Tutorial 5: Lebesgue Integration 1

5. Lebesgue Integration

In the following, (2, F, i) is a measure space.

Definition 39 Let A C Q). We call characteristic function of A,
the map 14 : Q — R, defined by:

A1 if weA
VwEQ,lA(w):{O Z; wd A

EXERCISE 1. Given A C Q, show that 14 : (Q,F) — (R,B(R)) is
measurable if and only if A € F.

Definition 40 Let (Q, F) be a measurable space. We say that a map
s:Q — RT is a simple function on (Q,F), if and only if s is of

the form :
n
SZZailAi
i=1
wheren > 1, a; € RT and A; € F, for alli=1,...,n.
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EXERCISE 2. Show that s : (2, F) — (R",B(R")) is measurable,
whenever s is a simple function on (9, F).

EXERCISE 3. Let s be a simple function on (2, ) with representation
s = >  a;1la,. Consider the map ¢ : Q@ — {0,1}" defined by
d(w) = (1a,(w),...,14,(w)). For each y € s(), pick one w, €
such that y = s(w,). Consider the map ¢ : s(2) — {0,1}" defined by
V(y) = dlwy).
1. Show that 1 is injective, and that s(f2) is a finite subset of RT.
2. Show that s = ZaES(Q) alf—ay

3. Show that any simple function s can be represented as:

n
s = E ol a,
i=1

wheren > 1,0 ERT, A, € Fand Q=A10... W A,.
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Definition 41 Let (2, F) be a measurable space, and s be a simple

function on (2, F). We call partition of the simple function s, any
representation of the form:

n
s:ZailAi
i—1
wheren>1, 0, ERT, A, € Fand A=A W... W A,.

EXERCISE 4. Let s be a simple function on (£2, F) with two partitions:
n m
i ST S
i=1 j=1

1. Show that s =), j a;la,nB; is a partition of s.

2. Recall the convention 0 x (+00) = 0 and « X (+00) = +00
if @ > 0. For all a1,...,a, in [0,400],p > 1 and x € [0, +o0],
prove the distributive property: z(a1+...+ap) = zai+. . .+zap,.
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3. Show that 3>, au(A;) = Zj 1 B51(B;).

4. Explain why the following definition is legitimate.

Definition 42 Let (Q,F, ) be a measure space, and s be a simple
function on (2, F). We define the integral of s with respect to p, as
the sum, denoted I*(s), defined by:

Z a;i(A;) € 10, +]

where s = Y a;la, is any partition of s.
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EXERCISE 5. Let s, t be two simple functions on (2, F) with partitions
s=>"  a;ls and t = E;ﬂﬂ Bilp,. Let o € RT.

1. Show that s + ¢ is a simple function on (€2, F) with partition:

s+t= z; 2(% + Bi)1a,nB;
=1 )=

2. Show that I*(s+t) = I"(s) + I*(t).

Show that as is a simple function on (€2, F).

L

Show that I*(as) = al*(s).
5. Why is the notation I*(«s) meaningless if « = +o00 or @ < 0.

6. Show that if s < ¢ then I*(s) < I*(¢).
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EXERCISE 6. Let f : (2, F) — [0,400] be a non-negative and mea-
surable map. For all n > 1, we define:

A k
=) ol <r<tity Tlinssy (1)

1. Show that s, is a simple function on (2, F), for all n > 1.
2. Show that equation (1) is a partition s, for all n > 1.
3. Show that s, < s,41 < f, for all n > 1.

4. Show that s, T f as n — +ool.

Lie. for all w € Q, the sequence (sn(w))p>1 is non-decreasing and converges

to f(w) € [0, 4+00].
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Theorem 18 Let f: (Q,F) — [0,+00] be a non-negative and mea-
surable map, where (Q, F) is a measurable space. There exists a se-
quence (sp)n>1 of simple functions on (Q, F) such that s, T f.

Definition 43 Let f : (Q,F) — [0,+00] be a non-negative and
measurable map, where (Q, F,u) is a measure space. We define the
Lebesgue integral of f with respect to pu, denoted [ fdp, as:

/fd,u 2 sup{I*(s) : s simple function on (Q,F), s < f}

where, given any simple function s on (2, F), I*(s) denotes its inte-
gral with respect to .

EXERCISE 7. Let f : (,F) — [0,+0o0] be a non-negative and mea-
surable map.

1. Show that [ fdu € [0, +00].

2. Show that [ fdu = I*(f), whenever f is a simple function.
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3.

Show that [gdu < [ fdu, whenever g : (,F) — [0, +oc0] is
non-negative and measurable map with g < f.

. Show that [(cf)dp = c [ fdu, if 0 < ¢ < +o00. Explain why

both integrals are well defined. Is the equality still true for
c=0.

. Forn >1 put A, = {f > 1/n}, and s, = (1/n)1l4,. Show

that s, is a simple function on (2, F) with s, < f. Show that
A, 1{f >0}

. Show that [ fdu=0 = u({f > 0})=0.

Show that if s is a simple function on (2, F) with s < f, then
w({f > 0}) =0 implies I*(s) = 0.

. Show that [ fdu=0 < u({f >0})=0.
. Show that [(+0c0)fdp = (+00) [ fdu. Explain why both inte-

grals are well defined.
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10. Show that (+00)11f—1o} < f and:
/ (+00) Ly oeydis = (+o0)u({f = +00})

11. Show that [ fdu < +oo = p({f = +oo}) =0.

12. Suppose that p(2) = +oo and take f = 1. Show that the
converse of the previous implication is not true.

EXERCISE 8. Let s be a simple function on (2, F). Let A € F.
1. Show that sl4 is a simple function on (2, F).

2. Show that for any partition s =Y _." | a;14, of s, we have:

I"(s14) Z%,UA NA)

=1
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3.

4.

Let v : F — [0, +0o0] be defined by v(A) = I*(s14). Show that
v is a measure on JF.

Suppose A,, € F, A, T A. Show that I*(sla,) T I*(sla).

EXERCISE 9. Let (fn)n>1 be a sequence of non-negative and measur-
able maps f, : (,F) — [0, +oc], such that f, T f.

1.
2.
3.
4

Recall what the notation f, T f means.
Explain why f: (Q,F) — (R, B(R)) is measurable.

Let o = sup,,»; [ fudp. Show that [ fudu 1 o

. Show that a < [ fdpu.

Let s be any simple function on (€2, F) such that s < f. Let
¢ €]0,1[. For n > 1, define A,, = {¢s < f,}. Show that 4,, € F
and A, T Q.
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e ® N o

10.

Show that cI*(sla,) < [ fndp, for all n > 1.
Show that cI*(s) < a.

Show that I*(s) < a.

Show that [ fdu < a.

Conclude that [ fn,du 1 [ fdpu.

Theorem 19 (Monotone Convergence) Let (2, F, u) be a mea-
sure space. Let (fn)n>1 be a sequence of non-negative and measurable
maps fr, : (Q,F) — [0,+00] such that f, 1 f. Then [ fndu 1 [ fdu.

EXERCISE 10. Let f,g: (2,F) — [0, +00] be two non-negative and
measurable maps. Let a,b € [0, 4+00].
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1. Show that if (f,)n>1 and (gn)n>1 are two sequences of non-
negative and measurable maps such that f, T f and g, T g,
then fn +gn T f + 9.

2. Show that [(f + g)du = [ fdp+ [ gdp.
3. Show that [(af +bg)dp=a [ fdu+0b [ gdpu.

EXERCISE 11. Let (f,)n>1 be a sequence of non-negative and mea-
surable maps f,, : (€, F) — [0, +-0c]. Define f = 37 f,,.
1. Explain why f : (2, F) — [0, +o0] is well defined, non-negative
and measurable.

2. Show that [ fdu = 31> [ fadp.
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Definition 44 Let (0, F, ) be a measure space and let P(w) be a
property depending on w € Q. We say that the property P(w) holds
p-almost surely, and we write P(w) p-a.s., if and only if:

dINeF, p(N)=0, Vw e N P(w) holds
EXERCISE 12. Let P(w) be a property depending on w € €2, such that
{w € Q:P(w) holds} is an element of the o-algebra F.
1. Show that P(w) , p-a.s. < p({w € Q:P(w) holds}®) =0

2. Explain why in general, the right-hand side of this equivalence
cannot be used to defined p-almost sure properties.

EXERCISE 13. Let (2, F, 1) be a measure space and (An)n>1 be a
sequence of elements of F. Show that p(Ut>4,,) < En 1 1(Ap).
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EXERCISE 14. Let (f,)n>1 be a sequence of maps f, : @ — [0, +00].
1. Translate formally the statement f,, T f p-a.s.
2. Translate formally f, — f p-a.s. and Vn, (f,, < fne1 p-a.s.)

3. Show that the statements 1. and 2. are equivalent.

EXERCISE 15. Suppose that f,g: (2, F) — [0, +00] are non-negative
and measurable with f = ¢ p-a.s.. Let N € F, u(N) = 0 such that
f = g on N° Explain why [ fdu = [(fln)dp + [(flne)dp, all
integrals being well defined. Show that [ fdu = [ gdpu.

EXERCISE 16. Suppose (fn)n>1 is a sequence of non-negative and
measurable maps and f is a non-negative and measurable map, such
that f, T f pas.. Let N € F, u(N) = 0, such that f, 1 f on N¢.
Define f, = fulye and f = flye.

1. Explain why f and the f,’s are non-negative and measurable.
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2. Show that f, T f.
3. Show that [ fn.du 1 [ fdpu.

EXERCISE 17. Let (fn)n>1 be a sequence of non-negative and measur-
able maps f,, : (Q,F) — [0, 40c]. Forn > 1, we define g,, = infy>y, fx.

1. Explain why the ¢,,’s are non-negative and measurable.
2. Show that g, T liminf f,.
3. Show that [ gndu < [ fndp, for all n > 1.

4. Show that if (up),>1 and (v,),>1 are two sequences in R with
Uy < vy for all n > 1, then lim inf u,, < liminf v,.

5. Show that [(liminf f,)dp < liminf [ f,du, and recall why all
integrals are well defined.

www.probability.net


http://www.probability.net

Tutorial 5: Lebesgue Integration 16

Theorem 20 (Fatou Lemma) Let (Q,F, 1) be a measure space,
and let (fn)n>1 be a sequence of non-negative and measurable maps
frn: (Q,F) — [0, +00]. Then:

/(hm inf f,)du < hmlnf/fnd,u

n—-+oo

EXERCISE 18. Let f: (2, F) — [0, +0o0] be a non-negative and mea-
surable map. Let A € F.

1. Recall what is meant by the induced measure space (4, F| 4, 1) 4)-
Why is it important to have A € F. Show that the restriction
of fto A, fla: (A, Fla) — [0, +o0] is measurable.

2. We define the map p? : F — [0, +00] by p(E) = u(ANE), for
all E € F. Show that (Q,F,u?) is a measure space.

3. Consider the equalities:

Jrtodu= [ saut = [(fapduma (2)
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For each of the above integrals, what is the underlying measure
space on which the integral is considered. What is the map
being integrated. Explain why each integral is well defined.

4. Show that in order to prove (2), it is sufficient to consider the
case when f is a simple function on (€, F).

5. Show that in order to prove (2), it is sufficient to consider the
case when f is of the form f = 1p, for some B € F.

6. Show that (2) is indeed true.
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Definition 45 Let f : (2, F) — [0, +00] be a non-negative and mea-
surable map, where (0, F, 1) is a measure space. let A € F. We call
partial Lebesgue integral of f with respect to i over A, the integral
denoted [, fdp, defined as:

Jran® [rrdn = [ rant = [ i

where p is the measure on (Q, F), p* = p(AnNe), fia is the restric-
tion of f to A and 4 is the restriction of j to F|a, the trace of F
on A.

EXERCISE 19. Let f,g: (2,F) — [0, +00] be two non-negative and

measurable maps. Let v : F — [0, +0oc] be defined by v(A) = [, fdp,
for all A € F.

1. Show that v is a measure on F.

2. Show that:
/ gdv = / gfdu
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Theorem 21 Let f: (Q,F) — [0,+00] be a non-negative and mea-
surable map, where (Q, F, ) is a measure space. Let v : F — [0, +]
be defined by v(A) = [, fdu, for all A€ F. Then, v is a measure on
F, and for all g : (2, F) — [0, 400] non-negative and measurable, we

have:
/ gdv = / gfdp

Definition 46 The L'-spaces on a measure space (Q, F, i), are:
LR(Q,F, u)é{f:(Q,]-') — (R, B(R)) measurable, / |fldu < —|—oo}

L&(Q, F, u)é{f:(Q,]-') — (C,B(C)) measumble,/|f\du < +oo}
EXERCISE 20. Let f: (Q,F) — (C,B(C)) be a measurable map.
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IR AN

Explain why the integral [ |f|du makes sense.

Show that f: (2, F) — (R, B(R)) is measurable, if f(Q2) C R.
Show that LL (Q,F, ) C LE(Q, F, w).

Show that LL (Q, F,u) = {f € L&(Q, F,pn) , () CR}
Show that L (Q, F, ) is closed under R-linear combinations.
Show that LL(Q, F, u) is closed under C-linear combinations.

Definition 47 Letu:Q — R be a real-valued function defined on a
set Q. We call positive part and negative part of u the maps u™
and u~ respectively, defined as u™ = max(u,0) and u~ = max(—u,0).

EXERCISE 21. Let f € L&(Q, F, ). Let u = Re(f) and v = Im(f).

1. Show that u = ut —u",v =0t —v™, f=ut —u" +i(vT —v7).

www.probability.net


http://www.probability.net

Tutorial 5: Lebesgue Integration 21

2. Show that |u| =ut +u™, jv| =0t + 0~
3. Show that u™,u=, v v |f],u, v, |ul,|v| all lie in Lk (Q,F, p).

4. Explain why the integrals [uTdu, [u=dp, [vdp, [v™dp are
all well defined.

5. We define the integral of f with respect to p, denoted [ fdu, as
[ fdp= [utdp— [udp+i([vrdu— [v=du). Explain why
J fdp is a well defined complex number.

6. In the case when f(Q2) C CN[0,+o00] = R*, explain why this
new definition of the integral of f with respect to p is consistent
with the one already known (43) for non-negative and measur-
able maps.

7. Show that [ fdp = [udu+i [vdp and explain why all integrals
involved are well defined.
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Definition 48 Let f = u +iv € L5(, F, u) where (Q, F,u) is a
measure space. We define the Lebesgue integral of f with respect
to p, denoted [ fdu, as:

/fdué/u+du—/u_du+i (/Wdu—/v—du)

EXERCISE 22. Let f = u+iv € L5(Q,F,p) and A € F.

1.
2.
3.

Show that fla € L&(Q, F, u).
Show that f € L5(Q,F,u?).
Show that f|A S LE(A, ‘7:|A7 [L‘A)

. Show that [(f1a)du = [ fdu* = [ fladp a.
. Show that 4. is: [, uTdu — [, u=dpu+i ([, vdu— [, v dp).
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Definition 49 Let f € L5(Q,F,pn) , where (Q,F, 1) is a measure
space. let A € F. We call partial Lebesgue integral of f with
respect to p over A, the integral denoted fA fdu, defined as:

/A fau® [(fraydn= [ du* = [ (fia)dus

where p is the measure on (Q,F), p* = p(AnNe), fia is the restric-
tion of f to A and 4 is the restriction of j to F|a, the trace of F
on A.

EXERCISE 23. Let f,g € Lg(Q,F,p) and let h=f +g¢
1. Show that:

/h*du—l—/f*d,u—k/g*d,u:/h’du+/f+du+/g+du

2. Show that [ hdu = [ fdu+ [ gdu.
3. Show that [(—f)du = — [ fdu
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4. Show that if &« € R then [(af)du = o [ fdp.
5. Show that if f < g then [ fdu < [ gdu
6. Show the following theorem.

Theorem 22 For all f,g € L§(Q,F,p) and a € C, we have:

/(af+g)du=a/fdu+/gdu

EXERCISE 24. Let f,g be two maps, and (f,)n>1 be a sequence of
measurable maps f, : (Q,F) — (C,B(C)), such that:

(1) Yw e Q, n1—1>I—iI-loc fn(lw) = f(w) in C

(i) Vn>1, |fal<g
(iii) g€ LR(QF,n)

Let (u,)n>1 be an arbitrary sequence in R.
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®© N>

. Show that f € LE(Q,F,pn) and f,, € L&(Q, F, u) for all n > 1.
. For n > 1, define h, = 29 — |f, — f|- Explain why Fatou

lemma (20) can be applied to the sequence (hy)n>1.

. Show that liminf(—u,) = — lim sup u,,.

Show that if o € R, then liminf(« + u,) = o + lim inf w,,.
Show that u, — 0 as n — +oo if and only if lim sup |u,| = 0.
Show that [(2g)dp < [(2g)dp — limsup [ |f, — fldp

Show that limsup [ |f, — f|du = 0.

Conclude that [|f, — fldu — 0 as n — +oo.
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Theorem 23 (Dominated Convergence) Let (fp)n>1 be a se-
quence of measurable maps fr : (Q,F) — (C,B(C)) such that f, — f
in C? . Suppose that there exists some g € Li(Q, F,u) such that
|fnl < g for alln > 1. Then f, f, € L&(Q, F,p) for alln > 1, and:

li L =
n}fm/\f fldp=0

EXERCISE 25. Let f € L&(Q, F,p) and put z = [ fdu. Let a € C,
be such that |a| =1 and az = |z|. Put u = Re(af).

1. Show that u € L (2, F, u)

2. Show that u < |f|

3. Show that | [ fdu| = [(af)dp.
4. Show that [(af)dp = [ udp.

2ie. for all w € §, the sequence (fn(w)),>1 converges to f(w) € C
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5. Prove the following theorem.

Theorem 24 Let f € LE(Q,F,p) where (2, F, 1) is a measure

space. We have:
[ sau| < [ 11
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Solutions to Exercises

Exercise 1. Let A C Q. Suppose 14 is measurable. Then in particu-
lar A = (14)"({1}) € F. Conversely, suppose A € F. Let B € B(R).
If {0,1} C B, then (14)"Y(B) = Q. If {0,1} N B = {1}, then
(14)"Y(B) = A. If {0,1} N B = {0}, then (14)"*(B) = A°. Finally,
if {0,1}N B =10, then (14)7'(B) = 0. In any case, (14)'(B) € F.
We have proved that 14 : (Q,F) — (R, B(R)) is measurable, if and
only if A € F.

Exercise 1
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Exercise 2. Let s = > | a;14, be a simple function on (2, F).
For all i = 1,...,n, A; € F. From exercise (1), each characteristic
function 14, is measurable. Using exercise (19) of the previous tu-
torial, each a;1,4, is measurable. In fact, since a; € R™, a;l4, is
a measurable map with values in R, (it is also a non-negative and
measurable map). It follows from exercise (19), that s = Y | a;14,
is measurable with respect to F and B(R). However, s has values in
RT, and B(R*) C B(R). So s is also measurable with respect to F
and B(R™T).

Exercise 2
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Exercise 3.

1. Suppose z,y € s(2) and ¢ (z) = ¥ (y). Then ¢(w,) = ¢(wy). So
forall i =1,...,n, 1a,(wg) = 14,(wy). Hence, s(wy) = s(wy).
However, w, and w, have been chosen to be such that z = s(w,)
and y = s(wy). It follows that z =y, and ¢ : s(Q) — {0,1}" is
an injective map. Since {0,1}" is a finite set, we conclude that
s(€2) is itself a finite set. By definition (40), it is also a subset
of RT.

2. Let t =3 c ) @l{s=a}. From 1., s(2) is a finite set, and ¢ is
therefore well defined as a finite sum of weighted characteristic
functions. Let w € Q. Let o' = s(w). Then, 1,_qy(w) =1,
and 1{;—q}(w) = 0 for all o € 5(Q) such that o # . It follows
that t(w) = /. Hence, t(w) = s(w). This being true for all
w € Q, we have proved that t = s.

3. From 2., s can be represented as s = 3. () @l{s=a}- ()
being a finite set, there exists a bijection v : {1,...,n} — s(Q),
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for some n > 1 3. For all i = 1,...,n, we define a; = (i)
and A; = {s = v(¢)}. Then, it is clear that s = Y " | a;14,.
Moreover, each «; is an element of RT. From exercise (2), s
is a measurable map, and A; € F for all ¢ = 1,...,n. Let
w e Q and o = s(w). v being onto, there exists i € {1,...,n}
such that ¥(i) = a. Sow € {s = 4(i)} = A; and we have
proved that  C A; U...U A,. Each A; being a subset of
Q, we have Q = A; U...U A,. Finally, suppose there exists
we A;NAj. Then, s(w) = v(i) and s(w) = v(j). 7 being
injective, ¢ = j. It follows that the A;’s are pairwise disjoint,
and therefore Q = A;W...WA,. We have proved that any simple
function s on (€, F), can be expressed as s = Y . a;14,, where
n>1l, o R, A, €cFand Q=A4,4...0A,.

Exercise 3

31f Q@ = 0 and s(Q) = 0, write s = 13 and there is nothing else to prove.
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Exercise 4.

1. Lett=>" allA nB,- Foreach (i, ), a; € RT and A;NB; € F.
If (i,7) # (j then i # 14 or j # j. In the first case, the
A;’s being palrW1se disjoint, A; N Ay = (). In the second case,
B;NBj = 0. In any case, (A4; N B;)N(Ay NBj) = 0. It follows
that the A;NB;’s are pairwise disjoint, and £ = W; ;A;NB;. Let
w € Q. There exists a unique (7,7) such that w € A; N B;. We
have t(w) = a; = s(w). It follows that s = t. We have proved
that ¢t = Zl ; @ila;np; is a partition of the simple function s.

2. Let P be the property z(a1 + ...+ ap) = za1 + ... + zap,.
Suppose z = 0. Then z(a1 + ...+ ap) = 0. Moreover, for
all ¢ = 1,...,p, we have za; = 0. It follows that property P
is true. Suppose x = +o0o and a; = 0 for all ¢ = 1,...,p.
Then a1 + ...+ ap, = 0, and z(a; + ...+ a,) = 0. Moreover,
za; = 0 for all 4 and property P is true. Suppose x = 400 and
a; > 0 for some ¢ = 1,...,p. Then za; = +o0, and therefore
zay + ...+ xa, = +oo. However, a; + ...+ a, is also strictly
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positive with @ = +o0. Hence, z(a1 + ... + ap) = +00 and
property P is true. Suppose 0 < z < +oo. If a; < +oo for
all 4, then property P is true by virtue of the distributive law
in R. Suppose a; = +oo for some ¢. Then za; = +oo and
zay + ...+ za, = +o0o. However, a; + ...+ q, is also equal to
+o00, with > 0. So (a1 + ...+ ap) = +o00 and property P is
true. We have proved that property P is true in all cases.

3. Since Q = By W... W By, we have A; = W]’ (A; N By), for
all i = 1,...,n. u being a measure on (2, F), it follows that
w(A;) = Z;nzl w(A; N By). Hence:

Z%,U Zal Z,uA N Bj)
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From the distributive property proved in 2., we obtain:

Zaiﬂ ZZOQMA ﬂB (3)

=1 j=1
Similarly, we have:
> Biu(By) = Bin(A; N B;) (4)
j=1 i=1 j=1

Suppose A; N Bj = (). Then in particular, u(A; N B;) = 0 and
ai,u(Ai N Bj) = ﬂj,u(Al- N Bj). If A; N Bj 75 @, there exists
w € A; N Bj in which case, a; = s(w) = f;. In any case,
a;i(A; N Bj) = B;u(A; N By), and we conclude from (3) and (4)

that:
Zazﬂ Zﬂjﬂ
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4. Given a simple function s on (€2, F), the integral of s with re-
spect to p is defined from (42) as I#(s) = > | a;u(A;), where
S, @;la, is an arbitrary partition of s. We know from ex-
ercise (3) that such partition exists, but it may not be unique.
However, since we proved in 3. that the sum > ., a;u(4;) is
invariant across all partitions of s, there is no ambiguity as to
what I#(s) actually refers to, and definition (42) is therefore
legitimate.

Exercise 4
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Exercise 5.
1. From definition (40), s+t = 71" a;la, +3°00, B;1p, is clearly

a simple function on (2, ). Since Q = W' ; A; and Q = wjL, By,
we have = ; ;A; N B;j. Furthermore:

5= ZzailAmBj (5)

i=1 j=1
and:

t=>"> Bilans, (6)

i=1 j=1
It follows that:

n m

s+t= ZZ(% +5j)1AmBj (7)

i=1 j=1

As a finite sum involving a; + 8; € R™ and 4; N B; € F, with
Q2 =u; jA; N Bj, equation (7) defines a partition of s+t.

www.probability.net


http://www.probability.net

Solutions to Exercises 37

2. Since Q2 =W; jA; N B;, equations (5), (6) and (7) are partitions
of s, t and s+ t respectively. From definition (42), we obtain:

H(s41) ZZal—i—ﬁJ (Ai N Bj) = I*(s) + I*(t)
=1 j=1

3. as =Y i aa;la,. Since a € R, each aa; € RT. It follows
from definition (40) that s is a simple function on (£2, F).

4. Y a1y, being a partition of as, From definition (42) and
the distributive property of exercise (4), we have:

as) = Z@aiM(Ai) =« (Z ozl-,u(Al-)> = al"(s)

5. If « = +o0 or a < 0, the map as may not have values in R™. In
particular, as may not be a simple function. As definition (42)
only defines the integral of simple functions, I*(«s) may not be
meaningful.
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6. Suppose s < t. Equations (5) and (6) being partitions of s and
t respectively, from definition (42), we have:

I'M(S) = Z ZO@[L(Ai N Bj)

i=1 j=1

and: o
() = > Bin(Ai N By)

i=1 j=1

If A; N B; =0, then in particular (A4; N B;) = 0, and we have
ai,u(Ai N Bj) < ﬂj,u(Al- n Bj). If A; N Bj 7é @, then there exists
w € A; N Bj, in which case, o = s(w) < t(w) = F;. In any case,
we have a;u(A; N Bj) < Biu(A; N Bj). This being true for all
(4,7), it follows that I*(s) < I*(t).

Exercise 5
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Exercise 6.

1. Since f is measurable, each set {k/2" < f < (k+1)/2"} belongs
to F,forn > 1and k = 0,...,n2" — 1. {n < f} is also an
element of F. Moreover, k/2" € R* and n € RT. Tt follows
from definition (40) that each s, as defined by (1), is indeed a
simple function on (€2, F).

2. [0, +-00] = (w;;i’;*l[k/zn, (k+1) /2"[) W [n, +-00]. Hence:

Q:fl([O,—i-oo]):( L—lj_ {2%<f<%}> w{n < f}

k=0
Tt follows that equation (1) is indeed a partition of s,,.

3. Let n > 1 and w € Q. Suppose f(w) € [0,n[. Then, there
exists k € {0,...,n2" — 1}, such that f(w) € [k/2", (k+1)/2"].
In particular, s,(w) = k/2" < f(w). If f(w) € [n,+o0], then
sp(w) = n < f(w). In any case, s,(w) < f(w). This being
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true for all w € Q, s, < f. Suppose f(w) € [k/2™,(k+1)/2"[.
Then, f(w) € [(2k)/2""L, (2k + 1)/2" 1] or alternatively, we
have f(w) € [(2k + 1)/2"FL, (2k + 2)/2"T1[. In the first case,
sp(w) = k/2" = (2k)/2"*! = s,,1(w). In the second case,
sp(w) = k/2" < (2k +1)/2"" = 5,.1(w). In both cases, we
have s, (w) < sp+1(w). Suppose that f(w) € [n,+oo]. Then,
either f(w) € [n,n+1[ or f(w) € [n+ 1, +oc]. In the first case,
Snt1(w) = k/2"FL for some k € {n2"*L ... (n+ 1)27F — 1},
and in particular, s,(w) = n < k/2""! = s5,.1(w). In the
second case, sp(w) =n < n+ 1= s,41(w). In both cases, we
have s, (w) < sp41(w). We have proved that s, < sp41 < f.

4. Let w e Q. If f(w) = 400, then w € {n < f}, foralln > 1. It
follows that s, (w) =n for all n > 1, and s, (w) — +00 = f(w).
If f(w) < 400, then f(w) € [0, N| for some integer N > 1. For
all n > N, f(w) € [0,n[, and therefore s, (w) = k/2", for some
k€ {0,...,n2™ — 1}, such that £/2" < f(w) < (k+1)/2". In
particular, 0 < f(w) — sp(w) < 1/2™. This being true for all
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n > N, we see that s,(w) — f(w). We have proved that for
all w € Q, the sequence (s, (w)),>1 converges to f(w). From 3.,
this sequence is non-decreasing. Finally, we have s, T f. The
purpose of this exercise is to prove theorem (18).

Exercise 6
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Exercise 7.

1. 0= 0.1q is a simple function on (€2, F). Since f is non-negative,
0 < f. From definition (43), it follows that I*(0) < [ fdu. Since
I"(0) = 0, we conclude that [ fdu € [0, 4oc].

2. Suppose f is a simple function on (2, F). Let s be another
simple function on (£, F), such that s < f. From exercise (5),
we have I*(s) < I*(f). It follows that I*(f) is an upper-bound
of all I*(s) for s simple function on (2, F) with s < f. The
Lebesgue integral [ fdu being the smallest of such upper-bound,
we have [ fdu < I*(f). However, since f < f and f is a simple
function on (2, F), from definition (43), I*(f) < [ fdu. We
conclude that [ fdu = I*(f).

3. Let g: (R, F) — [0, +00] be non-negative and measurable such
that g < f. Let s be a simple function on (€2, F) such that s < g.
Then in particular, s < f, and it follows from definition (43)
that I*(s) < [ fdu. Hence, [ fdp is an upper-bound of all
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I*(s), for s simple function on (£2, F) with s < g. The Lebesgue
integral [ gdp being the smallest of such upper-bound, we have

[ gdp < [ fdp.

4. Let 0 < ¢ < 4o00. Since f is non-negative and measurable,
J fdp is well-defined by virtue of definition (43). However, cf
is also non-negative and measurable’. So [(cf)du is also well-
defined. Let s be a simple function on (£2, ) such that s < f.
Since ¢ € RT, from exercise (5), c¢s is also a simple function on
(Q,F). We have ¢s < c¢f. From definition (43), it follows that
IM(es) < [(ef)dp. However, from exercise (5), I*(cs) = cI(s).
Since ¢ > 0, we have I"(s) < ¢™! [(cf)dp. Hence, ¢! [(cf)dp
is an upper-bound of all I*(s), for s simple function on (€, F)
with s < f. The Lebesgue integral | fdu being the smallest of
such upper-bound, we have [ fdu < ¢ [(cf)dp. Multiplying
both sides by ¢, we obtain that ¢ [ fdu < [(cf)dp. Similarly,
since 0 < 1/c¢ < 400, we have ¢! [(cf)du < [ (cf)dp, ie.

4See exercise (19) of the previous tutorial. (Beware of external links !)
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J(ef)du < e[ fdu. We conclude that [(cf)dp = ¢ [ fdp. If
¢ = 0, whether or not [ fdu = 400, we have ¢ [ fdu = 0. Since
0 is a simple function on (2, F), we have [ 0dp = I#(0) = 0. It
follows that the equality [(cf)dp = ¢ [ fdu is still true in the
case when ¢ = 0.

5. f being measurable, A, = {f > 1/n} is an element of the
o-algebra F. Since 1/n € R*, from definition (40) it follows
that s, = (1/n)la, is a simple function on (€, F). Suppose
that w € Q. If w € A,,, then s,(w) =0 < f(w). If w € A,
then s,(w) = 1/n < f(w). In any case, s,(w) < f(w). It
follows that s, < f. Let n > 1, if w € A,, then f(w) > 1/n
and in particular f(w) > 1/(n+1). So w € A,y1 and we see
that A, C A,41. For alln > 1, A, C {f > 0}. Tt follows
that U2 A, C {f > 0}. Conversely, if f(w) > 0, then there
exists n > 1 such that f(w) > 1/n. So {f > 0} C UI>A,.
We have proved that A,, C A, 1 with UZﬁAn ={f >0}, ie
A, T{f > 0}.
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6. Suppose that [ fdu = 0. Given n > 1, let s, and A,, be defined
as in 5. s, being a simple function on (2, F) with s,, < f, from
definition (43) we have I*(s,) < [ fdu = 0. Hence, we have
I*(s,) = 0. From definition (42), I*(s,) = (1/n)u(4,). It
follows that p(A,) = 0 for all n > 1. However, from 5., we
have A,, T {f > 0}. Using theorem (7), u(4,) T n({f > 0}).
It follows that u({f > 0}) = lim,— 4o p(A4,) = 0. We have
proved that [ fdu=0= p({f > 0})=0.

7. Let s be a simple function on (92, F) with s < f. Suppose that
p{f > 0}) = 0. Let s = >, a;la, be a partition of the
simple function s. From definition (42), I*(s) = i | aipu(A;).
Let i € {1,...,n}. fa; > 0 and w € A;, Ay,..., A, being
pairwise disjoint, a; = s(w) < f(w). In particular, 0 < f(w).
Hence, A; C {f > 0}. p being a measure on F, we have’
w(A;) < p({f > 0}). It follows that u(A;) = 0. In particular,
a;p(A;) = 0. If a; = 0, whether or not p(4;) = +oo, we still

5See exercise (9) of Tutorial 2. (Beware of external links !)
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have a;pu(A;) = 0. We conclude that I*(s) = Y0, a;pu(A;) = 0.

8. [ fdu =0 = u({f > 0}) = 0 was proved in 6. Suppose con-
versely that u({f > 0}) = 0. Let s be a simple function on
(Q, F) such that s < f. From 7., I*(s) = 0. It follows that 0 is
an upper-bound of all I#(s) for s simple function on (€2, F) with
s < f. The Lebesgue integral [ fdu being the smallest of such
upper-bound, we have [ fdu < 0. However, from 1., [ fdu > 0.
We have proved that [ fdu =0, if and only if u({f > 0} = 0.

9. f being non-negative and measurable, [ fdu is well-defined, by
virtue of definition (43). However, (400)f is also non-negative
and measurable®. So [(+00)fdu is also well-defined. Suppose
that [ fdp = 0. Then, (+o00) [ fdu = 0. From 8. (or 6.), we
have pu({f > 0}) = 0. However, {f > 0} = {(+o00)f > 0}.
So p({(+oc)f > 0}) = 0. Hence, from 8., [(+o0)fdu = 0. It
follows that [(4o00)fdu = (4+00) [ fdu. Suppose [ fdu > 0.

6See exercise (19) of the previous tutorial. (Beware of external links !)

www.probability.net


http://www.probability.net

Solutions to Exercises 47

10.

11.

Then, (+00) [ fdu = +oo. However, from 8., u({f > 0}) > 0.
Let A = {f > 0} = {(+00)f = 4o0}. For all n > 1, we
have nly < (4o00)f. Using 3., 2., and the fact that nly is a
simple function on (€2, F), we see that nu(A4) < [(4o00)fdpu, for
all n > 1. Since u(A) > 0, we have [(+oc0)fdu = +oo. We
conclude that [(+00)fdu = (+00) [ fdu is true in all possible
cases. Looking back at 4., [(cf)dp = ¢ [ fdu is therefore true
for all ¢ € [0, +o0].

If we {f = +oo}, then (+00)l 15—y} (w) = 400 = f(w). If
w & {f = 400}, then (+00)lf—joc}(w) = 0 < f(w). In any
case, (+00)1 -1 o0} (w) < f(w). Using 9. and 2., we have:

+
<

[0t soerdis = (+00) [1(s= ey = (o0l { = +o0})
Suppose [ fdp < +oco. From 10., (400)1{ =40} < f. Using 3.

and 10., we have (+oo)u({f = +oc}) < [ fdu. It follows that
(so0)u({f = +o0}) < +o0. Hence, u({f = +00}) = 0.
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12. If f = 1, then f = 1.1g and [ fdu = I*(f) = p(Q) = +oc.
However, u({f = +oco}) = u(d) = 0. Hence, the converse of 11.
is not true in general.

Exercise 7
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Exercise 8.

1. If s =" | a;14, is a simple function on (2, F), then we have
sla = > a;lana, with a; € R and AN 4; € F. From
definition (40), s14 is indeed a simple function on (€2, F).

2. If s = > | a1y, is a partition of s, from definition (41), we
have @ = W' ;A;. It follows that Q = (W], (AN A4;)) W A
Hence, sl4 = Z?:l @;lana, +0.14c is a partition of s14. From
definition (42), we have:

IH(s1y) Zal,uAﬁA)—i—OuAc Zaz,uAﬁA)

i=1 i=1

3. v(0) = I*(0) = 0. Let (By)r>1 be a sequence of pairwise disjoint
elements of . Let A = W/ 2By. Let s = Y1  a;14, be a
partition of s. For alli = 1,....,n, ANA; = Uzocl(Bk N A;).
1 being a measure on F, we have u(ANA;) = 3725 (BN A;).
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Hence, using 2.:

+oo n +oo
I"(sl4) Za,,u ANA;) ZZaiu(BkﬂAi) :ZI“(slgk)
i=1 k=1i=1 k=1

It follows that v(A) = Z 21 V(Br). We have proved that v is
indeed a measure on F'.

4. From 3., v is a measure on F. If (4,)y,>1 is a sequence of
elements of F, such that A4,, 1 A, using theorem (7), we have
v(A,) T v(A). In other words, I*(sla,) T I*(sla).

Exercise 8

"See definition (9). (Beware of external links !)
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Exercise 9.

1. fn 7 f means that for all w € Q, f,(w) T f(w). In other words,
the sequence (f,,(w))n>1 is non-decreasing and converges to f(w)
in R.

2. The fact that f: (2, F) — (R, B(R)) is measurable, is a conse-
quence of exercise (15), and the fact that f = sup,,~; fn. One
can also apply theorem (17), and argue that as a limit of mea-
surable maps with values in the metrizable space R, f is itself
a measurable map.

3. Let o = sup,,», J frdp. Since f, < fn4q for all n > 1, from ex-
ercise (7), [ fudp < [ fni1dp. Being a non-decreasing sequence
in R, ([ fndp)n>1 converges to its supremum. So [ fndu T c.

4. Since f = sup,,>q fn, for all n > 1, f,, < f. From exercise (7),
[ fadp < [ fdp. 1t follows that [ fdu is an upper-bound of all
[ fadp for n > 1. Since « is the smallest of such upper-bound,
we have a < [ fdp.
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5. From exercise (5), ¢s is itself a simple function on (2, F). From
exercise (2), it is therefore measurable. Hence, given n > 1, both
cs and f, are measurable. It follows that®A,, = {cs < f,} € F.
Let n > 1. Suppose w € A,,. Then, cs(w) < fr(w) < froy1(w).
Sow € A,q1 and A, € Ayyq. Let w € Q. If s(w) = 0, then
w € A, for all n > 1. Suppose s(w) > 0. Then, we have
0 < s(w) < 4o0. Since ¢ €]0,1[, we have cs(w) < s(w). It
follows that cs(w) < f(w) = sup,~; fn(w). Since f(w) is the
smallest upper-bound of all f,,(w) for n > 1, we see that cs(w)
cannot be such upper-bound. There exists n > 1 such that
cs(w) < fn(w). In particular, there exists n > 1, such that
w € A,. Hence, Q) = UZ?&A,“ with A, C A,41, ie. A, T Q.

6. For all n > 1, we have ¢sla, < f,. Hence, using exercise (7),
Jesla,dp < [ fadp. But [esla,dp = c [ sla,dp. From ex-
ercise (8), sla, is a simple function on (92, F). Using exer-
cise (7) once more, [sla,du = I*(sla,). We conclude that

8See exercise (17) of the previous tutorial. (Beware of external links !)
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7.

10.

eIt (sla,) < [ fadp for all n > 1.

From exercise (8), since A, 1 , I*(sla,) T I*(s). In par-
ticular, cI*(sla,) 1 cI*(s)?. From 3., [ fn,dp T o. From 6.,
cI*(sla,) < [ fadp for all n > 1. Taking the limit as n — +o0,
we conclude that c¢I#(s) < a.

Since cI*(s) < « for all ¢ €]0, 1], we have I*(s) < a.

. From 8., « is an upper-bound of all I#(s) for s simple function

on (Q,F), such that s < f. The Lebesgue integral [ fdu being
the smallest of such upper-bound, we have [ fdu < a.

From 4. and 9., we have o = [ fdu. Using 3., we conclude
that [ fndp 1 [ fdp. In other words, ([ fndp)n>1 is a non-
decreasing sequence in [0, +00], converging to [ fdu. The pur-
pose of this exercise is to prove theorem (19).

Exercise 9

91f we had ¢ = 400 and o, = 1/n, then an | 0, but cay, | 0 fails to be true.
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Exercise 10.

1. Given two sequences (ay)n>1 and (6,)n>1 in R converging to
a € R and 8 € R respectively, the fact that ., + 3, — a+ 3 is
known and easy to prove. However, when we allow (v, ),>1 and
(Bn)n>1 to be sequences in R, with limits «, 8 in R, problems
may occur. For a start, the sum «,, 4+ 3, may not be meaningful.
Or indeed, even if «, +/3,, does make sense, it is possible that the
sum « + 3 doesn’t. In the case when (o )p>1 and (Bn)n>1 are
sequences in [0, 400, then all o, +3,,’s and a+ /3 are meaningful.
If both a and § are finite, then a,, + 3,, — a+ 3 stems from the
known real case'. If & = 400 or 3 = +oo, then a + 3 = +oo,
and it is easy to prove that a,, + 3, — +oco. Now, if f, T f
and g, 1 g, then for all w € @, (fo(@))nz1 and (g ())nz1
are non-decreasing sequences in [0, +00] converging to f(w) and
g(w) respectively. So (f,(w)+ gn(w))n>1 is non-decreasing, and
converges to f(w) + g(w), i.e. fun+gn T f+g.

10Both sequences are eventually with values in R.
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2. Let f,g: (2, F) — [0, +00] be two non-negative and measurable
maps. From theorem (18), there exist two sequences (sp)n>1
and (tp)n>1 of simple functions on (2, F), such that s, T f
and t, T g. Hence, s, +t, T f+ ¢g. From the monotone con-
vergence theorem (19), we have [(s, + t,)dp 1 [(f + g)dpu.
From exercise (5), s, + ¢ is a simple function on (Q,F). It
follows from exercise (7) that [(s, + tn)dp = I"(sy, + tp).
Hence, I*(s,, + t,) T [(f + g)dp. Similarly, I*(s,) 1 [ fdu
and I*(t,) T [ gdp. However from exercise (5), we have:

IH(sp +tn) = IT"(8y) + ITH(ty)

Taking the limit as n — 400, we obtain:

/(f+g)du=/fdu+/gdu

3. This is an immediate application of 2. and exercise (7).

Exercise 10
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Exercise 11.

1. Given w € Q, f(w) = 3155 fu(w) is a series of non-negative
terms. It is therefore well-defined and non-negative. Given
n > 1, all fi’s being measurable, the partial sum g, = > _; f&
is itself measurable!!. So f = sup,,~; g» is measurable!?. We
conclude that f = ZI:{ fr is well-defined, non-negative and
measurable.

2. Given n > 1, let g, = >_;_; fx. Since g, T f, from the mono-
tone convergence theorem (19), we have [ g, du 1 [ fdp. How-
ever, from exercise (10), [gndu = > p_; [ fedp. Hence, we
see that the sequence (3"7_, [ frdp)n>1 converges to [ fdu. In
other words, we have [ fdu = 3725 [ frdp.

Exercise 11

1 See exercise (19) of the previous tutorial. (Beware of external links !)
12Gee exercise (15) of the previous tutorial.
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Exercise 12.

1. Let M = {w € Q : P(w) holds}¢. By assumption, M € F.
Suppose that P(w) holds p-almost surely. From definition (44),
there exists N € F such that u(N) = 0 and P(w) holds for all
w € N¢ In particular, N© C M¢ So M C N, and therefore
w(M) < p(N)'. Since u(N) = 0, we see that u(M) = 0.
Conversely, suppose that (M) = 0. From the very definition of
M, for all w € M€, P(w) holds. From definition (44), it follows
that P(w) holds p-almost surely. We have proved that P(w)
holds p-almost surely, if and only if (M) = 0.

2. In all generality, the set {w €  : P(w) holds} may not be an ele-
ment of F. Hence, a notation such as p({w € 2 : P(w) holds}€)
may not be meaningful. It follows that such notation cannot be
used in any criterion defining p-almost sure properties.

Exercise 12

13See exercise (9) of Tutorial 2. (Beware of external links !)
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Exercise 13. Let (Q,F,u) be a measure space and (A,)p>1 be
a sequence of elements of . Define By = A; and for all n > 1,
Bht1 = A1 \(B1U...UB,,). Then (B,),>1 is a sequence of elements
of F, and we claim that U,>14, = W,>18,. Indeed, it is clear
that B,, C A, for all n > 1 and consequently U,>1B, C Up>14,.
Furthermore, if 2 € U,>14,, there exists n > 1 such that x € A,.
The set {n € N :z € A,} is therefore a non-empty subset of N and
has a smallest element, say p > 1. Then z € A, and for all k < p
we have x € Aj. In particular for all k < p, x € Bj. Hence, it is
clear that z € B,. We have proved that U,>14,, C U,>1B, and
finally Up>14, = Up>1D5,. It remains to show that the B,’s are
pairwise disjoint. Suppose n # m and z € B, N B,,. Without loss of
generality, we may assume that n < m. But « € By, implies x € B,
which is a contradiction. So the B,’s are indeed pairwise disjoint.
Having proved that U,>1A4, = W,>1B5,, we conclude from the fact
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that B, C A, implies u(B,) < u(An) 4 and:

Exercise 13

1 Gee exercise (9) of Tutorial 2.
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Exercise 14.

1. From definition (44), the statement f,, T f p-a.s. is formally
translated as follows: there exists N € F such that u(N) = 0,
and for all w € N€¢ we have f,(w) T f(w), i.e. the sequence
(fn(w))n>1 is non-decreasing and converges to f(w).

2. From definition (44), f, — f p-a.s. and f,, < fh41 p-a.s. for all
n > 1, is formally translated as follows: there exist N € F and
a sequence (Ny)p>1 of elements of F, such that p(N) = 0 and
#W(Ny) =0foralln > 1, and for allw € N¢, f,,(w) — f(w), and
givenn > 1 and w € NS, fp(w) < frt1(w).

3. Suppose that f, T f p-a.s., i.e. that statement 1. is satisfied.
Taking N,, = N for all n > 1, it is clear that statement 2. is also
satisfied. Conversely, suppose that statement 2. is satisfied. De-
fine M = N U (U2 N,,). Then M € F, and from exercise (13),
we have u(M) < p(N) + 352 u(N,). So u(M) = 0. More-
over, for allw € M€, it is clear that f,(w) T f(w). It follows that
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fn 1 f pras. is true. We have proved that both statements 1.
and 2. are equivalent. This exercise is pretty important. More
generally, if a condition P(w) is true p-a.s and another condition
Q(w) is true p-a.s., then (P(w) and Q(w)) is also true p-a.s.. In
fact, we have just seen that this factoring of "u-a.s.” is valid for a
countable number of conditions, which is a straightforward ap-
plication of the fact that a countable union of measurable sets
(belonging to F) of p-measure 0, is itself measurable (belonging
to F) of p-measure 0.

Exercise 14
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Exercise 15. Given B € B(R), {fly € B} isequal to {f € BN N
if 0 ¢ B, or equal to ({f € B}NN)UN¢if 0 € B. In any case,
{fly € B} € F and f1ly is therefore non-negative and measurable.
Similarly f1lye is non-negative and measurable. So both integrals
J flndp and [ flyedp are well-defined by virtue of definition (43).
Since f = fln + flne, we have [ fdu = [ flydp+ [ flnedp, from
exercise (10). Similarly, [gdp = [glndp + [ glnedp. However, for
all w € N¢ f(w) = g(w). Tt follows that flye = glye. Moreover,
uw(N) = 0. Since {fly > 0} C N, we see that u({f1x > 0}) = 0.
Hence, from exercise (7), [ flydp = 0. Similarly, [ glydu = 0. We
conclude that:

/fdu=/f1chu=/glchu:/gdu

Exercise 15
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Exercise 16.

1. Given B € B(R), {f1ne € B} is either equal to {f € B} N N¢
or ({f € B} N N°) UN, depending on whether 0 € B or not.
In any case {flyc € B} € F, and f = flye is therefore non-
negative and measurable. Similarly, for all n > 1, f, = fulye
is non-negative and measurable.

2. If w € N¢ then f,(w) = folw) T flw) = f(w). Ifw € N,
then f,(w) = 0 for all n» > 1, and f(w) = 0. In any case,
fn(w) T f(w). We have proved that f, T f.

3. From 2., we have f,, T f. Hence, from the monotone convergence
theorem (19), [ fndu T [ fdu. However, from the very defini-
tion of f and f,, there exists N € F with u(N) = 0, such that
forallw € N¢, f(w) = f(w) and fn(w) = fn(w). In other words,
from definition (44), f = f p-a.s. and f,, = f, p-a.s.. From ex-
ercise (15), it follows that [ fdu = [ fdp and [ fudp = [ fadu
for all n > 1. We conclude that [ fn,du T [ fdu. Although it
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may not appear to be the case, this exercise is very important.
The monotone convergence theorem (19) states that whenever
fn 1 f,wehave [ fodp 7 [ fdp. In this exercise, we proved that
in fact, a weaker condition of f,, T f p-a.s. is sufficient to ensure
that [ fodu 1 [ fdp. We obtained that result with a standard
technique of cleaning up our functions f and f,,’s, to ensure that
fn T f everywhere, as opposed to p-a.s.. It is important to be
familiar with this technique. In my experience, theorems with
almost sure conditions are confusing to students, and are an en-
couragement to poor rigor and sloppy reasoning'®. Hence, most
theorems in these tutorials, at least in the early stages, will be
stated with everywhere conditions. So you may need to clean
up your assumptions again in the future. ..

Exercise 16

15Particularly when dealing with questions of measurability in a non-complete
measure space.
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Exercise 17.

1. Since g, = infy>p fi, gn is a countable infimum of measur-
able maps. It is therefore measurable'®, and is obviously non-
negative.

2. Let w € Qand n > 1. For all k& > n, we have g,(w) <
fr(w). In particular, g,(w) is a lower-bound of all fx(w) for
k >mn+ 1. Since gpy1(w) is the greatest of such lower-bound,
we have gp(w) < gn41(w). It follows that (g (w))n>1 is a non-
decreasing sequence in R, which therefore converges to its supre-
mum. Hence, g, T sup,,~; g» = liminf f,,'7.

3. For all n > 1, we have g, < f,. From exercise (7), it follows
that [ gndp < [ fadp.

4. Let (un)n>1 and (vy)n>1 be two sequences in R with u, < v,
for all n > 1. For all k& > n, we have inf>, up < up < vy

16See exercise (15) of the previous tutorial. (Beware of external links !)
17 See definition (36) of the previous tutorial.
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Hence, infy>, ui is a lower-bound of all v;’s for £ > n. It
follows that infyp>, up < infr>, vr. Hence, for all n > 1, we
have infy>, u < sup,,>; infy>y, v = liminf v,. In other words,
lim inf v,, is an upper—b_ound of all infr>,, uy for n > 1. It follows
that sup,,~; infy>1 up <liminfw,, ie. liminfw, <liminfu,.

5. liminf f,, is measurable'®, and is obviously non-negative. The
integral [(liminf f,,)du is therefore well-defined by virtue of def-
inition (43). The same can be said of [ f,du for all n > 1. From
3., we have [ gndp < [ fnodp, for all n > 1. It follows from 4.
that:

limJirnf gndp glimjnf/fndu (8)
However, from 2., g, T liminf f,,. From the monotone conver-
gence theorem (19), [ gndp 1 [(liminf f,,)du. In particular, the
sequence ([ gndp)n>1 converges to [(liminf f,)du. It follows

18See exercise (18) of the previous tutorial. (Beware of external links !)
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from theorem (16), that:

liminf [ g.dp = /(hm inf f,)dp 9)

n—-+o0o “+o0

Comparing (8) with (9), we conclude that:

/(hm inf f,)du < hm mf/fnd,u

n—-+oo

The purpose of this exercise is to prove Fatou lemma (20).

Exercise 17
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Exercise 18.

1. Fla={ANB: B € F} is the trace on A of the o-algebra F'?,
which is a o-algebra on A?°. Since A € F, Fla € F. Ttis
therefore meaningful to define j4 as the restriction of p to
F|a, which is a measure?! on Fla. It is important that we
have A € F, since otherwise, p4 would not be meaningful.
Let B € B(R). fja being the restriction of f to A, we have
(fia) '(B) ={x € A: f(x) € B} = An f~!(B). Since f is
measurable, f~1(B) € F. It follows that (fj4)~'(B) € Fj4. We
have proved that fi4 : (A, Fj4) — [0, 40c] is measurable.

2. Let (Ep)n>1 be a sequence of pairwise disjoint elements of F.
Let E = W E,. Then, ANE = W!>(ANE,). ubeing a
measure on F, (AN E) = 37 (AN E,). It follows that
pA(E) = S5 yA(B,). Tt is clear that pA(0) = 0. We have

19See definition (22). (Beware of external links !)

208ee exercise (15) of Tutorial 3.
21See definition (9).
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proved that p# is a measure on F. (Q,F,u?) is therefore a
measure space?2.

3. Consider the following equality:

Jrdn= [ saut = [(fapdua (10)

J(f1a)dp is an integral defined on (92, F,p). The map being
integrated is f14 which is non-negative and measurable. The
integral is therefore well-defined. [ fdu? is an integral defined
on (9, F,u?). The map being integrated is f which is non-
negative and measurable. The integral is therefore well-defined.
J(fia)dua is an integral defined on (A, Fja,pa). The map
being integrated is the restriction f|4 which is non-negative and
measurable with respect to F|4. The integral is therefore well-
defined. At this stage, we do not know whether equation (10)
is true, but at least, all its terms are meaningful. ..

22See definition (19). (Beware of external links !)
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4. Suppose that equation (10) is true, whenever f is a simple func-
tion on (€, F). Suppose that f is an arbitrary non-negative and
measurable map. From theorem (18), f can be approximated
by a non-decreasing sequence of simple functions on (2, F). In
other words, there exists a sequence (s, ),>1 of simple functions
on (Q,F), such that s, T f. In particular, s,1a4 T fla and
(sn)ja T fla. Having assumed that equation (10) is true for all
simple functions on (2, F), for all n > 1, we have:

Jntydn= [sudut = [adua (1)

From the monotone convergence theorem (19), taking the limit
asn — +ooin (11) , we obtain equation (10). We conclude that
in order to prove equation (10), it is sufficient to consider the
case when f is a simple function on (2, F).

5. Suppose that equation (10) is true whenever f is of the form
f=1p,for Be F. Let s =) " a;la, be asimple function on
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(2, F). Then, sla=3", oi(14,14) and sa=>_7" 1 i(1la,)a-
Using the linearity of the integral proved in exercise (10):

/slAdu = Zai/lAilAd,u (12)
=1

[sdut =30 [ 1adt (13)
=1

/S\AdMA = Z@z‘/(lAi)mdu\A (14)
1=1

Having assumed that equation (10) is true for all measurable
characteristic functions, for all ¢ = 1,...,n, we have:

/1A¢1Ad/$:/1Aid:uA =/(1Ai)|Ad/i\A (15)

We conclude from (12), (13), (14) and (15) that equation (10) is
true for all simple functions s on (£2, F). Using, 4., equation (10)

www.probability.net


http://www.probability.net

Solutions to Exercises 72

is therefore true for any non-negative and measurable map f.
Hence, in order to prove equation (10), it is sufficient to consider
the case when f is of the form f=1p for B € F.

6. Suppose f is of the form f = 1p with B € F. Then, we have
fla = lang, and [ fladp = p(A N B). Moreover, we have
[ fdu? = pA(B) = n(AN B). Finally, since?® (15)ja = 1%,
we have [(1p)jadpa = pa(ANB) = u(AN B). We conclude
that equation (10) is true for f. From 5., it follows that equa-
tion (10) is true for all non-negative and measurable maps. The
purpose of this exercise is to justify definition (45). The tech-
niques used in this exercise will be used over and over again in
the future. Very often, when an equality between integrals has
to be proved, one starts by verifying such equality for charac-
teristic functions. By linearity, the equality can be extended

23We write 1% ~p as opposed to 1anp to emphasize the fact that it is the
characteristic function of A N B, viewed as a subset of A. In other words, it is a
map defined on A, not Q...
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to all simple functions. Using theorem (18) and the monotone
convergence theorem (19), it can then be proved to be true for
all non-negative and measurable maps.

Exercise 18
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Exercise 19.

1. Let (A,)n>1 be a sequence of pairwise disjoint elements of F.
Let A = W/ A,. Then, 14 = ::1 14, , and consequently
fla = S0% fla,. Hence, [ fladp = S22 [ fla,du, as
proved in exercise (11). It follows that v(A) = Zn 1V(Ay). Tt
is clear that v(0) = [ flpdp = 0. We conclude that v is indeed
a measure on F.

2. Suppose g is of the form g = 15 with B € F. Then, we have
Jgdv = v(B) = [; fdu = [ flpdp = [ fgdp. By linearity,
it follows that [gdv = [gfdu is true whenever g is a sim-
ple function on (2, F). If g is an arbitrary non-negative and
measurable map, from theorem (18), there exists a sequence
(Sn)n>1 of simple functions in (92, ), such that s, 7 g. From
J $ndv = [ s, fdp and the monotone convergence theorem (19),
taking the limit as n — 400, we conclude that [ gdv = [ gfdp.

Exercise 19
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Exercise 20.

1. |f] is non-negative and measurable. The integral [ |f|du is
therefore well-defined.

2. if f is real-valued, and measurable with respect to B(C), then
it is also measurable with respect to B(R), since B(R) C B(C).
We have not proved this inclusion before. Here is one way of
doing it: the usual metric on R is the metric induced by the
usual metric on C. From theorem (12), 7r = (7¢) g, i.e. the
usual topology on R is induced from the usual topology on C.
From the trace theorem (10), it follows that B(R) = B(C)r,
i.e. that the Borel o-algebra on R is the trace on R, of the Borel
o-algebra on C. In particular, since R € B(C) (it is closed in
C), we have B(R) C B(C).

3. If f is measurable with respect to B(R), then it is also measur-
able with respect to B(C). Indeed, given B € B(C), we have
BN R € B(R) and therefore, f~}(B) = f~Y(BNR) € F. It
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follows that Lk (Q, F, u) € LE(Q, F, w).

4. If f € LR (Q,F, ), then it is real-valued, and from 3., it is also
an element of L (Q,F,pn). Conversely, if f is real-valued and
belongs to L(2, F, 1), then from 2., it is also measurable with
respect to B(R), and therefore lies in Ly (2, F, ). We have
proved that Lk (Q,F,pu) = {f € L&(Q, F,u) : f(Q) CR}.

5. Let f,g € L(Q,F,u) and a,3 € R. Then af + B¢ is mea-
surable?*. Moreover, since |af + Bg| < |a|lf| + |8l|gl, from
exercise (7), and by linearity, we have:

[ 1+ Baldn < ol [ 1fidu+15) [ loldu < +o0
We conclude that af + 3g € L (2, F, u).
6. Let f,g € L§(Q, F,p) and o, 3 € C. Then, af + (g is mea-

24See exercise (19) of the previous tutorials. (Beware of external links !)
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surable®>. Moreover, since |af + Bg| < |a|lf| + |8l|gl, from
exercise (7), and by linearity, we have:

[l + sidu < ol [ 1fldu+ 15 [ loldu < +o0
We conclude that af + g € LE(Q, F, w).

Exercise 20

25Both the real and imaginary parts of af + 8¢ are measurable. Conclude with
exercise (25) of the previous tutorial. (Beware of external links !)
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Exercise 21.

1. um —u~ = max(u,0) — max(—u,0) = max(u,0) + min(u, 0).
Hence, u™ —u~ = u + 0 = u, and similarly, v* — v~ = v
Finally, we have f = u+iv =ut —u™ +i(vT —v7).

2. Let w € Q. If u(w) > 0, then vt (w) = u(w) and v~ (w) = 0.

If u(w) < 0, then v (w) = 0 and v~ (w) = —u(w). In any
case, uT (W) + u~ (w) = |u|(w). So |u| = uT +u~, and similarly
[v] = vt + 0.

3. f being measurable, |f|, u and v are also measurable®. It fol-
lows that |u| and |v| are also measurable. From 1. and 2., we
have u™ = (Ju| + u)/2 and v~ = (Ju| — u)/2. So ¥, v~ and
similarly v*, v~ are measurable. Moreover, u*, u~, v*, v,

|7, w, v, Ju| and |v| are all maps with values in R. Finally, we

have ™, u™ < |u| < |f|, and consequently, using exercise (7),

Ju=dp < [l|uldp < [|fldp < +oo. It follows that u~ (and

26See exercise (24) of the previous tutorial. (Beware of external links !)
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ut since [utdup < +00), u, |u| and |f| are all elements of
L (Q,F,p). Similarly, v=, v, v, |v] also lie in Lk (2, F, p).

4. wt, u™, vT and v~ are all non-negative and measurable. Their
integrals [wdy, [w dp, [vtdp and [v~dp are therefore
well-defined.

5. [ fdp= [utdp— [u dp+i([vtdp— [ v dp). Each integral
Jutdp, [uwdu, [vtdp and [v~dp, is not only well-defined,
but is also finite, i.e. lie in RT. It follows that [ fdu is a
well-defined complex number.

6. In the case when f € L§(2, F, p) is such that f(Q) C RT, then
J fdp is potentially ambiguous. On the one hand, f being non-
negative and measurable, [ fdu is defined by virtue of defini-
tion (43). On the other hand, f being an element of L& (Q, F, p1),
J fdp = [utdp— [udp+i([vTdu— [v™du). However, since
f has value in R™, f = u* and u= = v" = v~ = 0. it follows
that the two definitions of [ fdu coincide.
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7. From 3., u,v € LL(Q,F,pu) C LE(Q, F,p). It follows that
Judp and [ vdp are well-defined, as [udp = [utdp— [u=dp
and [vdp = [vtdp — [v=dp. So [ fdp= [udp+i [vdp.

Exercise 21
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Exercise 22.

1. Let B € B(C). Tf0 € B, then (f14)1(B) = (ANf~1(B))w A°.
If 0 ¢ B, then (f14)"1(B) = AN f~Y(B). In any case, since
f is measurable and A € F, we have (f14)"%(B) € F. It
follows that f14 is measurable. From |f14] = |f|la < |f], we
have [ |flaldu < [|f|du < +00. We conclude that f14 is an
element of L&(Q, F, ).

2. From definition (45), ['|fldu® = [, |fldp = [|f1adp < +oo.
f being complex valued and measurable, f € LL(Q, F, u?).

3. Let B € B(C). Then, (fla) '(B) =An fYB) € Fja. It fol-
lows that fi4 : (A,F4) — (C,B(C)) is measurable. Moreover,
using definition (45):

/|f|A|dM|A=/\f|\Adu|A=/A\f|du=/\f|1Adu<+OO
We conclude that fi4 € Llc(A,]-"A,,uM).
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4. Since fla € LE(Q,F,u), [ fladu is well-defined by virtue of
definition (48). We have:

/flAdu:/qﬁlAd,u—/u*lAd,u—l—i </v+1Ad,u —/led,u>

Since f € L§(Q, F,u?), [ fdu? is well-defined, and:

/fd,qu/quduA —/u_duA +1 </v+du‘4 —/v_d,uA>

Since fla € Lg(A, Fia, ma), [ fiadpa is well-defined, and:

/f\AdMA:/ur;‘dMA_/u‘;ldMA"‘i </v|t\d/$A —/UAdM|A>

Using definition (45), [ut1ady = [utdu? = fu‘t‘du‘A, with
similar expressions involving u~, v and v~. We conclude that

[ Fladp = [ fdp? = [ fladpa.
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5. From:

/flAdu:/u+lAd,u—/u*1Ad,u+i (/v+1Adu —/led,u>

and definition (45), we have:

/flAd,uz/u+du—/u7d,u+i </U+du—/vdu)
A A A A

Exercise 22
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Exercise 23.

1. rom h=h" —h™, f = fT — f~ and g = g" — g, we obtain
that ht + f~ 4+ g~ = h™ + fT + g*. By linearity, proved in
exercise (10), we conclude that:

/hﬂi,u—l—/f‘du-l—/g‘du :/h_du+/f+du+/g+du (16)

2. Since f, g and h belong to Lk (2, F, i), all six integrals in equa-
tion (16) are finite. It follows that equation (16) can be re-
arranged as:

[nan —/h’du —[#rau- [1du [gtan [ an

From definition (48), we conclude that:

/hdu /fdu+/gdu (17)
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3. From definition (47), (—f)T = f~ and (—f)~ = f*. Tt follows
from definition (48) that:

Jepin= [ au- [ rran== [ )

4. Suppose a € RT. Then, (af)™ = af and (af)” = af ™.
From definition (48), and by linearity proved in exercise (10)
for non-negative maps and a > 0, we have:

J@nan= [artau- [ardu=afsan (o)

If @ < 0, applying equation (19) to (—«)f and then using equa-
tion (18), we see that:

[tann=a | sau (20)

We conclude that equation (20) is satisfied for all a € R.
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5. If f < g, then fT + g~ < f~ + g*. From exercise (7) and by
linearity for non-negative maps, we obtain:

/f*dqu/g*duS /f’dqu/g*du

All integrals being finite, this can be re-arranged as:

[eau- [1ans [gtau- [ g an

We conclude that [ fdu < [ gdp. This is an extension of exer-
cise (7) (3.) to the case when f,g € L5 (2, F, u).

6. Proving theorem (22) may be seen as an immediate consequence
of equations (17) and (20). In fact, these equalities have only
been established for o € R, and f,g € L (Q, F, ). Hence, a
little more work is required. Suppose that f,g € L&(Q,F, ).
Let us write f = u + iv, and g = u' 4 #v'. From exercise (21),
all maps u, v, v/ and v’ are elements of Li(2, F,u). It fol-
lows from equation (17) that [(u + u')dp = fudu + [u'dp
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and f (v + v)dp = [wvdp + [v'dp. However, also from ex-
ercise (21), [ fdp = [udp + i [vdp, with similar equalities,
fgdu = fu’d,u +i [ v'dp and:

/(f+g)dﬂ:/(U—Fu/)du—ki/(v—kv')du

We conclude that [(f+g¢)dp = [ fdu+ [ gdu, and equation (17)
is therefore satisfied for f,g € L&(Q, F,u). Furthermore, if
a € R, Then af = (au)+i(aw), with au and aw in L (Q, F, p).
It follows from equation (20) that we have [(ou)dp = o [udp
and [(ow)dp = o [vdp. However, again from exercise (21),
J(af)dp = [(au)dp + i [(av)du. Hence, [(af)dp = o[ fdu,
and equation (20) is true for a € R, and f € L§(Q,F,pn). If
o =1, then af = —v + iu and therefore:

/(af)d,uz—/Udﬂ—ki/uduz@/fdu
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Finally, if a = x 4+ iy € C, with z,y € R, we have:

J@iu= [@pin+ [

with [(zf)dp =z [ fdp, and furthermore:

/(iyf)du = i/(yf)du = iy/fdu

We conclude that [(af)dy = o[ fdu, and equation (20) is
therefore satisfied for all @ € C, and f € LE(Q,F,p). This
completes the proof of theorem (22).

Exercise 23
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Exercise 24.

1. Let n > 1. By assumption, f, is C-valued and measurable.
Moreover, since 0 < |f,| < g and g € L (Q, F, p):

/\fn\duﬁ/gdu<—|—oo

It follows that f, € L&(Q,F,u). Given w € €, the sequence
(fn(w))n>1 converges to f(w) in C. This excludes possible limits
like 400 or —co. So f is C-valued. As a limit of measurable
maps with values in a metrizable space, f is itself a measurable
map?”’. Finally, since |f,(w)| < g(w) for all n > 1 and w € Q,
taking the limit as n — 400, we see that |f(w)| < g(w), and

consequently:
/\fldu < /gdu < 400

We conclude that f € L&(Q, F, u).

27See theorem (17). (Beware of external links !)
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2. Given n > 1, since f, f, € L&(Q, F, 1), fn — f is also an el-
ement of L&(Q, F,u). So |fn — f| € Lx(Q,F,pn), and since
g € Lx(Q,F,pn), we have h, = 29 — |fn — f| € Li(Q, F, ).
In particular, h, is a measurable map. Moreover, we have
[fn = f] < 1fal + |f] < 2¢g, and consequently h, > 0. It fol-
lows that (h,)n>1 is a sequence of non-negative and measurable
maps. We conclude that Fatou lemma (20) can legitimately be
applied to it.

3. Let (un)n>1 be asequence in R. Givenn > 1 and k > n, we have
infr>n (—ug) < —uk, and consequently uy < —infy>, (—ug). It
follows that supys,, ur < —infx>, (—ug). In particular:

lim sup u,, = mf (sup uk> <supug < — mf( k)
n—-+o00 21 \k>n k>n

or equivalently, infy>,(—u;) < —limsupu,. It follows that
—limsupu,, is an upper-bound of all infy>, (—uy), for n > 1.
lim inf(—u,) being the smallest of such upper-bound, we con-
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clude that lim inf(—u,) < —limsupu,. Givenn > 1 and k > n,
we have uy, < supys,, ug, and consequently —supy,, ur < —ug.
It follows that — supy>,, ur < infg>n (—ug). In particular:

—sup u, < mf( ug) < sup (inf (—uk)) = liminf(—uy)
k>n n>1 \k=n n—+00
or equivalently —liminf(—u,) < supys, up. It follows that
—liminf(—u,) is a lower-bound of all supys,, ug, for n > 1.
lim sup u,, being the greatest of such lower-bound, we conclude
that — lim inf(—w,) < limsup u,. We have proved that:
liminf(—u,) = — limsup u,
n—-+oo n—-+00
4. Since a € R, for all n > 1, the sum 'a+wu,,’ is always meaningful
in R. The sum ’a+lim 1nf Uy, is also meaningful in R. Let n > 1
and £ > n. We have infy>, (o + up) < o+ uy. Since a € R,
this inequality can be re-arranged as —a +infi>, (a0 +ug) < up.
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It follows that:

—a+ 1nf (a +ug) < 1nf ug < sup (inf uk) = liminf u,,
n>1 \k=n n—+o00
Re-arranging this inequality, we see that « + liminfw, is an
upper-bound of all infy >, (a+uy) for n > 1. Since lim inf(a+u,,)
is the smallest of such upper-bound, we conclude that we have
liminf(a + up,) < « + liminf w,. Similarly:
liminf w, = liminf(—a + o+ u,) < —a+ liminf(a + uy,)

n—-+oo n—-+oo n—-+oo
We have proved that for all a € R:

liminf(a 4+ u,) = a + liminf u,

n—-+o0o n—-+o0o

5. Suppose that u, — 0 as n — +o0o. Then |u,| — 0 and con-
sequently, using theorem (16), liminf |u,| = limsup |u,| = 0.
Conversely, if limsup |u,| = 0, then:

0< hmlnf || < limsup |u,| =0
n—-4o0o
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Hence, we see that liminf |u,| = limsup |u,| = 0. From theo-
rem (16), we conclude that (|u,|)n>1 converges to 0. We have
proved that u, — 0, if and only if lim sup |u,| = 0.

6. Let h,, be defined as in 2. Since f,, — f, we have h,, — 2¢g. In
particular, liminf h,, = 2¢g. Applying Fatou lemma (20) to the
sequence (hy)n>1, we obtain:

[Corin < timint [ (29~ 15, - )i

By linearity proved in theorem (22):

/(2g)du < lim inf (/(2g)du - / | fn — fdu)

Since g € L{ (Q, F, 1), [(2g)dp € R. From 4.:

/(2g)du < /(2g)du + lim inf <— / | fn — fldu>
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Finally, using 3., we obtain:
Jeoin< [eoau-tmsw [1g - e 20)
7. Since [(2g)dp € R, inequality (21) can be simplified as:

O<—hmsup/\fn fldu

n—-+4oo
from which we conclude that limsup [ |f, — f|du = 0.
8. It follows from 5. and 7. that [|f, — fldu — 0, as n — +o0.
The purpose of this exercise is to prove theorem (23). Called the
Dominated Convergence Theorem, this theorem is one of the cor-

ner stones of the Lebesgue integration theory, together with the
Monotone Convergence Theorem (19), and Fatou Lemma (20).

Exercise 24
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Exercise 25.

1.

Since f € L&(,F,u) and a € C, af € L5(Q,F,pn). From
exercise (21), it follows that u = Re(af) € LR (2, F, p).

. We have u = Re(af) < |Re(af)| < |af| = |f|.
. We have | [ fdu| = |z| = az = a [ fdu= [(af)dp.

From 3., [(af)du € R. However, from exercise (21), we have:

/(af)du:/Re(af)d,u—l-i/fm(af)du
It follows that [(af)dp = [ Re(af)dp = [ udp.

. From 3. and 4., we have | [ fdu| = [ udp. However, from 2., we

have u < | f|. From exercise (23) (5.), [udu < [|f|dp. Finally,
we conclude that | [ fdu| < [|f|du. This proves theorem (24).

Exercise 25
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