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18. The Jacobian Formula
In the following, K denotes R or C.

Definition 125 We call K-normed space, an ordered pair (E,N),
where E is a K-vector space, and N : E → R+ is a norm on E.

See definition (89) for vector space, and definition (95) for norm.

Exercise 1. Let 〈·, ·〉 be an inner-product on a K-vector space H.

1. Show that ‖ · ‖ =
√
〈·, ·〉 is a norm on H.

2. Show that (H, ‖ · ‖) is a K-normed space.

Exercise 2. Let (E, ‖ · ‖) be a K-normed space:

1. Show that d(x, y) = ‖x− y‖ defines a metric on E.

2. Show that for all x, y ∈ E, we have | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.
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Definition 126 Let (E, ‖ · ‖) be a K-normed space, and d be the
metric defined by d(x, y) = ‖x− y‖. We call norm topology on E,
denoted T‖·‖, the topology on E associated with d.

Note that this definition is consistent with definition (82) of the norm
topology associated with an inner-product.

Exercise 3. Let E,F be two K-normed spaces, and l : E → F be a
linear map. Show that the following are equivalent:

(i) l is continuous (w.r. to the norm topologies)
(ii) l is continuous at x = 0.

(iii) ∃K ∈ R+ , ∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
(iv) sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

Definition 127 Let E, F be K-normed spaces. The K-vector space
of all continuous linear maps l : E → F is denoted LK(E,F ).
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Exercise 4. Show that LK(E,F ) is indeed a K-vector space.

Exercise 5. Let E,F be K-normed spaces. Given l ∈ LK(E,F ), let:

‖l‖ �
= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

1. Show that:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

2. Show that:

‖l‖ = sup
{
‖l(x)‖
‖x‖ : x ∈ E , x �= 0

}

3. Show that ‖l(x)‖ ≤ ‖l‖.‖x‖, for all x ∈ E.

4. Show that ‖l‖ is the smallest K ∈ R+, such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖

5. Show that l → ‖l‖ is a norm on LK(E,F ).
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6. Show that (LK(E,F ), ‖ · ‖) is a K-normed space.

Definition 128 Let E,F be R-normed spaces and U be an open
subset of E. We say that a map φ : U → F is differentiable at
some a ∈ U , if and only if there exists l ∈ LR(E,F ) such that, for all
ε > 0, there exists δ > 0, such that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h) − φ(a) − l(h)‖ ≤ ε‖h‖

Exercise 6. Let E,F be two R-normed spaces, and U be open in E.
Let φ : U → F be a map and a ∈ U .

1. Suppose that φ : U → F is differentiable at a ∈ U , and that
l1, l2 ∈ LR(E,F ) satisfy the requirement of definition (128).
Show that for all ε > 0, there exists δ > 0 such that:

∀h ∈ E , ‖h‖ ≤ δ ⇒ ‖l1(h) − l2(h)‖ ≤ ε‖h‖
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2. Conclude that ‖l1 − l2‖ = 0 and finally that l1 = l2.

Definition 129 Let E,F be R-normed spaces and U be an open
subset of E. Let φ : U → F be a map and a ∈ U . If φ is differentiable
at a, we call differential of φ at a, the unique element of LR(E,F ),
denoted dφ(a), satisfying the requirement of definition (128). If φ is
differentiable at all points of U , the map dφ : U → LR(E,F ) is also
called the differential of φ.

Definition 130 Let E,F be R-normed spaces and U be an open
subset of E. A map φ : U → F is said to be of class C1, if and only
if dφ(a) exists for all a ∈ U , and the differential dφ : U → LR(E,F )
is a continuous map.

Exercise 7. Let E,F be two R-normed spaces and U be open in E.
Let φ : U → F be a map, and a ∈ U .
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1. Show that φ differentiable at a ⇒ φ continuous at a.

2. If φ is of class C1, explain with respect to which topologies the
differential dφ : U → LR(E,F ) is said to be continuous.

3. Show that if φ is of class C1, then φ is continuous.

4. Suppose that E = R. Show that for all a ∈ U , φ is differentiable
at a ∈ U , if and only if the derivative:

φ′(a)
�
= lim

t�=0,t→0

φ(a+ t) − φ(a)
t

exists in F , in which case dφ(a) ∈ LR(R, F ) is given by:

∀t ∈ R , dφ(a)(t) = t.φ′(a)

In particular, φ′(a) = dφ(a)(1).

Exercise 8. Let E,F,G be three R-normed spaces. Let U be open
in E and V be open in F . Let φ : U → F and ψ : V → G be two maps
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such that φ(U) ⊆ V . We assume that φ is differentiable at a ∈ U ,
and we put:

l1
�
= dφ(a) ∈ LR(E,F )

We assume that ψ is differentiable at φ(a) ∈ V , and we put:

l2
�
= dψ(φ(a)) ∈ LR(F,G)

1. Explain why ψ ◦ φ : U → G is a well-defined map.

2. Given ε > 0, show the existence of η > 0 such that:

η(η + ‖l1‖ + ‖l2‖) ≤ ε

3. Show the existence of δ2 > 0 such that for all h2 ∈ F with
‖h2‖ ≤ δ2, we have φ(a) + h2 ∈ V and:

‖ψ(φ(a) + h2) − ψ ◦ φ(a) − l2(h2)‖ ≤ η‖h2‖

4. Show that if h2 ∈ F and ‖h2‖ ≤ δ2, then for all h ∈ E, we have:

‖ψ(φ(a)+h2)−ψ ◦φ(a)− l2 ◦ l1(h)‖ ≤ η‖h2‖+‖l2‖.‖h2− l1(h)‖
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5. Show the existence of δ > 0 such that for all h ∈ E with ‖h‖ ≤ δ,
we have a+h ∈ U and ‖φ(a+h)−φ(a)−l1(h)‖ ≤ η‖h‖, together
with ‖φ(a+ h) − φ(a)‖ ≤ δ2.

6. Show that if h ∈ E is such that ‖h‖ ≤ δ, then a+ h ∈ U and:

‖ψ ◦ φ(a+h)−ψ ◦ φ(a)−l2 ◦ l1(h)‖≤η‖φ(a+h)−φ(a)‖+η‖l2‖.‖h‖
≤ η(η + ‖l1‖ + ‖l2‖)‖h‖
≤ ε‖h‖

7. Show that l2 ◦ l1 ∈ LR(E,G)

8. Conclude with the following:
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Theorem 110 Let E,F,G be three R-normed spaces, U be open in
E and V be open in F . Let φ : U → F and ψ : V → G be two maps
such that φ(U) ⊆ V . Let a ∈ U . Then, if φ is differentiable at a ∈ U ,
and ψ is differentiable at φ(a) ∈ V , then ψ ◦ φ is differentiable at
a ∈ U , and furthermore:

d(ψ ◦ φ)(a) = dψ(φ(a)) ◦ dφ(a)

Exercise 9. Let (Ω′, T ′) and (Ω, T ) be two topological spaces, and
A ⊆ P(Ω) be a set of subsets of Ω generating the topology T , i.e.
such that T = T (A) as defined in (55). Let f : Ω′ → Ω be a map,
and define:

U �
= {A ⊆ Ω : f−1(A) ∈ T ′}

1. Show that U is a topology on Ω.

2. Show that f : (Ω′, T ′) → (Ω, T ) is continuous, if and only if:

∀A ∈ A , f−1(A) ∈ T ′
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Exercise 10. Let (Ω′, T ′) be a topological space, and (Ωi, Ti)i∈I be
a family of topological spaces, indexed by a non-empty set I. Let Ω
be the Cartesian product Ω = Πi∈IΩi and T = �i∈ITi be the product
topology on Ω. Let (fi)i∈I be a family of maps fi : Ω′ → Ωi indexed
by I, and let f : Ω′ → Ω be the map defined by f(ω) = (fi(ω))i∈I for
all ω ∈ Ω′. Let pi : Ω → Ωi be the canonical projection mapping.

1. Show that pi : (Ω, T ) → (Ωi, Ti) is continuous for all i ∈ I.

2. Show that f : (Ω′, T ′) → (Ω, T ) is continuous, if and only if
each coordinate mapping fi : (Ω′, T ′) → (Ωi, Ti) is continuous.

Exercise 11. Let E,F,G be three R-normed spaces. Let U be open
in E and V be open in F . Let φ : U → F and ψ : V → G be two
maps of class C1 such that φ(U) ⊆ V .

1. For all (l1, l2) ∈ LR(F,G) × LR(E,F ), we define:

N1(l1, l2)
�
= ‖l1‖ + ‖l2‖
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N2(l1, l2)
�
=

√
‖l1‖2 + ‖l2‖2

N∞(l1, l2)
�
= max(‖l1‖, ‖l2‖)

Show that N1, N2, N∞ are all norms on LR(F,G) × LR(E,F ).

2. Show they induce the product topology on LR(F,G)×LR(E,F ).

3. We define the map H : LR(F,G) × LR(E,F ) → LR(E,G) by:

∀(l1, l2) ∈ LR(F,G) × LR(E,F ) , H(l1, l2)
�= l1 ◦ l2

Show that ‖H(l1, l2)‖ ≤ ‖l1‖.‖l2‖, for all l1, l2.

4. Show that H is continuous.

5. We define K : U → LR(F,G) × LR(E,F ) by:

∀a ∈ U , K(a)
�
= (dψ(φ(a)), dφ(a))

Show that K is continuous.
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6. Show that ψ ◦ φ is differentiable on U .

7. Show that d(ψ ◦ φ) = H ◦K.

8. Conclude with the following:

Theorem 111 Let E,F,G be three R-normed spaces, U be open in
E and V be open in F . Let φ : U → F and ψ : V → G be two maps
of class C1 such that φ(U) ⊆ V . Then, ψ ◦ φ : U → G is of class C1.

Exercise 12. Let E be an R-normed space. Let a, b ∈ R, a < b.
Let f : [a, b] → E and g : [a, b] → R be two continuous maps which
are differentiable at every point of ]a, b[. We assume that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

1. Given ε > 0, we define φε : [a, b] → R by:

φε(t)
�
= ‖f(t) − f(a)‖ − g(t) + g(a) − ε(t− a)
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for all t ∈ [a, b]. Show that φε is continuous.

2. Define Eε = {t ∈ [a, b] : φε(t) ≤ ε}, and c = supEε. Show that:

c ∈ [a, b] and φε(c) ≤ ε

3. Show the existence of h > 0, such that:

∀t ∈ [a, a+ h[∩[a, b] , φε(t) ≤ ε

4. Show that c ∈]a, b].

5. Suppose that c ∈]a, b[. Show the existence of t0 ∈]c, b] such that:∥∥∥∥f(t0) − f(c)
t0 − c

∥∥∥∥ ≤ ‖f ′(c)‖ + ε/2 and g′(c) ≤ g(t0) − g(c)
t0 − c

+ ε/2

6. Show that ‖f(t0) − f(c)‖ ≤ g(t0) − g(c) + ε(t0 − c).

7. Show that ‖f(c) − f(a)‖ ≤ g(c) − g(a) + ε(c− a) + ε.

8. Show that ‖f(t0) − f(a)‖ ≤ g(t0) − g(a) + ε(t0 − a) + ε.
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9. Show that c ∈]a, b[ leads to a contradiction.

10. Show that ‖f(b)− f(a)‖ ≤ g(b) − g(a) + ε(b− a) + ε.

11. Conclude with the following:

Theorem 112 Let E be an R-normed space. Let a, b ∈ R, a < b.
Let f : [a, b] → E and g : [a, b] → R be two continuous maps which
are differentiable at every point of ]a, b[, and such that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

Then:
‖f(b)− f(a)‖ ≤ g(b) − g(a)
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Definition 131 Let n ≥ 1 and U be open in Rn. Let φ : U → E
be a map, where E is an R-normed space. For all i = 1, . . . , n, we
say that φ has an ith partial derivative at a ∈ U , if and only if the
limit:

∂φ

∂xi
(a)

�
= lim
h �=0,h→0

φ(a+ hei) − φ(a)
h

exists in E, where (e1, . . . , en) is the canonical basis of Rn.

Exercise 13. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space.

1. Suppose φ is differentiable at a ∈ U . Show that for all i ∈ Nn:

lim
h �=0,h→0

1
‖hei‖

‖φ(a+ hei) − φ(a) − dφ(a)(hei)‖ = 0

2. Show that for all i ∈ Nn, ∂φ
∂xi

(a) exists, and:

∂φ

∂xi
(a) = dφ(a)(ei)
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3. Conclude with the following:

Theorem 113 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. Then, if φ is differentiable at
a ∈ U , for all i = 1, . . . , n, ∂φ

∂xi
(a) exists and we have:

∀h �
= (h1, . . . , hn) ∈ Rn , dφ(a)(h) =

n∑
i=1

∂φ

∂xi
(a)hi

Exercise 14. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space.

1. Show that if φ is differentiable at a, b ∈ U , then for all i ∈ Nn:∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥ ≤ ‖dφ(b) − dφ(a)‖
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2. Conclude that if φ is of class C1 on U , then ∂φ
∂xi

exists and is
continuous on U , for all i ∈ Nn.

Exercise 15. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space. We assume that ∂φ

∂xi
exists on

U , and is continuous at a ∈ U , for all i ∈ Nn. We define l : Rn → E:

∀h �
= (h1, . . . , hn) ∈ Rn , l(h)

�
=

n∑
i=1

∂φ

∂xi
(a)hi

1. Show that l ∈ LR(Rn, E).

2. Given ε > 0, show the existence of η > 0 such that for all h ∈ Rn

with ‖h‖ < η, we have a+ h ∈ U , and:

∀i = 1, . . . , n ,
∥∥∥∥ ∂φ∂xi (a+ h) − ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε
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3. Let h = (h1, . . . , hn) ∈ Rn be such that ‖h‖ < η. (e1, . . . , en)
being the canonical basis of Rn, we define k0 = a and for i ∈ Nn:

ki
�
= a+

i∑
j=1

hjej

Show that k0, . . . , kn ∈ U , and that we have:

φ(a+h)−φ(a)−l(h)=
n∑
i=1

(
φ(ki−1 + hiei)−φ(ki−1)−hi

∂φ

∂xi
(a)
)

4. Let i ∈ Nn. Assume that hi > 0. We define fi : [0, hi] → E by:

∀t ∈ [0, hi] , fi(t)
�
= φ(ki−1 + tei) − φ(ki−1) − t

∂φ

∂xi
(a)

Show fi is well-defined, f ′
i(t) exists for all t ∈ [0, hi], and:

∀t ∈ [0, hi] , f ′
i(t) =

∂φ

∂xi
(ki−1 + tei) −

∂φ

∂xi
(a)

www.probability.net

http://www.probability.net


Tutorial 18: The Jacobian Formula 19

5. Show fi is continuous on [0, hi], differentiable on ]0, hi[, with:

∀t ∈]0, hi[ , ‖f ′
i(t)‖ ≤ ε

6. Show that:∥∥∥∥φ(ki−1 + hiei) − φ(ki−1) − hi
∂φ

∂xi
(a)
∥∥∥∥ ≤ ε|hi|

7. Show that the previous inequality still holds if hi ≤ 0.

8. Conclude that for all h ∈ Rn with ‖h‖ < η, we have:

‖φ(a+ h) − φ(a) − l(h)‖ ≤ ε
√
n‖h‖

9. Prove the following:

Theorem 114 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. If, for all i ∈ Nn

∂φ
∂xi

exists
on U and is continuous at a ∈ U , then φ is differentiable at a ∈ U .
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Exercise 16. Let n ≥ 1 and U be open in Rn. Let φ : U → E be a
map, where E is an R-normed space. We assume that for all i ∈ Nn,
∂φ
∂xi

exists and is continuous on U .

1. Show that φ is differentiable on U .

2. Show that for all a, b ∈ U and h ∈ Rn:

‖(dφ(b) − dφ(a))(h)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

‖h‖

3. Show that for all a, b ∈ U :

‖dφ(b) − dφ(a)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

4. Show that dφ : U → LR(Rn, E) is continuous.

5. Prove the following:
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Theorem 115 Let n ≥ 1 and U be open in Rn. Let φ : U → E be
a map, where E is an R-normed space. Then, φ is of class C1 on U ,
if and only if for all i = 1, . . . , n, ∂φ

∂xi
exists and is continuous on U .

Exercise 17. Let E,F be two R-normed spaces and l ∈ LR(E,F ).
Let U be open in E and l|U be the restriction of l to U . Show that
l|U is of class C1 on U , and that we have:

∀x ∈ U , d(l|U )(x) = l

Exercise 18. Let E1, . . . , En, n ≥ 1, be n K-normed spaces. Let
E = E1 × . . .×En. Let p ∈ [1,+∞[, and for all x = (x1, . . . , xn) ∈ E:

‖x‖p
�
=

(
n∑
i=1

‖xi‖p
)1/p

‖x‖∞
�
= max

i=1,...,n
‖xi‖
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1. Using theorem (43), show that ‖.‖p and ‖.‖∞ are norms on E.

2. Show ‖.‖p and ‖.‖∞ induce the product topology on E.

3. Conclude that E is also an K-normed space, and that the norm
topology on E is exactly the product topology on E.

Exercise 19. Let E and F be two R-normed spaces. Let U be open
in E and φ, ψ : U → F be two maps. We assume that both φ and
ψ are differentiable at a ∈ U . Given α ∈ R, show that φ + αψ is
differentiable at a ∈ U and:

d(φ + αψ)(a) = dφ(a) + αdψ(a)

Exercise 20. Let E and F be K-normed spaces. Let U be open in
E and φ : U → F be a map. Let NE and NF be two norms on E and
F , inducing the same topologies as the norm topologies of E and F
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respectively. For all l ∈ LK(E,F ), we define:

N(l) = sup{NF (l(x)) : x ∈ E,NE(x) = 1}

1. Explain why the set LK(E,F ) is unambiguously defined.

2. Show that the identity idE : (E, ‖ · ‖) → (E,NE) is continuous

3. Show the existence of mE ,ME > 0 such that:

∀x ∈ E , mE‖x‖ ≤ NE(x) ≤ME‖x‖

4. Show the existence of m,M > 0 such that:

∀l ∈ LK(E,F ) , m‖l‖ ≤ N(l) ≤M‖l‖

5. Show that ‖ · ‖ and N induce the same topology on LK(E,F ).

6. Show that if K = R and φ is differentiable at a ∈ U , then φ is
also differentiable at a with respect to the norms NE and NF ,
and the differential dφ(a) is unchanged
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7. Show that if K = R and φ is of class C1 on U , then φ is also of
class C1 on U with respect to the norms NE and NF .

Exercise 21. Let E and F1, . . . , Fp, p ≥ 1, be p+1 R-normed spaces.
Let U be open in E and F = F1 × . . .×Fp. Let φ : U → F be a map.
For all i ∈ Np, we denote pi : F → Fi the canonical projection and
we define φi = pi ◦ φ. We also consider ui : Fi → F , defined as:

∀xi ∈ Fi , ui(xi)
�
= (0, . . . ,

i︷︸︸︷
xi , . . . , 0)

1. Given i ∈ Np, show that pi ∈ LR(F, Fi).

2. Given i ∈ Np, show that ui ∈ LR(Fi, F ) and φ =
∑p

i=1 ui ◦ φi.

3. Show that if φ is differentiable at a ∈ U , then for all i ∈ Np,
φi : U → Fi is differentiable at a ∈ U and dφi(a) = pi ◦ dφ(a).
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4. Show that if φi is differentiable at a ∈ U for all i ∈ Np, then φ
is differentiable at a ∈ U and:

dφ(a) =
p∑
i=1

ui ◦ dφi(a)

5. Suppose that φ is differentiable at a, b ∈ U . Let F be given the
norm ‖ · ‖2 of exercise (18). Show that for all i ∈ Np:

‖dφi(b) − dφi(a)‖ ≤ ‖dφ(b) − dφ(a)‖

6. Show that:

‖dφ(b) − dφ(a)‖ ≤
(

p∑
i=1

‖dφi(b) − dφi(a)‖2

)1/2

7. Show that φ is of class C1 ⇔ φi is of class C1 for all i ∈ Np.

8. Conclude with theorem (116)
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Theorem 116 Let E,F1, . . . , Fp, (p ≥ 1), be p+1 R-normed spaces
and U be open in E. Let F be the R-normed space F = F1 × . . .×Fp
and φ = (φ1, . . . , φp) : U → F be a map. Then, φ is differentiable at
a ∈ U , if and only if dφi(a) exists for all i ∈ Np, in which case:

∀h ∈ E , dφ(a)(h) = (dφ1(a)(h), . . . , dφp(a)(h))

Also, φ is of class C1 on U ⇔ φi is of class C1 on U , for all i ∈ Np.

Theorem 117 Let φ = (φ1, . . . , φn) : U → Rn be a map, where
n ≥ 1 and U is open in Rn. We assume that φ is differentiable at
a ∈ U . Then, for all i, j = 1, . . . , n, ∂φi

∂xj
(a) exists, and we have:

dφ(a) =

⎛
⎜⎝

∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn

∂x1
(a) . . . ∂φn

∂xn
(a)

⎞
⎟⎠
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Moreover, φ is of class C1 on U , if and only if for all i, j = 1, . . . , n,
∂φi

∂xj
exists and is continuous on U .

Exercise 22. Prove theorem (117)

Definition 132 Let φ = (φ1, . . . , φn) : U → Rn be a map, where
n ≥ 1 and U is open in Rn. We assume that φ is differentiable at
a ∈ U . We call Jacobian of φ at a, denoted J(φ)(a), the determinant
of the differential dφ(a) at a, i.e.

J(φ)(a) = det

⎛
⎜⎝

∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn

∂x1
(a) . . . ∂φn

∂xn
(a)

⎞
⎟⎠

Definition 133 Let n ≥ 1 and Ω, Ω′ be open in Rn. A bijection
φ : Ω → Ω′ is called a C1-diffeomorphism between Ω and Ω′, if and
only if φ : Ω → Rn and φ−1 : Ω′ → Rn are both of class C1.
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Exercise 23. Let Ω and Ω′ be open in Rn. Let φ : Ω → Ω′ be a
C1-diffeomorphism, ψ = φ−1, and In be the identity mapping of Rn.

1. Explain why J(ψ) : Ω′ → R and J(φ) : Ω → R are continuous.

2. Show that dφ(ψ(x)) ◦ dψ(x) = In, for all x ∈ Ω′.

3. Show that dψ(φ(x)) ◦ dφ(x) = In, for all x ∈ Ω.

4. Show that J(ψ)(x) �= 0 for all x ∈ Ω′.

5. Show that J(φ)(x) �= 0 for all x ∈ Ω.

6. Show that J(ψ) = 1/(J(φ) ◦ ψ) and J(φ) = 1/(J(ψ) ◦ φ).
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Definition 134 Let n ≥ 1 and Ω ∈ B(Rn), be a Borel set in Rn. We
define the Lebesgue measure on Ω, denoted dx|Ω, as the restriction
to B(Ω) of the Lebesgue measure on Rn, i.e the measure on (Ω,B(Ω))
defined by:

∀B ∈ B(Ω) , dx|Ω(B)
�
= dx(B)

Exercise 24. Show that dx|Ω is a well-defined measure on (Ω,B(Ω)).

Exercise 25. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We assume that
dψ(a) = In, (identity mapping on Rn), and given ε > 0, we denote:

B(a, ε)
�
= {x ∈ Rn : ‖a− x‖ < ε}

where ‖.‖ is the usual norm in Rn.

1. Why are dx|Ω′ , φ(dx|Ω) well-defined measures on (Ω′,B(Ω′)).

2. Show that for ε > 0 sufficiently small, B(a, ε) ∈ B(Ω′).
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3. Show that it makes sense to investigate whether the limit:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

does exists in R.

4. Given r > 0, show the existence of ε1 > 0 such that for all
h ∈ Rn with ‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h) − ψ(a) − h‖ ≤ r‖h‖

5. Show for all h ∈ Rn with ‖h‖ ≤ ε1, we have a+ h ∈ Ω′, and:

‖ψ(a+ h) − ψ(a)‖ ≤ (1 + r)‖h‖

6. Show that for all ε ∈]0, ε1[, we have B(a, ε) ⊆ Ω′, and:

ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

7. Show that dφ(ψ(a)) = In.
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8. Show the existence of ε2 > 0 such that for all k ∈ Rn with
‖k‖ ≤ ε2, we have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k) − a− k‖ ≤ r‖k‖

9. Show for all k ∈ Rn with ‖k‖ ≤ ε2, we have ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k) − a‖ ≤ (1 + r)‖k‖

10. Show for all ε ∈]0, ε2(1 + r)[, we have B(ψ(a), ε
1+r ) ⊆ Ω, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

11. Show that if B(a, ε) ⊆ Ω′, then ψ(B(a, ε)) = {φ ∈ B(a, ε)}.

12. Show if 0 < ε < ε0 = ε1 ∧ ε2(1 + r), then B(a, ε) ⊆ Ω′, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)} ⊆ B(ψ(a), ε(1 + r))
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13. Show that for all ε ∈]0, ε0[:

(i) dx(B(ψ(a),
ε

1 + r
)) = (1 + r)−ndx|Ω′ (B(a, ε))

(ii) dx(B(ψ(a), ε(1 + r))) = (1 + r)ndx|Ω′(B(a, ε))
(iii) dx({φ ∈ B(a, ε)}) = φ(dx|Ω)(B(a, ε))

14. Show that for all ε ∈]0, ε0[, B(a, ε) ⊆ Ω′, and:

(1 + r)−n ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ (1 + r)n

15. Conclude that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

Exercise 26. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′ be
a C1-diffeomorphism and ψ = φ−1. Let a ∈ Ω′. We put A = dψ(a).

www.probability.net

http://www.probability.net


Tutorial 18: The Jacobian Formula 33

1. Show that A : Rn → Rn is a linear bijection.

2. Define Ω′′ = A−1(Ω). Show that this definition does not depend
on whether A−1(Ω) is viewed as inverse , or direct image.

3. Show that Ω′′ is an open subset of Rn.

4. We define φ̃ : Ω′′ → Ω′ by φ̃(x) = φ ◦ A(x). Show that φ̃ is a
C1-diffeomorphism with ψ̃ = φ̃−1 = A−1 ◦ ψ.

5. Show that dψ̃(a) = In.

6. Show that:

lim
ε↓↓0

φ̃(dx|Ω′′)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

7. Let ε > 0 with B(a, ε) ⊆ Ω′. Justify each of the following steps:

φ̃(dx|Ω′′ )(B(a, ε)) = dx|Ω′′ ({φ̃ ∈ B(a, ε)})
= dx({φ̃ ∈ B(a, ε)})
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= dx({x ∈ Ω′′ : φ ◦A(x) ∈ B(a, ε)})
= dx({x ∈ Ω′′ : A(x) ∈ φ−1(B(a, ε))})
= dx({x ∈ Rn : A(x) ∈ φ−1(B(a, ε))})
= A(dx)({φ ∈ B(a, ε)})
= | detA|−1dx({φ ∈ B(a, ε)})
= | detA|−1dx|Ω({φ ∈ B(a, ε)})
= | detA|−1φ(dx|Ω)(B(a, ε))

8. Show that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= | detA|

9. Conclude with the following:
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Theorem 118 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1. Then, for all a ∈ Ω′, we have:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

= |J(ψ)(a)|

where J(ψ)(a) is the Jacobian of ψ at a, B(a, ε) is the open ball in Rn,
and dx|Ω, dx|Ω′ are the Lebesgue measures on Ω and Ω′ respectively.

Exercise 27. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1.

1. Let K ⊆ Ω′ be a non-empty compact subset of Ω′ such that
dx|Ω′(K) = 0. Given ε > 0, show the existence of V open in Ω′,
such that K ⊆ V ⊆ Ω′, and dx|Ω′(V ) ≤ ε.

2. Explain why V is also open in Rn.

3. Show that M
�
= supx∈K ‖dψ(x)‖ ∈ R+.
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4. For all x ∈ K, show there is εx > 0 such that B(x, εx) ⊆ V , and
for all h ∈ Rn with ‖h‖ ≤ 3εx, we have x+ h ∈ Ω′, and:

‖ψ(x+ h) − ψ(x)‖ ≤ (M + 1)‖h‖

5. Show that for all x ∈ K, B(x, 3εx) ⊆ Ω′, and:

ψ(B(x, 3εx)) ⊆ B(ψ(x), 3(M + 1)εx)

6. Show that ψ(B(x, 3εx)) = {φ ∈ B(x, 3εx)}, for all x ∈ K.

7. Show the existence of {x1, . . . , xp} ⊆ K, (p ≥ 1), such that:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xp, εxp)

8. Show the existence of S ⊆ {1, . . . , p} such that the B(xi, εxi)’s
are pairwise disjoint for i ∈ S, and:

K ⊆
⋃
i∈S

B(xi, 3εxi)
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9. Show that {φ ∈ K} ⊆ ∪i∈SB(ψ(xi), 3(M + 1)εxi).

10. Show that φ(dx|Ω)(K) ≤
∑

i∈S 3n(M + 1)ndx(B(xi, εxi)).

11. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)ndx(V ).

12. Show that φ(dx|Ω)(K) ≤ 3n(M + 1)nε.

13. Conclude that φ(dx|Ω)(K) = 0.

14. Show that φ(dx|Ω) is a locally finite measure on (Ω′,B(Ω′)).

15. Show that for all B ∈ B(Ω′):

φ(dx|Ω)(B) = sup{φ(dx|Ω)(K) : K ⊆ B , K compact }

16. Show that for all B ∈ B(Ω′):

dx|Ω′ (B) = 0 ⇒ φ(dx|Ω)(B) = 0

17. Conclude with the following:
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Theorem 119 Let n ≥ 1, Ω, Ω′ be open in Rn, and φ : Ω → Ω′

be a C1-diffeomorphism. Then, the image measure φ(dx|Ω), by φ of
the Lebesgue measure on Ω, is absolutely continuous with respect to
dx|Ω′ , the Lebesgue measure on Ω′, i.e.:

φ(dx|Ω) << dx|Ω′

Exercise 28. Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1.

1. Explain why there exists a sequence (Vp)p≥1 of open sets in Ω′,
such that Vp ↑ Ω′ and for all p ≥ 1, the closure of Vp in Ω′, i.e.
V̄ Ω′
p , is compact.

2. Show that each Vp is also open in Rn, and that V̄ Ω′
p = V̄p.

3. Show that φ(dx|Ω)(Vp) < +∞, for all p ≥ 1.
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4. Show that dx|Ω′ and φ(dx|Ω) are two σ-finite measures on Ω′.

5. Show there is h : (Ω′,B(Ω′)) → (R+,B(R+)) measurable, with:

∀B ∈ B(Ω′) , φ(dx|Ω)(B) =
∫
B

hdx|Ω′

6. For all p ≥ 1, we define hp = h1Vp , and we put:

∀x ∈ Rn , h̃p(x)
�
=
{
hp(x) if x ∈ Ω′

0 if x �∈ Ω′

Show that:∫
Rn

h̃pdx =
∫

Ω′
hpdx|Ω′ = φ(dx|Ω)(Vp) < +∞

and conclude that h̃p ∈ L1
R(Rn,B(Rn), dx).

7. Show the existence of some N ∈ B(Rn), such that dx(N) = 0
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and for all x ∈ N c and p ≥ 1, we have:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx

8. Put N ′ = N ∩ Ω′. Show that N ′ ∈ B(Ω′) and dx|Ω′(N ′) = 0.

9. Let x ∈ Ω′ and p ≥ 1 be such that x ∈ Vp. Show that if ε > 0 is
such that B(x, ε) ⊆ Vp, then dx(B(x, ε)) = dx|Ω′ (B(x, ε)), and:∫

B(x,ε)

h̃pdx =
∫
Rn

1B(x,ε)h̃pdx =
∫

Ω′
1B(x,ε)hpdx|Ω′

10. Show that:∫
Ω′

1B(x,ε)hpdx|Ω′ =
∫

Ω′
1B(x,ε)hdx|Ω′ = φ(dx|Ω)(B(x, ε))

11. Show that for all x ∈ Ω′ \N ′, we have:

h(x) = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))
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12. Show that h = |J(ψ)| dx|Ω′ -a.s. and conclude with the following:

Theorem 120 Let n ≥ 1 and Ω, Ω′ be open in Rn. Let φ : Ω → Ω′

be a C1-diffeomorphism and ψ = φ−1. Then, the image measure by φ
of the Lebesgue measure on Ω, is equal to the measure on (Ω′,B(Ω′))
with density |J(ψ)| with respect to the Lebesgue measure on Ω′, i.e.:

φ(dx|Ω) =
∫

|J(ψ)|dx|Ω′

Exercise 29. Prove the following:

Theorem 121 (Jacobian Formula 1) Let n ≥ 1 and φ : Ω → Ω′

be a C1-diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1.
Then, for all f : (Ω′,B(Ω′)) → [0,+∞] non-negative and measurable:∫

Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′
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and: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′

Exercise 30. Prove the following:

Theorem 122 (Jacobian Formula 2) Let n ≥ 1 and φ : Ω → Ω′

be a C1-diffeomorphism where Ω, Ω′ are open in Rn. Let ψ = φ−1.
Then, for all measurable map f : (Ω′,B(Ω′)) → (C,B(C)), we have
the equivalence:

f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f |J(ψ)| ∈ L1

C(Ω′,B(Ω′), dx|Ω′ )

in which case: ∫
Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′

and, furthermore:

(f ◦ φ)|J(φ)| ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f ∈ L1

C(Ω′,B(Ω′), dx|Ω′)
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in which case: ∫
Ω

(f ◦ φ)|J(φ)|dx|Ω =
∫

Ω′
fdx|Ω′

Exercise 31. Let f :R2→[0,+∞], with f(x, y) = exp(−(x2 + y2)/2).

1. Show that: ∫
R2
f(x, y)dxdy =

(∫ +∞

−∞
e−u

2/2du

)2

2. Define:

Δ1
�
= {(x, y) ∈ R2 : x > 0 , y > 0}

Δ2
�
= {(x, y) ∈ R2 : x < 0 , y > 0}

and let Δ3 and Δ4 be the other two open quarters of R2. Show:∫
R2
f(x, y)dxdy =

∫
Δ1∪...∪Δ4

f(x, y)dxdy
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3. Let Q : R2 → R2 be defined by Q(x, y) = (−x, y). Show that:∫
Δ1

f(x, y)dxdy =
∫

Δ2

f ◦Q−1(x, y)dxdy

4. Show that: ∫
R2
f(x, y)dxdy = 4

∫
Δ1

f(x, y)dxdy

5. Let D1 =]0,+∞[×]0, π/2[⊆ R2, and define φ : D1 → Δ1 by:

∀(r, θ) ∈ D1 , φ(r, θ)
�
= (r cos θ, r sin θ)

Show that φ is a bijection and that ψ = φ−1 is given by:

∀(x, y) ∈ Δ1 , ψ(x, y) = (
√
x2 + y2, arctan(y/x))

6. Show that φ is a C1-diffeomorphism, with:

∀(r, θ) ∈ D1 , dφ(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
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and:

∀(x, y) ∈ Δ1 , dψ(x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)

7. Show that J(φ)(r, θ) = r, for all (r, θ) ∈ D1.

8. Show that J(ψ)(x, y) = 1/(
√
x2 + y2), for all (x, y) ∈ Δ1.

9. Show that: ∫
Δ1

f(x, y)dxdy =
π

2

10. Prove the following:

Theorem 123 We have:
1√
2π

∫ +∞

−∞
e−u

2/2du = 1
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Solutions to Exercises
Exercise 1.

1. Let 〈·, ·〉 be an inner-product on a K-vector space H. From
definition (81), we have 〈x, x〉 ≥ 0 for all x ∈ H. So ‖ · ‖ =√
〈x, x〉 is a well-defined map ‖ · ‖ : H → R+. From (v) of

definition (81), 〈x, x〉 = 0 is equivalent to x = 0. It follows that
‖x‖ = 0 is equivalent to x = 0. Let x ∈ H and α ∈ K. We have:

‖αx‖ =
√
〈αx, αx〉

=
√
α〈x, αx〉

=
√
αᾱ〈x, x〉

=
√
|α|2〈x, x〉

= |α|
√

〈x, x〉 = |α| · ‖x‖
Finally, given x, y ∈ H, the fact that:

‖x+ y‖ ≤ ‖x‖ + ‖y‖
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has been proved in exercise (17) of Tutorial 10. From defini-
tion (95), we conclude that ‖ · ‖ is a norm on H.

2. H is a K-vector space and ‖ · ‖ is a norm on H. From defini-
tion (125), we conclude that (H, ‖ · ‖) is a K-normed space.

Exercise 1
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Exercise 2.

1. Let (E, ‖ ·‖) be a K-normed space. Let d(x, y) = ‖x−y‖. Then
d : E × E → R+ is a well-defined map. Furthermore, since
‖x‖ = 0 is equivalent to x = 0, d(x, y) = 0 is equivalent to
x = y. Since ‖αx‖ = |α| · ‖x‖ for all x ∈ E and α ∈ K, taking
α = −1 it is clear that d(x, y) = d(y, x) for all x, y ∈ E. Finally,
given x, y, z ∈ E we have:

d(x, y) = ‖x− y‖
= ‖x− z + z − y‖
≤ ‖x− z‖ + ‖z − y‖
= d(x, z) + d(z, y)

We conclude from definition (28) that d is a metric on E.

2. Let x, y ∈ E. We have:

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖ + ‖y‖
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and consequently ‖x‖ − ‖y‖ ≤ ‖x− y‖. Similarly:

‖y‖ − ‖x‖ ≤ ‖y − x‖
= ‖x− y‖

and we conclude that:

| ‖x‖ − ‖y‖ | = max(‖x‖ − ‖y‖, ‖y‖ − ‖x‖)
≤ ‖x− y‖

Exercise 2
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Exercise 3. Let E,F be two K-normed spaces and l : E → F be a
linear map. We claim that the following are equivalent:

(i) l is continuous (w.r. to the norm topologies)
(ii) l is continuous at x = 0.

(iii) ∃K ∈ R+ , ∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
(iv) sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1} < +∞

Suppose l is continuous. In particular, it is continuous at x = 0. In
case you have any doubt, although we have not defined it in these
tutorials, recall that a map l : E → F , where E and F are topological
spaces, is said to be continuous at x ∈ E, if and only if for all V
open subsets of F with l(x) ∈ V , there exists U open subset of E
with x ∈ U ⊆ l−1(V ). Now if l : E → F is continuous, for all V
open subsets of F , l−1(V ) is an open subset of E. If furthermore
l(x) ∈ V , then x ∈ l−1(V ) and taking U = l−1(V ), we have found U
open subset of E with x ∈ U ⊆ l−1(V ). So l is continuous at x. We
have proved that (i) ⇒ (ii). Suppose that l is continuous at x = 0.
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Let ε > 0 and B(0, ε) denote the open ball in F . Since l is linear,
l(0) = 0 and B(0, ε) is therefore an open subset of F containing l(0).
Having assumed that l is continuous at x = 0, there exists U open
subset of E such that 0 ∈ U ⊆ l−1(B(0, ε)). The topology on E being
induced by the metric d(x, y) = ‖x − y‖, there exists η > 0 such
that B(0, η) ⊆ U , where B(0, η) denotes the open ball in E. From
B(0, η) ⊆ U ⊆ l−1(B(0, ε)) we see that for all x ∈ E:

‖x‖ < η ⇒ ‖l(x)‖ < ε

Suppose x �= 0. Then ‖x‖ �= 0 and y = ηx/(2‖x‖) is a well-defined
element of E with ‖y‖ = η/2 < η. Hence, we have:

η

2‖x‖‖l(x)‖ =
∥∥∥∥ η

2‖x‖ l(x)
∥∥∥∥

=
∥∥∥∥l
(

ηx

2‖x‖

)∥∥∥∥ = ‖l(y)‖ < ε

and consequently, setting K = 2ε/η ∈ R+ we obtain ‖l(x)‖ < K‖x‖.
So in particular, we have proved that ‖l(x)‖ ≤ K‖x‖ for all x �= 0.
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This inequality being obviously still valid if x = 0, we have found
K ∈ R+ such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖ (1)

This shows that (ii) ⇒ (iii). Suppose now that there exists K ∈ R+

such that (1) holds, and define:

α
�
= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}

Given x ∈ E such that ‖x‖ = 1, we have ‖l(x)‖ ≤ K‖x‖ = K. So K
is an upper-bound of all ‖l(x)‖’s as x runs through the set of all x ∈ E
with ‖x‖ = 1. Since α is the smallest of such upper-bounds, we obtain
α ≤ K and in particular α < +∞. This shows that (iii) ⇒ (iv).
Finally, suppose that α < +∞. Let x, y ∈ E be such that x �= y.
Then ‖x − y‖ �= 0 and z = (x − y)/‖x− y‖ is a well-defined element
of E with ‖z‖ = 1. It follows that:

‖l(x) − l(y)‖
‖x− y‖ =

∥∥∥∥l
(

x− y

‖x− y‖

)∥∥∥∥
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= ‖l(z)‖ ≤ α

and consequently ‖l(x) − l(y)‖ ≤ α‖x − y‖. This is obviously still
valid if x = y, and it is therefore true for all x, y ∈ E. Since α < +∞,
this shows that l is continuous, and we have proved that (iv) ⇒ (i).
This completes our proof that (i), (ii), (iii) and (iv) are equivalent.

Exercise 3
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Exercise 4. To show that LK(E,F ) is a K-vector space, we only
need to show that it is a K-vector subspace of the set of all maps
f : E → F . In other words, given u, v ∈ LK(E,F ) and α ∈ K,
we need to show that u + αv ∈ LK(E,F ). This in turn amounts to
showing that u+ αv is a linear map, and that it is continuous. Since
u and v are continuous, from exercise (3) there exists K1,K2 ∈ R+

such that ‖u(x)‖ ≤ K1‖x‖ and ‖v(x)‖ ≤ K2‖x‖ for all x ∈ E. Hence:

‖(u+ αv)(x)‖ = ‖u(x) + αv(x)‖
≤ ‖u(x)‖ + |α| · ‖v(x)‖
≤ (K1 + |α|K2)‖x‖

and consequently from exercise (3), u+ αv is continuous (provided it
is linear, which we are about to prove). Moreover, given x, y ∈ E and
β ∈ K, we have:

(u+ αv)(x + βy) = u(x+ βy) + αv(x + βy)
= u(x) + βu(y) + αv(x) + αβv(y)
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= u(x) + αv(x) + β(u(y) + αv(y))
= (u+ αv)(x) + β(u+ αv)(y)

This shows that u+ αv is linear, and we have proved that LK(E,F )
is indeed a K-vector space.

Exercise 4
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Exercise 5.

1. Let E, F be K-normed spaces. Given l ∈ LK(E,F ), let:

‖l‖ �
= sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}

Note that from exercise (3), we have ‖l‖ < +∞. Define:

α
�
= sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

We claim that α = ‖l‖. Let x ∈ E be such that ‖x‖ = 1.
Then in particular ‖x‖ ≤ 1, and consequently ‖l(x)‖ ≤ α. It
follows that α is an upper-bound of all ‖l(x)‖’s as x runs through
that set of all x ∈ E with ‖x‖ = 1. Since ‖l‖ is the smallest
of such upper-bounds, we obtain ‖l‖ ≤ α. To show the reverse
inequality, consider x ∈ E with ‖x‖ ≤ 1, and assume that x �= 0.
Then ‖x‖ �= 0 and y = x/‖x‖ is a well-defined element of E with
‖y‖ = 1. Hence, we have:

‖l(x)‖
‖x‖ =

∥∥∥∥l
(

x

‖x‖

)∥∥∥∥ = ‖l(y)‖ ≤ ‖l‖
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and consequently ‖l(x)‖ ≤ ‖l‖ · ‖x‖. Having assumed ‖x‖ ≤ 1,
we obtain ‖l(x)‖ ≤ ‖l‖. Since l(0) = 0, such inequality still
holds for x = 0, and consequently we have proved that ‖l(x)‖ ≤
‖l‖ for all x ∈ E with ‖x‖ ≤ 1. This shows that ‖l‖ is an upper-
bound of all ‖l(x)‖’s as x runs through the set of all x ∈ E
with ‖x‖ ≤ 1. Since α is the smallest of such upper-bounds, we
obtain α ≤ ‖l‖. We have proved that α = ‖l‖, i.e.:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ ≤ 1}

2. Define:

α
�
= sup

{
‖l(x)‖
‖x‖ : x ∈ E , x �= 0

}
We claim that ‖l‖ = α. Let x ∈ E, x �= 0. Then y = x/‖x‖ is
such that ‖y‖ = 1, and consequently:

‖l(x)‖
‖x‖ =

∥∥∥∥l
(

x

‖x‖

)∥∥∥∥ = ‖l(y)‖ ≤ ‖l‖
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This being true for all x ∈ E, x �= 0, we obtain α ≤ ‖l‖. To
show the reverse inequality, consider x ∈ E with ‖x‖ = 1. In
particular x �= 0 and consequently:

‖l(x)‖ =
‖l(x)‖
‖x‖ ≤ α

This being true for all x ∈ E with ‖x‖ = 1, we obtain ‖l‖ ≤ α.
We have proved that α = ‖l‖, or equivalently:

‖l‖ = sup
{
‖l(x)‖
‖x‖ : x ∈ E , x �= 0

}

3. Let x ∈ E. Suppose x �= 0. From 2. we obtain:

‖l(x)‖
‖x‖ ≤ ‖l‖

and consequently ‖l(x)‖ ≤ ‖l‖ · ‖x‖. Since l(0) = 0, we have
proved that ‖l(x)‖ ≤ ‖l‖ · ‖x‖ for all x ∈ E.
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4. Since l is continuous, from exercise (3) we have ‖l‖ < +∞.
So ‖l‖ is indeed an element of R+, which furthermore from 3.
satisfies ‖l(x)‖ ≤ ‖l‖ · ‖x‖ for all x ∈ E. Suppose K is another
element of R+, such that:

∀x ∈ E , ‖l(x)‖ ≤ K‖x‖
Then for all x ∈ E, x �= 0, we have ‖l(x)‖/‖x‖ ≤ K. So K is
an upper-bound of all ‖l(x)‖/‖x‖, as x runs through the set of
all x ∈ E, x �= 0. Having proved in 2. that ‖l‖ is the smallest
of such upper-bounds, we obtain ‖l‖ ≤ K. So ‖l‖ is indeed the
smallest K ∈ R+ with ‖l(x)‖ ≤ K‖x‖ for all x ∈ E.

5. Since ‖l‖ < +∞ for all l ∈ LK(E,F ), the map ‖ · ‖ is indeed a
map ‖ · ‖ : LK(E,F ) → R+. We claim that it is in fact a norm
on LK(E,F ). Suppose ‖l‖ = 0. Then from 3. for all x ∈ E:

‖l(x)‖ ≤ ‖l‖ · ‖x‖ = 0

and consequently l(x) = 0 for all x ∈ E. This shows that l = 0
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and we have proved that ‖l‖ = 0 ⇒ l = 0. Conversely, if l = 0:

‖l‖ = sup{‖l(x)‖ : x ∈ E , ‖x‖ = 1}
= sup{0} = 0

which shows that ‖l‖ = 0 is in fact equivalent to l = 0. Let
α ∈ K. For all x ∈ E, using 3. we have:

‖(αl)(x)‖ = ‖αl(x)‖
= |α| · ‖l(x)‖
≤ |α| · ‖l‖ · ‖x‖

and it follows from 4. that ‖αl‖ ≤ |α| · ‖l‖. Suppose α �= 0.
Then applying this inequality to α−1 and αl we obtain:

‖l‖ = ‖α−1(αl)‖
≤ |α−1| · ‖αl‖ = |α|−1‖αl‖

and consequently |α|·‖l‖ ≤ ‖αl‖. This shows that ‖αl‖ = |α|·‖l‖
for all l ∈ LK(E,F ) and α �= 0. This equality being still true for
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α = 0, we have proved that ‖αl‖ = |α| · ‖l‖ for all l ∈ LK(E,F )
and α ∈ K. Let l, l′ ∈ LK(E,F ). Then for all x ∈ E:

‖(l + l′)(x)‖ = ‖l(x) + l′(x)‖
≤ ‖l(x)‖ + ‖l′(x)‖
≤ ‖l‖ · ‖x‖ + ‖l′‖ · ‖x‖
= (‖l‖ + ‖l′‖)‖x‖

and it follows from 4. that ‖l + l′‖ ≤ ‖l‖ + ‖l′‖. From defini-
tion (95), we conclude that ‖.‖ is indeed a norm on LK(E,F ).

6. Since LK(E,F ) is a K-vector space and ‖ · ‖ is a norm on
LK(E,F ), we conclude that (LK(E,F ), ‖ · ‖) is a K-normed
space by virtue of definition (125).

Exercise 5
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Exercise 6.

1. Let E,F be two R-normed spaces and U be open in E. Let φ :
U → F be a map, and a ∈ U . We assume that l1, l2 ∈ LR(E,F )
satisfy the requirements of definition (128). Let ε > 0 be given.
Since l1 satisfies the requirement of definition (128), there exists
δ1 > 0 such that for all h ∈ E:

‖h‖ ≤ δ1 ⇒ a+ h ∈ U and ‖φ(a+ h) − φ(a) − l1(h)‖ ≤ ε

2
‖h‖

Similarly, there exists δ2 > 0 such that for all h ∈ E:

‖h‖ ≤ δ2 ⇒ a+ h ∈ U and ‖φ(a+ h) − φ(a) − l2(h)‖ ≤ ε

2
‖h‖

Let δ = min(δ1, δ2). Then δ > 0, and for all h ∈ E the condition
‖h‖ ≤ δ implies that a+ h ∈ U and furthermore:

‖l1(h) − l2(h)‖ ≤ ‖φ(a+ h) − φ(a) − l2(h)‖
+ ‖φ(a+ h) − φ(a) − l1(h)‖
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≤ ε

2
‖h‖ +

ε

2
‖h‖

= ε‖h‖
Hence, given ε > 0, we have found δ > 0 such that for all h ∈ E:

‖h‖ ≤ δ ⇒ ‖l1(h) − l2(h)‖ ≤ ε‖h‖

2. Let ε > 0 and δ > 0 be such that for all h ∈ E:

‖h‖ ≤ δ ⇒ ‖l1(h) − l2(h)‖ ≤ ε‖h‖
Let x ∈ E with ‖x‖ = 1. Then h = δx is an element of E with
‖h‖ = δ. In particular ‖h‖ ≤ δ, and consequently we have:

δ‖(l1 − l2)(x)‖ = δ‖l1(x) − l2(x)‖
= ‖l1(δx) − l2(δx)‖
= ‖l1(h) − l2(h)‖
≤ ε‖h‖ = εδ
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Since δ > 0, it follows that ‖(l1 − l2)(x)‖ ≤ ε and we see that ε
is an upper-bound of all ‖(l1 − l2)(x)‖’s as x runs through the
set of all x ∈ E with ‖x‖ = 1. Since ‖l1 − l2‖ is the smallest of
such upper-bounds, we obtain ‖l1 − l2‖ ≤ ε. This being true for
all ε > 0, we conclude that ‖l1 − l2‖ = 0, i.e. l1 = l2.

Exercise 6
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Exercise 7.

1. Let E,F be two R-normed spaces and U be open in E. Let
φ : U → F be a map and a ∈ U . Suppose that φ is differentiable
at a. Take ε = 1. Since dφ(a) denotes the differential of φ at a,
i.e. the unique element of LR(E,F ) satisfying the requirements
of (128), there exists δ > 0 such that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h)− φ(a)− dφ(a)(h)‖ ≤ ‖h‖
In particular, for all h ∈ E the condition ‖h‖ ≤ δ implies that
a+ h ∈ U and furthermore:

‖φ(a+ h) − φ(a)‖ = ‖φ(a+ h) − φ(a)‖ − ‖dφ(a)(h)‖
+ ‖dφ(a)(h)‖
≤ | ‖φ(a+ h) − φ(a)‖ − ‖dφ(a)(h)‖ |
+ ‖dφ(a)(h)‖
≤ ‖φ(a+ h) − φ(a) − dφ(a)(h)‖
+ ‖dφ(a)(h)‖
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≤ ‖h‖ + ‖dφ(a)‖ · ‖h‖
= K‖h‖

where we have put K = (1 + ‖dφ(a)‖) ∈ R+. Hence, we have
found δ > 0 such that for all h ∈ E:

‖h‖ ≤ δ ⇒ a+ h ∈ U and ‖φ(a+ h) − φ(a)‖ ≤ K‖h‖
This shows that φ is continuous at a. We have proved that if φ
is differentiable at a, then φ is continuous at a.

2. Suppose φ : U → F is of class C1. From definition (130), the
differential map dφ : U → LR(E,F ) is well-defined, i.e. dφ(a)
exists for all a ∈ U . Furthermore, dφ is said to be a continuous
map. For this to be meaningful, U and LR(E,F ) need to be
topological spaces. E being an R-normed space, it is naturally
endowed with the norm topology, as defined in (126). Since
U is a subset of E, the obvious topology on U is the topology
induced by the topology on E, as defined in (23). Now from
exercise (5), LR(E,F ) is an R-normed space. It is therefore
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a topological space, when endowed with the norm topology, as
defined in (126).

3. Suppose φ : U → F is of class C1. Then in particular, for all
a ∈ U the differential dφ(a) exists. From 1. it follows that φ is
continuous at a, for all a ∈ U . We conclude that φ is continuous.

4. We assume that E = R. Note that R is a vector space over
itself, and that | · | is a norm on R. So (R, | · |) is an R-normed
space. Let a ∈ U . We assume that the limit:

φ′(a)
�
= lim

t�=0,t→0

φ(a+ t) − φ(a)
t

exists in F . We claim that φ is differentiable at a, and further-
more that the differential dφ(a) of φ at a is given by:

∀t ∈ R , dφ(a)(t) = t · φ′(a)

Let l ∈ LR(R, F ) be defined by l(t) = t · φ′(a). Note that l(t)
is nothing but the product of φ′(a) ∈ F with the scalar t ∈ R.
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So l is well-defined, and it is clearly a linear map. Moreover, for
all t ∈ R, we have:

‖l(t)‖ = ‖t · φ′(a)‖ = |t| · ‖φ′(a)‖
and in particular ‖l(t)‖ ≤ ‖φ′(a)‖·|t|. So l is continuous, and it is
indeed an element of LR(R, F ). To show that φ is differentiable
at a with dφ(a) = l, we only need to show that l satisfies the
requirements of definition (128). Let ε > 0 be given. Having
assumed that the limit φ′(a) exists, there is δ > 0 such that for
all t ∈ R, t �= 0, the condition |t| ≤ δ implies a+ t ∈ U and:∥∥∥∥φ(a+ t) − φ(a)

t
− φ′(a)

∥∥∥∥ ≤ ε

Hence, we have:

‖φ(a+ t) − φ(a) − l(t)‖ = ‖φ(a+ t) − φ(a) − t · φ′(a)‖

= |t| ·
∥∥∥∥φ(a+ t) − φ(a)

t
− φ′(a)

∥∥∥∥
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≤ ε|t|
This last inequality being still valid for t = 0, we have:

|t| ≤ δ ⇒ a+ t ∈ U and ‖φ(a+ t) − φ(a) − l(t)‖ ≤ ε|t|
So l satisfies the requirements of definition (128) and we have
proved that φ is differentiable at a with dφ(a) = l. This shows
that the existence of φ′(a) implies that of dφ(a). Conversely,
suppose that dφ(a) exists, i.e. that φ is differentiable at a. We
claim that φ′(a) exists, and furthermore that φ′(a) = dφ(a)(1).
Let ε > 0. There exists δ > 0 such that for all t ∈ R:

|t| ≤ δ ⇒ a+ t ∈ U and ‖φ(a+ t) − φ(a) − dφ(a)(t)‖ ≤ ε|t|
In particular, if t ∈ R, t �= 0, the condition |t| ≤ δ implies that
a+ t ∈ U , and furthermore, denoting l = dφ(a):∥∥∥∥φ(a+ t) − φ(a)

t
− l(1)

∥∥∥∥ =
1
|t| ‖φ(a+ t) − φ(a) − tl(1)‖
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=
1
|t| ‖φ(a+ t) − φ(a) − l(t)‖

≤ 1
|t|ε|t| = ε

This shows that the limit φ′(a) exists and is equal to dφ(a)(1).
We conclude that in the case when E = R, φ : U → F is
differentiable at a, if and only if the derivative φ′(a) exists, in
which case dφ(a) ∈ LR(R, F ) is given by dφ(a)(t) = t ·φ′(a) for
all t ∈ R. In particular, we have dφ(a)(1) = φ′(a).

Exercise 7
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Exercise 8.

1. Let E,F,G be three R-normed spaces. Let U be open in E and
V be open in F . Let φ : U → F and ψ : V → G be two maps
such that φ(U) ⊆ V . We assume that φ is differentiable at a ∈
U , and we put l1 = dφ(a). We assume that ψ is differentiable
at φ(a) ∈ V , and we put l2 = dψ(φ(a)). Since φ(U) ⊆ V , for all
x ∈ U we have φ(x) ∈ V . So ψ(φ(x)) is a well-defined element
of G. It follows that ψ ◦ φ : U → G is a well-defined map.

2. Let ε > 0. Since l1 ∈ LR(E,F ), ‖l1‖ is a well-defined element
of R+. Since l2 ∈ LR(F,G), ‖l2‖ is a well-defined element of
R+. Take η = min(1, ε(1 + ‖l1‖ + ‖l2‖)−1). Then η > 0, and:

η(η + ‖l1‖ + ‖l2‖) ≤ η(1 + ‖l1‖ + ‖l2‖)
≤ ε

3. Since ψ is differentiable at φ(a) ∈ V and l2 = dψ(φ(a)), l2
satisfies the requirements of definition (128). There is δ2 > 0
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such that for all h2 ∈ F with ‖h2‖ ≤ δ2, φ(a) + h2 ∈ V and:

‖ψ(φ(a) + h2) − ψ ◦ φ(a) − l2(h2)‖ ≤ η‖h2‖

4. Let h2 ∈ F with ‖h2‖ ≤ δ2. Let h ∈ E. Using 3. we obtain:

‖ψ(φ(a) + h2) − ψ ◦ φ(a) − l2 ◦ l1(h)‖
≤ ‖ψ(φ(a) + h2) − ψ ◦ φ(a) − l2(h2)‖
+ ‖l2(h2) − l2 ◦ l1(h)‖
≤ η‖h2‖ + ‖l2(h2 − l1(h))‖
≤ η‖h2‖ + ‖l2‖ · ‖h2 − l1(h)‖

5. Since φ is differentiable at a ∈ U and l1 = dφ(a), l1 satisfies the
requirements of definition (128). There exists δ1 > 0 such that
for all h ∈ E with ‖h‖ ≤ δ1, we have a+ h ∈ U and:

‖φ(a+ h) − φ(a) − l1(h)‖ ≤ η‖h‖ (2)

Moreover, from 1. of exercise (7), φ is continuous at a. Since
δ2 > 0, there exists δ′1 > 0 such that for all h ∈ E with ‖h‖ ≤ δ′1,
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we have a+ h ∈ U and:

‖φ(a+ h) − φ(a)‖ ≤ δ2 (3)

Taking δ = min(δ1, δ′1), we have found δ > 0 such that for all
h ∈ E with ‖h‖ ≤ δ, we have a+ h ∈ U and furthermore both
inequalities (2) and (3) hold.

6. Let h ∈ E with ‖h‖ ≤ δ, Then a+ h ∈ U and furthermore both
inequalities (2) and (3) hold. Let h2 = φ(a+h)−φ(a). Then (3)
can be written as ‖h2‖ ≤ δ2, and applying 4.:

‖ψ ◦ φ(a+ h) − ψ ◦ φ(a) − l2 ◦ l1(h)‖
= ‖ψ(φ(a) + h2) − ψ ◦ φ(a) − l2 ◦ l1(h)‖
≤ η‖h2‖ + ‖l2‖ · ‖h2 − l1(h)‖
= η‖h2‖ + ‖l2‖ · ‖φ(a+ h) − φ(a) − l1(h)‖

using (2) → ≤ η‖h2‖ + ‖l2‖η‖h‖
= η‖φ(a+ h) − φ(a)‖ + η‖l2‖ · ‖h‖
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≤ η‖φ(a+ h) − φ(a) − l1(h)‖
+ η‖l1(h)‖ + η‖l2‖ · ‖h‖

using (2) → ≤ η2‖h‖ + η‖l1‖ · ‖h‖ + η‖l2‖ · ‖h‖
= η(η + ‖l1‖ + ‖l2‖)‖h‖

using 2.→ ≤ ε‖h‖

7. Since l1 ∈ LR(E,F ), l1 : E → F is linear and continuous.
Since l2 ∈ LR(F,G), l2 : F → G is linear and continuous. So
l2 ◦ l1 : E → G is linear and continuous, and l2 ◦ l1 ∈ LR(E,G).

8. From 6. and 7. we conclude that l2 ◦ l1 ∈ LR(E,G) is such that
given ε > 0, we have found δ > 0 such that for all h ∈ E with
‖h‖ ≤ δ, we have a+ h ∈ U and:

‖ψ ◦ φ(a + h) − ψ ◦ φ(a) − l2 ◦ l1(h)‖ ≤ ε‖h‖

From definition (128), it follows that ψ ◦ φ : U → G is differen-
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tiable at a ∈ U , and furthermore from definition (129):

d(ψ ◦ φ)(a) = l2 ◦ l1
= dψ(φ(a)) ◦ dφ(a)

This completes the proof of theorem (110).

Exercise 8
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Exercise 9.

1. Let (Ω′, T ′) and (Ω, T ) be two topological spaces, and A ⊆ P(Ω)
be a set of subsets of Ω generating the topology T , i.e. such that
T = T (A). Let f : Ω′ → Ω be a map, and define:

U �
= {A ⊆ Ω : f−1(A) ∈ T ′}

We claim that U is a topology on Ω. Since f−1(∅) = ∅ ∈ T ′ and
f−1(Ω) = Ω′ ∈ T ′, both ∅ and Ω are elements of U . Let (Ai)i∈I
be a family of elements of U . Then:

f−1

(⋃
i∈I

Ai

)
=
⋃
i∈I

f−1(Ai) ∈ T ′

So ∪i∈IAi ∈ U , and we have proved that U is closed under
arbitrary unions. Let A,B ∈ U . Then:

f−1(A ∩B) = f−1(A) ∩ f−1(B) ∈ T ′

www.probability.net

http://www.probability.net


Solutions to Exercises 77

So A∩B ∈ U , and we have proved that U is closed under finite
intersections. From definition (13), we conclude that U is a
topology on Ω.

2. Suppose f : (Ω′, T ′) → (Ω, T ) is continuous. Then from defi-
nition (27), for all A ∈ T we have f−1(A) ∈ T ′. In particular,
since A ⊆ T (A) = T , for all A ∈ A we have f−1(A) ∈ T ′. Con-
versely, suppose f−1(A) ∈ T ′ for all A ∈ A. Then A ⊆ U , where
U is the topology on Ω defined in 1. However from exercise (11)
of Tutorial 6, the topology T (A) generated by A is the small-
est topology on Ω containing A, in the inclusion sense. Hence,
it follows from A ⊆ U and the fact that U is a topology, that
T (A) ⊆ U . However by assumption, we have T (A) = T . So
T ⊆ U , and we conclude that f−1(A) ∈ T ′ for all A ∈ T . This
shows that f is continuous. We have proved that f is continuous
if and only if f−1(A) ∈ T ′ for all A ∈ A.

Exercise 9
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Exercise 10.

1. Let pi : Ω → Ωi be the canonical projection mapping. Given
i ∈ I and Ai ∈ Ti we have:

p−1
i (Ai) = Ai ×

∏
j∈I\{i}

Ωj

It follows from definition (52), that p−1
i (Ai) is an open rectangle,

i.e. a rectangle of (Tj)j∈I , and in particular it is an element of
the product topology T . This shows that pi is continuous.

2. Suppose each fi : (Ω′, T ′) → (Ωi, Ti) is a continuous map. From
definition (56), the product topology T on Ω is the topology
generated by the open rectangles, i.e. the rectangles of (Ti)i∈I .
In other words, T = T (A) where A = �i∈ITi. From exer-
cise (9), to show that f is continuous, it is sufficient to show
that f−1(A) ∈ T ′ for all A ∈ A. So let A ∈ A be an open rect-
angle. From definition (52), A can be written as A = Πi∈IAi,

www.probability.net

http://www.probability.net


Solutions to Exercises 79

where each Ai is an element of Ti ∪ {Ωi} = Ti, and the set
J = {i ∈ I : Ai �= Ωi} is finite. Hence, we have:

f−1(A) = {ω ∈ Ω′ : f(ω) ∈ A}
= {ω ∈ Ω′ : (fi(ω))i∈I ∈ Πi∈IAi}
= {ω ∈ Ω′ : fi(ω) ∈ Ai, ∀i ∈ I}
= {ω ∈ Ω′ : fi(ω) ∈ Ai, ∀i ∈ J}
=

⋂
i∈J

f−1
i (Ai)

Having assumed that fi is continuous for all i ∈ I, it follows
from Ai ∈ Ti that f−1

i (Ai) ∈ T ′, and consequently since J is
finite, f−1(A) = ∩i∈Jf−1

i (Ai) is an element of T ′. Hence, we
have proved that f−1(A) ∈ T ′ for all A ∈ A, and we conclude
that f is continuous. Conversely, suppose f : (Ω′, T ′) → (Ω, T )
is continuous. Since pi : (Ω, T ) → (Ωi, Ti) is continuous, each
fi = pi ◦ f is a continuous map.

Exercise 10
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Exercise 11.

1. Let E,F,G be three R-normed spaces. Let U be open in E
and V be open in F . Let φ : U → F and ψ : V → G be
two maps of class C1 such that φ(U) ⊆ V . Given (l1, l2) ∈
LR(F,G) × LR(E,F ), we define:

N1(l1, l2)
�
= ‖l1‖ + ‖l2‖

N2(l1, l2)
�
=

√
‖l1‖2 + ‖l2‖2

N∞(l1, l2)
�
= max(‖l1‖, ‖l2‖)

Then each Ni : LR(F,G) × LR(E,F ) → R+ is a well-defined
map, i ∈ {1, 2,∞}, and we claim that it is in fact a norm on
LR(F,G) × LR(E,F ). Note that we are implicitly saying that
LR(F,G) × LR(E,F ) is an R-vector space, a fact that has not
been justified in these Tutorials. For those not familiar with
the product structure of vector spaces, recall that given two
elements (l1, l2) and (l′1, l

′
2) of LR(F,G)×LR(E,F ), and α ∈ R,
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a vector addition ⊕ is defined as:

(l1, l2) ⊕ (l′1, l
′
2)

�
= (l1 + l′1, l2 + l′2)

and a scalar multiplication ⊗ is defined as:

α⊗ (l1, l2) = (αl1, αl2)

It is cumbersome but not difficult to show that LR(F,G) ×
LR(E,F ) together with the operators ⊕ and ⊗, satisfy the re-
quirements of (89) defining an R-vector space, where the zero
element of LR(F,G) × LR(E,F ) is understood to be (0, 0). It
is customary to denote ⊕ and ⊗ simply by + and ·, and we
shall do so from now on. Now, given (x, y) ∈ R2, we de-
fine ‖(x, y)‖1 = |x| + |y|, ‖(x, y)‖2 =

√
|x|2 + |y|2 as well as

‖(x, y)‖∞ = max(|x|, |y|). Then it is clear that Ni(l1, l2) =
‖(‖l1‖, ‖l2‖)‖i for all i ∈ {1, 2,∞}. In order to prove that Ni
is a norm, we shall first prove that ‖ · ‖i is a norm on R2, a
fact that many of us are already familiar with. For those who
require a proof, here is the following: note that ‖ · ‖2 is nothing
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but the norm defined in (81), associated with the usual inner-
product of R2. From exercise (1), ‖ · ‖2 is therefore a norm
on R2. So we may assume that i ∈ {1,∞}. It is clear that
‖(x, y)‖i = 0 is equivalent to (x, y) = (0, 0) and furthermore
that ‖α(x, y)‖i = |α| · ‖(x, y)‖i for all α ∈ R. Hence, we only
need to prove the triangle inequality for ‖ · ‖1 and ‖ · ‖∞. Given
(x, y) and (x′, y′) in R2, we have:

‖(x, y) + (x′, y′)‖1 = ‖(x+ x′, y + y′)‖1

= |x+ x′| + |y + y′|
≤ |x| + |x′| + |y| + |y′|
= ‖(x, y)‖1 + ‖(x′, y′)‖1

Moreover, we have:

|x+ x′| ≤ |x| + |x′|
≤ max(|x|, |y|) + max(|x′|, |y′|)
= ‖(x, y)‖∞ + ‖(x′, y′)‖∞
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and similarly |y + y′| ≤ ‖(x, y)‖∞ + ‖(x′, y′)‖∞. Hence:

‖(x, y) + (x′, y′)‖∞ = ‖(x+ x′, y + y′)‖∞
= max(|x+ x′|, |y + y′|)
≤ ‖(x, y)‖∞ + ‖(x′, y′)‖∞

So we have proved that ‖·‖i is a norm on R2 for all i ∈ {1, 2,∞}.
Note that all this will be generalized in a later tutorial, when
we formally study normed vector spaces, and in particular the
norm ‖ · ‖p on Rn or Cn, where p ∈ [1,+∞]. Having proved
that ‖ · ‖i is a norm on R2, we shall now prove that Ni is a
norm on LR(F,G)×LR(E,F ). SinceNi(l1, l2) = ‖(‖l1‖, ‖l2‖)‖i,
the condition Ni(l1, l2) = 0 is equivalent to ‖(‖l1‖, ‖l2‖)‖i =
0, which is equivalent to (‖l1‖, ‖l2‖) = (0, 0), which is in turn
equivalent to (l1, l2) = (0, 0). Moreover, if α ∈ R, we have:

Ni[α(l1, l2)] = Ni[(αl1, αl2)]
= ‖ (‖αl1‖, ‖αl2‖) ‖i
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= ‖ (|α| · ‖l1‖, |α| · ‖l2‖) ‖i
= ‖ |α|(‖l1‖, ‖l2‖) ‖i
= |α| · ‖ (‖l1‖, ‖l2‖) ‖i
= |α|Ni(l1, l2)

Finally, if (l1, l2), (l′1, l′2) ∈ LR(F,G) × LR(E,F ):

Ni[(l1, l2) + (l′1, l
′
2)] = Ni[(l1 + l′1, l2 + l′2)]

= ‖ (‖l1 + l′1‖, ‖l2 + l′2‖) ‖i
≤ ‖ (‖l1‖ + ‖l′1‖, ‖l2‖ + ‖l′2‖) ‖i
= ‖ (‖l1‖, ‖l2‖) + (‖l′1‖, ‖l′2‖) ‖i
≤ ‖ (‖l1‖, ‖l2‖) ‖i + ‖ (‖l′1‖, ‖l′2‖) ‖i
= Ni(l1, l2) +Ni(l′1, l

′
2)

We have proved that Ni is a norm on LR(F,G) × LR(E,F ).

2. Let X = LR(F,G)×LR(E,F ) and T1, T2, T∞ be the topologies
on X induced by the norms N1, N2 and N∞ respectively. Let T
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denote the product topology on X . We shall prove the equality
T1 = T2 = T∞ = T . For all (l1, l2) ∈ X , we have:

[N2(l1, l2)]2 = ‖l1‖2 + ‖l2‖2

≤ ‖l1‖2 + ‖l2‖2 + 2‖l1‖ · ‖l2‖
= (‖l1‖ + ‖l2‖)2

= [N1(l1, l2)]2

≤ [2 max(‖l1‖, ‖l2‖)]2

= 4[N∞(l1, l2)]2

= 4 max(‖l1‖2, ‖l2‖2)
≤ 4(‖l1‖2 + ‖l2‖2)
= 4[N2(l1, l2)]2

from which we obtain N2 ≤ N1 ≤ 2N∞ ≤ 2N2. Consider the
identity mapping j : X → X , defined by j(l1, l2) = (l1, l2) for
all (l1, l2) ∈ X . Then j is a linear mapping and the inequality
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N2 ≤ N1 can be written as:

∀(l1, l2) ∈ X , N2[j(l1, l2)] ≤ N1(l1, l2)

From exercise (3), it follows that j : (X,N1) → (X,N2) is a
continuous map. Hence, for all U open in (X,N2), i.e. for
all U ∈ T2, we have j−1(U) open in (X,N1), i.e. U ∈ T1. This
shows that T2 ⊆ T1. Similarly, the inequality N1 ≤ 2N∞ implies
that T1 ⊆ T∞, and N∞ ≤ N2 that T∞ ⊆ T2. Hence, we have
proved that T2 ⊆ T1 ⊆ T∞ ⊆ T2, or equivalently T1 = T2 = T∞.
It remains to show that T = T∞. From definition (56), the
product topology on X is the topology generated by the open
rectangles of X , i.e. the sets of the form A×B where A is open
in LR(F,G) and B is open in LR(E,F ). To show that T ⊆ T∞,
it is sufficient to prove that any such A×B is an element of T∞.
Indeed, T being the smallest topology on X containing all open
rectangles, if T∞ is shown to contain all open rectangles, then
T ⊆ T∞. We therefore consider A×B open rectangle in X , and
we shall prove thatA×B ∈ T∞. IfA×B = ∅, then A×B ∈ T∞ is
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clear. Otherwise, there exists (l1, l2) ∈ A×B. Since A is open in
LR(F,G) and l1 ∈ A, there exists ε1 > 0 such thatB(l1, ε1) ⊆ A,
where B(l1, ε1) denotes the open ball in LR(F,G). Similarly,
since B is open in LR(E,F ) and l2 ∈ B, there exists ε2 > 0
such that B(l2, ε2) ⊆ B, where B(l2, ε2) denotes the open ball
in LR(E,F ). Note that we are using identical notations B(·, ·)
to refer to open balls in LR(F,G) and LR(E,F ), but this is
unlikely to confuse anyone. Let ε = min(ε1, ε2). Then ε > 0,
and furthermore for all (l′1, l′2) ∈ X we have:

N∞[(l′1, l
′
2) − (l1, l2)] < ε ⇔ N∞[(l′1 − l1, l

′
2 − l2)] < ε

⇔ max(‖l′1 − l1‖, ‖l′2 − l2‖) < ε

⇒ ‖l′1 − l1‖ < ε1 , ‖l′2 − l2‖ < ε2

⇔ l′1 ∈ B(l1, ε1) , l′2 ∈ B(l2, ε2)
⇒ l′1 ∈ A , l′2 ∈ B

⇔ (l′1, l
′
2) ∈ A×B

Hence, given (l1, l2) ∈ A × B, we have found ε > 0 such that
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B∞[(l1, l2), ε] ⊆ A × B, where B∞[(l1, l2), ε] denotes the open
ball in X with respect to the norm N∞. This shows that A×B
is open with respect to the topology induced by N∞, i.e. that
A × B ∈ T∞. We have proved that T ⊆ T∞. To show the
reverse inclusion, consider U ∈ T∞. Given (l1, l2) ∈ U , there
exists ε > 0 such that B∞[(l1, l2), ε] ⊆ U . For all (l′1, l′2) ∈ X :

(l′1, l
′
2) ∈ B(l1, ε) ×B(l2, ε) ⇔ ‖l′1 − l1‖ < ε , ‖l′2 − l2‖ < ε

⇔ max(‖l′1 − l1‖, ‖l′2 − l2‖) < ε

⇔ N∞[(l′1 − l1, l
′
2 − l2)] < ε

⇔ N∞[(l′1, l
′
2) − (l1, l2)] < ε

⇔ (l′1, l
′
2) ∈ B∞[(l1, l2), ε]

and consequently B(l1, ε) × B(l2, ε) = B∞[(l1, l2), ε]. However,
B(l1, ε) being an open ball in LR(F,G), it is an open subset of
LR(F,G). Similarly, B(l2, ε) is an open subset of LR(E,F ). It
follows that B(l1, ε)×B(l2, ε) is an open rectangle in X , and in
particular is an element of the product topology T . We have
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proved that B∞[(l1, l2), ε] = B(l1, ε) × B(l2, ε) is an element of
T . Hence, given (l1, l2) ∈ U , we have found some U(l1,l2) =
B∞[(l1, l2), ε] ∈ T such that (l1, l2) ∈ U(l1,l2) ⊆ U . Hence:

U =
⋃

(l1,l2)∈U
U(l1,l2) ∈ T

and we have proved that T∞ ⊆ T . This completes our proof of
T∞ = T , and finally T1 = T2 = T∞ = T .

3. Let X = LR(F,G) × LR(E,F ) and H : X → LR(E,G) be the
map defined by H(l1, l2) = l1 ◦ l2, for all (l1, l2) ∈ X . Note that
if l1 ∈ LR(F,G) and l2 ∈ LR(E,F ), then l1 ◦ l2 : E → G is a
well-defined map, which furthermore is linear and continuous.
SoH is a well-defined map which has indeed values in LR(E,G).
Given (l1, l2) ∈ X , for all x ∈ E we have:

‖H(l1, l2)(x)‖ = ‖(l1 ◦ l2)(x)‖
= ‖l1(l2(x))‖
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≤ ‖l1‖ · ‖l2(x)‖
≤ ‖l1‖ · ‖l2‖ · ‖x‖

Hence, using 4. of exercise (5), ‖H(l1, l2)‖ ≤ ‖l1‖ · ‖l2‖.

4. For those familiar with the notion, H is a bilinear map such
that ‖H(l1, l2)‖ ≤ ‖l1‖ · ‖l2‖ for all (l1, l2) ∈ X , where X =
LR(F,G) × LR(E,F ). It follows that H is continuous. As we
have not had a tutorial on multilinear maps, here is a direct
proof: Let (l1, l2) and (l′1, l

′
2) be elements of X . Then:

‖H(l′1, l
′
2) −H(l1, l2)‖ = ‖l′1 ◦ l′2 − l1 ◦ l2‖

≤ ‖l′1 ◦ l′2 − l1 ◦ l′2‖ + ‖l1 ◦ l′2 − l1 ◦ l2‖
l1 is linear → = ‖(l′1 − l1) ◦ l′2‖ + ‖l1 ◦ (l′2 − l2)‖

= ‖H(l′1 − l1, l
′
2)‖ + ‖H(l1, l′2 − l2)‖

≤ ‖l′1 − l1‖ · ‖l′2‖ + ‖l1‖ · ‖l′2 − l2‖
≤ (‖l′2‖+‖l1‖)max(‖l′1 − l1‖, ‖l′2 − l2‖)
= (‖l′2‖+‖l1‖)N∞(l′1 − l1, l

′
2 − l2)
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= (‖l′2‖+‖l1‖)N∞[(l′1, l
′
2) − (l1, l2)]

So we have proved that:

‖H(l′1, l
′
2) −H(l1, l2)‖ ≤ (‖l′2‖ + ‖l1‖)N∞[(l′1, l

′
2) − (l1, l2)] (4)

Suppose now that N∞[(l′1, l
′
2) − (l1, l2)] ≤ 1. Then:

‖l′2‖ ≤ ‖l′2 − l2‖ + ‖l2‖
≤ max(‖l′1 − l1‖, ‖l′2 − l2‖) + ‖l2‖
= N∞[(l′1, l

′
2) − (l1, l2)] + ‖l2‖

≤ 1 + ‖l2‖

and consequently, using (4) we obtain:

‖H(l′1, l
′
2) −H(l1, l2)‖ ≤ (1 + ‖l1‖ + ‖l2‖)N∞[(l′1, l

′
2) − (l1, l2)]

Hence, assuming (l1, l2) ∈ X given and ε > 0, defining η > 0 as
η = min[1, (1 + ‖l1‖ + ‖l2‖)−1ε], it is clear that:

N∞[(l′1, l
′
2) − (l1, l2)] ≤ η ⇒ ‖H(l′1, l

′
2) −H(l1, l2)‖ ≤ ε
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Having proved in 2. that the product topology on X is induced
by the norm N∞, it follows that H is continuous at (l1, l2). This
being true for all (l1, l2) ∈ X , H is continuous.

5. Let K : U → LR(F,G) × LR(E,F ) be the map defined by
K(a) = (dψ(φ(a)), dφ(a)) for all a ∈ U . Note that given a ∈ U ,
having assumed that φ is of class C1 on U, in particular the dif-
ferential dφ(a) is a well-defined element of LR(E,F ). Further-
more, having assumed that ψ is of class C1 on V and φ(U) ⊆ V ,
in particular φ(a) ∈ V and the differential dψ(φ(a)) is a well-
defined element of LR(F,G). It follows that K(a) is a well-
defined element of X = LR(F,G) × LR(E,F ). So K is a well-
defined map, which has indeed values in X . From exercise (10),
in order to show that K is continuous, it is sufficient to show
that each coordinate mapping a → dψ(φ(a)) and a → dφ(a)
is continuous. However, since φ is of class C1, the differential
dφ : U → LR(E,F ) is a continuous map. Similarly, since ψ is
of class C1, the differential dψ : V → LR(F,G) is a continuous
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map. Since φ : U → F is differentiable on U , it follows from
exercise (7) that it is continuous. Since φ(U) ⊆ V , we conclude
that dψ◦φ : U → LR(F,G) is a continuous map. Having proved
that the two coordinate mappings dφ and dψ ◦φ are continuous,
we have proved that K is a continuous map.

6. Let a ∈ U . Then φ is differentiable at a and ψ is differentiable
at φ(a) ∈ V . From theorem (110), it follows that ψ ◦ φ is
differentiable at a. This being true for all a ∈ U , ψ ◦ φ is
differentiable on U .

7. From theorem (110), for all a ∈ U we have:

d(ψ ◦ φ)(a) = dψ(φ(a)) ◦ dφ(a)
= H(dψ(φ(a)), dφ(a))
= H(K(a))
= H ◦K(a)

This being true for all a ∈ U , d(ψ ◦ φ) = H ◦K.
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8. Given three R-normed spaces E,F and G, given U open in
E and V open in F , given φ : U → F and ψ : V → G of
class C1 with φ(U) ⊆ V , we have shown in 6. that ψ ◦ φ is
differentiable on U . Furthermore, we have shown in 7. that
d(ψ ◦ φ) can be expressed as d(ψ ◦ φ) = H ◦K, where K : U →
LR(F,G) × LR(E,F ) has been shown in 5. to be continuous,
and H : LR(F,G) × LR(E,F ) → LR(E,G) has been shown in
4. to be continuous. It follows that d(ψ ◦ φ) : U → LR(E,G)
is a continuous map. From definition (130), we conclude that
ψ ◦ φ : U → G is of class C1. This completes the proof of
theorem (111).

Exercise 11
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Exercise 12.

1. Let E be an R-normed space. Let a, b ∈ R, a < b. We assume
that f : [a, b] → E and g : [a, b] → R are two continuous maps
which are differentiable at every point of ]a, b[, with:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

Let ε > 0. We define φε : [a, b] → R by:

φε(t)
�
= ‖f(t) − f(a)‖ − g(t) + g(a) − ε(t− a)

for all t ∈ [a, b]. For all x, y ∈ E, we have:

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖

It follows that the map ‖ · ‖ : E → R+ is a continuous map.
Having assumed that f : [a, b] → E is continuous, from:

‖f(t) − f(a) − f(t′) + f(a)‖ = ‖f(t) − f(t′)‖
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it is clear that t→ f(t)− f(a) is also continuous. Hence, we see
that t→ ‖f(t)− f(a)‖ is continuous and finally, since g is itself
continuous, we conclude that φε is a continuous map.

2. Let Eε = {t ∈ [a, b] : φε(t) ≤ ε} and c = supEε. Since φε(a) = 0,
in particular φε(a) ≤ ε and consequently a ∈ Eε. This shows
that a ≤ c. Furthermore, for all t ∈ Eε, we have t ≤ b. So b
is an upper-bound of Eε. Since c is the smallest of such upper-
bounds, we obtain c ≤ b. We have proved that c ∈ [a, b]. In
particular φε(c) is well-defined. Suppose φε(c) > ε. Then c ∈
φ−1
ε (]ε,+∞[). Having proved that φε is continuous, the fact that

]ε,+∞[ is an open subset of R implies that φ−1
ε (]ε,+∞[) is an

open subset of [a, b]. From c ∈ φ−1
ε (]ε,+∞[), we deduce the

existence of η > 0, such that:

]c− η, c+ η[∩[a, b] ⊆ φ−1
ε (]ε,+∞[) (5)

Now let t ∈ Eε. Then t ∈ [a, b], t ≤ c and furthermore φε(t) ≤ ε.
It follows from (5) that t cannot be an element of ]c − η, c],
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and consequently t ≤ c− η. This shows that c− η is an upper-
bound of Eε, contradicting the fact that c is the smallest of such
upper-bounds. Indeed, note that c ∈ [a, b] implies that c < +∞
and consequently c− η < c. Our initial assumption is therefore
absurd, and we have proved that φε(c) ≤ ε. When dealing with
this question, it may have been tempting to some to use the
following argument: since Eε = {t ∈ [a, b] : φε ≤ ε} and φε is
continuous, Eε is a closed subset of [a, b], which furthermore is
non-empty since a ∈ Eε. It follows that c = supEε ∈ Eε. This
argument is valid, but one has to be careful about the following
point: if Eε is a closed subset of R, it may not be true that
supEε ∈ Eε (take Eε = R). The fact that Eε is a closed subset
of [a, b] (which is itself closed in R̄) is of crucial importance here.
A rigorous argument goes as follows: The topology of [a, b] is
induced by that of R, but also more importantly by that of R̄.
The fact that Eε is closed in [a, b] implies the existence of some F
closed in R̄, such that Eε = F∩[a, b]. However, the interval [a, b]
is also closed in R̄ (it is compact and R̄ is metrizable). So Eε is

www.probability.net

http://www.probability.net


Solutions to Exercises 98

in fact also a closed subset of R̄. Being non-empty, we conclude
from exercise (9) (part 5.) of Tutorial 8 that c = supEε ∈ Eε.

3. Since φε is continuous and φε(a) = 0, there exists h > 0 with:

∀t ∈ [a, a+ h[∩[a, b] , φε(t) ≤ |φε(t)| ≤ ε

4. Since a < b, we have ]a, a+ h[∩[a, b] �= ∅. Let t be an arbitrary
element of ]a, a+ h[∩[a, b]. Then t ∈ [a, b] and from 3. we have
φε(t) ≤ ε. So t ∈ Eε and consequently t ≤ c. Since t ∈]a, a+ h[,
we conclude in particular that a < c. So c ∈]a, b].

5. Suppose c ∈]a, b[. By assumption, both derivatives f ′(c) ∈ E
and g′(c) ∈ R are well-defined. From the existence of f ′(c) we
deduce that of δ1 > 0 such that for all t �= c:

t ∈]c− δ1, c+ δ1[∩[a, b] ⇒
∥∥∥∥f(t) − f(c)

t− c
− f ′(c)

∥∥∥∥ ≤ ε

2
(6)

From the existence of g′(c) we deduce that of δ2 > 0 such that
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for all t �= c:

t ∈]c− δ2, c+ δ2[∩[a, b] ⇒
∣∣∣∣g(t) − g(c)

t− c
− g′(c)

∣∣∣∣ ≤ ε

2
(7)

Let δ = min(δ1, δ2) > 0. Having assumed that c < b, the set
]c, b]∩]c, c + δ[ is not empty. Let t0 be an arbitrary element of
]c, b]∩]c, c+ δ[. From (6) we obtain:∥∥∥∥f(t0) − f(c)

t0 − c

∥∥∥∥ ≤ ‖f ′(c)‖ +
∥∥∥∥f(t0) − f(c)

t0 − c
− f ′(c)

∥∥∥∥
≤ ‖f ′(c)‖ +

ε

2
From (7) we obtain:

g′(c) =
g(t0) − g(c)
t0 − c

+ g′(c) − g(t0) − g(c)
t0 − c

≤ g(t0) − g(c)
t0 − c

+
∣∣∣∣g(t0) − g(c)

t0 − c
− g′(c)

∣∣∣∣
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≤ g(t0) − g(c)
t0 − c

+
ε

2

6. Since ‖f ′(c)‖ ≤ g′(c), it follows from 5. that:

‖f(t0) − f(c)‖ = |t0 − c| ·
∥∥∥∥f(t0) − f(c)

t0 − c

∥∥∥∥
≤ |t0 − c| · (‖f ′(c)‖ + ε/2)
≤ |t0 − c| · (g′(c) + ε/2)

≤ |t0 − c| ·
(
g(t0) − g(c)
t0 − c

+
ε

2
+
ε

2

)

= (t0 − c) ·
(
g(t0) − g(c)

t0 − c
+ ε

)
= g(t0) − g(c) + ε(t0 − c)

7. Having proved in 2. that φε(c) ≤ ε, we have:

‖f(c) − f(a)‖ ≤ g(c) − g(a) + ε(c− a) + ε
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8. From 6. and 7. we obtain:

‖f(t0) − f(a)‖ ≤ ‖f(t0) − f(c)‖ + ‖f(c) − f(a)‖
≤ g(t0) − g(c) + ε(t0 − c)
+ g(c) − g(a) + ε(c− a) + ε

= g(t0) − g(a) + ε(t0 − a) + ε

9. It follows from 8. that φε(t0) ≤ ε. This shows that t0 ∈ Eε and
consequently t0 ≤ c. This contradicts that fact that t0 ∈]c, b].
Hence, our initial assumption that c ∈]a, b[ is absurd.

10. We have proved in 4. that c ∈]a, b]. However, c ∈]a, b[ leads
to a contradiction. It follows that c = b. Since φε(c) ≤ ε, we
conclude that φε(b) ≤ ε. Hence:

‖f(b) − f(a)‖ ≤ g(b) − g(a) + ε(b− a) + ε

11. Given an R-normed space E, given a, b ∈ R, a < b, given two
continuous maps f : [a, b] → E and g : [a, b] → R which are
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differentiable at every point of ]a, b[, and such that:

∀t ∈]a, b[ , ‖f ′(t)‖ ≤ g′(t)

we have proved in 10. that given ε > 0:

‖f(b) − f(a)‖ ≤ g(b) − g(a) + ε(b− a) + ε

This being true for all ε > 0, we conclude that:

‖f(b) − f(a)‖ ≤ g(b) − g(a)

This completes the proof of theorem (112)

Exercise 12
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Exercise 13.

1. Let U be open in Rn and φ : U → E be a map where E is an
R-normed space. We assume that φ is differentiable at a ∈ U .
The differential dφ(a) ∈ LR(Rn, E) satisfies the requirements
of definition (128). Given ε > 0, there exists δ > 0 such that for
all x ∈ Rn, the condition ‖x‖ ≤ δ implies that a+ x ∈ U and:

‖φ(a+ x) − φ(a) − dφ(a)(x)‖ ≤ ε‖x‖
If (e1, . . . , en) denotes the canonical basis of Rn, then for all
h ∈ R with |h| ≤ δ, given an arbitrary i ∈ Nn, the vector
x = hei is such that ‖x‖ = |h| ≤ δ. So a+ hei ∈ U and:

‖φ(a+ hei) − φ(a) − dφ(a)(hei)‖ ≤ ε‖hei‖
This being true for all h ∈ R with |h| ≤ δ, we have proved that:

lim
h �=0,h→0

1
‖hei‖

‖φ(a+ hei) − φ(a) − dφ(a)(hei)‖ = 0
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2. Let i ∈ Nn. Putting l = dφ(a), we have:∥∥∥∥φ(a + hei) − φ(a)
h

− l(ei)
∥∥∥∥=

1
|h| ‖φ(a+ hei)−φ(a)−hl(ei)‖

=
1

‖hei‖
‖φ(a+ hei)−φ(a)−l(hei)‖

and it follows from 1. that:

lim
h �=0,h→0

∥∥∥∥φ(a+ hei) − φ(a)
h

− dφ(a)(ei)
∥∥∥∥ = 0

We conclude from definition (131) that the partial derivative
∂φ
∂xi

(a) exists and is equal to dφ(a)(ei).

3. Given an open subset U of Rn, given a map φ : U → E where E
is an R-normed space, we have proved that if φ is differentiable
at a ∈ U , then ∂φ

∂xi
(a) exists for all i ∈ Nn, and furthermore:

∂φ

∂xi
(a) = dφ(a)(ei)
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Let h = (h1, . . . , hn) ∈ Rn. We have:

dφ(a)(h) = dφ(a)

(
n∑
i=1

hiei

)

=
n∑
i=1

hidφ(a)(ei)

=
n∑
i=1

hi
∂φ

∂xi
(a) =

n∑
i=1

∂φ

∂xi
(a)hi

This completes the proof of theorem (113).

Exercise 13
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Exercise 14.

1. Let U be open in Rn and φ : U → E be a map, where E is an
R-normed space. Suppose φ is differentiable at a, b ∈ U . Let
i ∈ Nn. From exercise (3), we have:

‖dφ(b) − dφ(a)‖ = sup ‖(dφ(b) − dφ(a))(x)‖

where the supremum is taken over all x ∈ Rn with ‖x‖ = 1.
Taking x = ei, where (e1, . . . , en) is the canonical basis of Rn,
since ‖ei‖ = 1 we obtain in particular:∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥ = ‖dφ(b)(ei) − dφ(a)(ei)‖

= ‖(dφ(b) − dφ(a))(ei)‖
≤ ‖dφ(b) − dφ(a)‖

2. We now assume that φ is of class C1 on U . In particular, dφ(a)
exists for all a ∈ U . From theorem (113), it follows that the
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partial derivative ∂φ
∂xi

(a) exists for all a ∈ U and i ∈ Nn. Fur-
thermore, the differential dφ : U → LR(Rn, E) is continuous.
It follows from 1. that ∂φ

∂xi
: U → E is also a continuous map.

We have proved that if φ is of class C1 on U , then ∂φ
∂xi

exists
and is continuous on U , for all i ∈ Nn.

Exercise 14
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Exercise 15.

1. Let U be open in Rn. Let φ : U → E be a map, where E is
an R-normed space. We assume that ∂φ

∂xi
exists on U , and is

continuous at a ∈ U , for all i ∈ Nn. We define l : Rn → E by:

l(h)
�
=

n∑
i=1

∂φ

∂xi
(a)hi

for all h = (h1, . . . , hn) ∈ Rn. Having assumed that ∂φ
∂xi

exists
on U for all i ∈ Nn, in particular each ∂φ

∂xi
(a) is a well-defined

element of E. Given h ∈ Rn, each product ∂φ
∂xi

(a) · hi of the
scalar hi ∈ R and vector ∂φ

∂xi
(a) is therefore itself well-defined.

It follows that l(h) is a well-defined element of E. So l : Rn → E
is a well-defined map, which furthermore is clearly linear. Given
h ∈ Rn, using the Cauchy-Schwarz inequality (50), we obtain:

‖l(h)‖ =

∥∥∥∥∥
n∑
i=1

∂φ

∂xi
(a)hi

∥∥∥∥∥
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≤
n∑
i=1

∥∥∥∥ ∂φ∂xi (a)hi
∥∥∥∥

=
n∑
i=1

|hi| ·
∥∥∥∥ ∂φ∂xi (a)

∥∥∥∥
≤

(
n∑
i=1

|hi|2
)1/2( n∑

i=1

∥∥∥∥ ∂φ∂xi (a)
∥∥∥∥2
)1/2

= M · ‖h‖
where we have put M = (

∑n
i=1 ‖

∂φ
∂xi

(a)‖2)1/2. Having found
M ∈ R+ such that ‖l(h)‖ ≤M‖h‖ for all h ∈ Rn, we conclude
from exercise (3) that l is continuous. So we have proved that
l ∈ LR(Rn, E). Of course the fact that l is continuous is a
consequence of a far more general result: any linear linear map
l : F → E defined on a finite dimensional normed space F , is in
fact continuous. We shall prove this result in a later tutorial.
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2. Let ε > 0. Having assumed that each partial derivative ∂φ
∂xi

is
continuous at a ∈ U , for all i ∈ Nn there exists ηi > 0 such that
for all h ∈ Rn, the condition ‖h‖ < ηi implies that a + h ∈ U
and furthermore: ∥∥∥∥ ∂φ∂xi (a+ h) − ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

Taking η = min(η1, . . . , ηn) > 0, the condition ‖h‖ < η implies
that a+ h ∈ U and furthermore:

∀i ∈ Nn ,

∥∥∥∥ ∂φ∂xi (a+ h) − ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

3. Let h = (h1, . . . , hn) ∈ Rn with ‖h‖ < η. Let (e1, . . . , en)
denote the canonical basis of Rn. Let k0 = a and for all i ∈ Nn:

ki = a+
i∑

j=1

hjej
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From 2. the condition ‖h′‖ < η implies that a+ h′ ∈ U , for all
h′ ∈ Rn. However, it is clear that k0 ∈ U and for all i ∈ Nn:

‖ki − a‖ =

∥∥∥∥∥∥
i∑

j=1

hjej

∥∥∥∥∥∥
=

⎛
⎝ i∑
j=1

h2
j

⎞
⎠1/2

≤

⎛
⎝ n∑
j=1

h2
j

⎞
⎠1/2

= ‖h‖ < η

So ki = a+ (ki − a) is an element of U . Moreover:

φ(a+ h) − φ(a) − l(h) = φ(kn) − φ(k0) − l(h)

=
n∑
i=1

(φ(ki) − φ(ki−1)) − l(h)
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=
n∑
i=1

(
φ(ki−1 + hiei) − φ(ki−1) − hi

∂φ

∂xi
(a)
)

4. Let i ∈ Nn. Suppose hi > 0 and define fi : [0, hi] → E by:

fi(t) = φ(ki−1 + tei) − φ(ki−1) − t
∂φ

∂xi
(a)

for all t ∈ [0, hi]. Given t ∈ [0, hi], the product t · ∂φ
∂xi

(a) is a
well-defined element of E, and φ(ki−1) is also well-defined since
ki−1 ∈ U . Furthermore, following a similar proof to that of 3.:

‖ki−1 + tei − a‖ =

⎛
⎝i−1∑
j=1

h2
j + t2

⎞
⎠1/2

≤

⎛
⎝ i∑
j=1

h2
j

⎞
⎠1/2

< η
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and consequently ki−1 + tei ∈ U . It follows that φ(ki−1 + tei)
is also a well-defined element of E. We conclude that fi(t) is a
well-defined element of E of all t ∈ [0, hi], and we have proved
that fi : [0, hi] → E is well-defined. Let t ∈ [0, hi] and u �= 0
such that t+ u ∈ [0, hi]. Define k∗ = ki−1 + tei ∈ U . We have:

fi(t+ u) − fi(t)
u

=
1
u

[φ(ki−1 + (t+ u)ei) − φ(ki−1)

− (t+ u)
∂φ

∂xi
(a)]

− 1
u

[φ(ki−1 + tei) − φ(ki−1) − t
∂φ

∂xi
(a)]

=
1
u

[φ(k∗ + uei) − φ(k∗)] − ∂φ

∂xi
(a)

Having assumed that the partial derivative ∂φ
∂xi

exists at every
point of U , in particular it exists at k∗ ∈ U , and consequently
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from definition (131), we obtain:

lim
u�=0,u→0

fi(t+ u) − fi(t)
u

=
∂φ

∂xi
(k∗) − ∂φ

∂xi
(a)

So the derivative f ′
i(t) exists for all t ∈ [0, hi] and furthermore:

f ′
i(t) =

∂φ

∂xi
(ki−1 + tei) −

∂φ

∂xi
(a)

5. The fact that fi is continuous on [0, hi] can be seen in various
ways. One the one hand, having proved that f ′

i(t) exists for all
t ∈ [0, hi], fi is necessarily continuous on [0, hi]. On the other
hand, the map t → ki−1 + tei is clearly continuous with values
in U , while φ : U → E being differentiable, is also continuous
by virtue of exercise (7). It follows that t → φ(ki−1 + tei) is a
continuous map, and it is clear from there that fi is continuous
on [0, hi]. Having proved that f ′

i(t) exists for all t ∈ [0, hi], in
particular f ′

i(t) exists for all t ∈]0, hi[. So fi is differentiable
on ]0, hi[. Note that our use of the word differentiable means
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nothing more here than the existence of the derivative f ′
i(t).

Fortunately, from 4. of exercise (7), this is equivalent to the
word differentiable in the sense of definition (128). Since we
have proved that for all t ∈]0, hi[, we have ‖ki−1 + tei− a‖ < η,
using 2. we obtain:

‖f ′
i(t)‖ =

∥∥∥∥ ∂φ∂xi (ki−1 + tei) −
∂φ

∂xi
(a)
∥∥∥∥ ≤ ε

6. Since fi : [0, hi] → E is continuous on [0, hi] and differentiable
on ]0, hi[ with ‖f ′

i(t)‖ ≤ ε for all t ∈]0, hi[, applying theo-
rem (112) we obtain:∥∥∥∥φ(ki−1 + hiei) − φ(ki−1) − hi

∂φ

∂xi
(a)
∥∥∥∥ = ‖fi(hi)‖

= ‖fi(hi) − fi(0)‖
≤ ε(hi − 0) = ε|hi|

7. Suppose now that hi ≤ 0. The inequality obtained in 6. is

www.probability.net

http://www.probability.net


Solutions to Exercises 116

clearly true if hi = 0. So we may assume that hi < 0. Similarly
to 4. we define fi : [hi, 0] → E by:

fi(t) = φ(ki−1 + tei) − φ(ki−1) − t
∂φ

∂xi
(a)

Then fi is well-defined, continuous on [hi, 0] and differentiable
on ]hi, 0[, with the property that:

f ′
i(t) =

∂φ

∂xi
(ki−1 + tei) −

∂φ

∂xi
(a)

for all t ∈]hi, 0[. In particular, we still have ‖f ′
i(t)‖ ≤ ε for all

t ∈]hi, 0[, and applying theorem (112) once more, we obtain:∥∥∥∥φ(ki−1 + hiei) − φ(ki−1) − hi
∂φ

∂xi
(a)
∥∥∥∥ = ‖fi(hi)‖

= ‖fi(0) − fi(hi)‖
≤ ε(0 − hi) = ε|hi|

Hence, the inequality obtained in 6. is still valid for hi ≤ 0.
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8. Using 3. and 6. we obtain:

‖φ(a+ h) − φ(a) − l(h)‖

=

∥∥∥∥∥
n∑
i=1

(
φ(ki−1 + hiei) − φ(ki−1) − hi

∂φ

∂xi
(a)
)∥∥∥∥∥

≤
n∑
i=1

∥∥∥∥φ(ki−1 + hiei) − φ(ki−1) − hi
∂φ

∂xi
(a)
∥∥∥∥

≤
n∑
i=1

ε|hi|

≤
(

n∑
i=1

ε2

)1/2

·
(

n∑
i=1

|hi|2
)1/2

= ε
√
n‖h‖

This has been proved for any h ∈ Rn with ‖h‖ < η.

9. Given U open in Rn, given a map φ : U → E where E is an
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R-normed space, having assumed that ∂φ
∂xi

exists at every point
of U and is continuous at a ∈ U for all i ∈ Nn, given ε > 0,
we have found η > 0 such that for all h ∈ Rn, the condition
‖h‖ < η implies that a+ h ∈ U together with:

‖φ(a+ h) − φ(a) − l(h)‖ ≤ ε
√
n‖h‖

Applying this result to ε/
√
n instead of ε, taking δ = η/2 > 0,

the condition ‖h‖ ≤ δ implies that a+ h ∈ U together with:

‖φ(a+ h) − φ(a) − l(h)‖ ≤ ε‖h‖
It follows that l ∈ LR(Rn, E) satisfies the requirements of def-
inition (128), and we have proved that φ is differentiable at
a ∈ U . This completes the proof of theorem (114).

Exercise 15
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Exercise 16.

1. Let U be open in Rn. Let φ : U → E be a map where E is
an R-normed space. We assume that for all i ∈ Nn, ∂φ

∂xi
exists

and is continuous on U . Then in particular, given a ∈ U , for
all i ∈ Nn, ∂φ

∂xi
exists at every point of U and is continuous at

a ∈ U . From theorem (114), it follows that φ is differentiable
at a. This being true for all a ∈ U , we have proved that φ is
differentiable on U .

2. Let a, b ∈ U and h ∈ Rn. Since φ is differentiable at a and b,
using theorem (113) and the Cauchy-Schwarz inequality (50):

‖(dφ(b)−dφ(a))(h)‖ = ‖dφ(b)(h) − dφ(a)(h)‖

=

∥∥∥∥∥
n∑
i=1

∂φ

∂xi
(b)hi −

n∑
i=1

∂φ

∂xi
(a)hi

∥∥∥∥∥
≤

n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥ · |hi|
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≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥2
)1

2
(

n∑
i=1

|hi|2
)1

2

=

(
n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

· ‖h‖

3. Let a, b ∈ U . It follows from 2. together with 4. of exercise (5):

‖dφ(b) − dφ(a)‖ ≤
(

n∑
i=1

∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥2
)1/2

(8)

4. Let a ∈ U and ε > 0 be given. Having assumed that ∂φ
∂xi

is
continuous on U for all i ∈ Nn, in particular ∂φ

∂xi
is continuous

at a for all i ∈ Nn. Hence, given i ∈ Nn, there exists ηi > 0
such that for all b ∈ U , we have:

‖a− b‖ ≤ ηi ⇒
∥∥∥∥ ∂φ∂xi (b) − ∂φ

∂xi
(a)
∥∥∥∥ ≤ ε√

n
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Taking η = min(η1, . . . , ηn) > 0, for all b ∈ U , using (8):

‖a− b‖ ≤ η ⇒ ‖dφ(b) − dφ(a)‖ ≤ ε

This shows that dφ : U → LR(Rn, E) is continuous at a. This
being true for all a ∈ U , we have proved that dφ is continuous.

5. Given U open in Rn, given a map φ : U → E where E is an R-
normed space, having assumed that ∂φ

∂xi
exists and is continuous

on U for all i ∈ Nn, we have proved that φ is differentiable on
U and furthermore that dφ : U → LR(Rn, E) is a continuous
map. From definition (130), it follows that φ is of class C1 on
U . Conversely, if we assume that φ is of class C1 on U , then
from 2. of exercise (14), ∂φ

∂xi
exists and is continuous on U for

all i ∈ Nn. This completes the proof of theorem (115).

Exercise 16
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Exercise 17. Let E,F be two R-normed spaces and l ∈ LR(E,F ).
Let U be an open subset of E. Let l|U denote the restriction of l to
U , i.e. the map l|U : U → F defined by (l|U )(x) = l(x) for all x ∈ U .
Let a ∈ U . Since U is open in E, there exists δ > 0 such that the
condition ‖h‖ < δ implies a + h ∈ U for all h ∈ E. So there exists
δ > 0 such that the condition ‖h‖ ≤ δ implies a+ h ∈ U , and:

‖(l|U )(a+ h) − (l|U )(a) − l(h)‖ = ‖l(a+ h) − l(a) − l(h)‖ = 0

It follows that l satisfies the requirements of definition (128) in relation
to l|U . We conclude that l|U is differentiable at a, and furthermore
that d(l|U )(a) = l ∈ LR(E,F ). This being true for all a ∈ U , l|U is
differentiable on U , and since d(l|U ) : U → LR(E,F ) is the constant
map d(l|U )(x) = l, d(l|U ) is continuous. So l|U is of class C1.

Exercise 17
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Exercise 18.

1. Let E1, . . . , En, n ≥ 1, be n K-normed spaces. Let E = E1 ×
. . .× En. Let p ∈ [1,+∞[, and for all x = (x1, . . . , xn) ∈ E:

‖x‖p
�
=

(
n∑
i=1

‖xi‖p
)1/p

‖x‖∞
�
= max

i=1,...,n
‖xi‖

We claim that ‖ · ‖p and ‖ · ‖∞ are norms on E. It is clear that
‖x‖p = 0 and ‖x‖∞ = 0 are both equivalent to xi = 0 for all
i ∈ Nn, which is itself equivalent to x = 0. Note that although
the same notation is used, the 0’s of ‖x‖p = 0, xi = 0 and x = 0,
do not refer to the same things. The first one is the element of
R, the second is the identity element of Ei and the last one
refers to (0, . . . , 0), the identity element of E, where the entries
of (0, . . . , 0) are themselves different zeroes, each particular one
being the identity element of the corresponding Ei. . . We have

www.probability.net

http://www.probability.net


Solutions to Exercises 124

not yet defined an Abelian group in these tutorials, but we shall
still venture the following comment: in the context where an
Abelian group is clearly understood (R is an Abelian group, a
vector space is an Abelian group), it is customary to denote its
identity element by 0. Now for all x ∈ E and α ∈ K we have
‖αx‖∞ = |α| · ‖x‖∞, and furthermore:

‖αx‖p = ‖α · (x1, . . . , xn) ‖p
= ‖ (αx1, . . . , αxn) ‖p

=

(
n∑
i=1

‖αxi‖p
)1/p

=

(
n∑
i=1

(|α| · ‖xi‖)p
)1/p

=

(
|α|p

n∑
i=1

‖xi‖p
)1/p
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= |α|
(

n∑
i=1

‖xi‖p
)1/p

= |α| · ‖x‖p

It remains to prove the triangle inequalities for ‖ · ‖∞ and ‖ · ‖p.
Let x ∈ E and y ∈ E. For all i ∈ Nn, we have:

‖xi + yi‖ ≤ ‖xi‖ + ‖yi‖
≤ max

i
‖xi‖ + max

i
‖yi‖

= ‖x‖∞ + ‖y‖∞
This being true for all i ∈ Nn, we obtain:

‖x+ y‖∞ = max
i=1,...,n

‖xi + yi‖ ≤ ‖x‖∞ + ‖y‖∞

In order to prove the triangle inequality for ‖ · ‖p, one may
think of two possible strategies: On the one hand, it is likely
that mimicking the proof of theorem (43) will lead to a valid
and simplified proof of the triangle inequality, the crucial point
being the convexity of x → xp, x > 0, for p ∈ [1,+∞[. On the
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other hand, it is possible to re-interpret the triangle inequality
in a way which makes it a particular case of theorem (43). This
is the approach we shall follow: Let x = (x1, . . . , xn) ∈ E and
y = (y1, . . . , yn) ∈ E. Define Ω = Nn and let F = P(Ω) be
the power set of Ω. Then F is obviously a σ-algebra on Ω. We
define μ : F → [0,+∞] by:

∀A ∈ F , μ(A)
�
=

n∑
i=1

1A(i)

Then μ(∅) = 0, and if A = �k≥1Ak is a union of pairwise disjoint
elements of F , we have 1A =

∑
k≥1 1Ak

and consequently:

μ(A) =
n∑
i=1

1A(i)

=
n∑
i=1

(
+∞∑
k=1

1Ak

)
(i)
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=
n∑
i=1

(
+∞∑
k=1

1Ak
(i)

)

All terms ≥ 0 → =
+∞∑
k=1

(
n∑
i=1

1Ak
(i)

)

=
+∞∑
k=1

μ(Ak)

So μ is a measure on (Ω,F). We define f, g : (Ω,F) → [0,+∞]
by setting f(i) = ‖xi‖ and g(i) = ‖yi‖ for all i ∈ Ω. Then f and
g are non-negative, and clearly measurable since F is the whole
of the power set P(Ω). Applying theorem (43), we obtain:

‖x+ y‖p = ‖ (x1, . . . , xn) + (y1, . . . , yn) ‖p
= ‖ (x1 + y1, . . . , xn + yn) ‖p
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=

(
n∑
i=1

‖xi + yi‖p
)1/p

≤
(

n∑
i=1

(‖xi‖ + ‖yi‖)p
)1/p

μ({i}) = 1 → =

(
n∑
i=1

∫
{i}

(f + g)pdμ

)1/p

=
(∫

(f + g)pdμ
)1/p

Theorem (43) → ≤
(∫

fpdμ

)1/p

+
(∫

gpdμ

)1/p

=

(
n∑
i=1

‖xi‖p
)1/p

+

(
n∑
i=1

‖yi‖p
)1/p
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= ‖x‖p + ‖y‖p
This completes our proof of the triangle inequality for ‖·‖p, and
we have proved that ‖ · ‖∞ and ‖ · ‖p are norms on E.

2. Let Tp and T∞ denote the topologies induced on E by ‖ · ‖p and
‖ · ‖∞ respectively. Let T denote the product topology on E.
For all x ∈ E, we have:

‖x‖p =

(
n∑
i=1

‖xi‖p
)1/p

≤
(

n∑
i=1

(‖x‖∞)p
)1/p

= n1/p · ‖x‖∞
= n1/p · (max

i
‖xi‖p)1/p
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≤ n1/p ·
(

n∑
i=1

‖xi‖p
)1/p

= n1/p · ‖x‖p

Having proved that ‖·‖p ≤ n1/p‖·‖∞ ≤ n1/p‖·‖p, it follows from
exercise (3) that the identity mapping j : (E, ‖·‖p) → (E, ‖·‖∞)
is a homeomorphism, i.e. that j and j−1 are continuous. This
shows that Tp = T∞. In order to prove that T ⊆ T∞, it is
sufficient to prove that T∞ contains every open rectangle in E.
Hence, we consider A = A1 × . . . × An, where each Ai is an
open subset of Ei. Suppose x = (x1, . . . , xn) is an element of
A. Then for all i ∈ Nn, xi is an element of Ai which is open in
Ei. There exists εi > 0 such that B(xi, εi) ⊆ Ai, where B(xi, εi)
denotes the open ball in Ei. Let ε = min(ε1, . . . , εn) > 0 and let
B∞(x, ε) denote the open ball in E, relative to the norm ‖ · ‖∞.
For all y = (y1, . . . , yn) ∈ E, we have:

y ∈ B∞(x, ε) ⇔ ‖y − x‖∞ < ε

⇔ max
i

‖yi − xi‖ < ε
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⇒ ‖yi − xi‖ < εi, ∀i ∈ Nn

⇔ yi ∈ B(xi, εi), ∀i ∈ Nn

⇒ yi ∈ Ai, ∀i ∈ Nn

⇔ y ∈ A

This shows that B∞(x, ε) ⊆ A, and we have proved that for all
x ∈ A, there exists ε > 0 such that B∞(x, ε) ⊆ A. It follows
that A ∈ T∞ and we have proved that T ⊆ T∞. Note that
there is no need to consider separately the case A = ∅ in the
previous argument. To show that T∞ ⊆ T , consider A ∈ T∞.
Given x ∈ A, there exists ε > 0 such that B∞(x, ε) ⊆ A. For all
y ∈ E, we have:

y ∈ B∞(x, ε) ⇔ ‖y − x‖∞ < ε

⇔ max
i

‖yi − xi‖ < ε

⇔ ‖yi − xi‖ < ε, ∀i ∈ Nn

⇔ yi ∈ B(xi, ε), ∀i ∈ Nn
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⇔ y ∈ B(x1, ε) × . . .×B(xn, ε)

It follows that B∞(x, ε) = B(x1, ε)× . . .×B(xn, ε) and B∞(x, ε)
is therefore an open rectangle in E, and in particular an element
of the product topology T . Hence, for all x ∈ A, there exists
some Ax ∈ T such that x ∈ Ax ⊆ A. From A = ∪x∈AAx we
conclude that A ∈ T , and we have proved that T∞ ⊆ T . This
completes our proof of Tp = T∞ = T .

3. Although we have not explicitly justified this point, E is a K-
vector space as defined in (89), where the scalar multiplication
and vector addition are given by the formulas:

α · (x1, . . . , xn)
�= (αx1, . . . , αxn)

(x1 + . . . , xn) + (y1, . . . , yn)
�
= (x1 + y1, . . . , xn + yn)

For all x = (x1, . . . , xn) and y = (y1, . . . , yn) elements of E, and
α ∈ K. Since ‖ · ‖p and ‖ · ‖∞ are norms on E, it follows from
definition (125) that (E, ‖ · ‖p) and (E, ‖ · ‖∞) are K-normed
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spaces. Having proved that Tp = T∞ = T , we conclude that the
norm topologies on E relative to both ‖ · ‖p and ‖ · ‖∞ are equal
to the product topology on E.

Exercise 18
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Exercise 19. Let E and F be two R-normed spaces. Let U be open
in E and φ, ψ : U → F be two maps. We assume that both φ and ψ
are differentiable at a ∈ U . Let α ∈ R. Let k = dφ(a) and l = dψ(a).
Since both k and l are elements of LR(E,F ), from exercise (4) the
map m = k + αl is an element of LR(E,F ). To show that φ + αψ
is differentiable at a with d(φ + αψ)(a) = m, we have to show that
m satisfies the requirements of definition (128), in relation to φ+αψ.
There is nothing to do if α = 0, so we may assume that α �= 0. Since
both k and l satisfy the requirements of definition (128), in relation
to φ and ψ respectively, given ε > 0 there exist δ1 > 0 and δ2 > 0
such that for all h ∈ E, ‖h‖ ≤ δ1 implies that a+ h ∈ U , with:

‖φ(a+ h) − φ(a) − k(h)‖ ≤ ε

2
‖h‖

and ‖h‖ ≤ δ2 implies that a+ h ∈ U , with:

‖ψ(a+ h) − ψ(a) − l(h)‖ ≤ ε

2|α| ‖h‖
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Note that to obtain δ1 and δ2, we obviously applied definition (128)
to different values of ’ε’. Defining χ = φ+ αψ, if δ = min(δ1, δ2) > 0,
the condition ‖h‖ ≤ δ implies that a+ h ∈ U , with:

‖χ(a+ h) − χ(a) −m(h)‖ ≤ ‖φ(a+ h) − φ(a) − k(h)‖
+ |α| · ‖ψ(a+ h) − ψ(a) − l(h)‖
≤ ε

2
‖h‖ + |α| ε

2|α| ‖h‖

= ε‖h‖
This shows that m satisfies the requirements of definition (128), and
we have proved that χ = φ+αψ is differentiable with dχ(a) = m, i.e.:

d(φ + αψ)(a) = dφ(a) + αdψ(a)

Exercise 19
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Exercise 20.

1. Let E and F be two K-normed spaces. Let NE and NF be two
norms on E and F , inducing the same topologies as the norm
topologies on E and F respectively. From definition (127), the
set LK(E,F ) is that of all linear maps l : E → F which are
continuous. In the presence of alternative norms NE and NF on
E and F respectively, the word continuous is potentially vague,
as it may not be clear which topologies are being referred to.
Fortunately, by assumption the norms ‖ · ‖ and NE induce the
same topology on E, whereas ‖ · ‖ and NF induce the same
topology on F . As far as continuity is concerned, it is therefore
unnecessary to be more specific about which particular norm
on E (‖ · ‖ or NE), and which particular norm on F (‖ · ‖
or NF ) is being considered. Consequently, the set LK(E,F )
is unambiguously defined, without the need to introduce more
precise but cumbersome notations such as LK[(E, ‖·‖), (F, ‖·‖)]
or LK[(E,NE), (F,NF )] etc.
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2. Let idE : (E, ‖ · ‖) → (E,NE) be the identity mapping. Since
‖ · ‖ and NE induce the same topology on E, if A is open with
respect to the topology induced byNE, then A = id−1

E (A) is also
open with respect to the topology induced by ‖ · ‖. It follows
that idE is a continuous map.

3. Having proved that idE : (E, ‖ · ‖) → (E,NE) is a continuous
map, being also linear, it follows from exercise (3) that there
exists ME ∈ R+ such that:

∀x ∈ E , NE [idE(x)] ≤ME‖x‖
If ME = 0 (which is possible when E is reduced to the triv-
ial case E = {0}), it is always possible to replace ME by an
arbitrary positive constant. Hence, there exists ME > 0 such
that NE ≤ ME‖ · ‖. However, since ‖ · ‖ and NE induce the
same topology on E, the map id−1

E : (E,NE) → (E, ‖ · ‖) is also
continuous. Hence, we can find M∗

E > 0 such that:

∀x ∈ E , ‖id−1
E (x)‖ ≤M∗

ENE(x)
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Defining mE = 1/M∗
E > 0, we obtain mE‖ · ‖ ≤ NE . We have

proved the existence of mE ,ME > 0 such that:

∀x ∈ E , mE‖x‖ ≤ NE(x) ≤ME‖x‖

4. Since ‖·‖ and NF induce the same topology on F , applying 3. to
the space F and the norms ‖·‖ and NF , we obtain the existence
of mF ,MF > 0 such that:

∀y ∈ F , mF ‖y‖ ≤ NF (y) ≤MF‖y‖

Let l ∈ LK(E,F ) and x ∈ E with NE(x) = 1. We have:

‖NF (l(x))‖ ≤ MF ‖l(x)‖
≤ MF ‖l‖ · ‖x‖

≤ MF ‖l‖ ·
NE(x)
mE

=
MF

mE
‖l‖

Defining M = MF /mE > 0, we have proved that M‖l‖ is an
upper-bound of all ‖NF (l(x))‖’s as x ranges through the set
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of all x ∈ E with NE(x) = 1. Since N(l) is by definition the
smallest of such upper-bounds, we obtain N(l) ≤ M‖l‖. This
being true for all l ∈ LK(E,F ), we have found M > 0 such that
N ≤M‖ · ‖. In order to show the existence of m > 0 such that
m‖ · ‖ ≤ N , one may reach a quick conclusion by interchanging
the roles of ‖ · ‖ and NE on the one hand, and ‖ · ‖ and NF
on the other hand, to obtain M∗ > 0 such that ‖ · ‖ ≤ M∗N ,
and conclude with m = 1/M∗. As this may seem confusing
or unconvincing to some, we shall proceed without emphasis to
this symmetry. Let x ∈ E be such that ‖x‖ = 1. Using 3.
of exercise (5) applied to the norms NE on E, NF on F , and
associated N on LK(E,F ):

‖l(x)‖ ≤ 1
mF

NF (l(x))

3. of ex. (5) → ≤ 1
mF

N(l) ·NE(x)
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≤ 1
mF

N(l)ME‖x‖ =
ME

mF
N(l)

Defining m = mF /ME > 0, we have proved that m−1N(l) is
an upper-bound of all ‖l(x)‖’s as x ranges through the set of all
x ∈ E with ‖x‖ = 1. Since ‖l‖ is the smallest of such upper-
bounds, we obtain ‖l‖ ≤ m−1N(l), or equivalentlym‖l‖ ≤ N(l).
This being true for all l ∈ LK(E,F ), we have found m > 0 such
that m‖ · ‖ ≤ N . Hence, there is m,M > 0 such that:

∀l ∈ LK(E,F ) , m‖l‖ ≤ N(l) ≤M‖l‖

5. Having found m,M > 0 such that m‖·‖ ≤ N ≤M‖·‖, it is clear
from exercise (3) that j : (LK(E,F ), ‖ · ‖) → (LK(E,F ), N),
the identity mapping, is a homeomorphism, i.e. that both j
and j−1 are continuous. It follows that ‖ · ‖ and N induce the
same topology on LK(E,F ). Indeed, let T‖·‖ and TN be the
topologies on LK(E,F ) induced by ‖ ·‖ and N respectively. Let
A ∈ TN . Since j is continuous, A = j−1(A) is an element of
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T‖·‖. This shows that TN ⊆ T‖·‖, and similarly T‖·‖ ⊆ TN .

6. Suppose that K = R and φ : U → F is differentiable at a ∈ U .
Let l = dφ(a) ∈ LR(E,F ). Our assumption of φ being differen-
tiable at a, means specifically that l satisfies the requirements of
definition (128), in relation to the normed spaces (E, ‖ · ‖) and
(F, ‖ · ‖). Saying that φ is also differentiable at a with respect
to the norms NE and NF , is just an informal way of saying
that l should also satisfy the requirements of definition (128),
in relation to the normed spaces (E,NE) and (F,NF ). This
is exactly what we need to prove. For this purpose, we con-
sider mE ,ME > 0 such that mE‖ · ‖ ≤ NE ≤ ME‖ · ‖, and
mF ,MF > 0 such that mF ‖ · ‖ ≤ NF ≤ MF‖ · ‖. Let ε > 0 be
given. Applying definition (128) to ε′ = εmE/MF in relation to
(E, ‖·‖) and (F, ‖·‖), there exists δ′ > 0 such that for all h ∈ E,
the condition ‖h‖ ≤ δ′ implies that a+h ∈ U , and furthermore:

‖φ(a+ h) − φ(a) − l(h)‖ ≤ ε
mE

MF
‖h‖
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Defining δ = mEδ
′ > 0, for all h ∈ E the condition NE(h) ≤ δ

implies that mE‖h‖ ≤ mEδ
′ and consequently ‖h‖ ≤ δ′. Hence,

the conditionNE(h) ≤ δ implies that a+h ∈ U and furthermore:

NF (φ(a+ h) − φ(a) − l(h)) ≤ MF‖φ(a+ h) − φ(a) − l(h)‖
≤ MF ε

mE

MF
‖h‖

≤ MF ε
mE

MF

NE(h)
mE

= εNE(h)

This shows that l satisfies the requirements of definition (128)
in relation to the normed spaces (E,NE) and (F,NF ). We have
proved that changing the norms on E and F with equivalent
norms NE and NF , i.e. norms inducing the same topologies on
E and F , does not affect the differentiability of φ : U → F at
a ∈ U , or the value of the differential dφ(a) ∈ LR(E,F ).

7. Suppose that K = R and φ : U → F is of class C1 on U . In
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particular, φ is differentiable on U . It follows from 6. that φ is
also differentiable on U with respect to the norms NE and NF .
Let dφ : U → LR(E,F ) be the differential of φ. From 6., dφ
is also the differential of φ with respect to the norms NE and
NF . Having assumed that φ is of class C1 on U , the differential
dφ : U → LR(E,F ) is continuous. More precisely, dφ is a
continuous map, with respect to the norm topology on LR(E,F )
and the topology on U induced by the norm topology on E. If
we replace the norms on E and F by NE and NF respectively,
by assumption the norm topology on E is unchanged, and so
is the topology on U . From 5. the topology on LR(E,F ) is
also unchanged. It follows that dφ : U → LR(E,F ) is also
continuous with respect to the topologies on U and LR(E,F )
induced by the norms NE and NF . This shows that φ is of class
C1 on U , with respect to the norms NE and NF .

Exercise 20
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Exercise 21.

1. Let F = F1 × . . . × Fp be the product of p, p ≥ 1, R-normed
spaces. Given i ∈ Np, let pi : F → Fi be the canonical projec-
tion defined by pi(x1, . . . , xp) = xi for all x = (x1, . . . , xp) ∈ F .
Given x = (x1, . . . , xp) ∈ F and y = (y1, . . . , yp) ∈ F , given
α ∈ R, we have:

pi(x+ αy) = pi[(x1, . . . , xp) + α · (y1, . . . , yp)]
= pi[(x1, . . . , xp) + (αy1, . . . , αyp)]
= pi[(x1 + αy1, . . . , xp + αyp)]
= xi + αyi

= pi(x) + αpi(y)

Hence, pi : F → Fi is a linear map. From exercise (10), pi is
continuous with respect to the product topology on F . From
exercise (18), the product topology on F coincides with the
norm topology on F viewed as an R-normed space. So pi is
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also continuous with respect to the norm topology on F . This
shows that pi ∈ LR(F, Fi). Note that there is no need to be very
specific about which norm on F is being referred to, by virtue
of exercise (18) and (20). It is understood that any norm chosen
on F , if not specifically of a type described in exercise (18), will
at least induce the same topology, i.e. the product topology on
F . To show that pi is continuous, assuming for example that F
is endowed with the norm ‖·‖q of exercise (18) with q ∈ [1,+∞[,
one can argue directly that for all x ∈ F :

‖pi(x)‖ = ‖xi‖ ≤
(

p∑
i=1

‖xi‖q
)1/q

= ‖x‖q

It follows from exercise (3) that pi is continuous.

2. Given i ∈ Np, let ui : Fi → F be defined as:

∀xi ∈ Fi , ui(xi)
�
= (0, . . . ,

i︷︸︸︷
xi , . . . , 0)
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For all xi, yi ∈ Fi and α ∈ R, we have:

ui(xi + αyi) = (0, . . . , xi + αyi, . . . , 0)
= (0, . . . , xi, . . . , 0) + α · (0, . . . , yi, . . . , 0)
= ui(xi) + α · ui(yi)

Hence, ui : Fi → F is linear. Using the norm ‖ · ‖∞ on F as
defined in exercise (18), we obtain:

‖ui(xi)‖∞ = max(0, . . . , ‖xi‖, . . . , 0) = ‖xi‖
and it follows from exercise (3) that ui : Fi → F is continuous.
We have proved that ui ∈ LR(Fi, F ). Now for all x ∈ F :(

p∑
i=1

ui ◦ pi

)
(x) =

p∑
i=1

(ui ◦ pi)(x)

=
p∑
i=1

ui(pi(x))
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=
p∑
i=1

(0, . . . , xi, . . . , 0)

= (x1, . . . , xp) = x

This being true for all x ∈ F , we obtain:
p∑
i=1

ui ◦ pi = idF

where idF : F → F denotes the identity mapping. It follows
that if E is an R-normed space, U is open in E and φ : U → F
is a map, then:

φ = idF ◦ φ

=

(
p∑
i=1

ui ◦ pi

)
◦ φ

=
p∑
i=1

(ui ◦ pi) ◦ φ
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=
p∑
i=1

ui ◦ (pi ◦ φ)

=
p∑
i=1

ui ◦ φi

where φi : U → Fi is defined as φ = pi ◦ φ.

3. Suppose φ : U → F is differentiable at a ∈ U . Let i ∈ Np. Hav-
ing proved in 1. that pi ∈ LR(F, Fi), it follows from exercise (17)
that pi : F → Fi is differentiable on F , with dpi(x) = pi for all
x ∈ F . Applying theorem (110), we conclude that pi ◦ φ = φi is
differentiable at a ∈ U , with:

dφi(a) = d(pi ◦ φ)(a)
= dpi(φ(a)) ◦ dφ(a) = pi ◦ dφ(a)

4. Suppose that for all i ∈ Np, φi : U → Fi is differentiable at
a ∈ U . Having proved in 2. that ui ∈ LR(Fi, F ), it follows
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from exercise (17) that ui : Fi → F is differentiable on Fi, with
dui(xi) = ui for all xi ∈ Fi. Applying theorem (110), the map
ui ◦ φi : U → F is therefore differentiable at a ∈ U , with:

d(ui ◦ φi)(a) = dui(φi(a)) ◦ dφi(a) = ui ◦ dφi(a)
Having proved in 2. that φ =

∑p
i=1 ui ◦ φi, we conclude from

exercise (19) that φ is differentiable at a ∈ U , with:

dφ(a) = d

(
p∑
i=1

ui ◦ φi

)
(a)

=
p∑
i=1

d(ui ◦ φi)(a)

=
p∑
i=1

ui ◦ dφi(a)

5. Let a, b ∈ U . We assume that φ is differentiable at a and b. Then
dφ(a) and dφ(b) are well-defined elements of LR(E,F ). From 3.
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dφi(a) and dφi(b) are well-defined elements of LR(E,Fi) for all
i ∈ Np. Given i ∈ Np, we claim that:

‖dφi(b) − dφi(a)‖ ≤ ‖dφ(b) − dφ(a)‖
Note that ‖dφi(b) − dφi(a)‖ is well-defined from exercise (5):

‖dφi(b) − dφi(a)‖
�
= sup ‖(dφi(b) − dφi(a))(x)‖

where the sup is taken over all x ∈ E with ‖x‖ = 1. Also:

‖dφ(b) − dφ(a)‖ �
= sup ‖(dφ(b) − dφ(a))(x)‖

where the sup is taken over all x ∈ E with ‖x‖ = 1. Note
however that this expression is dependent upon a specific choice
of norm on F , in order for ‖(dφ(b)−dφ(a))(x)‖ to be meaningful.
As a possible choice, we shall work with the norm ‖ · ‖2 of
exercise (18), so that specifically:

‖dφ(b) − dφ(a)‖ �
= sup ‖(dφ(b) − dφ(a))(x)‖2
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where the supremum is taken over all x ∈ E with ‖x‖ = 1. Now
for all y = (y1, . . . , yp) ∈ F and i ∈ Np, we have:

‖pi(y)‖ = ‖yi‖ ≤

⎛
⎝ p∑
j=1

‖yj‖2

⎞
⎠1/2

= ‖y‖2

Having proved in 3. that dφi(a) = pi ◦ dφ(a), we have similarly
dφi(b) = pi ◦dφ(b) and consequently for all x ∈ E with ‖x‖ = 1:

‖(dφi(b) − dφi(a))(x)‖ = ‖ pi[(dφ(b) − dφ(a))(x)] ‖
≤ ‖(dφ(b) − dφ(a))(x)‖2

≤ ‖dφ(b) − dφ(a)‖
from which we conclude that:

‖dφi(b) − dφi(a)‖ ≤ ‖dφ(b) − dφ(a)‖

6. For all x ∈ E with ‖x‖ = 1, since dφi(a) = pi ◦ dφ(a):

‖(dφ(b) − dφ(a))(x)‖ �
= ‖(dφ(b) − dφ(a))(x)‖2
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=

(
p∑
i=1

‖ pi[(dφ(b) − dφ(a))(x)] ‖2

)1/2

=

(
p∑
i=1

‖(dφi(b) − dφi(a))(x)‖2

)1/2

≤
(

p∑
i=1

‖dφi(b) − dφi(a)‖2

)1/2

from which we conclude that:

‖dφ(b) − dφ(a)‖ ≤
(

p∑
i=1

‖dφi(b) − dφi(a)‖2

)1/2

7. Suppose φ : U → F is of class C1 on U . Let i ∈ Np. Since φ is
differentiable on U , from 3. φi : U → Fi is also differentiable on
U . Since dφ : U → LR(E,F ) is a continuous map, it follows
from 5. that dφi : U → LR(E,Fi) is also a continuous map.
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This shows that φi : U → Fi is of class C1 on U . We have
proved that if φ is of class C1, then φi = pi ◦ φ is of class C1

for all i ∈ Np. Conversely, suppose all φi’s are of class C1 on
U . Then in particular, all φi’s are differentiable on U . It follows
from 4. that φ is also differentiable on U . Furthermore, each
dφi : U → LR(E,Fi) is a continuous map. In particular, given
a ∈ U , each dφi is continuous at a. Given ε > 0, for all i ∈ Np

there exists ηi > 0 such that for all b ∈ U :

‖b− a‖ ≤ ηi ⇒ ‖dφi(b) − dφi(a)‖ ≤ ε
√
p

Defining η = min(η1, . . . , ηp) > 0, for all b ∈ U , using 6.:

‖b− a‖ ≤ η ⇒ ‖dφ(b) − dφ(a)‖ ≤ ε

This shows that dφ : U → LR(E,F ) is continuous at a. This
being true for all a ∈ U , we have proved that dφ is a continuous
map. So φ is of class C1 on U . We conclude that φ is of class
C1 on U , if and only if φi is of class C1 on U for all i ∈ Np.
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Note that this conclusion would still hold, if F were given any
other norm N inducing the product topology on F , instead of
‖ · ‖2. Indeed from exercise (18) the norm ‖ · ‖2 does induce
the product topology on F . So any other norm N inducing the
product topology, induces the same topology as ‖ · ‖2. It follows
from exercise (20) that φ being of class C1 on U relative to the
norm ‖ · ‖2, is equivalent to φ being of class C1 on U relative to
the norm N . Given i ∈ Np, the map φi : U → Fi is unaffected
by a change of norm on F . It follows that the conclusion we
have reached having assumed that F is endowed with the norm
‖ · ‖2, is still valid when F is endowed with the norm N .

8. Given p+1 R-normed spaces E and F1, . . . , Fp, given U open in
E and F = F1× . . .×Fp, given a map φ = (φ1, . . . , φp) : U → F ,
for all a ∈ U we have proved in 3. and 4. that φ is differentiable
at a, if and only if φi is differentiable at a for all i ∈ Np. We
have proved in 7. that φ is of class C1 on U , if and only if φi is
of class C1 on U for all i ∈ Np. Now suppose a ∈ U and φ is
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differentiable at a. For all h ∈ E, using 4. we obtain:

dφ(a)(h) =

(
p∑
i=1

ui ◦ dφi(a)
)

(h)

=
p∑
i=1

(ui ◦ dφi(a))(h)

=
p∑
i=1

ui[dφi(a)(h)]

=
p∑
i=1

(0, . . . , dφi(a)(h), . . . , 0)

= (dφ1(a)(h), . . . , dφp(a)(h))

This completes the proof of theorem (116).

Exercise 21
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Exercise 22. Let φ = (φ1, . . . , φn) : U → Rn be a map, where
U is an open subset of Rn. We assume that φ is differentiable at
a ∈ U . Let (e1, . . . , en) be the canonical basis of Rn. Note that if
we consider (R, | · |) as a normed vector space over itself, then the
usual inner-product of Rn induces the norm ‖ · ‖2 of exercise (18),
and in particular, it induces the product topology on Rn. It follows
that Rn is a particular case of finite product of R-normed spaces, as
per theorem (116). Having assumed that φ is differentiable at a ∈ U ,
from theorem (116) each φi : U → R is differentiable at a ∈ U .
Given i ∈ Nn, applying theorem (113) to φi, it follows that for all
j ∈ Nn, the partial derivative ∂φi

∂xj
(a) exists and furthermore for all

h = (h1, . . . , hn) ∈ Rn, we have:

dφi(a)(h) =
n∑
j=1

∂φi
∂xj

(a)hj
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In particular, dφi(a)(ej) = ∂φi

∂xj
(a) for all j ∈ Nn. Hence, we obtain

from theorem (116):

dφ(a)(ej) = (dφ1(a)(ej), . . . , dφn(a)(ej))

=
n∑
i=1

dφi(a)(ej)ei

=
n∑
i=1

∂φi
∂xj

(a)ei = Mej

where M ∈ Mn(R) is the n× n matrix:

M =

⎛
⎜⎝

∂φ1
∂x1

(a) . . . ∂φ1
∂xn

(a)
...

...
∂φn

∂x1
(a) . . . ∂φn

∂xn
(a)

⎞
⎟⎠

Having proved that dφ(a)(ej) = Mej for all j ∈ Nn, we conclude
that dφ(a) = M . Now from theorem (116), φ being of class C1 on
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U is equivalent to φi being of class C1 on U for all i ∈ Nn. From
theorem (115), this in turn is equivalent to ∂φi

∂xj
existing and being

continuous on U , for all j ∈ Nn and i ∈ Nn. Hence, we have proved
that φ is of class C1 on U , if and only if for all i, j ∈ Nn, the partial
derivative ∂φi

∂xj
exists and is continuous on U . This completes the proof

of theorem (117).
Exercise 22
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Exercise 23.

1. The set Mn(R) of n × n matrices with entries in R, is the set
of all maps M : Nn×Nn → R, i.e. Mn(R) = RNn×Nn . There
is an obvious topology on Mn(R), namely the one induced by
the inner-product:

〈M,N〉 �
=

n∑
i,j=1

Mi,jNi,j

with associated norm:

‖M‖2 =

⎛
⎝ n∑
i,j=1

M2
i,j

⎞
⎠1/2

which induces the product topology on RNn×Nn , by virtue of
exercise (18). In these tutorials, we have consistently identified
elements of Mn(R) with the set of linear maps l : Rn → Rn.
This set coincides with LR(Rn,Rn), as every such linear map
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is continuous. Indeed, if (e1, . . . , en) denotes the canonical basis
of Rn and l : Rn → Rn is linear, for all x = (x1, . . . , xn) ∈ Rn:

‖l(x)‖ =

∥∥∥∥∥
n∑
i=1

xil(ei)

∥∥∥∥∥
≤

n∑
i=1

|xi| · ‖l(ei)‖

≤
(

n∑
i=1

‖l(ei)‖2

)1/2

·
(

n∑
i=1

|xi|2
)1/2

= K‖x‖

where K = (
∑n

i=1 ‖l(ei)‖2)1/2 ∈ R+. Now, the identification of
Mn(R) with LR(Rn,Rn) gives us another obvious topology on
Mn(R), namely the one induced by the norm on LR(Rn,Rn),
specifically the norm ‖ · ‖ defined by:

‖M‖ �
= sup{‖Mx‖ : x ∈ Rn, ‖x‖ = 1}
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Because we haven’t yet proved that all norms on a finite dimen-
sional space induce the same topology, we shall now prove that
‖ · ‖2 and ‖ · ‖ induce the same topology on Mn(R), namely the
product topology on RNn×Nn . Let M ∈ Mn(R). We have:

‖M‖2 =

⎛
⎝ n∑
i,j=1

M2
i,j

⎞
⎠1/2

=

⎛
⎝ n∑
j=1

n∑
i=1

M2
i,j

⎞
⎠1/2

=

⎛
⎝ n∑
j=1

‖Mej‖2

⎞
⎠1/2

‖ej‖ = 1 → ≤

⎛
⎝ n∑
j=1

‖M‖2

⎞
⎠1/2

=
√
n‖M‖
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Furthermore, if x = (x1, . . . , xn) ∈ Rn with ‖x‖ = 1:

‖Mx‖ =

∥∥∥∥∥∥
n∑
j=1

xjMej

∥∥∥∥∥∥
≤

n∑
j=1

|xj | · ‖Mej‖

≤

⎛
⎝ n∑
j=1

‖Mej‖2

⎞
⎠1/2

·

⎛
⎝ n∑
j=1

|xj |2
⎞
⎠1/2

=

⎛
⎝ n∑
j=1

n∑
i=1

M2
i,j

⎞
⎠1/2

· ‖x‖

= ‖M‖2

from which we obtain ‖M‖ ≤ ‖M‖2. Hence, we have proved
that ‖·‖ ≤ ‖·‖2 ≤

√
n‖·‖, which shows that the identity mapping
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j : (Mn(R), ‖ · ‖) → (Mn(R), ‖ · ‖2) is a homeomorphism. So
‖ · ‖ and ‖ · ‖2 induce the same topology on Mn(R), namely the
product topology on RNn×Nn . Having clarified which topology
is to be assumed on Mn(R), it is now meaningful to state that
the determinant det : Mn(R) → R is a continuous map. As
we haven’t had a tutorial on the determinant, we shall have to
accept this fact. However, for those familiar with the formula:

detM =
∑
σ

ε(σ)M1,σ(1) · . . . ·Mn,σ(n)

where the sum is taken over all permutations σ : Nn → Nn

(and ε(σ) ∈ {−1, 1} denotes the sign of a permutation σ), the
fact that det : Mn(R) → R is a continuous map is a lot eas-
ier to believe. Indeed, det can be expressed as a linear com-
bination (with coefficients in {−1, 1}) of products of the form
pi1,j1 . . . pin,jn , where pi,j : RNn×Nn → R is the (continuous)
canonical projection. Having (hopefully) accepted the continu-
ity of det : Mn(R) → R, we are now in a position to prove that
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J(φ) : Ω → R is itself continuous. From definition (132):

J(φ)(a) = det[dφ(a)] = (det ◦dφ)(a)

This being true for all a ∈ Ω, we obtain J(φ) = det ◦dφ.
However, since φ is assumed to be of class C1 on Ω, the map
dφ : Ω → LR(Rn,Rn) (or equivalently dφ : Ω → Mn(R)) is
a continuous map. It follows that J(φ) = det ◦dφ : Ω → R is
itself continuous. Likewise, since ψ : Ω′ → Rn is of class C1 on
Ω′, J(ψ) : Ω′ → R is continuous.

2. Let In : Rn → Rn be the identity mapping. From ψ = φ−1 we
obtain φ◦ψ = (In)|Ω′ , where (In)|Ω′ is the restriction of In to Ω′.
From exercise (17), (In)|Ω′ is differentiable and d(In)|Ω′(x) = In
for all x ∈ Ω′. Hence, from theorem (110) and for all x ∈ Ω′:

dφ(ψ(x)) ◦ dψ(x) = d(φ ◦ ψ)(x) = d(In)|Ω′(x) = In

3. Similarly to 2., from ψ ◦ φ = (In)|Ω we obtain for all x ∈ Ω:

dψ(φ(x)) ◦ dφ(x) = d(ψ ◦ φ)(x) = d(In)|Ω(x) = In
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4. Let x ∈ Ω′. From 2. and definition (132) we obtain:

1 = det In
= det[dφ(ψ(x)) ◦ dψ(x)]

Granted → = det[dφ(ψ(x))] det[dψ(x)]
Definition (132) → = J(φ)(ψ(x))J(ψ)(x) (9)

It follows in particular that J(ψ)(x) �= 0 for all x ∈ Ω′.

5. Let x ∈ Ω. From 3. we have similarly to 4.:

1 = det In
= det[dψ(φ(x)) ◦ dφ(x)]
= det[dψ(φ(x))] det[dφ(x)]
= J(ψ)(φ(x))J(φ)(x) (10)

and it follows that J(φ)(x) �= 0 for all x ∈ Ω. Note that it is
perfectly acceptable to deduce J(φ)(x) �= 0 directly from 3. by
interchanging the roles of φ and ψ.
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6. Let x ∈ Ω′. Going back to (9), we have:

J(ψ)(x) =
1

J(φ)(ψ(x))
=

1
(J(φ) ◦ ψ)(x)

This being true for all x ∈ Ω′, J(ψ) = 1/(J(φ) ◦ ψ). Similarly,
going back to (10) we obtain J(φ) = 1/(J(ψ) ◦ φ).

Exercise 23
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Exercise 24. Let Ω ∈ B(Rn) be a Borel subset of Rn and B ∈ B(Ω)
be a Borel subset of Ω. Then dx|Ω(B) is defined by dx|Ω(B) = dx(B).
For this to be meaningful, we need to ensure that dx(B) is well-
defined, i.e. that B ∈ B(Rn). This amounts to proving the inclusion
B(Ω) ⊆ B(Rn), which can be seen from theorem (10):

B(Ω)
�
= σ(TΩ)
�
= σ((TRn)|Ω)

Theorem (10) → = σ(TRn)|Ω
�
= B(Rn)|Ω
�
= {B ∩ Ω : B ∈ B(Rn)}

Ω ∈ B(Rn) → ⊆ B(Rn)

So dx|Ω is well-defined, and it is clearly a measure on (Ω,B(Ω)).
Exercise 24
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Exercise 25.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism.
Being open in Rn, in particular Ω and Ω′ are Borel subsets of
Rn. From exercise (24), it follows that dx|Ω′ is a well-defined
measure on (Ω′,B(Ω′)), while dx|Ω is a well-defined measure
on (Ω,B(Ω)). Furthermore, being differentiable, the map φ :
Ω → Ω′ is continuous and therefore measurable. It follows from
definition (123) that the image measure φ(dx|Ω) is a well-defined
measure on (Ω′,B(Ω′)). We have proved that dx|Ω′ and φ(dx|Ω)
are well-defined measures on (Ω′,B(Ω′)).

2. Let a ∈ Ω′. Since Ω′ is open in Rn, there exists η > 0 such
that B(a, η) ⊆ Ω′, where B(a, η) denotes the open ball in Rn.
Let 0 < ε ≤ η. Then B(a, ε) ⊆ B(a, η) ⊆ Ω′, and consequently
B(a, ε) = B(a, ε)∩Ω′. Since B(a, ε) is open in Rn, the equality
B(a, ε) = B(a, ε)∩Ω′ shows that it is also open in Ω′. In partic-
ular, B(a, ε) is a Borel subset of Ω′. We have found η > 0 such
that B(a, ε) ∈ B(Ω′) for all ε > 0 with ε ≤ η. This shows that
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B(a, ε) ∈ B(Ω′) for ε > 0 sufficiently small.

3. From 2. B(a, ε) is an element of B(Ω′) for ε > 0 sufficiently
small. From 1. dx|Ω′ and φ(dx|Ω) are well-defined measures on
(Ω′,B(Ω′)). It follows that the quantities dx|Ω′(B(a, ε)) and
φ(dx|Ω)(B(a, ε)) are meaningful elements of [0,+∞] for ε > 0
sufficiently small. In fact, from definition (134), we have:

dx|Ω′(B(a, ε)) = dx(B(a, ε)) ∈]0,+∞[

It follows that the ratio φ(dx|Ω)(B(a, ε))/dx|Ω′ (B(a, ε)) is well-
defined in [0,+∞] for ε > 0 sufficiently small. Hence, it does
make sense to investigate whether the limit:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

exists in [0,+∞], and whether this limit is an element of R.

4. We assume that dψ(a) = In. Let r > 0 be given. Since In
satisfies the requirements of definition (128) in relation to ψ
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at a ∈ Ω′, there exists ε1 > 0 such that for all h ∈ Rn, the
condition ‖h‖ ≤ ε1 implies that a+ h ∈ Ω′, and:

‖ψ(a+ h) − ψ(a) − h‖ ≤ r‖h‖

5. Let h ∈ Rn with ‖h‖ ≤ ε1. Then a+ h ∈ Ω′, and:

‖ψ(a+ h) − ψ(a)‖ ≤ ‖ψ(a+ h) − ψ(a) − h‖ + ‖h‖
≤ r‖h‖ + ‖h‖
= (1 + r)‖h‖

6. Let ε ∈]0, ε1[ and x ∈ B(a, ε). Then h = x − a satisfies the
condition ‖h‖ < ε, and in particular ‖h‖ ≤ ε1. It follows that a+
h ∈ Ω′ and consequently x ∈ Ω′. So B(a, ε) ⊆ Ω′. Furthermore,
if x ∈ B(a, ε) and h = x− a, we obtain from 5.:

‖ψ(x) − ψ(a)‖ = ‖ψ(a+ h) − ψ(a)‖
≤ (1 + r)‖h‖
< ε(1 + r)
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This shows that ψ(x) ∈ B(ψ(a), ε(1 + r)). This being true for
all x ∈ B(a, ε), we have proved that:

ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

7. From 2. of exercise (23), we have dφ(ψ(a)) ◦ dψ(a) = In. Since
dψ(a) = In, we obtain dφ(ψ(a)) = In.

8. It follows from 7. that In satisfies the requirements of defini-
tion (128) in relation to φ at ψ(a) ∈ Ω. Having fixed r > 0 in
4., there exists ε2 > 0 such that for all k ∈ Rn, the condition
‖k‖ ≤ ε2 implies that ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k) − a− k‖ = ‖φ(ψ(a) + k) − φ(ψ(a)) − In(k)‖
≤ r‖k||

9. Let k ∈ Rn with ‖k‖ ≤ ε2. Then ψ(a) + k ∈ Ω, and:

‖φ(ψ(a) + k) − a‖ ≤ ‖φ(ψ(a) + k) − a− k‖ + ‖k‖
≤ (1 + r)‖k‖
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10. Let ε ∈]0, ε2(1 + r)[. Let y ∈ B(ψ(a), ε(1 + r)−1). Define k =
y − ψ(a). Then k satisfies the condition ‖k‖ < ε(1 + r)−1 and
in particular ‖k‖ ≤ ε2. It follows from 9. that ψ(a) + k ∈ Ω.
So y ∈ Ω, and we have proved that B(ψ(a), ε(1 + r)−1) ⊆ Ω.
Furthermore, if y ∈ B(ψ(a), ε(1 + r)−1) and k = y − ψ(a):

‖φ(y) − a‖ = ‖φ(ψ(a) + k) − a‖
From 9. → ≤ (1 + r)‖k‖

< (1 + r)ε(1 + r)−1 = ε

So φ(y) ∈ B(a, ε), i.e. y ∈ {φ ∈ B(a, ε)}. We have proved that:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

11. Suppose ε > 0 is such that B(a, ε) ⊆ Ω′. We claim that:

ψ(B(a, ε)) = {φ ∈ B(a, ε)}
Let y ∈ ψ(B(a, ε)). There is x ∈ B(a, ε) such that y = ψ(x).
It follows that φ(y) = φ(ψ(x)) = x ∈ B(a, ε). So y ∈ {φ ∈
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B(a, ε)}. This shows the inclusion ⊆. To show the reverse in-
clusion, suppose y ∈ Ω is such that φ(y) ∈ B(a, ε). Define
x = φ(y). Then x ∈ B(a, ε) and ψ(x) = ψ(φ(y)) = y. So
y ∈ ψ(B(a, ε)). This shows the inclusion ⊇.

12. Let ε0 = ε1 ∧ ε2(1 + r). Let ε ∈]0, ε0[. In particular, ε ∈]0, ε1[
and it follows from 6. that B(a, ε) ⊆ Ω′. Also, from 6. and 11.:

{φ ∈ B(a, ε)} = ψ(B(a, ε)) ⊆ B(ψ(a), ε(1 + r))

Moreover, since ε ∈]0, ε2(1 + r)[, from 10. we obtain:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)}

We have proved that B(a, ε) ⊆ Ω′, and:

B(ψ(a),
ε

1 + r
) ⊆ {φ ∈ B(a, ε)} ⊆ B(ψ(a), ε(1 + r))

13. Let ε ∈]0, ε0[. From 12. we have B(a, ε) ⊆ Ω′ and consequently:

B(a, ε) = B(a, ε) ∩ Ω′ ∈ B(Rn)|Ω′ = B(Ω′)
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where the last equality has been fully justified in exercise (24).
So B(a, ε) ∈ B(Ω′). Using exercise (12) of Tutorial 16:

dx(B(ψ(a),
ε

1 + r
)) =

εn

(1 + r)n
dx(B(0, 1))

= (1 + r)−ndx(B(a, ε))
= (1 + r)−ndx|Ω′(B(a, ε))

Moreover:

dx(B(ψ(a), ε(1 + r))) = εn(1 + r)ndx(B(0, 1))
= (1 + r)ndx(B(a, ε))
= (1 + r)ndx|Ω′(B(a, ε))

Finally, since B(a, ε) ∈ B(Ω′) and φ is measurable, we have
{φ ∈ B(a, ε)} ∈ B(Ω) and consequently from definition (123):

dx({φ ∈ B(a, ε)}) = dx|Ω({φ ∈ B(a, ε)}) = φ(dx|Ω)(B(a, ε))
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14. Let ε ∈]0, ε0[. From 12. we have B(a, ε) ⊆ Ω′, and:

dx(B(ψ(a),
ε

1 + r
)) ≤ dx({φ ∈ B(a, ε)}) ≤ dx(B(ψ(a), ε(1+r)))

Since dx|Ω′ (B(a, ε)) = dx(B(a, ε)) > 0, using 13. we obtain:

(1 + r)−n ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ (1 + r)n (11)

15. Given r > 0, we have found ε0 > 0 such that (11) is true for
all ε ∈]0, ε0[. Let η > 0. It is clear that limr→0(1 + r)n = 1.
It follows that (1 + r)n ≤ 1 + η for r > 0 sufficiently small.
Likewise, since limr→0(1 + r)−n = 1, we have 1− η ≤ (1 + r)−n

for r > 0 sufficiently small. Hence, given η > 0, it is possible to
find r > 0 sufficiently small such that:

1 − η ≤ (1 + r)−n ≤ (1 + r)n ≤ 1 + η
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It follows that given η > 0, there exists ε0 > 0 such that:

1 − η ≤
φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

≤ 1 + η

for all ε ∈]0, ε0[. This shows that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

Exercise 25
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Exercise 26.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism.
Let ψ = φ−1 and a ∈ Ω′. Let A = dψ(a). Then A is a linear
map A : Rn → Rn. Furthermore, from 2. of exercise (23):

dφ(ψ(a)) ◦ dψ(a) = In = dφ(ψ(a)) ◦A
It follows that A : Rn → Rn is a linear bijection.

2. Let Ω′′ = A−1(Ω). From exercise (11) (part 2.) of Tutorial 17,
the inverse image A−1(Ω) of Ω by A coincides with the direct
image A−1(Ω) of Ω by A−1. It follows that the definition of Ω′′

does not depend on whether A−1(Ω) is viewed as an inverse or
a direct image.

3. Since A : Rn → Rn is linear and defined on a finite dimensional
space, it is continuous. This general statement has not been
proved yet, but the particular case at hand can be found in
exercise (11) (part 1.) of Tutorial 17. Since Ω is open in Rn,
the inverse image Ω′′ = A−1(Ω) is open in Rn.
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4. Let φ̃ : Ω′′ → Ω′ be defined by φ̃(x) = φ ◦ A(x) for all x ∈ Ω′′.
Then φ̃ = φ ◦ A|Ω′′ where A|Ω′′ : Ω′′ → Rn is the restriction of
A to Ω′′. Note that for all x ∈ Ω′′ = A−1(Ω), we have A(x) ∈ Ω
and consequently A|Ω′′(Ω′′) ⊆ Ω. This shows that φ̃ = φ ◦A|Ω′′

is well-defined on Ω′′, (and it has indeed values in Ω′). From
exercise (17), A|Ω′′ is of class C1 on Ω′′. Since φ : Ω → Ω′ is
a C1-diffeomorphism, in particular φ : Ω → Rn is of class C1

on Ω. Since A|Ω′′(Ω′′) ⊆ Ω, it follows from theorem (111) that
φ̃ = φ ◦ A|Ω′′ is of class C1 on Ω′′. Let ψ̃ : Ω′ → Ω′′ be defined
by ψ̃ = A−1 ◦ ψ. Note that for all x ∈ Ω′, we have ψ(x) ∈ Ω
and consequently:

ψ̃(x) = A−1(ψ(x)) ∈ A−1(Ω) = Ω′′

So ψ̃ has indeed values in Ω′′ (and it is well-defined on Ω′). For
all x ∈ Ω′, we have:

(φ̃ ◦ ψ̃)(x) = φ ◦A|Ω′′ ◦A−1 ◦ ψ(x)

= φ ◦A ◦A−1 ◦ ψ(x)
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= φ ◦ ψ(x) = x

and for all x ∈ Ω′′:

(ψ̃ ◦ φ̃)(x) = A−1 ◦ ψ ◦ φ ◦A|Ω′′(x)

= A−1 ◦ ψ ◦ φ ◦A(x)
= A−1 ◦A(x) = x

Hence, we have φ̃◦ψ̃ = idΩ′ and ψ̃◦φ̃ = idΩ′′ , and we have proved
that φ̃ : Ω′′ → Ω′ is a bijection with φ̃−1 = ψ̃. Having assumed
φ : Ω → Ω′ to be a C1-diffeomorphism, in particular ψ : Ω′ →
Rn is of class C1 on Ω′. From exercise (17), A−1 : Rn → Rn is of
class C1 on Rn. It follows from theorem (111) that ψ̃ = A−1 ◦ψ
is of class C1 on Ω′. We have proved that φ̃ : Ω′′ → Ω′ is a
bijection, such that φ̃ : Ω′′ → Rn and φ̃−1 : Ω′ → Rn are both
of class C1. From definition (133), we conclude that φ̃ : Ω′′ → Ω′

is a C1-diffeomorphism.
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5. Using theorem (110) and exercise (17), we obtain:

dψ̃(a) = d(A−1 ◦ ψ)(a)
= d(A−1)(ψ(a)) ◦ dψ(a)
= A−1 ◦ dψ(a)
= A−1 ◦A = In

6. Since φ̃ : Ω′′ → Ω′ is a C1-diffeomorphism with ψ̃ = φ̃−1, and
a ∈ Ω′ is such that dψ̃(a) = In, applying 15. of exercise (25):

lim
ε↓↓0

φ̃(dx|Ω′′)(B(a, ε))
dx|Ω′ (B(a, ε))

= 1

7. Let ε > 0 with B(a, ε) ⊆ Ω′. Then B(a, ε) ∈ B(Ω′) and:

φ̃(dx|Ω′′ )(B(a, ε)) = dx|Ω′′ ({φ̃ ∈ B(a, ε)})
Definition (134) → = dx({φ̃ ∈ B(a, ε)})
φ̃ = φ ◦A|Ω′′ → = dx({x ∈ Ω′′ : φ ◦A(x) ∈ B(a, ε)})
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(∗) = dx({x ∈ Ω′′ : A(x) ∈ φ−1(B(a, ε))})
(∗∗) = dx({x ∈ Rn : A(x) ∈ φ−1(B(a, ε))})

Definition (123) → = A(dx)({φ ∈ B(a, ε)})
Theorem (108) → = | detA|−1dx({φ ∈ B(a, ε)})

Definition (134) → = | detA|−1dx|Ω({φ ∈ B(a, ε)})
Definition (123) → = | detA|−1φ(dx|Ω)(B(a, ε))

where the first equality stems from definition (123), and equal-
ity (∗) stems from the equivalence, given y ∈ Ω:

φ(y) ∈ B(a, ε) ⇔ y ∈ φ−1(B(a, ε))

As for equality (∗∗), it follows from the fact that for all x ∈ Rn:

A(x) ∈ φ−1(B(a, ε)) ⇒ A(x) ∈ Ω ⇒ x ∈ Ω′′

8. For ε > 0 sufficiently small, we have B(a, ε) ⊆ Ω′, and from 7.:

φ(dx|Ω)(B(a, ε)) = | detA|φ̃(dx|Ω′′ )(B(a, ε))
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Hence, from 6. we conclude that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′ (B(a, ε))

= | detA|

9. From definition (132) we have detA = det[dψ(a)] = J(ψ)(a).
Hence, given a C1-diffeomorphism φ : Ω → Ω′, given a ∈ Ω′ and
ψ = φ−1, we have proved that:

lim
ε↓↓0

φ(dx|Ω)(B(a, ε))
dx|Ω′(B(a, ε))

= |J(ψ)(a)|

This completes the proof of theorem (118).

Exercise 26
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Exercise 27.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism.
Let ψ = φ−1. Let K ⊆ Ω′ be a non-empty compact subset of
Ω′ such that dx|Ω′(K) = 0. Let x ∈ Ω′. Since the Lebesgue
measure dx on Rn is locally finite, there exists U open in Rn

such that x ∈ U and dx(U) < +∞. It follows that U ∩ Ω′ is
open in Ω′, x ∈ U ∩ Ω′ and furthermore:

dx|Ω′(U ∩ Ω′) = dx(U ∩ Ω′) ≤ dx(U) < +∞

Hence, the Lebesgue measure dx|Ω′ on Ω′ is also locally finite.
From theorem (74), dx|Ω′ is therefore a regular measure on
(Ω′,B(Ω′)). From definition (103), we obtain:

dx|Ω′(K) = inf{dx|Ω′(V ) : K ⊆ V , V open in Ω′}

Let ε > 0. Having assumed that dx|Ω′(K) = 0, in particular
we have dx|Ω′ (K) < ε. Since dx|Ω′ (K) is the greatest lower-
bound of all dx|Ω′(V )’s as V ranges through the set of all open
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subsets of Ω′ with K ⊆ V , ε cannot be such an lower-bound.
Hence, there exists V open in Ω′ such that K ⊆ V (⊆ Ω′) and
dx|Ω′(V ) < ε. In particular we have dx|Ω′ (V ) ≤ ε.

2. Since V is open in Ω′, from definition (23) of the induced topol-
ogy, there exists U open in Rn such that V = U ∩ Ω′. Since Ω′

is open in Rn, we conclude that V is also open in Rn.

3. Let M = supx∈K ‖dψ(x)‖. Having assumed that φ : Ω → Ω′

is a C1-diffeomorphism, in particular ψ : Ω′ → Rn is of class
C1 on Ω′. Hence, the differential dψ : Ω′ → LR(Rn,Rn) is
continuous. Since for all l, l′ ∈ LR(Rn,Rn) we have:

| ‖l‖ − ‖l′‖ | ≤ ‖l − l′‖
the norm ‖·‖ : LR(Rn,Rn) → R+ is also continuous. It follows
that ‖dψ(·)‖ : Ω′ → R+ is a continuous map, and its restric-
tion ‖dψ(·)‖|K is therefore a continuous map defined on the
non-empty compact topological space K. From theorem (37),
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‖dψ(·)‖|K attains its maximum. In other words, there exists
xM ∈ K such that:

M = sup
x∈K

‖dψ(x)‖ = ‖dψ(xM )‖

We conclude that M ∈ R+.

4. Let x ∈ K. SinceK ⊆ V , in particular x ∈ V . Since V is open in
Rn, there exists ε1 > 0 such that B(x, ε1) ⊆ V . Furthermore,
since K ⊆ Ω′, x ∈ Ω′ and ψ is therefore differentiable at x.
Applying definition (128) to ψ and ε = 1, there exists δ > 0
such that for all h ∈ Rn, the condition ‖h‖ ≤ δ implies that
x+ h ∈ Ω′, and:

‖ψ(x+ h) − ψ(x) − dψ(x)(h)‖ ≤ ‖h‖
Defining εx = min(ε1, δ/3), we have B(x, εx) ⊆ V and for all
h ∈ Rn with ‖h‖ ≤ 3εx, we obtain x+ h ∈ Ω′, and:

‖ψ(x+ h) − ψ(x)‖ ≤ ‖dψ(x)(h)‖ + ‖h‖

www.probability.net

http://www.probability.net


Solutions to Exercises 186

≤ ‖dψ(x)‖ · ‖h‖ + ‖h‖

≤
(

sup
u∈K

‖dψ(u)‖
)
· ‖h‖ + ‖h‖

= (M + 1)‖h‖

5. Let x ∈ K. Let y ∈ B(x, 3εx). Define h = y − x. Then
h ∈ Rn satisfies the condition ‖h‖ ≤ 3εx. It follows from 4.
that y = x + h ∈ Ω′, and we have proved that B(x, 3εx) ⊆ Ω′.
Moreover, applying 4. once more, we obtain:

‖ψ(y) − ψ(x)‖ = ‖ψ(x+ h) − ψ(x)‖
≤ (M + 1)‖h‖
< 3(M + 1)εx

and consequently ψ(y) ∈ B(ψ(y), 3(M + 1)εx). This being true
for all y ∈ B(x, 3εx), we have proved that:

ψ(B(x, 3εx)) ⊆ B(ψ(x), 3(M + 1)εx)
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6. Let x ∈ K. We claim that ψ(B(x, 3εx)) = {φ ∈ B(x, 3εx)}.
Suppose z ∈ ψ(B(x, 3εx)). There exists y ∈ B(x, 3εx) such
that z = ψ(y). So φ(z) = φ(ψ(y)) = y and consequently we
have φ(z) ∈ B(x, 3εx), i.e. z ∈ {φ ∈ B(x, 3εx)}. This shows
the inclusion ⊆. To show the reverse inclusion, suppose φ(z) ∈
B(x, 3εx). Then z = ψ(φ(z)) ∈ ψ(B(x, 3εx)). This shows the
inclusion ⊇.

7. We claim the existence of a finite subset {x1, . . . , xp} of K with:

K ⊆ B(x1, εx1) ∪ . . . ∪B(xp, εxp) (12)

Since K is compact and K ⊆ ∪x∈KB(x, εx) where each B(x, εx)
is open, from exercise (2) (part 5.) of Tutorial 8, there exists
{x1, . . . , xp} ⊆ K such that the inclusion (12) holds. Note that
since K �= ∅, we must have p ≥ 1.

8. Since B(x1, εx1), . . . , B(xp, εxp) is a finite sequence of open balls
in Rn, from exercise (14) of Tutorial 16, there exists S finite
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subset of Np such that (B(xi, εxi))i∈S is a family of pairwise
disjoint open balls, and furthermore:

p⋃
i=1

B(xi, εxi) ⊆
⋃
i∈S

B(xi, 3εxi)

It follows from 7. that:

K ⊆
⋃
i∈S

B(xi, 3εxi)

9. Using 5., 6. and 8. we obtain:

{φ ∈ K} = φ−1(K)

From 8. → ⊆ φ−1

(⋃
i∈S

B(xi, 3εxi)

)

=
⋃
i∈S

φ−1(B(xi, 3εxi))

www.probability.net

http://www.probability.net


Solutions to Exercises 189

=
⋃
i∈S

{φ ∈ B(xi, 3εxi)}

From 6. → =
⋃
i∈S

ψ(B(xi, 3εxi))

From 5. → ⊆
⋃
i∈S

B(ψ(xi), 3(M + 1)εxi)

10. From 9. and exercise (12) of Tutorial 16, we obtain:

φ(dx|Ω)(K)
�
= dx|Ω({φ ∈ K})

≤ dx|Ω

(⋃
i∈S

B(ψ(xi), 3(M + 1)εxi)

)

≤
∑
i∈S

dx|Ω(B(ψ(xi), 3(M + 1)εxi))

=
∑
i∈S

dx(B(ψ(xi), 3(M + 1)εxi))
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=
∑
i∈S

3n(M + 1)nεnxi
dx(B(0, 1))

=
∑
i∈S

3n(M + 1)ndx(B(xi, εxi))

11. Since (B(xi, εxi))i∈S is a family of pairwise disjoint (Borel) sets:

dx

(⊎
i∈S

B(xi, εxi)

)
=
∑
i∈S

dx(B(xi, εxi))

Hence, having proved in 4. that B(x, εx) ⊆ V for all x ∈ K, we
obtain from 10.:

φ(dx|Ω)(K) ≤
∑
i∈S

3n(M + 1)ndx(B(xi, εxi))

= 3n(M + 1)ndx

(⊎
i∈S

B(xi, εxi)

)

≤ 3n(M + 1)ndx(V )
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12. Since dx(V ) = dx|Ω′ (V ) ≤ ε, it follows from 11.:

φ(dx|Ω)(K) ≤ 3n(M + 1)nε (13)

13. We have found M ∈ R+ for which inequality (13) holds for all
ε > 0. It follows that φ(dx|Ω)(K) = 0

14. Let x ∈ Ω′. Then ψ(x) ∈ Ω. Since dx|Ω is a locally finite
measure on Ω, there exists W open in Ω, such that ψ(x) ∈ W
and dx|Ω(W ) < +∞. Define U = ψ−1(W ). Then U is open in
Ω′ and x ∈ U . Moreover:

φ(dx|Ω)(U) = dx|Ω(φ−1(U))

= dx|Ω(φ−1(ψ−1(W )))

= dx|Ω((ψ ◦ φ)−1(W ))
= dx|Ω(W ) < +∞

Hence, given x ∈ Ω′ we have found U open in Ω′ such that x ∈ U
and φ(dx|Ω)(U) < +∞. From definition (102), we conclude that
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φ(dx|Ω) is a locally finite measure on (Ω′,B(Ω′)).

15. Having proved in 14. that φ(dx|Ω) is a locally finite measure,
from theorem (74) it follows that φ(dx|Ω) is a regular measure.
Given B ∈ B(Ω′), from definition (103) we obtain:

φ(dx|Ω)(B) = sup{φ(dx|Ω)(K) : K ⊆ B , K compact }

16. Let B ∈ B(Ω′) with dx|Ω′(B) = 0. Let K be a compact subset
of B. Then in particular, K is a compact subset of Ω′ with
dx|Ω′(K) = 0. If K �= ∅, it follows from 13. that φ(dx|Ω)(K) =
0. This is obviously still true if K = ∅. Hence we see that
φ(dx|Ω)(B) is the supremum of the set {0}, and consequently
φ(dx|Ω)(B) = 0. We have proved that for all B ∈ B(Ω′):

dx|Ω′ (B) = 0 ⇒ φ(dx|Ω)(B) = 0 (14)

17. Given Ω,Ω′ open in Rn and φ : Ω → Ω′ C1-diffeomorphism, we
have proved that for all B ∈ B(Ω′) the implication (14) holds.
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From definition (96), it follows that the image measure φ(dx|Ω)
is absolutely continuous with respect to dx|Ω′ , i.e.:

φ(dx|Ω) << dx|Ω′

This completes the proof of theorem (119).

Exercise 27
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Exercise 28.

1. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-diffeomorphism.
Let ψ = φ−1. Since Rn is metrizable and strongly σ-compact,
since Ω′ is open in Rn, from theorem (76), Ω′ is itself strongly σ-
compact. From definition (104), there exists a sequence (Vp)p≥1

of open subsets of Ω′, such that Vp ↑ Ω′ and for all p ≥ 1 the
closure of Vp in Ω′ (denoted V̄ Ω′

p ) is compact.

2. Being open in Ω′, each Vp can be written as Vp = Up ∩Ω′ where
Up is open in Rn. Since Ω′ is itself open in Rn, it follows that Vp
is also open in Rn. Let V̄p denote the closure of Vp in Rn. We
claim that V̄ Ω′

p = V̄p. Since Ω′ is open in Rn, from exercise (19)
of Tutorial 13 we have V̄ Ω′

p = V̄p∩Ω′. However, having assumed
that V̄ Ω′

p is a compact subset of Ω′, it is also a compact subset
of Rn, and Rn is Hausdorff. It follows from theorem (35) that
V̄ Ω′
p is a closed subset of Rn, which furthermore contains Vp

in the inclusion sense. From exercise (21) of Tutorial 4, V̄p is
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the smallest closed subset of Rn containing Vp in the inclusion
sense. Hence, we see that V̄p ⊆ V̄ Ω′

p and in particular V̄p ⊆ Ω′.
We conclude from V̄ Ω′

p = V̄p ∩ Ω′ that V̄ Ω′
p = V̄p.

3. Let p ≥ 1. Using 14. of exercise (27), the image measure φ(dx|Ω)
is a locally finite measure on (Ω′,B(Ω′)). From exercise (10)
of Tutorial 13, since V̄ Ω′

p is a compact subset of Ω′ we have
φ(dx|Ω)(V̄ Ω′

p ) < +∞. Since V̄ Ω′
p = V̄p we conclude that:

φ(dx|Ω)(Vp) ≤ φ(dx|Ω)(V̄p) < +∞

4. It follows from 3. that (Vp)p≥1 is a sequence of Borel subsets of
Ω′ such that Vp ↑ Ω′ and φ(dx|Ω)(Vp) < +∞ for all p ≥ 1. From
definition (61), we conclude that φ(dx|Ω) is a σ-finite measure
on (Ω′,B(Ω′)). Similarly, since dx|Ω′ is a locally finite measure,
from exercise (10) of Tutorial 13, V̄ Ω′

p being compact:

dx|Ω′(Vp) ≤ dx|Ω′(V̄p) = dx|Ω′(V̄ Ω′
p ) < +∞
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It follows that dx|Ω′ is also a σ-finite measure on (Ω′,B(Ω′)).

5. From theorem (119), we have φ(dx|Ω) << dx|Ω′ . Further-
more from 4. φ(dx|Ω) and dx|Ω′ are two σ-finite measures on
(Ω′,B(Ω′)). From the Radon-Nikodym theorem (61), there is
h : (Ω′,B(Ω′)) → (R+,B(R+)) measurable such that:

∀B ∈ B(Ω′) , φ(dx|Ω)(B) =
∫
B

hdx|Ω′

6. Given p ≥ 1, we define hp = h1Vp , and we put:

∀x ∈ Rn , h̃p(x)
�
=
{
hp(x) if x ∈ Ω′

0 if x �∈ Ω′

Using exercise (19) of Tutorial 16, h̃p is measurable, and:∫
Rn

h̃pdx =
∫

Ω′
hpdx|Ω′

=
∫

Ω′
h1Vpdx|Ω′
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=
∫
Vp

hdx|Ω′

From 5. → = φ(dx|Ω)(Vp)
From 3. → < +∞

We conclude that h̃p ∈ L1
R(Rn,B(Rn), dx).

7. Applying theorem (101) to h̃p, dx-almost every x ∈ Rn is a
Lebesgue point of h̃p. In other words, there exists Np ∈ B(Rn)
with dx(Np) = 0 such that for all x ∈ N c

p , x is a Lebesgue point
of h̃p, and in particular from exercise (17) of Tutorial 16:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx (15)

Defining N = ∪p≥1Np, we have N ∈ B(Rn) and dx(N) = 0,
and furthermore (15) holds for all x ∈ N c and p ≥ 1.
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8. Let N ′ = N ∩ Ω′. Then N ′ ∈ B(Rn)|Ω′ = B(Ω′), and:

dx|Ω′ (N ′) = dx(N ′) ≤ dx(N) = 0

9. Let x ∈ Ω′. Suppose p ≥ 1 is such that x ∈ Vp. Let ε > 0 be
such that B(x, ε) ⊆ Vp. Then in particular B(x, ε) ⊆ Ω′ and:

B(x, ε) = B(x, ε) ∩ Ω′ ∈ B(Rn)|Ω′ = B(Ω′)

It follows that dx|Ω′(B(x, ε)) is meaningful, and:

dx(B(x, ε)) = dx|Ω′(B(x, ε))

Furthermore, it is clear that:

∀u ∈ Rn , (1B(x,ε)h̃p)(u)
�
=
{

(1B(x,ε)hp)(u) if u ∈ Ω′

0 if u �∈ Ω′

where we have used that same notation 1B(x,ε) to denote suc-
cessively the characteristic function of B(x, ε) on Rn and on Ω′.
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Applying exercise (19) of Tutorial 16, we obtain:∫
B(x,ε)

h̃pdx =
∫
Rn

1B(x,ε)h̃pdx

Ex. (19) of T. 16 → =
∫

Ω′
1B(x,ε)hpdx|Ω′

10. Since hp = h1Vp and B(x, ε) ⊆ Vp, using 5. we have:∫
Ω′

1B(x,ε)hpdx|Ω′ =
∫

Ω′
1B(x,ε)h1Vpdx|Ω′

=
∫

Ω′
1B(x,ε)hdx|Ω′

=
∫
B(x,ε)

hdx|Ω′

From 5. → = φ(dx|Ω)(B(x, ε))
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11. Let x ∈ Ω′ \N ′. Since N ′ = N ∩ Ω′, we have:

Ω′ \N ′ = Ω′ ∩ (N ∩ Ω′)c

= Ω′ ∩ (N c ∪ (Ω′)c) = Ω′ ∩N c

So in particular x ∈ N c. It follows from 7. that for all p ≥ 1:

h̃p(x) = lim
ε↓↓0

1
dx(B(x, ε))

∫
B(x,ε)

h̃pdx (16)

However, by assumption Vp ↑ Ω′. Since x ∈ Ω′, there exists
p ≥ 1 such that x ∈ Vp. In particular we obtain:

h̃p(x) = hp(x) = h(x)1Vp(x) = h(x) (17)

Furthermore, since x ∈ Vp and Vp is open in Rn, there exists
η > 0 such that B(x, η) ⊆ Vp. For all ε > 0 with ε < η we have
B(x, ε) ⊆ Vp and consequently from 9. and 10. we obtain:∫

B(x,ε)

h̃pdx = φ(dx|Ω)(B(x, ε)) (18)
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and furthermore:

dx(B(x, ε)) = dx|Ω′(B(x, ε)) (19)

Having proved the equalities (18) and (19) for ε > 0 sufficiently
small, we conclude from (16) and (17) that:

h(x) = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

(20)

Hence, we have proved (20) for all x ∈ Ω′ \N ′.

12. Applying theorem (118), for all x ∈ Ω′ we have:

|J(ψ)(x)| = lim
ε↓↓0

φ(dx|Ω)(B(x, ε))
dx|Ω′(B(x, ε))

It follows from (20) that h and |J(ψ)| coincide on Ω′\N ′. Having
proved in 8. that dx|Ω′ (N ′) = 0, we conclude that h = |J(ψ)|,
dx|Ω′ -almost surely.
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13. From 5. and 12. we see that for all B ∈ B(Ω′):

φ(dx|Ω)(B) =
∫
B

hdx|Ω′

=
∫
B

|J(ψ)|dx|Ω′

This being true for all B ∈ B(Ω′), we conclude that the image
measure φ(dx|Ω) has density |J(ψ)| with respect to the Lebesgue
measure dx|Ω′ on Ω′, i.e.:

φ(dx|Ω) =
∫

|J(ψ)|dx|Ω′

This completes the proof of theorem (120).

Exercise 28
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Exercise 29. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-
diffeomorphism. Let ψ = φ−1 and f : (Ω′,B(Ω′)) → [0,+∞] be a
non-negative and measurable map. Applying the integral projection
theorem (104), we have:∫

Ω

f ◦ φdx|Ω =
∫

Ω′
fφ(dx|Ω) (21)

and furthermore, from theorem (120):

φ(dx|Ω) =
∫

|J(ψ)|dx|Ω′

So from the stack integral theorem (21), we obtain:∫
Ω′
fφ(dx|Ω) =

∫
Ω′
f |J(ψ)|dx|Ω′ (22)

From equations (21) and (22) we conclude that:∫
Ω

f ◦ φdx|Ω =
∫

Ω′
f |J(ψ)|dx|Ω′ (23)
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Having proved in exercise (23) that J(ψ) is continuous, and further-
more that J(ψ)(x) �= 0 for all x ∈ Ω′, the map f/|J(ψ)| is well-defined,
non-negative and measurable. Applying equation (23) to f/|J(ψ)|:∫

Ω′
fdx|Ω′ =

∫
Ω′

(
f

|J(ψ)|

)
|J(ψ)|dx|Ω′

Equation (23) → =
∫

Ω

f ◦ φ
|J(ψ) ◦ φ|dx|Ω

Exercise (23) → =
∫

Ω

(f ◦ φ)|J(φ)|dx|Ω

This completes the proof of theorem (121).
Exercise 29
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Exercise 30. Let Ω,Ω′ be open in Rn and φ : Ω → Ω′ be a C1-
diffeomorphism. Let ψ = φ−1 and f : (Ω′,B(Ω′)) → (C,B(C)) be
a measurable map. Since φ and |J(ψ)| are continuous, in particular
they are Borel measurable and consequently f ◦ φ and f |J(ψ)| are
Borel measurable. Furthermore, applying the Jacobian formula (121)
to the non-negative and measurable map |f |, we obtain:∫

Ω

|f ◦ φ|dx|Ω =
∫

Ω

|f | ◦ φdx|Ω

Theorem (121) → =
∫

Ω′
|f | · |J(ψ)|dx|Ω′

=
∫

Ω′
|fJ(ψ)|dx|Ω′

Hence, we have proved the equivalence:

f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f |J(ψ)| ∈ L1

C(Ω′,B(Ω′), dx|Ω′ )
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Similarly, since φ and |J(φ)| are continuous, both (f ◦ φ)|J(φ)| and f
are Borel measurable, and from theorem (121):∫

Ω′
|f |dx|Ω′ =

∫
Ω

(|f | ◦ φ)|J(φ)|dx|Ω

=
∫

Ω

|(f ◦ φ)J(φ)|dx|Ω

Hence, we have proved the equivalence:

(f ◦ φ)|J(φ)| ∈ L1
C(Ω,B(Ω), dx|Ω) ⇔ f ∈ L1

C(Ω′,B(Ω′), dx|Ω′)

Now suppose that f ◦ φ ∈ L1
C(Ω,B(Ω), dx|Ω). Let u = Re(f) and

v = Im(f), so that f = u+−u−+i(v+−v−). Since u+, u− ≤ |u| ≤ |f |
and v+, v− ≤ |v| ≤ |f |, each u± ◦ φ and v± ◦ φ is an element of
L1

C(Ω,B(Ω), dx|Ω). It follows that each u±|J(ψ)| and v±|J(ψ)| is an
element of L1

C(Ω′,B(Ω′), dx|Ω′ ), and we have:∫
Ω

f ◦ φdx|Ω =
∫

Ω

(u+ ◦ φ)dx|Ω −
∫

Ω

(u− ◦ φ)dx|Ω
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+ i

(∫
Ω

(v+ ◦ φ)dx|Ω −
∫

Ω

(v− ◦ φ)dx|Ω

)

Theorem (121) → =
∫

Ω′
u+|J(ψ)|dx|Ω′ −

∫
Ω′
u−|J(ψ)|dx|Ω′

+ i

(∫
Ω′
v+|J(ψ)|dx|Ω′ −

∫
Ω′
v−|J(ψ)|dx|Ω′

)

=
∫

Ω′
f |J(ψ)|dx|Ω′

Suppose now that f ∈ L1
C(Ω′,B(Ω′), dx|Ω′ ). Then u+, u−, v+ and v−

are all elements of L1
C(Ω′,B(Ω′), dx|Ω′), and furthermore:∫

Ω′
fdx|Ω′ =

∫
Ω′

[u+ − u− + i(v+ − v−)]dx|Ω′

=
∫

Ω′
u+dx|Ω′ −

∫
Ω′
u−dx|Ω′

+ i

(∫
Ω′
v+dx|Ω′ −

∫
Ω′
v−dx|Ω′

)
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Theorem (121) → =
∫

Ω

(u+ ◦ φ)|J(φ)|dx|Ω

−
∫

Ω

(u− ◦ φ)|J(φ)|dx|Ω

+ i

∫
Ω

(v+ ◦ φ)|J(φ)|dx|Ω

− i

∫
Ω

(v− ◦ φ)|J(φ)|dx|Ω

=
∫

Ω

(f ◦ φ)|J(φ)|dx|Ω

This completes the proof of theorem (122).
Exercise 30
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Exercise 31.

1. Let f : R2 → [0,+∞] be defined by:

∀(x, y) ∈ R2 , f(x, y) = exp(−(x2 + y2)/2)

Using Fubini’s theorem (31) we obtain:∫
R2
f(x, y)dxdy =

∫
R×R

exp(−(x2 + y2)/2)dxdy

Theorem (31) → =
∫
R

(∫
R

exp(−x2/2) exp(−y2/2)dx
)
dy

=
∫
R

exp(−y2/2)
(∫

R

exp(−x2/2)dx
)
dy

=
(∫

R

exp(−x2/2)dx
)∫

R

exp(−y2/2)dy

=
(∫ +∞

−∞
e−u

2/2du

)2
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2. We define the following subsets of R2:

Δ1
�
= {(x, y) ∈ R2 : x > 0 , y > 0}

Δ2
�
= {(x, y) ∈ R2 : x < 0 , y > 0}

Δ3
�
= {(x, y) ∈ R2 : x > 0 , y < 0}

Δ4
�
= {(x, y) ∈ R2 : x < 0 , y < 0}

and:

Δ5 = {(x, y) ∈ R2 : x = 0} ∪ {(x, y) ∈ R2 : y = 0}

Then Δ1,Δ2,Δ3,Δ4 and Δ5 are pairwise disjoint, and:

R2 = Δ1 � Δ2 � Δ3 � Δ4 � Δ5

Moreover, since {x = 0} and {y = 0} are one-dimensional sub-
spaces of R2, from theorem (109) we have:

dxdy(Δ5) ≤ dxdy({x = 0}) + dxdy({y = 0}) = 0
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Hence, we have:∫
R2
f(x, y)dxdy =

∫
Δ1
...
Δ5

f(x, y)dxdy

=
∫

Δ1
...
Δ4

f(x, y)dxdy +
∫

Δ5

f(x, y)dxdy

=
∫

Δ1
...
Δ4

f(x, y)dxdy

3. Let Q : R2 → R2 be defined by Q(x, y) = (−x, y). Then Q is a
linear bijection and furthermore:

detQ = det
(

−1 0
0 1

)
= −1

From theorem (108), we have:

Q(dxdy) = | detQ|−1dxdy
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and consequently:∫
Δ1

f(x, y)dxdy =
∫

1Δ1fdxdy

=
∫

(1Δ1 ◦Q−1 ◦Q)(f ◦Q−1 ◦Q)dxdy

Theorem (104) → =
∫

(1Δ1 ◦Q−1)(f ◦Q−1)Q(dxdy)

= | detQ|−1

∫
(1Δ1 ◦Q−1)(f ◦Q−1)dxdy

=
∫

1Δ2(f ◦Q−1)dxdy

=
∫

Δ2

f ◦Q−1(x, y)dxdy
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4. Since f(x, y) = exp(−(x2 + y2)/2), f ◦Q−1 = f . So, from 3.:∫
Δ1

f(x, y)dxdy =
∫

Δ2

f(x, y)dxdy

Similarly, using Q′(x, y) = (x,−y) and Q′′(x, y) = (−x,−y):∫
Δ1

f(x, y)dxdy =
∫

Δ3

f(x, y)dxdy

=
∫

Δ4

f(x, y)dxdy

We conclude from 2.:∫
R2
f(x, y)dxdy =

∫
Δ1
...
Δ4

f(x, y)dxdy

=
4∑
i=1

∫
Δi

f(x, y)dxdy

= 4
∫

Δ1

f(x, y)dxdy
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5. Let D1 =]0,+∞[×]0, π/2[ and φ : D1 → Δ1 be defined by:

∀(r, θ) ∈ D1 , φ(r, θ)
�
= (r cos θ, r sin θ)

Let ψ : Δ1 → D1 be defined by:

∀(x, y) ∈ Δ1 , ψ(x, y) = (
√
x2 + y2, arctan(y/x))

Then for all (r, θ) ∈ D1, we have:

ψ ◦ φ(r, θ) = ψ(r cos θ, r sin θ)

= [
√

(r cos θ)2 + (r sin θ)2, arctan(sin θ/ cos θ)]

= (|r|
√

cos2 θ + sin2 θ, arctan(tan θ))
= (r, θ)

So ψ ◦ φ = idD1 . Furthermore, for all θ ∈]0, π/2[ we have:

tan2 θ =
sin2 θ

cos2 θ
=

1 − cos2 θ
cos2 θ
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and consequently, since cos θ > 0, we obtain:

cos θ =
1√

1 + tan2 θ
(24)

Similarly, from:

tan2 θ =
sin2 θ

cos2 θ
=

sin2 θ

1 − sin2 θ

and the fact sin θ > 0 and tan θ > 0, we obtain:

sin θ =
tan θ√

1 + tan2 θ
(25)

From (24) and (25) we see that for all (x, y) ∈ Δ1:

cos(arctan(y/x)) =
1√

1 + y2/x2
=

x√
x2 + y2

and:
sin(arctan(y/x))

y/x√
1 + y2/x2

=
y√

x2 + y2
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It follows that for all (x, y) ∈ Δ1:

φ ◦ ψ(x, y) = φ(
√
x2 + y2, arctan(y/x))

=
√
x2 + y2[cos(arctan(y/x)), sin(arctan(y/x))]

=
√
x2 + y2

[
x√

x2 + y2
,

y√
x2 + y2

]
= (x, y)

and we have proved that φ ◦ ψ = idΔ1 . Having proved that
ψ ◦ φ = idD1 and φ ◦ ψ = idΔ1 , we conclude that φ : D1 → Δ1

is bijective and ψ = φ−1.

6. In order to show that φ : D1 → Δ1 is a C1-diffeomorphism,
we need to show that both φ : D1 → R2 and ψ : Δ1 → R2

are of class C1. Given (r, θ) ∈ D1, define φx(r, θ) = r cos θ and
φy(r, θ) = r sin θ. Then, we have:

∂φx
∂r

(r, θ) = cos θ ,
∂φx
∂θ

(r, θ) = −r sin θ
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∂φy
∂r

(r, θ) = sin θ ,
∂φy
∂θ

(r, θ) = r cos θ

So it is clear that ∂φx

∂r , ∂φx

∂θ , ∂φy

∂r and ∂φy

∂θ exist and are continuous
on D1. From theorem (117), it follows that φ : D1 → R2 is of
class C1 and for all (r, θ) ∈ D1, we have:

dφ(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
Given (x, y) ∈ Δ1, define ψr(x, y) =

√
x2 + y2 together with

ψθ(x, y) = arctan(y/x). As some of us may have forgotten,
recall that the map tan: ]− π/2, π/2[→ R is differentiable, and:

(tan θ)′ =
(

sin θ
cos θ

)′
=

(sin θ)′ cos θ − (cos θ)′ sin θ
cos2 θ

=
cos2 θ + sin2 θ

cos2 θ
= 1 + tan2 θ
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Moreover, the map arctan : R →] − π/2, π/2[ is also differen-
tiable, and one way to remember its derivative is to differentiate
both sides of the identity x = tan(arctanx), to obtain:

1 = tan′(arctanx) · (arctanx)′

= (1 + tan2(arctanx)) · (arctanx)′

= (1 + x2) · (arctanx)′

and consequently for all x ∈ R:

(arctanx)′ =
1

1 + x2

It follows that given (x, y) ∈ Δ1, we have:

∂ψr
∂x

(x, y) =
x√

x2 + y2
,
∂ψr
∂y

(x, y) =
y√

x2 + y2

and furthermore:
∂ψθ
∂x

(x, y) =
(
− y

x2

)
· arctan′(y/x)
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= − y

x2
· 1
1 + y2/x2

= − y

x2 + y2

as well as:
∂ψθ
∂y

(x, y) =
1
x
· arctan′(y/x)

=
1
x
· 1
1 + y2/x2

=
x

x2 + y2

Hence, we see that ∂ψr

∂x , ∂ψr

∂y , ∂ψθ

∂x and ∂ψθ

∂y exist and are contin-
uous on Δ1. From theorem (117), it follows that ψ : Δ1 → R2

is of class C1 and for all (x, y) ∈ Δ1, we have:

dψ(x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
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We have proved that φ : D1 → Δ1 is a C1-diffeomorphism.

7. From 6. and definition (132), for all (r, θ) ∈ D1:

J(φ)(r, θ) = det
(

cos θ −r sin θ
sin θ r cos θ

)
= cos θ · (r cos θ) − sin θ(−r sin θ)
= r(cos2 θ + sin2 θ)
= r

8. From 6. and definition (132), for all (x, y) ∈ Δ1:

J(ψ)(x, y) = det

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)

=
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2

=
1√

x2 + y2
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9. Applying the Jacobian formula (121) to f|Δ1 : Δ1 → [0,+∞]:∫
Δ1

f(x, y)dxdy =
∫
R2

1Δ1fdxdy

Definition (45) → =
∫

Δ1

f|Δ1(dxdy)|Δ1

Theorem (121) → =
∫
D1

(f|Δ1 ◦ φ)|J(φ)|(drdθ)|D1

f|Δ1 ◦ φ(r) = e−r
2/2 → =

∫
D1

exp(−r2/2)r(drdθ)|D1

Definition (45) → =
∫
R2

1D1 exp(−r2/2)rdrdθ

Fubini (31) → =
∫
R

(∫
R

1D1 exp(−r2/2)rdθ
)
dr

=
∫
R

1]0,+∞[

(π
2

)
exp(−r2/2)rdr

www.probability.net

http://www.probability.net


Solutions to Exercises 222

=
π

2

∫
R

1[0,+∞[ exp(−r2/2)rdr

MON (19) → = lim
n→+∞

π

2

∫
R

1[0,n] exp(−r2/2)rdr

Theorem (99) → = lim
n→+∞

π

2
[1 − exp(−n2/2)] =

π

2

10. Using 1., we obtain:

1√
2π

∫ +∞

−∞
e−u

2/2du =
1√
2π

(∫
R2
f(x, y)dxdy

)1/2

From 4. → =
1√
2π

(
4
∫

Δ1

f(x, y)dxdy
)1/2

From 9. → =
1√
2π

(
4 · π

2

)1/2

= 1

This complete the proof of theorem (123).

Exercise 31
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