u^{+}-u^{-}+i\left(v^{+}-v^{-}\right)$.
2. Let $\omega \in \Omega$. If $u(\omega) \geq 0$, then $u^{+}(\omega)=u(\omega)$ and $u^{-}(\omega)=0$. If $u(\omega) \leq 0$, then $u^{+}(\omega)=0$ and $u^{-}(\omega)=-u(\omega)$. In any case, $u^{+}(\omega)+u^{-}(\omega)=|u|(\omega)$. So $|u|=u^{+}+u^{-}$, and similarly $|v|=v^{+}+v^{-}$.
3. f being measurable, $|f|, u$ and v are also measurable ${ }^{26}$. It follows that $|u|$ and $|v|$ are also measurable. From 1. and 2., we have $u^{+}=(|u|+u) / 2$ and $u^{-}=(|u|-u) / 2$. So u^{+}, u^{-}and similarly v^{+}, v^{-}are measurable. Moreover, $u^{+}, u^{-}, v^{+}, v^{-}$, $|f|, u, v,|u|$ and $|v|$ are all maps with values in R. Finally, we have $u^{-}, u^{+} \leq|u| \leq|f|$, and consequently, using exercise (7), $\int u^{-} d \mu \leq \int|u| d \mu \leq \int|f| d \mu<+\infty$. It follows that u^{-}(and

[^15]u^{+}since $\left.\int u^{+} d \mu<+\infty\right), u,|u|$ and $|f|$ are all elements of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. Similarly, $v^{-}, v^{+}, v,|v|$ also lie in $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.
4. u^{+}, u^{-}, v^{+}and v^{-}are all non-negative and measurable. Their integrals $\int u^{+} d \mu, \int u^{-} d \mu, \int v^{+} d \mu$ and $\int v^{-} d \mu$ are therefore well-defined.
5. $\int f d \mu=\int u^{+} d \mu-\int u^{-} d \mu+i\left(\int v^{+} d \mu-\int v^{-} d \mu\right)$. Each integral $\int u^{+} d \mu, \int u^{-} d \mu, \int v^{+} d \mu$ and $\int v^{-} d \mu$, is not only well-defined, but is also finite, i.e. lie in \mathbf{R}^{+}. It follows that $\int f d \mu$ is a well-defined complex number.
6. In the case when $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ is such that $f(\Omega) \subseteq \mathbf{R}^{+}$, then $\int f d \mu$ is potentially ambiguous. On the one hand, f being nonnegative and measurable, $\int f d \mu$ is defined by virtue of definition (43). On the other hand, f being an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$, $\int f d \mu=\int u^{+} d \mu-\int u^{-} d \mu+i\left(\int v^{+} d \mu-\int v^{-} d \mu\right)$. However, since f has value in $\mathbf{R}^{+}, f=u^{+}$and $u^{-}=v^{+}=v^{-}=0$. it follows that the two definitions of $\int f d \mu$ coincide.
7. From 3., $u, v \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu) \subseteq L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. It follows that $\int u d \mu$ and $\int v d \mu$ are well-defined, as $\int u d \mu=\int u^{+} d \mu-\int u^{-} d \mu$ and $\int v d \mu=\int v^{+} d \mu-\int v^{-} d \mu$. So $\int f d \mu=\int u d \mu+i \int v d \mu$.

Exercise 21

Exercise 22.

1. Let $B \in \mathcal{B}(\mathbf{C})$. If $0 \in B$, then $\left(f 1_{A}\right)^{-1}(B)=\left(A \cap f^{-1}(B)\right) \uplus A^{c}$. If $0 \notin B$, then $\left(f 1_{A}\right)^{-1}(B)=A \cap f^{-1}(B)$. In any case, since f is measurable and $A \in \mathcal{F}$, we have $\left(f 1_{A}\right)^{-1}(B) \in \mathcal{F}$. It follows that $f 1_{A}$ is measurable. From $\left|f 1_{A}\right|=|f| 1_{A} \leq|f|$, we have $\int\left|f 1_{A}\right| d \mu \leq \int|f| d \mu<+\infty$. We conclude that $f 1_{A}$ is an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
2. From definition (45), $\int|f| d \mu^{A}=\int_{A}|f| d \mu=\int|f| 1_{A} d \mu<+\infty$. f being complex valued and measurable, $f \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{F}, \mu^{A}\right)$.
3. Let $B \in \mathcal{B}(\mathbf{C})$. Then, $\left(f_{\mid A}\right)^{-1}(B)=A \cap f^{-1}(B) \in \mathcal{F}_{\mid A}$. It follows that $f_{\mid A}:\left(A, \mathcal{F}_{\mid A}\right) \rightarrow(\mathbf{C}, \mathcal{B}(\mathbf{C}))$ is measurable. Moreover, using definition (45):

$$
\int\left|f_{\mid A}\right| d \mu_{\mid A}=\int|f|_{\mid A} d \mu_{\mid A}=\int_{A}|f| d \mu=\int|f| 1_{A} d \mu<+\infty
$$

We conclude that $f_{\mid A} \in L_{\mathbf{C}}^{1}\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right)$.
4. Since $f 1_{A} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu), \int f 1_{A} d \mu$ is well-defined by virtue of definition (48). We have:
$\int f 1_{A} d \mu=\int u^{+} 1_{A} d \mu-\int u^{-} 1_{A} d \mu+i\left(\int v^{+} 1_{A} d \mu-\int v^{-} 1_{A} d \mu\right)$
Since $f \in L_{\mathbf{C}}^{1}\left(\Omega, \mathcal{F}, \mu^{A}\right), \int f d \mu^{A}$ is well-defined, and:

$$
\int f d \mu^{A}=\int u^{+} d \mu^{A}-\int u^{-} d \mu^{A}+i\left(\int v^{+} d \mu^{A}-\int v^{-} d \mu^{A}\right)
$$

Since $f_{\mid A} \in L_{\mathbf{C}}^{1}\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right), \int f_{\mid A} d \mu_{\mid A}$ is well-defined, and:
$\int f_{\mid A} d \mu_{\mid A}=\int u_{\mid A}^{+} d \mu_{\mid A}-\int u_{\mid A}^{-} d \mu_{\mid A}+i\left(\int v_{\mid A}^{+} d \mu_{\mid A}-\int v_{\mid A}^{-} d \mu_{\mid A}\right)$
Using definition (45), $\int u^{+} 1_{A} d \mu=\int u^{+} d \mu^{A}=\int u_{\mid A}^{+} d \mu_{\mid A}$, with similar expressions involving u^{-}, v^{+}and v^{-}. We conclude that $\int f 1_{A} d \mu=\int f d \mu^{A}=\int f_{\mid A} d \mu_{\mid A}$.
5. From:

$$
\int f 1_{A} d \mu=\int u^{+} 1_{A} d \mu-\int u^{-} 1_{A} d \mu+i\left(\int v^{+} 1_{A} d \mu-\int v^{-} 1_{A} d \mu\right)
$$

and definition (45), we have:

$$
\int f 1_{A} d \mu=\int_{A} u^{+} d \mu-\int_{A} u^{-} d \mu+i\left(\int_{A} v^{+} d \mu-\int_{A} v^{-} d \mu\right)
$$

Exercise 22

Exercise 23.

1. From $h=h^{+}-h^{-}, f=f^{+}-f^{-}$and $g=g^{+}-g^{-}$, we obtain that $h^{+}+f^{-}+g^{-}=h^{-}+f^{+}+g^{+}$. By linearity, proved in exercise (10), we conclude that:

$$
\begin{equation*}
\int h^{+} d \mu+\int f^{-} d \mu+\int g^{-} d \mu=\int h^{-} d \mu+\int f^{+} d \mu+\int g^{+} d \mu \tag{16}
\end{equation*}
$$

2. Since f, g and h belong to $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, all six integrals in equation (16) are finite. It follows that equation (16) can be rearranged as:

$$
\int h^{+} d \mu-\int h^{-} d \mu=\int f^{+} d \mu-\int f^{-} d \mu+\int g^{+} d \mu-\int g^{-} d \mu
$$

From definition (48), we conclude that:

$$
\begin{equation*}
\int h d \mu=\int f d \mu+\int g d \mu \tag{17}
\end{equation*}
$$

3. From definition (47), $(-f)^{+}=f^{-}$and $(-f)^{-}=f^{+}$. It follows from definition (48) that:

$$
\begin{equation*}
\int(-f) d \mu=\int f^{-} d \mu-\int f^{+} d \mu=-\int f d \mu \tag{18}
\end{equation*}
$$

4. Suppose $\alpha \in \mathbf{R}^{+}$. Then, $(\alpha f)^{+}=\alpha f^{+}$and $(\alpha f)^{-}=\alpha f^{-}$. From definition (48), and by linearity proved in exercise (10) for non-negative maps and $\alpha \geq 0$, we have:

$$
\begin{equation*}
\int(\alpha f) d \mu=\int \alpha f^{+} d \mu-\int \alpha f^{-} d \mu=\alpha \int f d \mu \tag{19}
\end{equation*}
$$

If $\alpha \leq 0$, applying equation (19) to $(-\alpha) f$ and then using equation (18), we see that:

$$
\begin{equation*}
\int(\alpha f) d \mu=\alpha \int f d \mu \tag{20}
\end{equation*}
$$

We conclude that equation (20) is satisfied for all $\alpha \in \mathbf{R}$.
5. If $f \leq g$, then $f^{+}+g^{-} \leq f^{-}+g^{+}$. From exercise (7) and by linearity for non-negative maps, we obtain:

$$
\int f^{+} d \mu+\int g^{-} d \mu \leq \int f^{-} d \mu+\int g^{+} d \mu
$$

All integrals being finite, this can be re-arranged as:

$$
\int f^{+} d \mu-\int f^{-} d \mu \leq \int g^{+} d \mu-\int g^{-} d \mu
$$

We conclude that $\int f d \mu \leq \int g d \mu$. This is an extension of exercise (7) (3.) to the case when $f, g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.
6. Proving theorem (22) may be seen as an immediate consequence of equations (17) and (20). In fact, these equalities have only been established for $\alpha \in \mathbf{R}$, and $f, g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. Hence, a little more work is required. Suppose that $f, g \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Let us write $f=u+i v$, and $g=u^{\prime}+i v^{\prime}$. From exercise (21), all maps u, v, u^{\prime} and v^{\prime} are elements of $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. It follows from equation (17) that $\int\left(u+u^{\prime}\right) d \mu=\int u d \mu+\int u^{\prime} d \mu$
and $\int\left(v+v^{\prime}\right) d \mu=\int v d \mu+\int v^{\prime} d \mu$. However, also from exercise (21), $\int f d \mu=\int u d \mu+i \int v d \mu$, with similar equalities, $\int g d \mu=\int u^{\prime} d \mu+i \int v^{\prime} d \mu$ and:

$$
\int(f+g) d \mu=\int\left(u+u^{\prime}\right) d \mu+i \int\left(v+v^{\prime}\right) d \mu
$$

We conclude that $\int(f+g) d \mu=\int f d \mu+\int g d \mu$, and equation (17) is therefore satisfied for $f, g \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Furthermore, if $\alpha \in \mathbf{R}$, Then $\alpha f=(\alpha u)+i(\alpha v)$, with αu and αv in $L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. It follows from equation (20) that we have $\int(\alpha u) d \mu=\alpha \int u d \mu$ and $\int(\alpha v) d \mu=\alpha \int v d \mu$. However, again from exercise (21), $\int(\alpha f) d \mu=\int(\alpha u) d \mu+i \int(\alpha v) d \mu$. Hence, $\int(\alpha f) d \mu=\alpha \int f d \mu$, and equation (20) is true for $\alpha \in \mathbf{R}$, and $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. If $\alpha=i$, then $\alpha f=-v+i u$ and therefore:

$$
\int(\alpha f) d \mu=-\int v d \mu+i \int u d \mu=\alpha \int f d \mu
$$

Finally, if $\alpha=x+i y \in \mathbf{C}$, with $x, y \in \mathbf{R}$, we have:

$$
\int(\alpha f) d \mu=\int(x f) d \mu+\int(i y f) d \mu
$$

with $\int(x f) d \mu=x \int f d \mu$, and furthermore:

$$
\int(i y f) d \mu=i \int(y f) d \mu=i y \int f d \mu
$$

We conclude that $\int(\alpha f) d \mu=\alpha \int f d \mu$, and equation (20) is therefore satisfied for all $\alpha \in \mathbf{C}$, and $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. This completes the proof of theorem (22).

Exercise 24.

1. Let $n \geq 1$. By assumption, f_{n} is \mathbf{C}-valued and measurable. Moreover, since $0 \leq\left|f_{n}\right| \leq g$ and $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$:

$$
\int\left|f_{n}\right| d \mu \leq \int g d \mu<+\infty
$$

It follows that $f_{n} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. Given $\omega \in \Omega$, the sequence $\left(f_{n}(\omega)\right)_{n \geq 1}$ converges to $f(\omega)$ in \mathbf{C}. This excludes possible limits like $+\infty$ or $-\infty$. So f is \mathbf{C}-valued. As a limit of measurable maps with values in a metrizable space, f is itself a measurable map^{27}. Finally, since $\left|f_{n}(\omega)\right| \leq g(\omega)$ for all $n \geq 1$ and $\omega \in \Omega$, taking the limit as $n \rightarrow+\infty$, we see that $|f(\omega)| \leq g(\omega)$, and consequently:

$$
\int|f| d \mu \leq \int g d \mu<+\infty
$$

We conclude that $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$.
${ }^{27}$ See theorem (17). (Beware of external links !)
2. Given $n \geq 1$, since $f, f_{n} \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu), f_{n}-f$ is also an element of $L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. So $\left|f_{n}-f\right| \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, and since $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$, we have $h_{n}=2 g-\left|f_{n}-f\right| \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$. In particular, h_{n} is a measurable map. Moreover, we have $\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq 2 g$, and consequently $h_{n} \geq 0$. It follows that $\left(h_{n}\right)_{n \geq 1}$ is a sequence of non-negative and measurable maps. We conclude that Fatou lemma (20) can legitimately be applied to it.
3. Let $\left(u_{n}\right)_{n \geq 1}$ be a sequence in $\overline{\mathbf{R}}$. Given $n \geq 1$ and $k \geq n$, we have $\inf _{k \geq n}\left(-u_{k}\right) \leq-u_{k}$, and consequently $u_{k} \leq-\inf _{k \geq n}\left(-u_{k}\right)$. It follows that $\sup _{k \geq n} u_{k} \leq-\inf _{k \geq n}\left(-u_{k}\right)$. In particular:

$$
\limsup _{n \rightarrow+\infty} u_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} u_{k}\right) \leq \sup _{k \geq n} u_{k} \leq-\inf _{k \geq n}\left(-u_{k}\right)
$$

or equivalently, $\inf _{k \geq n}\left(-u_{k}\right) \leq-\lim \sup u_{n}$. It follows that $-\lim \sup u_{n}$ is an upper-bound of all $\inf _{k \geq n}\left(-u_{k}\right)$, for $n \geq 1$. $\lim \inf \left(-u_{n}\right)$ being the smallest of such upper-bound, we con-
clude that $\liminf \left(-u_{n}\right) \leq-\lim \sup u_{n}$. Given $n \geq 1$ and $k \geq n$, we have $u_{k} \leq \sup _{k \geq n} u_{k}$, and consequently $-\sup _{k \geq n} u_{k} \leq-u_{k}$. It follows that $-\sup _{k \geq n} u_{k} \leq \inf _{k \geq n}\left(-u_{k}\right)$. In particular:

$$
-\sup _{k \geq n} u_{k} \leq \inf _{k \geq n}\left(-u_{k}\right) \leq \sup _{n \geq 1}\left(\inf _{k \geq n}\left(-u_{k}\right)\right)=\liminf _{n \rightarrow+\infty}\left(-u_{n}\right)
$$

or equivalently $-\lim \inf \left(-u_{n}\right) \leq \sup _{k \geq n} u_{k}$. It follows that $-\lim \inf \left(-u_{n}\right)$ is a lower-bound of all $\sup _{k \geq n} u_{k}$, for $n \geq 1$. $\lim \sup u_{n}$ being the greatest of such lower-bound, we conclude that $-\lim \inf \left(-u_{n}\right) \leq \lim \sup u_{n}$. We have proved that:

$$
\liminf _{n \rightarrow+\infty}\left(-u_{n}\right)=-\limsup _{n \rightarrow+\infty} u_{n}
$$

4. Since $\alpha \in \mathbf{R}$, for all $n \geq 1$, the sum ' $\alpha+u_{n}$ ' is always meaningful in $\overline{\mathbf{R}}$. The sum ' $\alpha+\lim \inf u_{n}$ ' is also meaningful in $\overline{\mathbf{R}}$. Let $n \geq 1$ and $k \geq n$. We have $\inf _{k \geq n}\left(\alpha+u_{k}\right) \leq \alpha+u_{k}$. Since $\alpha \in \mathbf{R}$, this inequality can be re-arranged as $-\alpha+\inf _{k \geq n}\left(\alpha+u_{k}\right) \leq u_{k}$.

It follows that:

$$
-\alpha+\inf _{k \geq n}\left(\alpha+u_{k}\right) \leq \inf _{k \geq n} u_{k} \leq \sup _{n \geq 1}\left(\inf _{k \geq n} u_{k}\right)=\liminf _{n \rightarrow+\infty} u_{n}
$$

Re-arranging this inequality, we see that $\alpha+\liminf u_{n}$ is an upper-bound of all $\inf _{k \geq n}\left(\alpha+u_{k}\right)$ for $n \geq 1$. Since $\lim \inf \left(\alpha+u_{n}\right)$ is the smallest of such upper-bound, we conclude that we have $\liminf \left(\alpha+u_{n}\right) \leq \alpha+\liminf u_{n}$. Similarly:

$$
\liminf _{n \rightarrow+\infty} u_{n}=\liminf _{n \rightarrow+\infty}\left(-\alpha+\alpha+u_{n}\right) \leq-\alpha+\liminf _{n \rightarrow+\infty}\left(\alpha+u_{n}\right)
$$

We have proved that for all $\alpha \in \mathbf{R}$:

$$
\liminf _{n \rightarrow+\infty}\left(\alpha+u_{n}\right)=\alpha+\liminf _{n \rightarrow+\infty} u_{n}
$$

5. Suppose that $u_{n} \rightarrow 0$ as $n \rightarrow+\infty$. Then $\left|u_{n}\right| \rightarrow 0$ and consequently, using theorem (16), liminf $\left|u_{n}\right|=\limsup \left|u_{n}\right|=0$. Conversely, if limsup $\left|u_{n}\right|=0$, then:

$$
0 \leq \liminf _{n \rightarrow+\infty}\left|u_{n}\right| \leq \limsup _{n \rightarrow+\infty}\left|u_{n}\right|=0
$$

Hence, we see that $\lim \inf \left|u_{n}\right|=\lim \sup \left|u_{n}\right|=0$. From theorem (16), we conclude that $\left(\left|u_{n}\right|\right)_{n \geq 1}$ converges to 0 . We have proved that $u_{n} \rightarrow 0$, if and only if $\lim \sup \left|u_{n}\right|=0$.
6. Let h_{n} be defined as in 2 . Since $f_{n} \rightarrow f$, we have $h_{n} \rightarrow 2 g$. In particular, $\lim \inf h_{n}=2 g$. Applying Fatou lemma (20) to the sequence $\left(h_{n}\right)_{n \geq 1}$, we obtain:

$$
\int(2 g) d \mu \leq \liminf _{n \rightarrow+\infty} \int\left(2 g-\left|f_{n}-f\right|\right) d \mu
$$

By linearity proved in theorem (22):

$$
\int(2 g) d \mu \leq \liminf _{n \rightarrow+\infty}\left(\int(2 g) d \mu-\int\left|f_{n}-f\right| d \mu\right)
$$

Since $g \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu), \int(2 g) d \mu \in \mathbf{R}$. From 4.:

$$
\int(2 g) d \mu \leq \int(2 g) d \mu+\liminf _{n \rightarrow+\infty}\left(-\int\left|f_{n}-f\right| d \mu\right)
$$

Finally, using 3., we obtain:

$$
\begin{equation*}
\int(2 g) d \mu \leq \int(2 g) d \mu-\limsup _{n \rightarrow+\infty} \int\left|f_{n}-f\right| d \mu \tag{21}
\end{equation*}
$$

7. Since $\int(2 g) d \mu \in \mathbf{R}$, inequality (21) can be simplified as:

$$
0 \leq-\limsup _{n \rightarrow+\infty} \int\left|f_{n}-f\right| d \mu
$$

from which we conclude that $\lim \sup \int\left|f_{n}-f\right| d \mu=0$.
8. It follows from 5. and 7. that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$, as $n \rightarrow+\infty$. The purpose of this exercise is to prove theorem (23). Called the Dominated Convergence Theorem, this theorem is one of the corner stones of the Lebesgue integration theory, together with the Monotone Convergence Theorem (19), and Fatou Lemma (20).

Exercise 24

Exercise 25.

1. Since $f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$ and $\alpha \in \mathbf{C}, \alpha f \in L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$. From exercise (21), it follows that $u=\operatorname{Re}(\alpha f) \in L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$.
2. We have $u=\operatorname{Re}(\alpha f) \leq|\operatorname{Re}(\alpha f)| \leq|\alpha f|=|f|$.
3. We have $\left|\int f d \mu\right|=|z|=\alpha z=\alpha \int f d \mu=\int(\alpha f) d \mu$.
4. From 3., $\int(\alpha f) d \mu \in \mathbf{R}$. However, from exercise (21), we have:

$$
\int(\alpha f) d \mu=\int \operatorname{Re}(\alpha f) d \mu+i \int \operatorname{Im}(\alpha f) d \mu
$$

It follows that $\int(\alpha f) d \mu=\int \operatorname{Re}(\alpha f) d \mu=\int u d \mu$.
5. From 3. and 4., we have $\left|\int f d \mu\right|=\int u d \mu$. However, from 2., we have $u \leq|f|$. From exercise (23) (5.), $\int u d \mu \leq \int|f| d \mu$. Finally, we conclude that $\left|\int f d \mu\right| \leq \int|f| d \mu$. This proves theorem (24).

Exercise 25

[^0]: ${ }^{4}$ See exercise (19) of the previous tutorial. (Beware of external links !)

[^1]: ${ }^{5}$ See exercise (9) of Tutorial 2. (Beware of external links !)

[^2]: ${ }^{6}$ See exercise (19) of the previous tutorial. (Beware of external links !)

[^3]: ${ }^{7}$ See definition (9). (Beware of external links !)

[^4]: ${ }^{8}$ See exercise (17) of the previous tutorial. (Beware of external links !)

[^5]: ${ }^{10}$ Both sequences are eventually with values in \mathbf{R}.

[^6]: ${ }^{11}$ See exercise (19) of the previous tutorial. (Beware of external links !)
 ${ }^{12}$ See exercise (15) of the previous tutorial.

[^7]: ${ }^{15}$ Particularly when dealing with questions of measurability in a non-complete measure space.

[^8]: ${ }^{16}$ See exercise (15) of the previous tutorial. (Beware of external links !)
 17 See definition (36) of the previous tutorial.

[^9]: ${ }^{18}$ See exercise (18) of the previous tutorial. (Beware of external links !)

[^10]: ${ }^{19}$ See definition (22). (Beware of external links !)
 ${ }^{20}$ See exercise (15) of Tutorial 3.
 ${ }^{21}$ See definition (9).

[^11]: ${ }^{22}$ See definition (19). (Beware of external links !)

[^12]: ${ }^{23} \mathrm{We}$ write $1_{A \cap B}^{*}$ as opposed to $1_{A \cap B}$ to emphasize the fact that it is the characteristic function of $A \cap B$, viewed as a subset of A. In other words, it is a map defined on A, not Ω...

[^13]: ${ }^{24}$ See exercise (19) of the previous tutorials. (Beware of external links !)

[^14]: ${ }^{25}$ Both the real and imaginary parts of $\alpha f+\beta g$ are measurable. Conclude with exercise (25) of the previous tutorial. (Beware of external links !)

[^15]: ${ }^{26}$ See exercise (24) of the previous tutorial. (Beware of external links !)

