Tutorial 8: Jensen inequality 1

8. Jensen inequality

Definition 64 Let a,b € R, with a < b. Let ¢ : Ja,b[— R be an
R-valued function. We say that ¢ is a convex function, if and only
if, for all x,y €]a,b| and t € [0,1], we have:

Ptz + (1 = t)y) < to(z) + (1 —t)o(y)

EXERCISE 1. Let a,b € R, with a < b. Let ¢ : ]a,b[— R be a map.

1. Show that ¢ : Ja, b[— R is convex, if and only if for all 1, ..., 2,
inJa,bl and aq,...,a, in RT with a1 +... 4+, =1, n> 1, we
have:

dlarzy + ... Fapz,) <ard(zr) + .o and(xy,)

2. Show that ¢ : |a,b[— R is convex, if and only if for all z,y, z
with a < x <y < z < b we have:

o(y) < Loy + L=Zg(2)

zZ—X Z—X

www.probability.net


http://www.probability.net

Tutorial 8: Jensen inequality 2

3. Show that ¢ : Ja,b[— R is convex if and only if for all x,y, z
with a < x <y < z < b, we have:

oly) —o(x) _ () = ¢y)
y—xr —  z-y

4. Let ¢ : ]Ja,b|— R be convex. Let x¢ €]a, b[, and u,u’,v,v" €la, b]
be such that u < v’ < zp < v < v'. Show that for all © €]z, v[:
S) = o) _ 6(x) = o(za) _ 0(v") = 6(v)
u —u - T — xg - v —w

and deduce that limg | |, ¢(x) = ¢(z0)

5. Show that if ¢ : |a,b[— R is convex, then ¢ is continuous.

.

6. Define ¢ : [0,1] — R by ¢(0) = 1 and ¢(z) = 0 for all z €]0,1
0,1],

Show that ¢(tz + (1 —t)y) < te(x) + (1 - t)d(y), Va,y,t € [0,
but that ¢ fails to be continuous on [0, 1].
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Definition 65 Let (2,7) be a topological space. We say that (Q,7T)
is a compact topological space if and only if, for all family (V;)icr
of open sets in 1, such that Q = U;c1V;, there exists a finite subset
{i1,..,in}t of I such that Q =V, U...UV;, .

In short, we say that (€2, 7) is compact if and only if, from any open
covering of 2, one can extract a finite sub-covering.

Definition 66 Let (2,7) be a topological space, and K C Q. We
say that K is a compact subset of 2, if and only if the induced
topological space (K, 7|k ) is a compact topological space.

EXERCISE 2. Let (£2,7) be a topological space.
1. Show that if (£2,7) is compact, it is a compact subset of itself.
2. Show that ) is a compact subset of €.

3. Show that if ' C Q and K is a compact subset of €', then K
is also a compact subset of 2.

www.probability.net


http://www.probability.net

Tutorial 8: Jensen inequality 4

4. Show that if (V;);er is a family of open sets in 2 such that
K C Ui Vi, then K = Ui (V; N K) and V; N K is open in K
forall i € I.

5. Show that K C  is a compact subset of €, if and only if for any
family (V;);er of open sets in Q such that K C U,/ V;, there is
a finite subset {i1,...,4,} of I such that K CV;, U...UV,, .

6. Show that if (£2,7) is compact and K is closed in €2, then K is
a compact subset of €.

EXERCISE 3. Let a,b € R, a < b. Let (V;);er be a family of open
sets in R such that [a,b] C U;c;V;. We define A as the set of all
x € [a,b] such that [a,z] can be covered by a finite number of V;’s.
Let ¢ = sup A.

1. Show that a € A.
2. Show that there is € > 0 such that a + ¢ € A.
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3. Show that a < ¢ <b.

4. Show the existence of ig € I and ¢/,¢” with a < ¢ < ¢ < ¢,
such that |¢/, "] C V.

5. Show that [a, ¢'] can be covered by a finite number of V’s.
Show that [a, '] can be covered by a finite number of V;’s.

Show that b A ¢’ < ¢ and conclude that ¢ = b.

® N>

Show that [a,b] is a compact subset of R.

Theorem 34 Let a,b € R, a < b. The closed interval [a,b] is a
compact subset of R.
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Definition 67 Let (2,7) be a topological space. We say that (Q,7T)
is o Hausdorff topological space, if and only if for all x,y € Q
with x # y, there exists open sets U and V' in §, such that:

zelU,yeV,UNnV=>0

EXERCISE 4. Let (2,7) be a topological space.

1. Show that if (€2, 7) is Hausdorff and ' C €, then the induced
topological space (', 7o) is itself Hausdorff.

2. Show that if (Q,7) is metrizable, then it is Hausdorff.
3. Show that any subset of R is Hausdorff.

4. Let (0, 7;)ier be a family of Hausdorff topological spaces. Show
that the product topological space I1;c;€2; is Hausdorff.

EXERCISE 5. Let (2,7) be a Hausdorff topological space. Let K be
a compact subset of 2 and suppose there exists y € K°.
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1.

Show that for all z € K, there are open sets V,, W, in , such
that y € V, 2 € W, and V, N W, = 0.

. Show that there exists a finite subset {z1,...,2,} of K such

that K C WY where WY =W,, U...UW,_.

. Let V¥ =V, N...NV,, . Show that V¥ is open and VYNW¥ = ().
. Show that y € V¥ C K°.

. Show that K¢ = UyegVY

. Show that K is closed in €.

Theorem 35 Let (Q,7) be a Hausdorff topological space. For all
K CQ, if K is a compact subset, then it is closed.
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Definition 68 Let (E,d) be a metric space. For all A C E, we
call diameter of A with respect to d, the element of R denoted §(A),
defined as 0(A) = sup{d(z,y) : z,y € A}, with the convention that
5(0) = —o0.

Definition 69 Let (E,d) be a metric space, and A C E. We say
that A is bounded, if and only if §(A) < +oo.
EXERCISE 6. Let (E,d) be a metric space. Let A C E.

1. Show that 6(A) = 0 if and only if A = {«} for some z € E.

2. Let ¢ : R —]—1,1[ be an increasing homeomorphism. Define
d"(z,y) = |z —y| and d'(z,y) = |p(x) — ¢(y)|, for all 2,y € R.
Show that d’ is a metric on R inducing the usual topology on
R. Show that R is bounded with respect to d’ but not with
respect to d”.
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3. Show that if K C FE is a compact subset of E, for all € > 0,
there is a finite subset {x1,...,2,} of K such that:

K C B(z1,€) U...UB(zp,€)

4. Show that any compact subset of any metrizable topological
space (Q,7), is bounded with respect to any metric inducing
the topology 7.

EXERCISE 7. Suppose K is a closed subset of R which is bounded
with respect to the usual metric on R.

1. Show that there exists M € R" such that K C [-M, M].
2. Show that K is also closed in [—M, M].
3. Show that K is a compact subset of [—M, M].

4. Show that K is a compact subset of R.
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5. Show that any compact subset of R is closed and bounded.

6. Show the following:

Theorem 36 A subset of R is compact if and only if it is closed,
and bounded with respect to the usual metric on R.

EXERCISE 8. Let (©,7) and (5, 7s) be two topological spaces. Let
f:(Q,7T)— (5,75) be a continuous map.

1. Show that if (W;);es is an open covering of f(€2), then the family
(f~Y(W;))ier is an open covering of €.

2. Show that if (2,7) is a compact topological space, then f(2)
is a compact subset of (5, 7g).
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EXERCISE 9.

1.

Show that (R, 7g) is a compact topological space.

. Show that any compact subset of R is a compact subset of R.
. Show that a subset of R is compact if and only if it is closed.

. Let A be a non-empty subset of R, and let o = sup A. Show

that if o # —oo, then for all U € Ty with a € U, there exists
B € R with 8 < a and ]3,a] C U. Conclude that a € A.

. Show that if A is a non-empty closed subset of R, then we have

supA € A and inf A € A.

. Consider A = {z € R, sin(z) = 0}. Show that A is closed in

R, but that sup A € A and inf A & A.

Show that if A is a non-empty, closed and bounded subset of R,
then supA € A and inf A € A.
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EXERCISE 10. Let (€2, 7) be a compact, non-empty topological space.
Let f:(Q,7) — (R,7g) be a continuous map.

1. Show that if f(Q) C R, the continuity of f with respect to T
is equivalent to the continuity of f with respect to 7gr.

2. Show the following;:

Theorem 37 Let f:(Q,7T) — (R,7g) be a continuous map, where
(Q,7) is a non-empty topological space. Then, if (2, T) is compact,
f attains its maximum and minimum, i.e. there exist .,y € €,
such that:

f(em) = inf f(x), f(xam) = sup f(z)

€N 2€Q

EXERCISE 11. Let a,b € R, a < b. Let f : [a,b] — R be continuous
on [a,b], and differentiable on ]a, b[, with f(a) = f(b).
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1. Show that if ¢ €]a, b[ and f(c) = sup,¢(q4) f(), then f'(c) = 0.
2. Show the following:

Theorem 38 (Rolle) Let a,b € R, a <b. Let [ : [a,b] — R be
continuous on [a,b], and differentiable on ]a,b], with f(a) = f(b).
Then, there exists ¢ €]a,b] such that f'(c) = 0.

EXERCISE 12. Let a,b € R, a < b. Let f : [a,b] — R be continuous
on [a,b] and differentiable on ]a, b[. Define:

W) £ (o) — (o - )T

1. Show that h is continuous on [a,b] and differentiable on ]a, b[.

2. Show the existence of ¢ €]a, b[ such that:

f®) = f(a) = (b= a)f'(c)
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EXERCISE 13. Let a,b € R, a <b. Let f : [a,b] — R be a map. Let
n > 0. We assume that f is of class C™ on [a,b], and that f(+1)
exists on Ja, b|. Define:
A (b — )k
) 2 10— @) - > LD 0 o

k=1

(b — z)ntt
(n+1)!

where « is chosen such that h(a) = 0.
1. Show that h is continuous on [a, b] and differentiable on ]a, b].

2. Show that for all = €]a, b[:

b—x)"

W) = E=0" (o )

n!

3. Prove the following:
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Theorem 39 (Taylor-Lagrange) Leta,be R, a<b, andn > 0.
Let f : [a,b] — R be a map of class C™ on [a,b] such that f+1
exists on ]a,b[. Then, there exists ¢ €]a,b| such that:

" (b—a) (b—a)"tt

k
f(b) = fla) = kz:‘: Tf(k)(a) + mf(n+ )(c)

EXERCISE 14. Let a,b € R, a < b and ¢ : |a,b[— R be differentiable.
1. Show that if ¢ is convex, then for all x,y €]a, b[, x < y, we have:
¢'(z) < ¢'(y)

2. Show that if x, y, z €]a, b] with < y < z, there are ¢1, ca €]a, b,
with ¢; < ¢o and:
o(y) —d(z) = ¢'(c)(y—2)
¢(2) —oly) = ¢'(c2)(z—y)

3. Show conversely that if ¢’ is non-decreasing, then ¢ is convex.
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4. Show that z — €% is convex on R.

5. Show that x — —In(x) is convex on |0, +o0.

Definition 70 we say thal a finite measure space (2, F,P) is a
probability space, if and only if P(Q2) =1

Definition 71 Let (Q,F, P) be a probability space, and (S,3) be
a measurable space. We call random variable w.r. to (S,%), any
measurable map X : (Q,F) — (5,%).

Definition 72 Let (2, F, P) be a probability space. Let X be a non-

negative random variable, or an element of L& (Q,F,P). We call
expectation of X, denoted E[X], the integral:

/XdP
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EXERCISE 15. Let a,b € R, a < b and ¢ : Ja,b[— R be a convex
map. Let (2, F, P) be a probability space and X € Li(Q, F, P) be
such that X (Q) Cla, b].

1.

AT s

Show that ¢ o X : (2, F) — (R, B(R)) is measurable.

Show that ¢po X € L (9, F, P), if and only if E[|¢po X|] < +oo.
Show that if E[X] = a, then a € R and X = a P-a.s.

Show that if E[X] =b, then b€ R and X = b P-a.s.

Let m = E[X]. Show that m €]a, b|.

Define:
58 B = 0()
z€la,m| m—=x
Show that § € R and that for all z €]m, b[, we have:
5 < 92) = élm)
z—m
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7. Show that for all z €]a, b[, we have ¢(m) + Sz —m) < ¢(z).
8. Show that for all w € Q, ¢p(m) + S(X (w) —m) < (X (w)).
9. Show that if o X € L (2, F, P) then ¢(m) < E[¢ o X].

Theorem 40 (Jensen inequality) Let (2, F,P) be a probability
space. Let a,b € R, a < b and ¢ : |a,b[— R be a convex map.
Suppose that X € L5 (0, F, P) is such that X(Q2) Cla,b[ and such
that g o X € L (Q, F, P). Then:

¢(E[X]) < Elp o X]
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Solutions to Exercises

Exercise 1.

1. Let ¢ :]a,b[— R be convex. Given n > 1, let H,, be the property
that for all zy,...,z, in Ja,b[, and ay,...,a, in R* such that
a1+ ...+ a, =1, we have:

dlarzy + ...+ aprn) <ard(xr) + ..o+ and(z,) (1)

H, is obviously true. Since ¢ is convex, Hs is also true. Given
n > 3, suppose that H,,_; has been proved. Let z1,...,z, in
la,bland a1, ..., @, in RT be such that oy +. ..+, = 1. Define
t=a1+...4ay,_1. ft=0,thena; =0foralli e {1,... n—1},
and a,, = 1. So (1) is clearly satisfied. Suppose ¢t # 0. From
our induction hypothesis H,,_1, we obtain:

d((arr1+. . Aap_17n-1)/t) < (@rd(z1)+. . +an_19(Tn-1))/t

ie. to(x) < ard(xr) + ... + ap—16(xn—1), where x has been
defined as z = (o121 + ... + ap—12,-1)/t. Note that z is an
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element of |a, b[. Let y = x,,. Since by assumption, ¢ is convex
and t € [0,1], we have:

o(tx + (1 —t)y) < to(x) + (1 —t)p(y)
and thus:

¢tz + (1= 1)y) < ard(z1) + ... + an1d(zn-1) + (1 = 1)P(y)

Since 1 — ¢t = «,, we see that (1) is therefore satisfied, which
proves that H, is true. This induction argument shows that
H,, is true for all n > 1, whenever ¢ is convex. Conversely, if
H,, is true for all n > 1, then in particular Hs is true, and ¢ is
immediately convex.

2. Let ¢ :]a,b[— R be convex, and z,y,z with a <2z <y < z < b.
Lett = (z2—y)/(2—x). Thent €]0,1[and 1 -t = (y—=a)/(z—x).
Moreover, we have y = tx 4 (1 —t)z. ¢ being convex, we obtain:

o(y) < L) + L=4(2) 2)

zZ—x Z—T
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Conversely, suppose ¢ :Ja,b[— R is a map such that (2) holds
for all z,y,z with « < x < y < z < b. Let 2,z €]a,b] and
t € [0,1]. Without loss of generality, we can assume that = < z.
Ift=0,t=1, or x = 2z, then we immediately have:

p(te + (1 —1)z) < td(x) + (1 - t)p(2) 3)
Assume that < z and t €]0, 1[. Define y = tz+ (1 —1t)z. Then,
x <y < z. Moreover, it is easy to check that (z —vy)/(z—z) =t
and (y —x)/(z — 2) = 1 —t. From (2), we conclude that (3) is
also satisfied. Hence, we see that ¢ is convex. We have proved
that a map ¢ :Ja,b[— R is convex, if and only if inequality (2)
holds, whenever a < x <y < z < b.

3. From the previous question, ¢ :]Ja,b|— R is convex, if and only
if for all z,y, z with a < x < y < z < b, we have:

o(y) < —Lo@) + LZ4(2)

zZ—x Z—T
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which is equivalent to:

oly) —o(x) _ () — ¢y)
y—xr —  z-y

(4)

4. Let ¢ :]Ja,b[— R be convex. Let zy €la,b] and u,u’,v,v" in
la,b[ such that v < v’ < xg < v < v'. Let x €]xg,v[. Using
inequality (4), we obtain:

D) — Bu) _ dlwo) — o) _ dlx) — dlxo)
u —u - To —u' - T — To
and furthermore:
Bx) — dlro) _ B) — 8(x) _ B0) — 6(v)
T — X - v—x - v —w
So, in particular:
D) — Bu) _ dx) — dlao) _ S() — 6(v)
u —u - T — xg - v —v
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It follows that there exist «, 3 € R, such that for all x €]xg,v|:
a(x — o) < d(x) — ¢(x0) < Bz — 20)
We conclude that the right-hand limit, lim, | |,, ¢(x) exists, and
is equal to ¢(zo).
5. Similarly to 4., for all z €]u’, o[, we have:
Bu) = 9u) _ dlan) = 6(@) _ 0(v") = 6(v)
u —u - To— T - v —w
So there exist a, 5 € R, such that for all z €]u’, z|:
a(zo — ) < P(xo) — d(x) < Blao — )

We conclude that the left-hand limit, limg114, ¢(z) exists, and
is equal to ¢(zp). Finally, from:

mlllgclo d)(l‘) - ¢(l'0) B rlTlgﬂlo ¢(x)

¢ is continuous on xg. This being true for all zy €]a, b], we have
proved that ¢ :]Ja,b[— R is a continuous map.
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6. Let ¢ : [0,1] — R be defined by ¢(0) = 1, and ¢(z) = 0 for all
x €]0,1]. The fact that:

P(te + (1 = t)y) < to(z) + (1 —t)o(y)

for all t, 2,y € [0, 1], is clear. Yet, ¢ obviously fails to be contin-
uous on [0, 1]. The purpose of this question is to emphasize an
important point: in definition (64), we have restricted a convex
function to be defined on some open interval |a, b[ (it needs to
be an interval, as ¢(tx + (1 — t)y) needs to be meaningful). If
instead, we had allowed a convex function to be defined on some
closed interval [a, b] , it would not necessarily be continuous.

Exercise 1
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Exercise 2.

1. Let (Q,7) be a compact topological space. The induced topo-
logical space (€2, 7)) is nothing but (2, 7) itself. So (2, 7)) is
compact, and €2 is therefore a compact subset of itself.

2. The induced topology 7y is defined by 7jg = {ANQ : Ae T}.
So Tjp = {0}. The topological space (), {(}) being compact, we
see that () is a compact subset of .

3. Let (Q,7) be a topological space and Q" C Q. Let K be
a compact subset of Q. Then K C €, and the topological
space (K, (7jo/)|x) is compact. However, the induced topology
(7)o )k coincide with the induced topology 7| . It follows that
(K,7k) is a compact topological space, and K is therefore a
compact subset of Q.

4. Let (V;);er be a family of open sets in , such that K C U/ V.
If z € K, then z € V; N K for some i € I. Conversely, if
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x € V;NK for some i € I, then x € K. So K = U;;V; N K.
By definition (23) of the induced topology, each V; N K is an
element of 7|, i.e. each V; N K is open in K.

5. Let (£2,7) be a topological space, and K C . Suppose K is
a compact subset of Q. Let (V;);er be a family of open sets in
Q, such that K C U;c;V;. From 4., K = U;c;V; N K, and each
Vi N K is an open set in K. By assumption, the topological
space (K, 7)) is compact. From definition (65), it follows that
there exists {i1,...,4,} finite subset of I, such that:

K=V, NK)U...U(V;, NK)=(V;,U...UV;,)NK

In particular, K C V;, U... UV, . Conversely, suppose that
K C Q has the property that for any family (V;);es of open sets
in §2, such that K C U, V;, there exists {i1, ..., i, } finite subset
of I such that K C V;, U...UV, . We claim that K is a compact
subset of . Indeed, let (W;);er be a family of open sets in K
such that K = U;erW;. Since each Wj lies in 7/, for all i € I,
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there exists V; € 7 such that W; =V, N K. So K = U;c;V;NK,
and in particular K C U;c;V;. By assumption, there exists
{i1,...,in} finite subset of I, such that K C V;, U...UV; , and
therefore K = (V;; U...UV, )N K = W;, U...UW, . From
definition (65), we conclude that (K, 7|k ) is compact, i.e. K isa
compact subset of 2. We have proved that K C  is a compact
subset of Q, if and only if for any family (V;);cs of open sets in
O such that K C UV, there exists {iy,...,7,} finite subset
of I, such that K CV;, U...UV, .

6. Let (©,7) be a compact topological space. Let K C €, and
suppose that K is closed in Q. Let (V;);er be a family of open
sets in 2, such that K C U;c;V;. For all x € Q, either z € K¢
or x € V; for some i € I (or both). So Q = (U;er Vi) UK. Since
K¢ is assumed to be open in , and (£2,7) is compact, from
definition (65), there exists {i1,...,4,} finite subset of I, such
that Q =V, U...UV, ,or Q= (V;; U...UV; )UK® In any
case, we have K C V;, U...UV; . Hence, given a family (V;)ier
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of open sets in ), such that K C U;c;V;, we have found a finite
subset {i1,...,in} of I, such that K CV;, U...UV, . From 5.,
we conclude that K is a compact subset of 2. We have proved
that any closed subset of a compact topological space, is itself
compact (is a compact subset of it).

Exercise 2
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Exercise 3.

1. By assumption, [a,b] C U;c;V; and in particular, there exists
i € I such that a € V;. So {a} = [a, a] can be covered by a finite
number of V;’s. We have proved that a € A.

2. Since a € V; for some i, and V; is open in R, there exists ¢ > 0
such that [a,a + €] C V;. Since a < b, by choosing € small
enough, we can ensure that a + € € [a,b]. Hence, we have found
€ > 0, such that a+ € € [a, b], and [a, a + €] is covered by a finite
number of V;’s. So we have found € > 0, such that a + € € A.

3. Since ¢ = sup A4, ¢ is an upper-bound of A. From 2., there exists
€ > 0, such that a+¢ € A. So a+¢€ < c and in particular, a < c.
By definition, A is a subset of [a,b]. So b is an upper-bound of
A. ¢ being the smallest of such upper-bounds, we have ¢ < b.
We have proved that a < ¢ <b.

4. From 3., ¢ €]a,b] C U;erV;. There exists ig € I with ¢ € V.
Vi, being open in R, there exist ¢, ¢’ such that ¢ < ¢ < ¢’ and
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¢/, "] € V;,. Moreover, since a < ¢, it is possible to choose ¢’
such that a < ¢’. We have proved the existence of i € I and
d, ", witha <d <ec< ¢ and ]d, "] CV,,.

5. Since ¢’ < ¢ and c is the smallest of all upper-bounds of A, ¢
cannot be such upper-bound. There exists x € A, such that
¢ < z. Since x € A, [a,z] can be covered by a finite number
of Vi’s. From [a, '] C [a, x], we conclude that [a, /] can also be
covered by a finite number of V;’s.

6. From [a,c”] = [a, V)¢, "], |¢,¢"] C V,, and the fact that
[a,c] can be covered by a finite number of V;’s, we conclude
that [a, ] can also be covered by a finite number of V;’s.

7. Since [a,bA "] C [a, "], it follows from 6. that [a, b A "] can be
covered by a finite number of V;’s. Moreover, since bAc” € [a, b],
we see that b A ¢” € A. Hence, we have b A ¢’ < c. We know
from 3. that ¢ < b. Suppose we had ¢ < b. Since ¢ < ¢”, this
would imply that ¢ < bA¢”, which is a contradiction. It follows
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that b = c.

8. From 7., we have [a,b] = [a, ] C [a,c”]. From 6., [a, "] can be
covered by a finite number of V;’s. It follows that [a,b] can also
be covered by a finite number of V;’s. In other words, there exists
a finite subset {i1,...,i,} of I, such that [a,b] CV;, U...UV .
Having assumed that [a,b] C U;c/V;, for an arbitrary family
(Vi)ier of open sets in R, we have shown the existence of a
finite subset {i1,...,i,} of I, such that [a,b] C V;, U... UV, .
From exercise (2), we see that [a, b] is a compact subset of R.

Exercise 3
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Exercise 4.

1. Let (92,7) be a Hausdorff topological space, and " C Q. Let
z,y €  with z # y. In particular, z,y € Q with = # y.
Since (2,7) is Hausdorff, there exist two open sets U,V in Q,
such that x € U, y € V and UNV = (. Define U’ = U N’
and V' =V N Q. Then U’ and V' are elements of the induced
topology 7|/ and furthermore, we have z € U’, y € V' and
U'NnV' = (. Given two distinct elements z,y of €', we have
found two disjoint open sets U’, V' in €/, containing z and
y respectively. This shows that the induced topological space
(9, 7)) is Hausdorff.

2. Let (2,7) be a metrizable topological space. Let d be a metric
on €, inducing the topology 7 on Q. Let z,y € Q with = # y.
Define € = d(z,y)/2 > 0, U = B(xz,¢) and V = B(y,¢€). Then,
U,V are open sets in ), with x € U and y € V. Furthermore,
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if z € B(x,¢€), then d(x, z) < d(z,y)/2 and consequently:
d(z,y) < d(z,z) + d(z,y) < d(z,y)/2+d(zy)

from which we see that d(z,y) > d(x,y)/2 = €. So z & B(y,¢€),
and we have proved that UNV = (. Given two distinct elements
z,y of ), we have found two disjoint open sets U, V in €,
containing x and y respectively. This shows that the metrizable
topological space (£2,7) is Hausdorff.

3. From theorem (13), the topological space (R, 7g) is metrizable.
It follows from 2. that (R, 7g) is Hausdorff. From 1., any sub-
set of R (together with its induced topology) is a Hausdorff
topological space.

4. Let (Q;,7;)ier be a family of Hausdorff topological spaces. Let
Q = ILie;Q; and T = ©;e;7; be the product topology on
Q) [definition (56)]. Let z,y € Q with & # y. There exists
io € I such that x(ip) # y(ig). Since (€,,7;,) is Hausdorff,
there exist U;,,V;, open sets in €;,, such that xz(ip) € U,
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y(io) € Vi, and Uy, NV, = 0. Define U = Uy, x ey fig)
and V = Vi, x e (5o} - Thenz e U,y € Vand UNV = 0.
Furthermore, U and V are rectangles of the family of topolo-
gies (7;)ier [definition (52)], and therefore belong to the product
topology ®;c17Z; = 7. Given two distinct elements z,y in 2, we
have found two disjoint open sets U,V in 2, containing = and
y respectively. This shows that the product topological space
(©,7) is Hausdorff.

Exercise 4
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Exercise 5.

1. Let z € K. Since by assumption, y € K¢, we have © # y. The
topological space (§2,7) being Hausdorff, there exist open sets
V, and W, in Q, such that y € V,,, x € W, and V, N W, = ().

2. For all x € K, we have x € W,. In particular, K C UpcxgW,.
K being a compact subset of Q, and (W, ).cx being a family of
open sets in (Q, there exists {z1, ..., x,} finite subset of K, such
that K CW,, U...UW,, ,ie. KCWY=W, U...UW,, .

3. Let V¥ =V, n...NV,, . All V’s being open in Q, V¥ is a
finite intersection of open sets in €2, and is therefore open in €.
Suppose that z € V¥ N WY, Then, there exists i € {1,...,n}
such that € W,,. Since V¥ C V,,, we see that x € W, NV,
which contradicts that fact that W,, N'V,, = 0. It follows that
VVinwy = 0.

4. By construction, y € V,, for all i € {1,...,n}. It follows that
yeVy N...NV, = VY Furthermore from 2., K C W¥ and
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from 3., VYNWY = (). It follows that for all z € V¥, = ¢ K. So
V¥ C K¢ We have proved that y € V¥ C K°.

5. So far, for all y € K¢, we have shown the existence of an open set
V¥in Q, suchthat y € V¥ C K°. Itis clear that UyegV¥ C K°.
Conversely, for all y € K¢, we have y € VY. So K¢ C UyegVVY.
We have proved that K¢ = UycgV"Y.

6. From 5., K¢ is a union of open sets in €2, and is therefore open
in . We conclude that K is a closed subset of 2. The purpose
of this exercise is to prove theorem (35).

Exercise 5
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Exercise 6.

1. Suppose A = {z} for some z € E. Then 6(A) = sup{0} = 0.
Conversely, suppose §(A) = 0. Then A # (), since otherwise we
would have §(A) = —oo. Suppose A had two distinct elements
z and y, We would have 0 < d(z,y) < J(A), contradicting
the assumption that 6(A) = 0. It follows that A has only one
element. We have proved that §(A4) = 0, if and only if A = {z}
for some z € F.

2. let ¢ : R —]—1,1] be an increasing homeomorphism. Let
d'(x,y) = |¢p(x) — ¢(y)]. Since ¢ is injective, d’'(z,y) = 0 is
equivalent to * = y. So d' is clearly a metric on R. Let A
be open for the usual topology on R, i.e. A € Tr. ¢ be-
ing a homeomorphism, ¢~! is continuous, and therefore ¢(A)
is open in |—1,1[. Tt follows that ¢(A) is also open in R. Let
x € A. Then ¢(x) € ¢(A), and there exists ¢ > 0 such that
|p(z) — z| < e = z € ¢(A). Let y € R be such that d'(z,y) < e.
Then |¢(z) — ¢(y)| < € and therefore ¢(y) € ¢(A). ¢ being
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injective, we see that y € A. We have found ¢ > 0, such
that d'(z,y) < € = y € A. This shows that A is open with
respect to the metric topology induced by d’, i.e. A € Ty.
This being true for all A € Tgr, we have 7T C 7Zy. Con-
versely, let A € Ty. Let x € A. There exists € > 0, such
that d'(z,y) < e = y € A. However, ¢ being continuous, there
exists 7 > 0, such that |z —y| < n = d'(z,y) < e. Hence, we
see that |x — y| < n = y € A. This shows that A is open with
respect to the usual topology on R, i.e. A € 7r. This being
true for all A € 74, we have 7y C TR, and finally 73 = Tr. We
conclude that the metric d’ induces the usual topology on R.
Let ¢’(R) be the diameter of R with respect to the metric d'.
For all 2,y € R, we have d’'(x,y) < 2. It follows that §'(R) < 2
and in particular ¢’(R) < +o00. So R is bounded with respect
to the metric d’. However, if d” denotes the usual metric on R,
and §”(R) the diameter of R with respect to d”, then it is clear
that 6”(R) = 400. So R is not bounded with respect to the
usual metric on R.
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3. Let K be a compact subset of E. Let ¢ > 0. We clearly have
K C UgegB(wz,€). The family (B(xz,€))zex being a family of
open sets in F, from exercise (2), there exists {x1, ..., 2, } finite
subset of K, such that K C B(z1,€)U...U B(xy,,€).

4. Let (2,7) be a metrizable topological space. Let d be an ar-
bitrary metric inducing the topology 7. Let K be a compact
subset of Q. Taking ¢ = 1 in 3., there exists {z1,...,2,} fi-
nite subset of K, such that K C B(x1,1)U...U B(xy,,1). Let
x,y € K. There exists i, € {1,...,n} such that = € B(z;,1)
and y € B(z;,1). It follows that:

where M = max; ; d(z;, z;). Hence, we see that 6(K) <2+ M,
where §(K) is the diameter of K with respect to the metric d.
In particular, §(K) < 400, and K is bounded with respect to
the metric d. This is true for all d inducing 7.

Exercise 6
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Exercise 7.

1. Since K is bounded with respect to the usual metric on R,
we have §(K) < 4+o0. If K = (), then K C [-M, M| for any
M € R*™. Suppose K # (. Then §(K) € R*, and for all
x,y € K, we have [t—y| < §(K). Let yo € K. Forallx € K, we
have |z| < 6(K)+|yo|. So K C [-M, M|, with M = §(K)+|yo|-

2. Let K’ denote the complement of K in [—M,M]. We have
K' =[-M,M]N K¢ where K¢ is the complement of K in R.
Since by assumption K is closed in R, K€ is open in R.. It follows
that [—-M, M]N K¢ is open with respect to the induced topology
on [-M, M]. So K’ is open in [—M, M], and we conclude that
K is closed in [—M, M].

3. From theorem (34), [-M, M] is a compact subset of R. From 2.,
K is a closed subset of [—M, M]. From exercise (2)[6.], we con-
clude that K is a compact subset of [—M, M].

4. From 3., K is a compact subset of [-M, M]. Tt follows from
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exercise (2)[3.], that K is also a compact subset of R. We have
proved that any closed and bounded subset of R, is also a com-
pact subset of R.

5. Let K be a compact subset of R. Since (R,7gr) is Hausdorff,
from theorem (35), K is a closed subset of R. Moreover, from
exercise (6), K is bounded with respect to any metric inducing
the usual topology on R. In particular, it is bounded with
respect to the usual metric on R. We have proved that any
compact subset of R is closed and bounded.

6. From 4., any subset of R which is closed and bounded, is com-
pact. Conversely, from 5., any compact subset of R is closed
and bounded. This proves theorem (36).

Exercise 7
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Exercise 8.

1. Let (W;);cr be an open covering of f(2). For all i € I, W;
is open, and f(Q) C U;erW;. Let z € Q. Then f(z) € f(Q).
There exists i € I, such that f(z) € Wi, ie. x € f~1(W;). Tt
follows that  C U;erf~*(W;). Moreover, f being continuous
and W; open, each f~(W;) is open in Q. We have proved that
(f~Y(W;))ier is an open covering of €.

2. Let f:(,7) — (5,7s) be a continuous map, where (2, 7) is
a compact topological space. Let (W;);er be a family of open
sets in S, such that f(Q) C Uje;W;. From 1., (f~Y(W;))ies is
a family of open sets in €, such that Q C U;er f~1(W;). (2,7)
being compact, there exists {i1,...,4,} finite subset of I, such
that Q C f=Y (W, )U...UfL(W;,). Let y € f(Q). There exists
x € Q, such that y = f(z). There exists k € {1,...,n}, such
that z € f~*(W;,), i.e. f(z) € Wi,. Soy € W;,. We have
proved that f(Q) C W;, U...UW, . Given an arbitrary family
(W;)ier of open sets, such that f(2) C U;e;W;, we have found a
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finite subset {i1,...,4,} of I, such that f(Q) C W;, U...UW,_.
This shows that f(€) is a compact subset of (S, 7g).

Exercise 8
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Exercise 9.

1. By construction, the topological space (R, 7g ) is homeomorphic
o [—1,1] [definition (34)]. In particular, there exists a contin-
uous map h : [~1,1] — R. From theorem (34), the topological
space [—1,1] is compact. From exercise (8), we conclude that
R = h([-1,1]) is a compact subset of (R, 7g). In other words,
(R, 7g) is a compact topological space.

2. Let K be a compact subset of R. The usual topology 7g on R,
is nothing but the topology induced on R, by the usual topology
on R, ie. Tr = (Tg)r. From exercise (2)[3.], we conclude that
K is also a compact subset of R.

3. Let K be a compact subset of R. Since (R,7g) is metrizable,
it is a Hausdorff topological space. It follows from theorem (35)
that K is closed in R. Conversely, suppose K is a closed subset
of R. From 1., (R,7g) is compact. We conclude from exer-
cise (2)[6.], that K is a compact subset of R.
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4. Let A be a non-empty subset of R, and o = sup A. We assume
that a # —oo (i.e. A isnot reduced to {—oo}). Let U € Tg with
a €U. Let h : R — [~1,1] be an increasing homeomorphism.
Then, h(U) is open in [—1, 1], and h(«) € h(U). Since a # —o0,
we have h(a) # —1. There exists € > 0, such that we have
|h(e) — €, h(e)] C h(U), together with —1 < h(a) —e. It follows
that |8,a] C U, where 8 = h=}(h(a) — €) € R. Let A be the
closure of A in R [definition 37]. If @ = —o0, since A # (), we
have A = {—}. So a € A C A. Suppose that a # —oco. We
claim that o € A. Let U € Tz be such that o € U. As shown
above, there exists 8 < «, § € R, such that |3,a] C U. a being
the supremum of A, its is the smallest of all upper-bounds of A.
Hence, 8 cannot be such upper-bound, and there exists ¢ € A
such that ¢ €]8,a] C U. Hence, we see that AN U # (). This
being true for all open sets U in R containing «, we have proved
that o € A. We conclude that for any non-empty subset A of
R, we have a = sup A € A.

www.probability.net


http://www.probability.net

Solutions to Exercises 46

5. Let A be a non-empty closed subset of R. From 4., we have
supA € A, and similarly inf A € A. A being closed in R, it
coincides with its closure in R, ie. A = A. So supA € A
and inf A € A. Any non-empty closed subset of R contains its
supremum and infimum.

6. Let A= {x € R:sinz = 0}. The map ’sin’ being continuous,
A = sin"*({0}) is a closed subset of R. However, inf A = —occ
and sup A = +4o00, and consequently, A does not contain its
supremum or infimum. In 5., we showed that any non-empty
closed subset of R contains its supremum and infimum. This
property does not hold for non-empty closed subset of R. In-
deed, R itself is a closed subset of itself, and does not contain
its supremum or infimum. [Note that R is not closed in R].

7. Let A be a non-empty closed and bounded subset of R. From
theorem (36), A is a non-empty compact subset of R. It fol-
lows that it is also a non-empty compact of subset of R, and
consequently from theorem (35), it is a non-empty closed subset
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of R. We conclude from 5. that A contains its supremum and
infimum, i.e. sup A € A and inf A € A.

Exercise 9
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Exercise 10.

1. Let f:(,7) — (R,7g) be a map with f(Q) C R. Suppose
f is continuous with respect to 7g. Let U be open in R. Then
UNR is open in R, and therefore f~1(U) = f~Y(UNR) € T.
So f is continuous with respect to 7. Conversely, suppose f
is continuous with respect to 7Tg. Let V € Tgr. There exists
U € Tg, such that V.= UNR. So f~1(V) = fY(U) € T.
So f is continuous with respect to 7g. We have proved that
whenever f(Q) C R, the continuity with respect to 7g and 7g
are equivalent.

2. Let f:(,7) — (R,7g) be a continuous map, where (,7)
is a non-empty compact topological space. From exercise (8),
f(Q) is a non-empty compact subset of R. In particular, from
theorem (35), it is a non-empty closed subset of R. From exer-
cise (9)[5.], we conclude that f(£2) contains its supremum and
infimum, i.e. sup f(Q2) € f(2) and inf f() € f(Q). In other
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words, there exist x,, and x,; in 2, such that;
flam) = inf f(z), f(za)=sup f(z)
e 2eQ
This proves theorem (37).

Exercise 10
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Exercise 11.

1. Suppose ¢ €]a,b[ and f(c) = sup f([a,b]). By assumption, f’(zx)
exists for all = €]a,b[. So in particular, f’(c) is well defined.
For all = € [a,b], we have f(z) < f(c). Hence, for all z €]c,b],
we have (f(x) — f(¢))/(z — ¢) < 0. Taking the limit as z — ¢,
¢ < x, we obtain f’(¢) < 0. Moreover, for all x € [a, ¢[, we have
(f(c) = f(x))/(c—x) > 0. Taking the limit as © — ¢, = < ¢, we
obtain f’(¢) > 0. We conclude that f’(c) = 0.

2. Let a,b € R, a < b. Let f : [a,b] — R be continuous on
[a,b], differentiable on ]a,b[, with f(a) = f(b). From theo-
rem (34), [a,b] is a compact subset of R. f being contin-
uous, from theorem (37), it attains its maximum and mini-
mum on [a,b]. Suppose sup f([a,b]) = inf f([a,b]). Then f
is constant on [a,b], and f'(¢) = 0 for all ¢ €]a,b[. Suppose
that we have sup f([a,b]) # inf f([a,b]). Then sup f([a,b]) and
inf f([a,b]) cannot both be equal to f(a) = f(b). Changing
f into —f if necessary, without loss of generality we can as-
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sume that sup f([a,b]) # f(a). Let ¢ € [a,b] be such that
f(c) = sup f([a,b]). Then f(c) # f(a) and f(c) # f(b). So
in fact, we have ¢ €la,b[. Since f(c) = sup,¢(y 4 f(2), from 1.,
we conclude that f/(c) = 0. We have proved the existence of
¢ €la, b[, such that f’(¢) = 0. This proves theorem (38).

Exercise 11
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Exercise 12.

1. his of the form h = f+ap, where a € R, and p is a polynomial.
Since f is continuous on [a,b] and differentiable on |a,b[, the
same is true of h.

2. We have h(a) = f(a) and h(b) = f(a). So h(a) = h(b), and we
can apply Rolle’s theorem (38). There exists ¢ €]a, b[ such that
1/ (¢) = 0. Since for all x € [a, b],we have:

M) = (@) — (o — )OI

we have found ¢ €]a, b, such that:
f) = fla) = (b—a)f'(c)

Exercise 12
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Exercise 13.

1. f is continuous on [a,b], and f’ exists on ]a,b[. Since f is of
class C™, each f*) is well defined and continuous on [a, b], for
all k € {1,...,n}. Moreover, each f*) is differentiable on [a, b],
and in particular on ]a,b[, for all & € {1,...,n — 1}. In fact,
since f("*1) exist on ]a, b, each f(*) is differentiable on ]a, b[ for
all k € {1,...,n}. We conclude that h is continuous on [a, b],
and differentiable on |a, b|.

2. For all k € {1,...,n}, we have:
[(b =) fO) = —k(b—2)" 1O 4 (b — )" fHD

Therefore, if we define:

Z f(’“ (x)

k=1
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we have:
n o k—1 n
g = -y Loy L e
k=1 ’ k=1
n—1 n
_ (b —k'.%')k f(k+1)(x) +Z (b p ) f(k+1 ( )
k=0 k=1
= s+ e
and from:
(b — z)nt!

Tt 1)

we conclude that:
W(z) = —f'(z)+f'(z) -
= - )

(b ') f(n+1( )+a(b_l‘)n

n! n!
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3. h is continuous on [a,b], and differentiable on ]a,b[. Moreover,
h(b) =0 = h(a). From theorem (38), there exists ¢ €]a, b[, such
that h'(c) = 0. Hence, from 2., there exists ¢ €]a,b[ such that
f*Y(¢) = . From h(a) = 0, we have:

_ — (b—a)* (k) (b—a)"*!
J0) = fla) = 3 =T (0) + =,

k=1

£ (e (5)

Given a,b € R,a < bandn > 0, given f : [a,b] — R of class C"
on [a, b], such that f("*+1) exists on ]a, b[, we have found ¢ €]a, b|
such that equation (5) holds. This proves theorem (39).

Exercise 13
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Exercise 14.

1. Let ¢ :]a,b[— R be convex and differentiable. Let z,y €|a,b],
x < y. For all z,2" €]x,y[ such that z < 2/, from exercise (1),
we have:

J— / —
¢(z) —ox) _ o(z) —d(2) _

z—x - z'—z - y—z

Py) — (2')

/!

z' being fixed, taking the limit as z || z, we obtain:
P(y) — o(z'
o) < S0 =6
y—z
and finally, taking the limit as 2z’ 11 y, ¢'(z) < ¢'(y). We have

proved that if a convex function is differentiable, its derivative
is non-decreasing.

2. Let x,y,2z €la,b] with © < y < z. Since f is differentiable on
Ja,b[, in particular, it is continuous on [z,y] and differentiable
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on |z, y[. From exercise (12), there exists ¢; €]z, y[ such that;

o(y) — o(x) = ¢'(c1)(y — @) (6)
Similarly, there exists co €]y, z[, such that:
$(2) = ¢(y) = ¢'(c2)(2 — y) (7)

From z < y < x, we conclude that ¢; < ca.

3. Let ¢ :]Ja,b|— R be differentiable, and such that ¢’ is non-
decreasing. Let z,y, z €]a, b be such that © < y < z. From 2.,
there exist ¢1,ca €]a, b, ¢1 < ca, such that equations (6) and (7)
are satisfied. ¢’ being non-decreasing, we have ¢'(c1) < ¢'(c2).
We conclude from (6) and (7) that:

oly) —o(x) _ () — ¢y)
y—xr T z-y
From exercise (1), it follows that ¢ is convex. We have proved

that a differentiable map on Ja, b[, with non-decreasing deriva-
tive is convex.
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4. x — e is differentiable on R, with non-decreasing derivative.
It is therefore convex.

5. x — —In(z) is differentiable on ]0, +oo[, with non-decreasing
derivative. It is therefore convex.

Exercise 14
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Exercise 15.

1. Since ¢ :]a,b[— R is convex, from exercise (1), it is continuous.
It follows that ¢ : (Ja,b[, B(]a,b])) — (R,B(R)) is measurable.
Since X € L (9, F, P), the map X : (Q,F) — (R,B(R)) is
measurable. In fact, since X(Q) Cla,b[, it is also true that
X : (0 F) — (Ja,b[,B(Ja, b)) is measurable. We conclude that
poX :(QF)— (R,B(R)) is measurable.

2. Since from 1., ¢po X is measurable and R-valued, it is an element
of LR (9, F, P), if and only if:

Bl 0 X]] é/|¢oX\dP < oo

3. Suppose E[X] = a. Since by assumption, X € LL(Q,F,P),
E[X] € R. So a € R. Since X () Cla, b[, in particular X > a.
So X —a>0and [(X —a)dP = 0. From exercise (7) [6.] of
Tutorial 5, we conclude that X = a P-a.s., which contradicts
X () Ca, b|.
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4. Suppose E[X] = b. Since by assumption, X € LL(Q,F,P),
E[X] € R. So b € R. Since X () Cla, b, in particular X < b.
Sob—X >0 and [(b— X)dP = 0. From exercise (7) [6.] of
Tutorial 5, we conclude that X = b P-a.s., which contradicts
X (92) Cla, b|.

5. Let m = E[X]. Since X () Cla,b[, we have a < X < b. It
follows that a < m <b. From 3. and 4., m = a or m = b leads
to a contradiction. We conclude that m €]a, b|.

6. We define:
o gy Pm o)
z€la,m| m—=x
Since a < m, Ja,m[# 0 and 3 # —oco. Let z €]m, b[. Since ¢ is
convex, from exercise (1), for all z €]a, m[, we have:
¢(m) — o(x) _ 6(2) — o(m)

m—x - Z—m
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It follows that:
5 < 912) = 6m)
z—m
In particular, f < 400 and finally § € R.

7. Let = €]a,b[. If x €]a, m], then by definition of /3, we have:

o(m) — ¢(x) _ 3
m—x
and consequently:
¢(m) + Bz —m) < ¢(x) (8)
If « €)m, b, then from 6., we have:
5< p(x) — ¢(m)
T—m

and consequently, inequality (8) still holds. We conclude that
inequality (8) holds for all x €]a, b|.
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8. For all w € Q, X(w) €]a,b[. From 7., we obtain:
¢(m) + B(X (w) —m) < (X (w)) 9)

9. If po X € LE(Q, F, P), then E[¢p o X] is meaningful. Taking
expectations on both sides of (9), we obtain:

¢(m) + B(E[X] —m) < E[¢ o X]

and since m = E[X], we conclude that ¢(m) < E[¢ o X|. This
proves theorem (40).

Exercise 15

www.probability.net


http://www.probability.net

	8 Jensen inequality
	 Solutions to Exercises



