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4. Measurability
Definition 25 Let A and B be two sets, and f : A → B be a map.
Given A′ ⊆ A, we call direct image of A′ by f the set denoted f(A′),
and defined by f(A′) = {f(x) : x ∈ A′}.

Definition 26 Let A and B be two sets, and f : A → B be a map.
Given B′ ⊆ B, we call inverse image of B′ by f the set denoted
f−1(B′), and defined by f−1(B′) = {x : x ∈ A , f(x) ∈ B′}.

Exercise 1. Let A and B be two sets, and f : A→ B be a bijection
from A to B. Let A′ ⊆ A and B′ ⊆ B.

1. Explain why the notation f−1(B′) is potentially ambiguous.

2. Show that the inverse image of B′ by f is in fact equal to the
direct image of B′ by f−1.

3. Show that the direct image of A′ by f is in fact equal to the
inverse image of A′ by f−1.
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Definition 27 Let (Ω, T ) and (S, TS) be two topological spaces. A
map f : Ω → S is said to be continuous if and only if:

∀B ∈ TS , f−1(B) ∈ T

In other words, if and only if the inverse image of any open set in S
is an open set in Ω.

We Write f : (Ω, T ) → (S, TS) is continuous, as a way of emphasizing
the two topologies T and TS with respect to which f is continuous.

Definition 28 Let E be a set. A map d : E × E → [0,+∞[ is said
to be a metric on E, if and only if:

(i) ∀x, y ∈ E , d(x, y) = 0 ⇔ x = y

(ii) ∀x, y ∈ E , d(x, y) = d(y, x)
(iii) ∀x, y, z ∈ E , d(x, y) ≤ d(x, z) + d(z, y)
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Definition 29 A metric space is an ordered pair (E, d) where E
is a set, and d is a metric on E.

Definition 30 Let (E, d) be a metric space. For all x ∈ E and
ε > 0, we define the so-called open ball in E:

B(x, ε)
�
= {y : y ∈ E , d(x, y) < ε}

We call metric topology on E, associated with d, the topology T d
E

defined by:

T d
E

�= {U ⊆ E , ∀x ∈ U, ∃ε > 0, B(x, ε) ⊆ U}

Exercise 2. Let T d
E be the metric topology associated with d, where

(E, d) is a metric space.

1. Show that T d
E is indeed a topology on E.

2. Given x ∈ E and ε > 0, show that B(x, ε) is an open set in E.
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Exercise 3. Show that the usual topology on R is nothing but the
metric topology associated with d(x, y) = |x− y|.
Exercise 4. Let (E, d) and (F, δ) be two metric spaces. Show that a
map f : E → F is continuous, if and only if for all x ∈ E and ε > 0,
there exists η > 0 such that for all y ∈ E:

d(x, y) < η ⇒ δ(f(x), f(y)) < ε

Definition 31 Let (Ω, T ) and (S, TS) be two topological spaces. A
map f : Ω → S is said to be a homeomorphism, if and only if f is
a continuous bijection, such that f−1 is also continuous.

Definition 32 A topological space (Ω, T ) is said to be metrizable,
if and only if there exists a metric d on Ω, such that the associated
metric topology coincides with T , i.e. T d

Ω = T .
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Definition 33 Let (E, d) be a metric space and F ⊆ E. We call
induced metric on F , denoted d|F , the restriction of the metric d
to F × F , i.e. d|F = d|F×F .

Exercise 5. Let (E, d) be a metric space and F ⊆ E. We define
TF = (T d

E )|F as the topology on F induced by the metric topology on

E. Let T ′
F = T d|F

F be the metric topology on F associated with the
induced metric d|F on F .

1. Show that TF ⊆ T ′
F .

2. Given A ∈ T ′
F , show that A = (∪x∈AB(x, εx)) ∩ F for some

εx > 0, x ∈ A, where B(x, εx) denotes the open ball in E.

3. Show that T ′
F ⊆ TF .
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Theorem 12 Let (E, d) be a metric space and F ⊆ E. Then, the
topology on F induced by the metric topology, is equal to the metric
topology on F associated with the induced metric, i.e. (T d

E )|F = T d|F
F .

Exercise 6. Let φ : R →] − 1, 1[ be the map defined by:

∀x ∈ R , φ(x)
�
=

x

|x| + 1

1. Show that [−1, 0[ is not open in R.

2. Show that [−1, 0[ is open in [−1, 1].

3. Show that φ is a homeomorphism between R and ] − 1, 1[.

4. Show that limx→+∞ φ(x) = 1 and limx→−∞ φ(x) = −1.

Exercise 7. Let R̄ = [−∞,+∞] = R∪{−∞,+∞}. Let φ be defined
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as in exercise (6), and φ̄ : R̄ → [−1, 1] be the map defined by:

φ̄(x) =

⎧⎨
⎩

φ(x) if x ∈ R
1 if x = +∞

−1 if x = −∞
Define:

TR̄
�
= {U ⊆ R̄ , φ̄(U) is open in [−1, 1]}

1. Show that φ̄ is a bijection from R̄ to [−1, 1], and let ψ̄ = φ̄−1.

2. Show that TR̄ is a topology on R̄.

3. Show that φ̄ is a homeomorphism between R̄ and [−1, 1].

4. Show that [−∞, 2[, ]3,+∞], ]3,+∞[ are open in R̄.

5. Show that if φ′ : R̄ → [−1, 1] is an arbitrary homeomorphism,
then U ⊆ R̄ is open, if and only if φ′(U) is open in [−1, 1].
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Definition 34 The usual topology on R̄ is defined as:

TR̄
�
= {U ⊆ R̄ , φ̄(U) is open in [−1, 1]}

where φ̄ : R̄ → [−1, 1] is defined by φ̄(−∞) = −1, φ̄(+∞) = 1 and:

∀x ∈ R , φ̄(x)
�
=

x

|x| + 1

Exercise 8. Let φ and φ̄ be as in exercise (7). Define:

T ′ �
= (TR̄)|R

�
= {U ∩ R , U ∈ TR̄}

1. Recall why T ′ is a topology on R.

2. Show that for all U ⊆ R̄, φ(U ∩R) = φ̄(U)∩] − 1, 1[.

3. Explain why if U ∈ TR̄, φ(U ∩ R) is open in ] − 1, 1[.

4. Show that T ′ ⊆ TR, (the usual topology on R).
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5. Let U ∈ TR. Show that φ̄(U) is open in ] − 1, 1[ and [−1, 1].

6. Show that TR ⊆ TR̄

7. Show that TR = T ′, i.e. that the usual topology on R̄ induces
the usual topology on R.

8. Show that B(R) = B(R̄)|R = {B ∩ R , B ∈ B(R̄)}

Exercise 9. Let d : R̄ × R̄ → [0,+∞[ be defined by:

∀(x, y) ∈ R̄ × R̄ , d(x, y) = |φ(x) − φ(y)|

where φ is an arbitrary homeomorphism from R̄ to [−1, 1].

1. Show that d is a metric on R̄.

2. Show that if U ∈ TR̄, then φ(U) is open in [−1, 1]
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3. Show that for all U ∈ TR̄ and y ∈ φ(U), there exists ε > 0 such
that:

∀z ∈ [−1, 1] , |z − y| < ε ⇒ z ∈ φ(U)

4. Show that TR̄ ⊆ T d
R̄

.

5. Show that for all U ∈ T d
R̄

and x ∈ U , there is ε > 0 such that:

∀y ∈ R̄ , |φ(x) − φ(y)| < ε ⇒ y ∈ U

6. Show that for all U ∈ T d
R̄

, φ(U) is open in [−1, 1].

7. Show that T d
R̄
⊆ TR̄

8. Prove the following theorem.

Theorem 13 The topological space (R̄, TR̄) is metrizable.
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Definition 35 Let (Ω,F) and (S,Σ) be two measurable spaces. A
map f : Ω → S is said to be measurable with respect to F and Σ, if
and only if:

∀B ∈ Σ , f−1(B) ∈ F

We Write f : (Ω,F) → (S,Σ) is measurable, as a way of emphasizing
the two σ-algebras F and Σ with respect to which f is measurable.

Exercise 10. Let (Ω,F) and (S,Σ) be two measurable spaces. Let
S′ be a set and f : Ω → S be a map such that f(Ω) ⊆ S′ ⊆ S. We
define Σ′ as the trace of Σ on S′, i.e. Σ′ = Σ|S′ .

1. Show that for all B ∈ Σ, we have f−1(B) = f−1(B ∩ S′)

2. Show that f : (Ω,F) → (S,Σ) is measurable, if and only if
f : (Ω,F) → (S′,Σ′) is itself measurable.

3. Let f : Ω → R+. Show that the following are equivalent:

(i) f : (Ω,F) → (R+,B(R+)) is measurable
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(ii) f : (Ω,F) → (R,B(R)) is measurable
(iii) f : (Ω,F) → (R̄,B(R̄)) is measurable

Exercise 11. Let (Ω,F), (S,Σ), (S1,Σ1) be three measurable spaces.
let f : (Ω,F) → (S,Σ) and g : (S,Σ) → (S1,Σ1) be two measurable
maps.

1. For all B ⊆ S1, show that (g ◦ f)−1(B) = f−1(g−1(B))

2. Show that g ◦ f : (Ω,F) → (S1,Σ1) is measurable.

Exercise 12. Let (Ω,F) and (S,Σ) be two measurable spaces. Let
f : Ω → S be a map. We define:

Γ
�
= {B ∈ Σ , f−1(B) ∈ F}

1. Show that f−1(S) = Ω.
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2. Show that for all B ⊆ S, f−1(Bc) = (f−1(B))c.

3. Show that if Bn ⊆ S, n ≥ 1, then f−1(∪+∞
n=1Bn) = ∪+∞

n=1f
−1(Bn)

4. Show that Γ is a σ-algebra on S.

5. Prove the following theorem.

Theorem 14 Let (Ω,F) and (S,Σ) be two measurable spaces, and
A be a set of subsets of S generating Σ, i.e. such that Σ = σ(A).
Then f : (Ω,F) → (S,Σ) is measurable, if and only if:

∀B ∈ A , f−1(B) ∈ F
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Exercise 13. Let (Ω, T ) and (S, TS) be two topological spaces. Let
f : Ω → S be a map. Show that if f : (Ω, T ) → (S, TS) is continuous,
then f : (Ω,B(Ω)) → (S,B(S)) is measurable.

Exercise 14. We define the following subsets of the power set P(R̄):

C1
�
= {[−∞, c] , c ∈ R}

C2
�
= {[−∞, c[ , c ∈ R}

C3
�
= {[c,+∞] , c ∈ R}

C4
�
= {]c,+∞] , c ∈ R}

1. Show that C2 and C4 are subsets of TR̄.

2. Show that the elements of C1 and C3 are closed in R̄.

3. Show that for all i = 1, 2, 3, 4, σ(Ci) ⊆ B(R̄).

4. Let U be open in R̄. Explain why U ∩ R is open in R.
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5. Show that any open subset of R is a countable union of open
bounded intervals in R.

6. Let a < b, a, b ∈ R. Show that we have:

]a, b[=
+∞⋃
n=1

]a, b− 1/n] =
+∞⋃
n=1

[a+ 1/n, b[

7. Show that for all i = 1, 2, 3, 4, ]a, b[∈ σ(Ci).

8. Show that for all i = 1, 2, 3, 4, {{−∞}, {+∞}} ⊆ σ(Ci).

9. Show that for all i = 1, 2, 3, 4, σ(Ci) = B(R̄)

10. Prove the following theorem.
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Theorem 15 Let (Ω,F) be a measurable space, and f : Ω → R̄ be
a map. The following are equivalent:

(i) f : (Ω,F) → (R̄,B(R̄)) is measurable
(ii) ∀B ∈ B(R̄) , {f ∈ B} ∈ F

(iii) ∀c ∈ R , {f ≤ c} ∈ F
(iv) ∀c ∈ R , {f < c} ∈ F
(v) ∀c ∈ R , {c ≤ f} ∈ F

(vi) ∀c ∈ R , {c < f} ∈ F

Exercise 15. Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F) → (R̄,B(R̄)). Let g and h be
the maps defined by g(ω) = infn≥1 fn(ω) and h(ω) = supn≥1 fn(ω),
for all ω ∈ Ω.

1. Let c ∈ R. Show that {c ≤ g} = ∩+∞
n=1{c ≤ fn}.

2. Let c ∈ R. Show that {h ≤ c} = ∩+∞
n=1{fn ≤ c}.
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3. Show that g, h : (Ω,F) → (R̄,B(R̄)) are measurable.

Definition 36 Let (vn)n≥1 be a sequence in R̄. We define:

u
�
= lim inf

n→+∞ vn
�
= sup

n≥1

(
inf
k≥n

vk

)

and:

w
�
= lim sup

n→+∞
vn

�
= inf

n≥1

(
sup
k≥n

vk

)

Then, u,w ∈ R̄ are respectively called lower limit and upper limit
of the sequence (vn)n≥1.

Exercise 16. Let (vn)n≥1 be a sequence in R̄. for n ≥ 1 we define
un = infk≥n vk and wn = supk≥n vk. Let u and w be the lower limit
and upper limit of (vn)n≥1, respectively.

1. Show that un ≤ un+1 ≤ u, for all n ≥ 1.
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2. Show that w ≤ wn+1 ≤ wn, for all n ≥ 1.

3. Show that un → u and wn → w as n→ +∞.

4. Show that un ≤ vn ≤ wn, for all n ≥ 1.

5. Show that u ≤ w.

6. Show that if u = w then (vn)n≥1 converges to a limit v ∈ R̄,
with u = v = w.

7. Show that if a, b ∈ R are such that u < a < b < w then for all
n ≥ 1, there exist N1, N2 ≥ n such that vN1 < a < b < vN2 .

8. Show that if a, b ∈ R are such that u < a < b < w then there
exist two strictly increasing sequences of integers (nk)k≥1 and
(mk)k≥1 such that for all k ≥ 1, we have vnk

< a < b < vmk
.

9. Show that if (vn)n≥1 converges to some v ∈ R̄, then u = w.
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Theorem 16 Let (vn)n≥1 be a sequence in R̄. Then, the following
are equivalent:

(i) lim inf
n→+∞ vn = lim sup

n→+∞
vn

(ii) lim
n→+∞ vn exists in R̄.

in which case:

lim
n→+∞ vn = lim inf

n→+∞ vn = lim sup
n→+∞

vn

Exercise 17. Let f, g : (Ω,F) → (R̄,B(R̄)) be two measurable maps,
where (Ω,F) is a measurable space.

1. Show that {f < g} = ∪r∈Q({f < r} ∩ {r < g}).

2. Show that the sets {f < g}, {f > g}, {f = g}, {f ≤ g}, {f ≥ g}
belong to the σ-algebra F .
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Exercise 18. Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F) → (R̄,B(R̄)). We define
g = lim inf fn and h = lim sup fn in the obvious way:

∀ω ∈ Ω , g(ω)
�
= lim inf

n→+∞ fn(ω)

∀ω ∈ Ω , h(ω)
�
= lim sup

n→+∞
fn(ω)

1. Show that g, h : (Ω,F) → (R̄,B(R̄)) are measurable.

2. Show that g ≤ h, i.e. ∀ω ∈ Ω , g(ω) ≤ h(ω).

3. Show that {g = h} ∈ F .

4. Show that {ω : ω ∈ Ω , limn→+∞ fn(ω) exists in R̄} ∈ F .

5. Suppose Ω = {g = h}, and let f(ω) = limn→+∞ fn(ω), for all
ω ∈ Ω. Show that f : (Ω,F) → (R̄,B(R̄)) is measurable.
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Exercise 19. Let f, g : (Ω,F) → (R̄,B(R̄)) be two measurable maps,
where (Ω,F) is a measurable space.

1. Show that −f, |f |, f+ = max(f, 0) and f− = max(−f, 0) are
measurable with respect to F and B(R̄).

2. Let a ∈ R̄. Explain why the map a+f may not be well defined.

3. Show that (a+f) : (Ω,F) → (R̄,B(R̄)) is measurable, whenever
a ∈ R.

4. Show that (a.f) : (Ω,F) → (R̄,B(R̄)) is measurable, for all
a ∈ R̄. (Recall the convention 0.∞ = 0).

5. Explain why the map f + g may not be well defined.

6. Suppose that f ≥ 0 and g ≥ 0, i.e. f(Ω) ⊆ [0,+∞] and also
g(Ω) ⊆ [0,+∞]. Show that {f + g < c} = {f < c − g}, for all
c ∈ R. Show that f + g : (Ω,F) → (R̄,B(R̄)) is measurable.
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7. Show that f + g : (Ω,F) → (R̄,B(R̄)) is measurable whenever
f + g is well-defined, i.e. when the following condition holds:

({f = +∞}∩ {g = −∞}) ∪ ({f = −∞} ∩ {g = +∞}) = ∅

8. Show that 1/f : (Ω,F) → (R̄,B(R̄)) is measurable, in the case
when f(Ω) ⊆ R \ {0}.

9. Suppose that f is R-valued. Show that f̄ defined by f̄(ω) =
f(ω) if f(ω) �= 0 and f̄(ω) = 1 if f(ω) = 0, is measurable with
respect to F and B(R̄).

10. Suppose f and g take values in R. Let f̄ be defined as in 9.
Show that for all c ∈ R, the set {fg < c} can be expressed as:

({f >0}∩{g < c/f̄})�({f <0}∩{g > c/f̄})�({f = 0}∩{f < c})

11. Show that fg : (Ω,F) → (R̄,B(R̄)) is measurable, in the case
when f and g take values in R.
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Exercise 20. Let f, g : (Ω,F) → (R̄,B(R̄)) be two measurable maps,
where (Ω,F) is a measurable space. Let f̄ , ḡ, be defined by:

f̄(ω)
�
=

{
f(ω) if f(ω) �∈ {−∞,+∞}

1 if f(ω) ∈ {−∞,+∞}

ḡ(ω) being defined in a similar way. Consider the partitions of Ω,
Ω = A1 � A2 � A3 � A4 � A5 and Ω = B1 � B2 � B3 � B4 � B5,
where A1 = {f ∈]0,+∞[}, A2 = {f ∈] − ∞, 0[}, A3 = {f = 0},
A4 = {f = −∞}, A5 = {f = +∞} and B1, B2, B3, B4, B5 being
defined in a similar way with g. Recall the conventions 0× (+∞) = 0,
(−∞) × (+∞) = (−∞), etc. . .

1. Show that f̄ and ḡ are measurable with respect to F and B(R̄).

2. Show that all Ai’s and Bj ’s are elements of F .
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3. Show that for all B ∈ B(R̄):

{fg ∈ B} =
5⊎

i,j=1

(Ai ∩Bj ∩ {fg ∈ B})

4. Show that Ai ∩ Bj ∩ {fg ∈ B} = Ai ∩ Bj ∩ {f̄ ḡ ∈ B}, in the
case when 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

5. Show that Ai ∩ Bj ∩ {fg ∈ B} is either equal to ∅ or Ai ∩ Bj ,
in the case when i ≥ 4 or j ≥ 4.

6. Show that fg : (Ω,F) → (R̄,B(R̄)) is measurable.

Definition 37 Let (Ω, T ) be a topological space, and A ⊆ Ω. We
call closure of A in Ω, denoted Ā, the set defined by:

Ā
�
= {x ∈ Ω : x ∈ U ∈ T ⇒ U ∩A �= ∅}
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Exercise 21. Let (E, T ) be a topological space, and A ⊆ E. Let Ā
be the closure of A.

1. Show that A ⊆ Ā and that Ā is closed.

2. Show that if B is closed and A ⊆ B, then Ā ⊆ B.

3. Show that Ā is the smallest closed set in E containing A.

4. Show that A is closed if and only if A = Ā.

5. Show that if (E, T ) is metrizable, then:

Ā = {x ∈ E : ∀ε > 0 , B(x, ε) ∩A �= ∅}
where B(x, ε) is relative to any metric d such that T d

E = T .

Exercise 22. Let (E, d) be a metric space. Let A ⊆ E. For all
x ∈ E, we define:

d(x,A)
�
= inf{d(x, y) : y ∈ A} �

= ΦA(x)
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where it is understood that inf ∅ = +∞.

1. Show that for all x ∈ E, d(x,A) = d(x, Ā).

2. Show that d(x,A) = 0, if and only if x ∈ Ā.

3. Show that for all x, y ∈ E, d(x,A) ≤ d(x, y) + d(y,A).

4. Show that if A �= ∅, |d(x,A) − d(y,A)| ≤ d(x, y).

5. Show that ΦA : (E, T d
E ) → (R̄, TR̄) is continuous.

6. Show that if A is closed, then A = Φ−1
A ({0})

Exercise 23. Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F) → (E,B(E)), where (E, d) is
a metric space. We assume that for all ω ∈ Ω, the sequence (fn(ω))n≥1

converges to some f(ω) ∈ E.
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1. Explain why lim inf fn and lim sup fn may not be defined in an
arbitrary metric space E.

2. Show that f : (Ω,F) → (E,B(E)) is measurable, if and only if
f−1(A) ∈ F for all closed subsets A of E.

3. Show that for all A closed in E, f−1(A) = (ΦA ◦ f)−1({0}),
where the map ΦA : E → R̄ is defined as in exercise (22).

4. Show that ΦA ◦ fn : (Ω,F) → (R̄,B(R̄)) is measurable.

5. Show that f : (Ω,F) → (E,B(E)) is measurable.

Theorem 17 Let (Ω,F) be a measurable space. Let (fn)n≥1 be a
sequence of measurable maps fn : (Ω,F) → (E,B(E)), where (E, d)
is a metric space. Then, if the limit f = lim fn exists on Ω, the map
f : (Ω,F) → (E,B(E)) is itself measurable.
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Definition 38 The usual topology on C, the set of complex num-
bers, is defined as the metric topology associated with d(z, z′) = |z−z′|.

Exercise 24. Let f : (Ω,F) → (C,B(C)) be a measurable map,
where (Ω,F) is a measurable space. Let u = Re(f) and v = Im(f).
Show that u, v, |f | : (Ω,F) → (R̄,B(R̄)) are all measurable.

Exercise 25. Define the subset of the power set P(C):

C �
= {]a, b[×]c, d[ , a, b, c, d ∈ R}

where it is understood that:

]a, b[×]c, d[
�
= {z = x+ iy ∈ C , (x, y) ∈]a, b[×]c, d[}

1. Show that any element of C is open in C.

2. Show that σ(C) ⊆ B(C).

3. Let z = x + iy ∈ C. Show that if |x| < η and |y| < η then we
have |z| <

√
2η.
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4. Let U be open in C. Show that for all z ∈ U , there are rational
numbers az, bz, cz, dz such that z ∈]az , bz[×]cz, dz [⊆ U .

5. Show that U can be written as U = ∪+∞
n=1An where An ∈ C.

6. Show that σ(C) = B(C).

7. Let (Ω,F) be a measurable space, and u, v : (Ω,F) → (R,B(R))
be two measurable maps. Show that u+iv : (Ω,F) → (C,B(C))
is measurable.
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Solutions to Exercises
Exercise 1.

1. f : A → B being a bijection, the notation f−1 by itself is
meaningful. From definition (26), f−1(B′) denotes the inverse
image of B′ by f . However, from definition (25), f−1(B′) also
denotes the direct image of B′ by f−1. So f−1(B′) is ambiguous.

2. Let f−1(B′) denote the inverse image of B′ by f . Let g = f−1

and g(B′) be the direct image ofB′ by g. Let x ∈ f−1(B′). Then
x ∈ A and f(x) ∈ B′. Let y = f(x). Then x = g(y) with y ∈ B′.
It follows that x ∈ g(B′), and f−1(B′) ⊆ g(B′). Conversely, let
x ∈ g(B′). There exists y ∈ B′ such that x = g(y) ∈ A. Hence,
f(x) = y ∈ B′, and we see that x ∈ f−1(B′). It follows that
g(B′) ⊆ f−1(B′). We have proved that f−1(B′) = g(B′).

3. Let g = f−1. Then f = g−1, and applying 2. to g, we have
g−1(A′) = f(A′), where g−1(A′) denotes an inverse image.

Exercise 1
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Exercise 2.

1. Any statement of the form ∀x ∈ ∅, . . ., is true. Hence, ∅ ∈ T d
E .

It is clear that E ∈ T d
E , and (i) of definition (13) is satisfied

for T d
E . Let A,B ∈ T d

E , and x ∈ A ∩ B. Since x ∈ A ∈ T d
E ,

there exists ε1 > 0 such that B(x, ε1) ⊆ A. Similarly, there
exist ε2 > 0 such that B(x, ε2) ⊆ B. Let ε = min(ε1, ε2). Then
ε > 0 and B(x, ε) ⊆ A ∩ B. It follows that A ∩ B ∈ T d

E and
(ii) of definition (13) is satisfied for T d

E . Let (Ai)i∈I be a family
of elements of T d

E , and x ∈ ∪i∈IAi. There exists i ∈ I, such
that x ∈ Ai. Since Ai ∈ T d

E , there exists ε > 0 such that
B(x, ε) ⊆ Ai. In particular, B(x, ε) ⊆ ∪i∈IAi. It follows that
∪i∈IAi ∈ T d

E , and (iii) of definition (13) is satisfied for T d
E .

Having checked (i), (ii) and (iii) of definition (13), we conclude
that T d

E is indeed a topology on E.

2. Let y ∈ B(x, ε). Then d(x, y) < ε. Let η = ε − d(x, y). Then
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η > 0, and for all z ∈ B(y, η), from (iii) of definition (28):

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + η = ε

It follows that B(y, η) ⊆ B(x, ε), and we have proved that
B(x, ε) ∈ T d

E . In other words, the open ball B(x, ε) is an open
set in E, with respect to the metric topology on E.

Exercise 2
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Exercise 3. If E = R and d(x, y) = |x − y|, then for all x ∈ R
and ε > 0, we have B(x, ε) =]x− ε, x+ ε[. Comparing definition (17)
for the usual topology on R, with definition (30), it appears that the
usual topology on R, TR, is nothing but the metric topology T d

R.
Exercise 3
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Exercise 4. Let P be the property that for all x ∈ E and ε > 0,
there exists η > 0 such that for all y ∈ E:

d(x, y) < η ⇒ δ(f(x), f(y)) < ε

Suppose that property P is true. Let B ∈ T δ
F be an open set in F ,

and x ∈ f−1(B). Then f(x) ∈ B. Since B ∈ T δ
F , from definition (30)

there exists ε > 0 such that B(f(x), ε) ⊆ B. However, from property
P , there exists η > 0, such that:

y ∈ B(x, η) ⇒ f(y) ∈ B(f(x), ε)

It follows that if y ∈ B(x, η), then f(y) ∈ B, i.e. y ∈ f−1(B). Hence,
B(x, η) ⊆ f−1(B). We have proved that f−1(B) is an open set in E,
i.e. f−1(B) ∈ T d

E . This being true for all B ∈ T δ
F , from definition (27)

we conclude that f : E → F is continuous.
Conversely, suppose that f is continuous. Let x ∈ E and ε > 0.
From exercise (2), the open ball B(f(x), ε) is an open set in F . Since
f is continuous, it follows that f−1(B(f(x), ε)) is an open set in
E, which furthermore contains x. There exists η > 0, such that
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B(x, η) ⊆ f−1(B(f(x), ε)). In other words, if y ∈ B(x, η), then
f(y) ∈ B(f(x), ε), or equivalently:

d(x, y) < η ⇒ δ(f(x), f(y)) < ε

It follows that property P is true. We have proved that property P
is equivalent to f : E → F being continuous.

Exercise 4
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Exercise 5.

1. Let A ∈ TF . From definition (23) of an induced topology, there
exists B ∈ T d

E , such that A = B ∩ F . Let x ∈ A. Then in
particular x ∈ B and from definition (30), there exists ε > 0
such that B(x, ε) ⊆ B, where B(x, ε) is the open ball in E:

B(x, ε)
�
= {y ∈ E : d(x, y) < ε}

If B′(x, ε) denotes the open ball in F :

B′(x, ε)
�
= {y ∈ F : d|F (x, y) < ε}

then from d|F (x, y) = d(x, y) for all (x, y) ∈ F 2, we conclude
that B′(x, ε) = B(x, ε) ∩ F , for all x ∈ F . Hence, we see that
B′(x, ε) ⊆ B ∩ F = A. It follows that A ∈ T d|F

F = T ′
F . We have

proved that TF ⊆ T ′
F .

2. Let A ∈ T ′
F . By definition (30), for all x ∈ A, there exists εx > 0

such that B′(x, εx) ⊆ A, where B′(x, εx) is the open ball in F .
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However, for all x ∈ F , B′(x, εx) = B(x, εx)∩F , where B(x, εx)
is the open ball in E. It follows that x ∈ B(x, εx) ∩ F ⊆ A for
all x ∈ A. Finally, A = (∪x∈AB(x, εx)) ∩ F .

3. A topology being closed under arbitrary union, and an open ball
being open for the metric topology, it follows from 2. that any
A ∈ T ′

F can be expressed as A = B ∩F ,where B is open for the
metric topology on E, i.e. B ∈ T d

E . Hence, any A ∈ T ′
F belongs

to (T d
E )|F = TF . We have proved that T ′

F ⊆ TF . The purpose
of this exercise is to prove theorem (12). Given any subset
F of a metric space (E, d), the topology on F induced by the
metric topology on E is a very natural topology for F . However,
(F, d|F ) being itself a metric space, the corresponding metric
topology is also a very natural topology for F . Fortunately,
theorem (12) states that these two topologies do in fact coincide.

Exercise 5
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Exercise 6.

1. If [−1, 0[ was open in R, there would exist ε > 0 such that
] − 1 − ε,−1 + ε[⊆ [−1, 0[. This is obviously not the case.

2. [−1, 0[=]− 2, 0[∩[−1, 1]. Since ]− 2, 0[ is open in R, [−1, 0[ is of
the form [−1, 0[= A ∩ [−1, 1] with A ∈ TR. [−1, 0[ is therefore
an element of the induced topology on [−1, 1]. In other words,
[−1, 0[ is an open set in [−1, 1].

3. Let ψ :] − 1, 1[→ R be defined by ψ(y) = y/(1 − |y|). It is easy
to check that ψ ◦ φ(x) = x for all x ∈ R, and φ ◦ ψ(y) = y for
all y ∈] − 1, 1[. It follows that φ is a bijection and φ−1 = ψ.
The fact that φ and ψ are continuous, may be regarded as an
obvious point. However, if one wants to prove it from princi-
ples contained in these tutorials, the following argument can be
used: from exercise (3), the usual topology on R is in fact the
metric topology associated with d(x, y) = |x − y|. From the-
orem (12), the induced topology on ] − 1, 1[ is also the metric
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topology associated with d(x, y) = |x − y|. Consequently, the
two topologies being metric, we can prove the continuity of φ
and ψ using exercise (4). For x ≥ 0 and y ≥ 0, we have:

|φ(x) − φ(y)| =
|x− y|

(1 + x)(1 + y)
≤ |x− y| (1)

and:
|φ(x) + φ(y)| =

x

1 + x
+

y

1 + y
≤ |x+ y|

and since φ(−x) = −φ(x) for all x ∈ R, it is easy to check that
equation (1) actually holds for all x, y ∈ R. The continuity of
φ is therefore an immediate consequence of exercise (4). Let
x ∈] − 1, 1[ and ε > 0 be given. For all y ∈] − 1, 1[, we have:

|ψ(x) − ψ(y)| =
∣∣∣∣ x− y

1 − |y| +
x(|x| − |y|)

(1 − |x|)(1 − |y|)

∣∣∣∣
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Using the fact that ||x| − |y|| ≤ |x− y| and |x| < 1, we obtain:

|ψ(x) − ψ(y)| ≤ |x− y|
1 − |y| +

|x− y|
(1 − |x|)(1 − |y|) (2)

Let η1 > 0 be such that −1 < x − η1 < x + η1 < 1. Then,
the map y → 1/(1 − |y|) is bounded on ]x − η1, x + η1[. It
follows from (2) that there exists M ∈ R+ such that for all
y ∈]x − η1, x+ η1[:

|ψ(x) − ψ(y)| ≤M |x− y| + M

(1 − |x|) |x− y|

Consequently, choosing η > 0 sufficiently small, it is possible
to ensure that |ψ(x) − ψ(y)| < ε, for all y ∈]x − η, x + η[. We
conclude from exercise (4) that ψ is continuous. Since φ and ψ
are continuous, φ is a homeomorphism from R to ] − 1, 1[.

4. Given ε > 0 and x ≥ max(1/ε− 1, 0), we have:

|φ(x) − 1| =
1

1 + x
≤ ε
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It follows that φ(x) → 1 as x→ +∞. Since φ(−x) = −φ(x) for
all x ∈ R, we conclude that φ(x) → −1 as x→ −∞.

Exercise 6
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Exercise 7.

1. Let y ∈ [−1, 1]. If y = 1, then y = φ̄(+∞). If y = −1, then
y = φ̄(−∞). If y ∈] − 1, 1[, φ being onto, there exists x ∈ R
such that y = φ(x) = φ̄(x). In any case, there exists x ∈ R̄
such that y = φ̄(x). So φ̄ is onto. Suppose x1, x2 ∈ R̄ are such
that φ̄(x1) = φ̄(x2). If φ̄(x1) ∈]− 1, 1[, then φ(x1) = φ(x2), and
φ being injective, x1 = x2. If φ̄(x1) = 1, then x1 = x2 = +∞.
If φ̄(x1) = −1, then x1 = x2 = −∞. In any case, x1 = x2. It
follows that φ̄ is injective. Finally, φ̄ is a bijection.

2. φ̄(∅) = ∅ is open in [−1, 1]. So ∅ ∈ TR̄. φ̄(R̄) = [−1, 1] is open
in [−1, 1], so R̄ ∈ TR̄. Let A,B ∈ TR̄. Using exercise (1), any
direct image by φ̄ can also be viewed as an inverse image by ψ̄.
Hence, we have:

φ̄(A ∩B) = ψ̄−1(A ∩B) = ψ̄−1(A) ∩ ψ̄−1(B) = φ̄(A) ∩ φ̄(B)

Since A and B lie in TR̄, both φ̄(A) and φ̄(B) are open in [−1, 1].
It follows that φ̄(A∩B) is open in [−1, 1], so A∩B ∈ TR̄. Hence,
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we see that TR̄ is closed under finite intersection. Let (Ai)i∈I

be a family of elements of TR̄. We have:

φ̄(∪i∈IAi) = ψ̄−1(∪i∈IAi) = ∪i∈I ψ̄
−1(Ai) = ∪i∈I φ̄(Ai)

Each φ̄(Ai) being open in [−1, 1], φ̄(∪i∈IAi) is also open in
[−1, 1]. It follows that ∪i∈IAi ∈ TR̄. Hence, we see that TR̄ is
closed under arbitrary union. we have proved that TR̄ is indeed
a topology on R̄.

3. From 1. we know that φ̄ is a bijection from R̄ to [−1, 1]. Let B
be open in [−1, 1]. We have:

B = (φ̄ ◦ ψ̄)−1(B) = ψ̄−1(φ̄−1(B))

Using exercise (1), we see that B = φ̄(φ̄−1(B)). So φ̄(φ̄−1(B))
is open in [−1, 1]. From the very definition of TR̄, it follows that
φ̄−1(B) ∈ TR̄. From definition (27) we conclude that φ̄ is con-
tinuous. Let A be open in R̄, i.e. A ∈ TR̄. By definition, φ̄(A)
is open in [−1, 1]. Using exercise (1), φ̄(A) = ψ̄−1(A). Hence,
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ψ̄−1(A) is open in [−1, 1]. From definition (27) we conclude
that ψ̄ is continuous. Finally, φ̄ is a homeomorphism from R̄ to
[−1, 1].

4. We have:

φ̄([−∞, 2[) = [−1, 2/3[ = ] −∞, 2/3[∩[−1, 1]
φ̄(]3,+∞]) = ]3/4, 1] = ]3/4,+∞[∩[−1, 1]
φ̄(]3,+∞[) = ]3/4, 1[ = ]3/4, 1[∩[−1, 1]

It follows that φ̄([−∞, 2[), φ̄(]3,+∞]) and φ̄(]3,+∞[) are all
open sets in [−1, 1]. Consequently, [−∞, 2[, ]3,+∞] and ]3,+∞[
are open in R̄.

5. Let φ′ : R̄ → [−1, 1] be an arbitrary homeomorphism, and
ψ′ = (φ′)−1. Suppose U ⊆ R̄ is open in R̄, i.e. U ∈ TR̄. Since
ψ′ is continuous, (ψ′)−1(U) is open in [−1, 1]. Using exercise (1),
(ψ′)−1(U) = φ′(U). So φ′(U) is open in [−1, 1]. Conversely, sup-
pose φ′(U) is open in [−1, 1] for U ⊆ R̄. Since φ′ is continuous,
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(φ′)−1(φ′(U)) is open in R̄. However, using exercise (1):

(φ′)−1(φ′(U)) = (φ′)−1((ψ′)−1(U)) = (ψ′ ◦ φ′)−1(U) = U

Hence, U is open in R̄. The purpose of this exercise is to give a
formal description of the usual topology on R̄, leading to defini-
tion (34).

Exercise 7
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Exercise 8.

1. From definition (23), T ′ is the topology on R induced by TR̄.

2. Let U ⊆ R̄. Let y ∈ φ(U ∩R). There exists x ∈ U ∩R such that
y = φ(x). In particular, y ∈]−1, 1[ and y = φ̄(x) with x ∈ U . So
y ∈ φ̄(U)∩]− 1, 1[. Conversely, suppose that y ∈ φ̄(U)∩]− 1, 1[.
There exists x ∈ U such that y = φ̄(x). But φ̄(x) ∈] − 1, 1[
implies that that x ∈ R, and therefore φ̄(x) = φ(x) = y. So
x ∈ U ∩R and φ(x) = y. It follows that y ∈ φ(U ∩R). We have
proved that φ(U ∩ R) = φ̄(U)∩] − 1, 1[.

3. Let U ∈ TR̄. By definition, φ̄(U) is open in [−1, 1]. There
exists B open in R, such that φ̄(U) = B ∩ [−1, 1]. Hence,
φ̄(U)∩] − 1, 1[= B∩] − 1, 1[. From 2., φ(U ∩ R) = B∩] − 1, 1[.
We conclude that φ(U ∩R) is open in ] − 1, 1[.

4. Let V ∈ T ′. By definition, there exists U ∈ TR̄ such that
V = U ∩ R. From 3., we see that φ(V ) is open in ] − 1, 1[.
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φ being continuous, φ−1(φ(V )) is therefore open in R. However,
using exercise (1):

φ−1(φ(V )) = φ−1(ψ−1(V )) = (ψ ◦ φ)−1(V ) = V

It follows that V is open in R, i.e. V ∈ TR. We have proved
that T ′ ⊆ TR

5. Let U ∈ TR. Since U ⊆ R, it is easy to check that φ̄(U) = φ(U).
Using exercise (1), φ(U) = ψ−1(U), and ψ being continuous,
ψ−1(U) is open in ] − 1, 1[. It follows that φ̄(U) is open in
]−1, 1[. There exists B open in R, such that φ̄(U) = B∩]−1, 1[.
In particular φ̄(U) is also open in R, with φ̄(U) = φ̄(U)∩[−1, 1].
We conclude that φ̄(U) is open in [−1, 1].

6. For all U ∈ TR, from 5., φ̄(U) is open in [−1, 1]. It follows that
U ∈ TR̄. We have proved that TR ⊆ TR̄.

7. Let U ∈ TR. From 6., U ∈ TR̄. However, since U ⊆ R, we
have U = U ∩ R. From U ∈ TR̄ we conclude that U ∈ T ′. We
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have proved that TR ⊆ T ′. From 4., T ′ ⊆ TR. It follows that
TR = T ′. In other words, the topology on R induced by the
usual topology on R̄, is nothing but the usual topology on R.

8. Using the trace theorem (10), we have:

B(R̄)|R = σ(TR̄)|R = σ((TR̄)|R) = σ(TR) = B(R)

Exercise 8
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Exercise 9.

1. d(x, y) = 0 is equivalent to φ(x) = φ(y), which is in turn equiv-
alent to x = y. So (i) of definition (28) is satisfied for d.
The fact that (ii) is also satisfied is completely obvious. Given
x, y, z ∈ R̄, we have:

|φ(x) − φ(y)| ≤ |φ(x) − φ(z)| + |φ(z) − φ(y)|

It follows that (iii) of definition (28) is also satisfied for d. We
have proved that d is indeed a metric on R̄.

2. Let U ∈ TR̄ and ψ = φ−1. Since, φ(U) = ψ−1(U), ψ being
continuous, φ(U) is open in [−1, 1].

3. Let U ∈ TR̄ and y ∈ φ(U). From 2., φ(U) is open in [−1, 1].
From theorem (12), the induced topology on [−1, 1] is also the
metric topology associated with d(x, y) = |x − y| on [−1, 1]2.
Hence, there exists ε > 0 such that B′(y, ε) ⊆ φ(U), where
B′(y, ε) is the open ball in [−1, 1]. Equivalently, there exists
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ε > 0, such that:

∀z ∈ [−1, 1] , |z − y| < ε ⇒ z ∈ φ(U) (3)

4. Let U ∈ TR̄. Let x ∈ U and y = φ(x). Then y ∈ φ(U). From 3.,
there exists ε > 0 such that property (3) holds. Let x′ ∈ B(x, ε)
where B(x, ε) is the open ball in R̄. Then d(x, x′) < ε, i.e.
|φ(x′) − y| < ε. Since φ(x′) ∈ [−1, 1], from property (3), we see
that φ(x′) ∈ φ(U). There exists x′′ ∈ U such that φ(x′) = φ(x′′).
φ being injective, x′ = x′′ and in particular x′ ∈ U . We have
proved that B(x, ε) ⊆ U . It follows that U ∈ T d

R̄
. This being

true for all U ∈ TR̄, we conclude that TR̄ ⊆ T d
R̄

.

5. Let U ∈ T d
R̄

and x ∈ U . From definition (30), there exists ε > 0
such that B(x, ε) ⊆ U . In other words, there exists ε > 0 such
that:

∀y ∈ R̄ , |φ(x) − φ(y)| < ε ⇒ y ∈ U (4)

6. Let U ∈ T d
R̄

and z ∈ φ(U). There exists x ∈ U such that
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z = φ(x). Let ε > 0 be such that property (4) holds. Let
z′ ∈ B′(z, ε), where B′(z, ε) is the open ball in [−1, 1]. φ being
onto, there exists y ∈ R̄ such that z′ = φ(y). Since |z − z′| < ε,
we have |φ(x) − φ(y)| < ε. Using property (4), y ∈ U . It
follows that z′ ∈ φ(U). We have proved that B′(z, ε) ⊆ φ(U).
So φ(U) is open in [−1, 1] with respect to the metric topology
on [−1, 1]. From theorem (12), this topology coincide with the
induced topology on [−1, 1]. Finally, φ(U) is open in [−1, 1].

7. Let U ∈ T d
R̄

, and ψ = φ−1. From 6., φ(U) = ψ−1(U) is open in
[−1, 1]. φ being continuous φ−1(ψ−1(U)) = (ψ ◦ φ)−1(U) = U
is open in R̄. We have proved that T d

R̄
⊆ TR̄.

8. We have T d
R̄

= TR̄. d is a metric on R̄, for which the associated
metric topology coincide with the usual topology on R̄. From
definition (32), (R̄, TR̄) is metrizable. This proves theorem (13).

Exercise 9
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Exercise 10.

1. Let B ⊆ S. For all x ∈ Ω, since f(Ω) ⊆ S′, f(x) ∈ B is
equivalent to f(x) ∈ B ∩ S′. Hence, f−1(B) = f−1(B ∩ S′).

2. From definition (35), f : (Ω,F) → (S,Σ) is measurable, if and
only if f−1(B) ∈ F , for all B ∈ Σ. From 1., this is equivalent to
f−1(B∩S′) ∈ F , for all B ∈ Σ, or in other words, f−1(B′) ∈ F ,
for all B′ ∈ Σ|S′ = Σ′. It follows that the measurability of f
viewed as a function with values in (S,Σ), is equivalent to the
measurability of f viewed as a function with values in (S′,Σ′).

3. From the trace theorem (10) and the fact that the topologies on
R and R+ are induced from the topology on R̄, B(R) = B(R̄)|R
and B(R+) = B(R̄)|R+ . So the equivalence between (i), (ii) and
(iii) is a direct application of 2.

Exercise 10
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Exercise 11.

1. Let B ⊆ S1. For all x ∈ Ω, g ◦ f(x) ∈ B is equivalent to
f(x) ∈ g−1(B), which is in turn equivalent to x ∈ f−1(g−1(B)).
It follows that (g ◦ f)−1(B) = f−1(g−1(B)). Note that we have
used this property on several occasions in the solutions of exer-
cises (7) and (8).

2. Let B ∈ Σ1. Since g : (S,Σ) → (S1,Σ1) is measurable, we have
g−1(B) ∈ Σ. Since f : (Ω,F) → (S,Σ) is measurable, we have
f−1(g−1(B)) ∈ F . Using 1., we see that (f ◦ g)−1(B) ∈ F . It
follows that f ◦ g : (Ω,F) → (S1,Σ1) is measurable.

Exercise 11
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Exercise 12.

1. f being defined on Ω, any inverse image by f is by definition (26)
a subset of Ω. Moreover, for all x ∈ Ω, f(x) ∈ S. So x ∈ f−1(S)
and Ω ⊆ f−1(S). We have proved that Ω = f−1(S).

2. For all x ∈ Ω, f(x) ∈ Bc is equivalent to x �∈ f−1(B). So
f−1(Bc) = (f−1(B))c.

3. Let (Bi)i∈I be a family of subsets of S. f(x) ∈ ∪i∈IBi is equiv-
alent to f(x) ∈ Bi for some i ∈ I, which is in turn equivalent to
x ∈ ∪i∈If

−1(Bi). So f−1(∪i∈IBi) = ∪i∈If
−1(Bi). Note that

we have used this property in the solution of exercise (7).

4. Σ being a σ-algebra on S, S ∈ Σ. From 1., f−1(S) = Ω, and F
being a σ-algebra on Ω, Ω ∈ F . So f−1(S) ∈ F , and S ∈ Γ. Let
B ∈ Γ. In particular B ∈ Σ and therefore Bc ∈ Σ. Moreover
from 2., f−1(Bc) = (f−1(B))c. Since B ∈ Γ, f−1(B) ∈ F and
therefore (f−1(B))c ∈ F . It follows that f−1(Bc) ∈ F and we
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see that Bc ∈ Γ. We have proved that Γ is closed under com-
plementation. Let (Bn)n≥1 be a sequence of elements of Γ. In
particular (Bn)n≥1 is a sequence of elements of Σ and therefore
∪+∞

n=1Bn ∈ Σ. Moreover, f−1(∪+∞
n=1Bn) = ∪+∞

n=1f
−1(Bn). Since

Bn ∈ Γ, for all n ≥ 1, f−1(Bn) ∈ F for all n ≥ 1 and therefore
∪+∞

n=1f
−1(Bn) ∈ F . It follows that f−1(∪+∞

n=1Bn) ∈ F and we
see that ∪+∞

n=1Bn ∈ Γ. We have proved that Γ is closed under
countable union. Finally, Γ is a σ-algebra on S.

5. Suppose f : (Ω,F) → (S,Σ) is measurable. Since A ⊆ Σ, for
all B ∈ A, f−1(B) ∈ F . Conversely, suppose that the weaker
condition of f−1(B) ∈ F for all B ∈ A, is satisfied. Then,
A ⊆ Γ. From 4., Γ is a σ-algebra on S. Since the σ-algebra
σ(A) generated by A is the smallest σ-algebra on S containing
A, we obtain that σ(A) ⊆ Γ. However σ(A) = Σ. It follows
that Σ ⊆ Γ, and in particular, f−1(B) ∈ F for all B ∈ Σ. So
f : (Ω,F) → (S,Σ) is measurable. This proves theorem (14).

Exercise 12
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Exercise 13. Let f : (Ω, T ) → (S, TS) be continuous. By defini-
tion (16) , the Borel σ-algebra B(S) is generated by the set of all
open sets, i.e. B(S) = σ(TS). Since f is continuous, for all B ∈ TS ,
we have f−1(B) ∈ T . In particular, for all B ∈ TS , f−1(B) ∈ B(Ω).
Using theorem (14), we conclude that f : (Ω,B(Ω)) → (S,B(S)) is
measurable.

Exercise 13
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Exercise 14.

1. Let φ̄ : R̄ → [−1, 1] be defined as in definition (34). Then, for
all c ∈ R, φ̄([−∞, c[) = [−1, φ̄(c)[ and φ̄(]c,+∞]) =]φ̄(c), 1].
Both sets being open in [−1, 1], we conclude that C2 ⊆ TR̄ and
C4 ⊆ TR̄.

2. Using 1., for all c ∈ R, we have [−∞, c]c =]c,+∞] ∈ TR̄ and
[c,+∞]c = [−∞, c[∈ TR̄. Hence, the complements of any ele-
ment of C1 or C3 is open in R̄. It follows that any element of C1

or C3 is closed in R̄.

3. Let i = 1, . . . , 4. From 1. and 2., any element of Ci is either
closed or open in R̄. In any case, it is a Borel set in R̄. Hence,
Ci ⊆ B(R̄). Since σ(Ci) is the smallest σ-algebra on R̄ contain-
ing Ci, we conclude that σ(Ci) ⊆ B(R̄).

4. From exercise (8), the usual topology on R̄ induces the usual
topology on R. Hence, for all U ∈ TR̄, U ∩ R ∈ (TR̄)|R = TR,
i.e. U ∩ R is open in R.
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5. Let U be open in R. For all x ∈ U , there exists εx > 0 such that
]x−εx, x+εx[⊆ U . Let px ∈]x−εx, x[∩Q and qx ∈]x, x+εx[∩Q.
Then, x ∈]px, qx[⊆ U . It follows that U = ∪i∈IAi, where I is
the countable set I = {]px, qx[: x ∈ U} and Ai = i for all i ∈ I.
We have proved that U can be expressed as a countable union
of open bounded intervals in R1.

6. For all n ≥ 1, ]a, b−1/n] ⊆]a, b[ and [a+1/n, b[⊆]a, b[. Moreover,
for all x ∈]a, b[, there exists n ≥ 1 with a+ 1/n ≤ x ≤ b− 1/n.
It follows that:

]a, b[=
+∞⋃
n=1

]a, b− 1/n] =
+∞⋃
n=1

[a+ 1/n, b[

7. For all a, b ∈ R, ]a, b] =]a,+∞]\]b,+∞] = [−∞, b]\ [−∞, a]. So
]a, b] ∈ σ(C4) ∩ σ(C1). Similarly [a, b[∈ σ(C2) ∩ σ(C3). Using 6.,
we conclude that ]a, b[∈ σ(Ci), for all i = 1, . . . , 4.

1If you think this proof was a bit quick, see Exercise (7) of the previous tutorial.
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8. {+∞} = ∩n[n,+∞] = ∩n]n,+∞] = ∩n[−∞, n]c = ∩n[−∞, n[c.
We conclude that {+∞} ∈ σ(Ci), and similarly {−∞} ∈ σ(Ci),
for all i = 1, . . . , 4.

9. Let i = 1, . . . , 4. Let U ∈ TR̄. From 4., U ∩ R ∈ TR. From 5.,
U ∩ R can be expressed as a countable union of open bounded
intervals in R. From 7., any such interval is an element of σ(Ci).
It follows that U ∩R ∈ σ(Ci). However, U = (U ∩R)�A, where
A is either ∅, {−∞}, {+∞} or {−∞,+∞}. We conclude from
8. that in any case, U ∈ σ(Ci). We have proved that TR̄ ⊆ σ(Ci),
and therefore B(R̄) ⊆ σ(Ci). From 3., σ(Ci) ⊆ B(R̄). Finally
σ(Ci) = B(R̄).

10. Given B ⊆ R̄, {f ∈ B} denotes f−1(B). (i) ⇔ (ii) is just
definition (35). Similarly, {f ≤ c} = f−1([−∞, c]), etc. . . and
the equivalence between (i), and (iii), (iv), (v) and (vi), stems
from a direct application of theorem (14), using σ(Ci) = B(R̄).

Exercise 14
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Exercise 15.

1. Let ω ∈ {c ≤ g} = g−1([c,+∞]). Then c ≤ g(ω)=infn≥1 fn(ω).
In particular, for all n ≥ 1, c ≤ fn(ω). So ω ∈ ∩+∞

n=1{c ≤ fn}.
Conversely, suppose that c ≤ fn(ω) for all n ≥ 1. Then c is a
lower-bound of all fn(ω)’s for n ≥ 1. g(ω) being the greatest
of such lower-bound, we have c ≤ g(ω). We have proved that
{c ≤ g} = ∩+∞

n=1{c ≤ fn}.

2. Let ω∈{h ≤ c} = h−1([−∞, c]). Then supn≥1fn(ω)=h(ω) ≤ c.
In particular, for all n ≥ 1, fn(ω) ≤ c. So ω ∈ ∩+∞

n=1{fn ≤ c}.
Conversely, suppose that fn(ω) ≤ c for all n ≥ 1. Then c is an
upper-bound of all fn(ω)’s for n ≥ 1. h(ω) being the smallest
of such upper-bound, we have h(ω) ≤ c. We have proved that
{h ≤ c} = ∩+∞

n=1{fn ≤ c}.

3. All fn’s being measurable, using theorem (15), we conclude from
1. and 2. that g, h : (Ω,F) → (R̄,B(R̄)) are measurable.

Exercise 15
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Exercise 16.

1. Let n ≥ 1. For all k ≥ n, un = infk≥n vk ≤ vk. In particular,
un is a lower-bound of all vk’s for k ≥ n + 1. un+1 being the
greatest of such lower-bound, we see that un ≤ un+1. From
definition (36), we have u = supn≥1 un. In particular, u is an
upper-bound of all un’s. We have proved that un ≤ un+1 ≤ u.

2. Let n ≥ 1. For all k ≥ n, vk ≤ supk≥n vk = wn. In particular,
wn is an upper-bound of all vk’s for k ≥ n+ 1. wn+1 being the
smallest of such upper-bound, we see that wn+1 ≤ wn. From
definition (36), we have w = infn≥1 wn. In particular, w is a
lower-bound of all wn’s. We have proved that w ≤ wn+1 ≤ wn.

3. From 1., (un)n≥1 is a non-decreasing sequence in R̄. It therefore
converges to supn≥1 un = u. Indeed, suppose u = +∞. Then,
u being the smallest of all un’s upper-bounds, for all A ∈ R+,
there exists N ≥ 1 such that A < uN . Since (un)n≥1 is non-
decreasing, we have A < un for all n ≥ N . It follows that
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un ↑ +∞. If u = −∞, then un = −∞ for all n ≥ 1 and
un ↑ −∞. If u ∈ R, then given ε > 0, u − ε < u. So u − ε
cannot be an upper-bound of all un’s. There exists N ≥ 1 such
that u− ε < uN ≤ u. Since (un)n≥1 is non-decreasing, we have
u− ε < un ≤ u for all n ≥ N . It follows that un ↑ u. Similarly,
(wn)n≥1 being a non-increasing sequence in R̄, it converges to
infn≥1 wn = w. So wn ↓ w.

4. For all n ≥ 1, un = infk≥n vk ≤ vn ≤ supk≥n vk = wn.

5. From un ≤ wn, taking the limit as n→ +∞, we obtain u ≤ w.

6. From 5., for all n ≥ 1, un ≤ vn ≤ wn. If u = w, then (un)n≥1

and (wn)n≥1 converge to the same limit u ∈ R̄. It follows that
(vn)n≥1 also converges to u ∈ R̄.

7. Let a, b ∈ R, with u < a < b < w. Let n ≥ 1. In particular,
we have un < a < b < wn. Since un = infk≥n vk, un is the
greatest lower-bound of all vk’s for k ≥ n. It follows that a
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cannot be such lower-bound. There exists N1 ≥ n such that
vN1 < a. Similarly, b cannot be an upper-bound of all vk’s for
k ≥ n. There exists N2 ≥ n such that b < vN2 .

8. From 7., there exist n1,m1 ≥ 1, such that vn1 < a < b < vm1 .
Let n = max(n1 + 1,m1 + 1). Using 7. once more, there exist
n2,m2 ≥ n such that vn2 < a < b < vm2 . In particular, we
have n1 < n2 and m1 < m2. By induction, we can therefore
construct two strictly increasing sequences of integers (nk)k≥1

and (mk)k≥1 such that vnk
< a < b < vmk

for all k ≥ 1.

9. Suppose that (vn)n≥1 converges to some v ∈ R̄. From 5., u ≤ w.
Suppose u < w, and let a, b ∈ R, u < a < b < w. Using 8.,
let (nk)k≥1 and (mk)k≥1 be two strictly increasing sequences
of integers such that vnk

< a < b < vmk
. Taking the limit as

k → +∞, we obtain v ≤ a < b ≤ v which is a contradiction. It
follows that if (vn)n≥1 converges to some v ∈ R̄, then u = w.

Exercise 16
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Exercise 17.

1. Let ω ∈ {f < g}. Then f(ω) < g(ω). There exists a rational
number r ∈ Q such that f(ω) < r < g(ω). It follows that
ω ∈ {f < r} ∩ {r < g}. So {f < g} ⊆ ∪r∈Q{f < r} ∩ {r < g}.
The reverse inclusion is clear.

2. Since f and g are measurable, {f < r} = f−1([−∞, r[) and
{r < g} = g−1(]r,+∞]) are both elements of F , for all r ∈ Q.
Using 1., and the fact that Q is a countable set, it follows that
{f < g} ∈ F . Similarly, {g < f} ∈ F . Moreover, we have
{f ≤ g} = {g < f}c ∈ F and {g ≤ f} = {f < g}c ∈ F . Finally,
{f = g} = {f ≤ g} ∩ {g ≤ f} ∈ F .

Exercise 17
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Exercise 18.

1. Let gn = infk≥n fk and hn = supk≥n fk, for all n ≥ 1. Being
a countable infimum and supremum of measurable maps, using
exercise (15), we see that gn and hn are measurable for all n ≥ 1.
Since g = supn≥1 gn and h = infn≥1 hn, we conclude also from
exercise (15), that g, h : (Ω,F) → (R̄,B(R̄)) are measurable.

2. Using 5. of exercise (16), g(ω) ≤ h(ω), for all ω ∈ Ω. So g ≤ h.

3. Since f, g : (Ω,F) → (R̄,B(R̄)) are measurable, using exer-
cise (17), we conclude that {g = h} ∈ F .

4. The set {ω : ω ∈ Ω , limn→+∞ fn(ω) exists in R̄} is by virtue
of theorem (16), equal to {g = h}. From 3., it is therefore an
element of F .

5. If fn(ω) → f(ω) for all ω ∈ Ω, using theorem (16), f = g = h.
From 1., f : (Ω,F) → (R̄,B(R̄)) is itself measurable.

Exercise 18
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Exercise 19.

1. For all c ∈ R, {−f < c} = {−c < f}. From theorem (15), we see
that −f is measurable. From {|f | < c} = {−c < f} ∩ {f < c},
|f | is measurable. If c ≤ 0, then {f+ < c} = ∅. If c > 0, then
{f+ < c} = {f < c}. In any case {f+ < c} ∈ F and it follows
that f+ is measurable. Similarly, f− is measurable.

2. An expression of the form (+∞) + (−∞) is meaningless. Since
f takes values in R̄, given a ∈ R̄ and ω ∈ Ω, the sum a+ f(ω)
may not be meaningful.

3. Let a ∈ R. Then a + f is meaningful as a map defined on Ω.
Given c ∈ R, we have {a+ f < c} = {f < c− a}. We conclude
from theorem (15) that a+ f is measurable.

4. Let a ∈ R̄. From 1., −f is measurable whenever f is measurable.
Without loss of generality, we can therefore assume that a ≥ 0.
If 0 < a < +∞, then for all c ∈ R, {a.f < c} = {f < c/a}. It
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follows from theorem (15) that a.f is measurable. If a = 0, since
by convention 0.(+∞) = 0.(−∞) = 0, we have a.f = 0. Given
c ∈ R, {a.f < c} is either ∅ or Ω. In any case {a.f < c} ∈ F ,
and a.f is measurable. If a = +∞, then for all c ∈ R, we have
{a.f < c}={f < 0} if c ≤ 0, and {a.f < c}={f < 0}� {f = 0}
if c > 0. In any case, {a.f < c} ∈ F and a.f is measurable.

5. Given ω ∈ Ω, the sum f(ω) + g(ω) may not be meaningful.

6. If f ≥ 0 and g ≥ 0, the sum f + g is meaningful as a map
defined on Ω. Let ω ∈ {f + g < c} where c ∈ R. In particular,
g(ω) < +∞. Subtracting g(ω) from both side of the inequality,
we obtain f(ω) < c− g(ω), i.e. ω ∈ {f < c− g}. Conversely, if
f(ω) < c− g(ω), then g(ω) is again finite, and f(ω) + g(ω) < c.
So {f + g < c} = {f < c − g}. This equality may have looked
obvious in the first place. However, it is easy to make mistake
with algebra and inequalities involving +∞ and −∞. . . From 1.,
−g is a measurable map. Using 3., for all c ∈ R, c − g is also
measurable. From exercise (17), {f < c−g} ∈ F . Finally, using
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theorem (15), we conclude that f + g : (Ω,F) → (R̄,B(R̄))
is measurable. The sum of two non-negative and measurable
maps, is itself a non-negative and measurable map.

7. Suppose we have:

({f = +∞}∩ {g = −∞}) ∪ ({f = −∞} ∩ {g = +∞}) = ∅

Then f +g is meaningful as a map defined on Ω. As in 6., given
c ∈ R we wish to argue that {f + g < c} = {f < c− g}. Given
ω ∈ Ω, this amounts to checking the equivalence between the
two inequalities f(ω) + g(ω) < c and f(ω) < c− g(ω), which is
obviously true in the case when f(ω), g(ω) ∈ R. Since the only
other possible case is f(ω) = g(ω) = +∞ or f(ω) = g(ω) = −∞,
such equivalence is clear and we have proved that the equality
{f + g < c} = {f < c − g} holds. As in 6. we conclude that
f + g : (Ω,F) → (R̄,B(R̄)) is measurable. The sum of two
R̄-valued measurable maps is itself measurable, provided it is
well-defined.
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8. If f(Ω) ⊆ R \ {0}, then 1/f is meaningful as a map defined on
Ω. Let c ∈ R. If c > 0, then {1/f < c} = {f < 0} � {f > 1/c}.
If c = 0, then {1/f < c} = {f < 0}. In the final case when
c < 0, we have {1/f < c} = {1/c < f} ∩ {f < 0}. In any
case, {1/f < c} ∈ F , and we conclude from theorem (15) that
1/f : (Ω,F) → (R̄,B(R̄)) is measurable.

9. LetB ∈ B(R̄). Then {f̄ ∈ B} = ({f ∈ B}∩{f = 0}c)�{f = 0},
if 1 ∈ B. Otherwise, {f̄ ∈ B} = {f ∈ B} ∩ {f = 0}c. In any
case, {f̄ ∈ B} ∈ F and f̄ : (Ω,F) → (R̄,B(R̄)) is measurable.

10. We have Ω = {f > 0} � {f < 0} � {f = 0}. If f(ω) > 0,
then f(ω)g(ω) < c is equivalent to g(ω) < c/f̄(ω). If f(ω) < 0,
then f(ω)g(ω) < c is equivalent to g(ω) > c/f̄(ω). Finally, if
f(ω) = 0, then f(ω)g(ω) < c is equivalent to f(ω) < c. It
follows that {fg < c} can be expressed as:

({f >0}∩{g < c/f̄})�({f <0}∩{g > c/f̄})�({f = 0}∩{f < c})
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11. Whether or not f and g take values in R, the product fg is
meaningful as a map defined on Ω. In the case when f(Ω) ⊆ R
and g(Ω) ⊆ R, given c ∈ R, we can use the decomposition of
{fg < c} obtained in 10. Furthermore, from 9., f̄ is a measur-
able map with values in R \ {0}. Using 8., 1/f̄ is measurable.
From 4., c/f̄ is also measurable. It follows from exercise (17),
that {g < c/f̄} ∈ F and {g > c/f̄} ∈ F . Hence, all sets in-
volved in 10. are elements of F . So {fg < c} ∈ F . We conclude
from theorem (15) that fg : (Ω,F) → (R̄,B(R̄)) is measurable.
In the following exercise, we shall extend this result to the more
general case when f and g have arbitrary values in R̄.

Exercise 19
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Exercise 20.

1. For all B ∈ B(R̄), the inverse image f̄−1(B) can be written as:

f̄−1(B)=(f−1(B) ∩ f−1(R)) � (A ∩ ({f=+∞}� {f=−∞}))

where A = Ω if 1 ∈ B, and A = ∅ otherwise. It follows that
f̄−1(B) ∈ F , and f̄ is measurable. Similarly, ḡ is measurable.

2. All Ai’s and Bj ’s are inverse images of Borel sets in R̄, by
measurable maps. They are therefore elements of F .

3. Since Ω = �5
i,j=1Ai ∩Bj , for all B ∈ B(R̄), we have:

{fg ∈ B} =
5⊎

i,j=1

(Ai ∩Bj ∩ {fg ∈ B})

4. For all 1 ≤ i, j ≤ 3 and ω ∈ Ai∩Bj , f(ω) ∈ R and g(ω) ∈ R. In
particular, f(ω) = f̄(ω), and g(ω) = ḡ(ω). Hence, we conclude
that Ai ∩Bj ∩ {fg ∈ B} = Ai ∩Bj ∩ {f̄ ḡ ∈ B}.
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5. Suppose i ≥ 4 or j ≥ 4. Then, for all ω ∈ Ai ∩ Bj , f(ω)g(ω) is
either −∞, 0 or +∞. More specifically, f(ω)g(ω) = a, with:

a =

⎧⎨
⎩

−∞ if (i, j) ∈ {(1, 4), (2, 5), (4, 5), (5, 4), (5, 2), (4, 1)}
0 if (i, j) ∈ {(3, 4), (3, 5), (4, 3), (5, 3)}

+∞ if (i, j) ∈ {(1, 5), (2, 4), (4, 4), (5, 5), (5, 1), (4, 2)}

Hence, given B ∈ B(R̄), Ai ∩Bj ∩ {fg ∈ B} = ∅ if a �∈ B, and
Ai ∩Bj ∩ {fg ∈ B} = Ai ∩Bj if a ∈ B.

6. Let B ∈ B(R̄). From 1., f̄ and ḡ are measurable. Moreover, by
construction, both f̄ and ḡ take values in R. From exercise (19),
it follows that f̄ ḡ is measurable. Hence, {f̄ ḡ ∈ B} ∈ F . From
2., all Ai’s and Bj ’s are elements of F . Using 4., whenever
1 ≤ i, j ≤ 3, Ai ∩ Bj ∩ {fg ∈ B} ∈ F . However, from 5., we
also have Ai ∩ Bj ∩ {fg ∈ B} ∈ F , for all i ≥ 4 or j ≥ 4. We
conclude from 3. that {fg ∈ B} ∈ F . We have proved that
fg : (Ω,F) → (R̄,B(R̄)) is measurable.

Exercise 20
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Exercise 21.

1. Let x ∈ A. Suppose U ∈ T is such that x ∈ U . Then x ∈ U ∩A.
In particular, U ∩ A �= ∅. So x ∈ Ā. We have proved that
A ⊆ Ā. Suppose x �∈ Ā. From definition (37), there exists an
open set Ux ∈ T such that x ∈ Ux and Ux ∩ A = ∅. Moreover,
for all y ∈ Ux, from Ux ∈ T , Ux ∩ A = ∅ and definition (37),
we see that y �∈ Ā. Hence, for all x ∈ Āc, there exists Ux ∈ T ,
such that x ∈ Ux ⊆ Āc. It follows that Āc = ∪x �∈ĀUx, and Āc

is therefore an open set in E. Hence, Ā is closed in E.

2. Suppose that B is closed and A ⊆ B. Then Bc ∈ T . Suppose
that Ā ⊆ B is false. There exists x ∈ Ā∩Bc. From x ∈ Bc ∈ T
and definition (37), we see that Bc ∩ A �= ∅. This contradicts
the assumption that A ⊆ B. It follows that Ā ⊆ B.

3. From 1., Ā is indeed a closed set containing A. From 2., Ā is
the smallest closed set containing A.

4. Suppose A = Ā. Then from 1., A is closed. Conversely, suppose
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that A is closed. Since A ⊆ A, using 2., Ā ⊆ A. However from
1., A ⊆ Ā. So A = Ā. We have proved that A is closed, if and
only if A = Ā.

5. Suppose T is the metric topology associated with some metric
d on E. Let A′ be defined by:

A′ = {x ∈ E : ∀ε > 0 , B(x, ε) ∩A �= ∅}

Let x ∈ Ā. For all ε > 0, from exercise (2), B(x, ε) is an open set
in E, which furthermore contains x. Hence, from definition (37),
B(x, ε)∩A �= ∅ and we see that x ∈ A′. So Ā ⊆ A′. Conversely,
suppose x ∈ A′. Let U ∈ T be such that x ∈ U . T being the
metric topology, from definition (30), there exists ε > 0 such
that B(x, ε) ⊆ U . However, since x ∈ A′, B(x, ε) ∩ A �= ∅. In
particular, U ∩ A �= ∅. It follows that x ∈ Ā, and A′ ⊆ Ā. We
have proved that Ā = A′.

Exercise 21
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Exercise 22.

1. By definition, for all y ∈ Ā, d(x, Ā) ≤ d(x, y). From exer-
cise (21), A ⊆ Ā. It follows that d(x, Ā) is a lower-bound of
all d(x, y) for y ∈ A. d(x,A) being the greatest of such lower-
bound, we have d(x, Ā) ≤ d(x,A). Suppose d(x, Ā) < d(x,A).
Let α ∈ R be such that d(x, Ā) < α < d(x,A). It follows from
d(x, Ā) < α, that α cannot be a lower-bound of all d(x, y) for
y ∈ Ā. There exists y ∈ Ā such that d(x, y) < α. Since y ∈ Ā,
from exercise (21), for all ε > 0, B(y, ε) ∩ A �= ∅. There exists
z ∈ A such that d(y, z) < ε. In particular:

d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z) < α+ ε

ε > 0 being arbitrary, it follows that d(x,A) ≤ α. This is a
contradiction. We conclude that d(x, Ā) = d(x,A).

2. Suppose that d(x,A) = 0. For all ε > 0, ε cannot be a lower-
bound of all d(x, y) for y ∈ A. There exists y ∈ A, such that
d(x, y) < ε. In other words, B(x, ε) ∩ A �= ∅. Hence, from
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exercise (21), x ∈ Ā. Conversely, suppose x ∈ Ā. Then for
all ε > 0, B(x, ε) ∩ A �= ∅. Let y ∈ B(x, ε) ∩ A. We have
d(x,A) ≤ d(x, y) < ε. ε > 0 being arbitrary, it follows that
d(x,A) ≤ 0. However, 0 is a lower-bound of all d(x, y) for
y ∈ A. So 0 ≤ d(x,A). Hence d(x,A) = 0. We have proved
that d(x,A) = 0, if and only if x ∈ Ā.

3. Let x, y ∈ E. For all z ∈ A, we have:

d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z)

Subtracting d(x, y) ∈ R+ from both side of the inequality, the
difference d(x,A)−d(x, y) appears as a lower-bound of all d(y, z)
for z ∈ A. d(y,A) being the greatest of such lower-bound,
d(x,A) − d(x, y) ≤ d(y,A). Hence, d(x,A) ≤ d(x, y) + d(y,A).

4. Let x, y ∈ E. If A �= ∅, there exists z ∈ A. From the inequality
d(x,A) ≤ d(x, z), we have in particular d(x,A) < +∞ and
similarly d(y,A) < +∞. The difference d(x,A) − d(y,A) is
therefore meaningful. d(x,A) ≤ d(x, y) + d(y,A) is obtained

www.probability.net

http://www.probability.net


Solutions to Exercises 77

from 3. Similarly, d(y,A) ≤ d(y, x) + d(x,A). It follows that
|d(x,A) − d(y,A)| ≤ d(x, y).

5. If A = ∅, then for all x ∈ E, ΦA(x) = +∞. The map ΦA is
therefore continuous. If A �= ∅, then from 4., for all x, y ∈ E,
|ΦA(x) − ΦA(y)| ≤ d(x, y). From theorem (12), the induced
topology on R+ coincide with the metric topology. Using ex-
ercise (4), it follows that ΦA : (E, T d

E ) → (R+, TR+) is contin-
uous. However, for all U ∈ TR̄, U ∩ R+ ∈ TR+ and therefore,
Φ−1

A (U) = Φ−1
A (U ∩ R+) ∈ T d

E . So ΦA : (E, T d
E ) → (R̄, TR̄) is

also continuous. Note that δ(u, v) = |u − v| is not a metric on
R̄. Hence, we could not use exercise (4) to prove directly the
continuity of ΦA, viewed as a map with values in R̄.

6. Suppose that A is closed. From exercise (21), A = Ā. Hence,
from 2., d(x,A) = 0 is equivalent to x ∈ A. So A = Φ−1

A ({0}).

Exercise 22
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Exercise 23.

1. The upper and lower limits as defined in definition (36), require
the notions of infimums and supremums. Such notions may not
be meaningful on an arbitrary metric space (E, d).

2. Let A be the set of all closed sets in E. T d
E being the metric

topology on E, the Borel σ-algebra on E is generated by T d
E , i.e.

B(E) = σ(T d
E ). In fact, B(E) is also generated by A. Indeed, for

all A ∈ A, Ac ∈ T d
E . In particular Ac ∈ B(E), and therefore we

have A ∈ B(E). So A ⊆ B(E) and consequently, σ(A) ⊆ B(E).
However, for all U ∈ T d

E , U c ∈ A. In particular, U c ∈ σ(A),
and therefore U ∈ σ(A). So T d

E ⊆ σ(A) and consequently, we
have B(E) ⊆ σ(A). We have proved that B(E) = σ(A). From
theorem (14), we conclude that a map f : (Ω,F) → (E,B(E))
is measurable, if and only if f−1(A) ∈ F , for all A ∈ A.

3. Let A be closed in E. From exercise (22), A = Φ−1
A ({0}). Hence,

f−1(A) = f−1(Φ−1
A ({0})) = (ΦA ◦ f)−1({0}).
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4. Let n ≥ 1. By assumption, fn : (Ω,F) → (E,B(E)) is measur-
able. From exercise (22), ΦA : (E, T d

E ) → (R̄, TR̄) is continuous.
Using exercise (13), it follows that ΦA : (E,B(E)) → (R̄,B(R̄))
is measurable. We conclude from exercise (11) that the map
ΦA ◦ fn : (Ω,F) → (R̄,B(R̄)) is measurable. Note that this is
true for all A ⊆ E, irrespective of whether or not A is closed.

5. Let A ⊆ E. By assumption, for all ω ∈ Ω, fn(ω) → f(ω). Since
ΦA is continuous, it follows that ΦA ◦ fn(ω) → ΦA ◦ f(ω). A
more direct justification of this fact is as follows: fn(ω) → f(ω)
is a short way of saying that given ε > 0, there exists N ≥ 1,
such that n ≥ N implies that d(fn(ω), f(ω)) < ε. In the case
when A �= ∅, from exercise (22), we see that n ≥ N also implies
that |ΦA(fn(ω)) − ΦA(f(ω))| ≤ d(fn(ω), f(ω)) < ε. Hence,
ΦA ◦ fn(ω) → ΦA ◦ f(ω). The fact that this is still true when
A = ∅ is clear. Since ΦA ◦ fn is a measurable map for all n ≥ 1,
we see from exercise (18) that ΦA ◦ f : (Ω,F) → (R̄,B(R̄)) is
measurable. In particular, (ΦA ◦ f)−1({0}) ∈ F . However, from
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3., (ΦA ◦ f)−1({0}) = f−1(A), whenever A is closed in E. We
have proved that f−1(A) ∈ F , for all A closed in E. From 2.,
we conclude that f : (Ω,F) → (E,B(E)) is measurable. The
purpose of this exercise is to prove theorem (17).

Exercise 23
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Exercise 24. For all z, z′ ∈ C, we have |Re(z) − Re(z′)| ≤ |z − z′|,
|Im(z)−Im(z′)| ≤ |z−z′| and || z |−|z′|| ≤ |z−z′|. From exercise (4),
it follows that Re, Im, | . | : (C, TC) → (R, TR) are all continuous
maps. From exercise (13), Re, Im, | . | : (C,B(C)) → (R,B(R)) are
therefore measurable. Since f : (Ω,F) → (C,B(C)) is measurable,
using exercise (11), we conclude that u = Re ◦ f , v = Im ◦ f and
|f | = | . | ◦ f are all measurable with respect to F and B(R). In
fact, using exercise (10), they are also measurable with respect to F
and B(R̄). Essentially, this last point is a direct consequence of the
fact that given B ∈ B(R̄), B ∩R ∈ B(R).

Exercise 24
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Exercise 25.

1. Let A =]a, b[×]c, d[∈ C, and z = x+ iy ∈ A. Then x ∈]a, b[ and
y ∈]c, d[. Let ε > 0 be such that |x − x′| < ε ⇒ x′ ∈]a, b[, and
|y − y′| < ε ⇒ y′ ∈]c, d[. Then |z − z′| < ε ⇒ z′ ∈ A, for all
z′ ∈ C. Hence, there exists ε > 0 such that B(z, ε) ⊆ A. We
have proved that A is open in C.

2. From 1., C ⊆ TC. In particular, C ⊆ B(C). The σ-algebra σ(C)
generated by C being the smallest σ-algebra on C containing C,
we conclude that σ(C) ⊆ B(C).

3. If |x| < η and |y| < η, then |z| ≤
√
x2 + y2 <

√
2η.

4. Let U be open in C, and z = x + iy ∈ U . There exists ε > 0,
such that B(z, ε) ⊆ U . Let η = ε/

√
2. Using 3., we have

]x − η, x + η[×]y − η, y + η[⊆ U . Let az ∈]x − η, x[∩Q, and
bz ∈]x, x + η[∩Q. Let cz ∈]y − η, y[∩Q and dz ∈]y, y + η[∩Q.
Then, we have z ∈]az , bz[×]cz, dz[⊆ U .
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5. Let I be the set I = {]az, bz[×]cz, dz [, z ∈ U}. Then I is finite
or countable, and U = ∪i∈IBi where Bi = i ∈ C, for all i ∈ I.
In order to express U as a union indexed by the set of positive
integers N∗, the following can be done: Let ψ : I → N∗ be
an arbitrary injection. For all n ≥ 1, define An as An = Bi if
n ∈ ψ(I) and n = ψ(i), and An = ∅ if n �∈ ψ(I). Then, An ∈ C
for all n ≥ 1, and we have U = ∪+∞

n=1An.

6. It follows from 5. that TC ⊆ σ(C). The Borel σ-algebra B(C)
being the smallest σ-algebra on C containing all open sets, we
see that B(C) ⊆ σ(C). Hence, from 2., σ(C) = B(C).

7. Let f = u+ iv. Then, f−1(A) = u−1(]a, b[) ∩ v−1(]c, d[), for all
A =]a, b[×]c, d[∈ C. Since u and v are assumed to be measurable,
u−1(]a, b[) ∈ F and v−1(]c, d[) ∈ F . It follows that f−1(A) ∈ F .
Using 6., we conclude from theorem (14) that f is measurable
with respect to F and B(C).

Exercise 25
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