Tutorial 12: Radon-Nikodym Theorem 1

12. Radon-Nikodym Theorem

In the following, (2, F) is an arbitrary measurable space.

Definition 96 Let p and v be two (possibly complex) measures on
(Q,F). We say that v is absolutely continuous with respect to p,
and we write v << p, if and only if, for all E € F:

wE)=0 = v(E)=0
EXERCISE 1. Let p be a measure on (2, F) and v € M*(Q, F). Show
that v << p is equivalent to |v| << p.

EXERCISE 2. Let u be a measure on (2, F) and v € M*(Q, F). Let
€ > 0. Suppose there exists a sequence (E,),>1 in F such that:

1
Yn>1, wE,) < on v(E,)| > €
Define: A
EélimsupEn = ﬂ U Ey,
n>1 n>1k>n
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1. Show that:

pwE)= lim pu| | JE|=0

n—-+4oo
k>n

2. Show that:

frng 1 >
MAE) = Jim 1 | U B ¢

3. Let A be a measure on (2, F). Can we conclude in general that:

AE)= lim \| | Ex

n—-+oo
k>n

4. Prove the following:
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Theorem 58 Let 1 be a measure on (2, F) and v be a complex
measure on (Q, F). The following are equivalent:

(1) v<<
(@) <<y
(vit) Ve> 0,30 >0,VE € F,u(E) <0 = |v(E)| <e

EXERCISE 3. Let u be a measure on (Q,F) and v € M*(£, F) such
that v << p. Let vy = Re(v) and vo = Im(v).
1. Show that 11 << p and e << p.

2. Show that v;, v, vy, vy are absolutely continuous w.r. to .

EXERCISE 4. Let p1 be a finite measure on (2, F) and f € L5(Q, F, ).
Let S be a closed proper subset of C. We assume that for all £ € F
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such that p(E) > 0, we have:
L / fdu € S
WE) Jg
1. Show there is a sequence (D,,),>1 of closed discs in C, with:
+00
S¢=|J Dn
n=1
Let o, € C, 1, > 0 be such that D, = {z € C: |z—ap| < ry}.

2. Suppose p(E,) > 0 for some n > 1, where E, = {f € D,}.

Show that:
7 ),
_ fdu—ang—/ f—anldu <ry
‘N(En) B 1(En) En‘ |

3. Show that for all n > 1, u({f € D,}) = 0.

1

4. Prove the following:
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Theorem 59 Let u be a finite measure on (Q,F), f € L§(Q,F, p).
Let S be a closed subset of C such that for oll E € F with u(E) > 0,
we have:

7,
— dp € S
u(E) Ef :
Then, f € S p-a.s.

EXERCISE 5. Let p be a o-finite measure on (€2, F). Let (E,)n>1 be
a sequence in F such that E, T Q and pu(E,) < +oo for all n > 1.
Define w : (Q,F) — (R, B(R)) as:

A+OC 1 1
w=y ——— 1
nz::l 20 1+ p(E,)

1. Show that for all w € Q, 0 < w(w) < 1.

2. Show that w € Lk (Q, F, p).
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EXERCISE 6. Let u be a o-finite measure on (2, F) and v be a finite
measure on (£, F), such that v << p. Let w € L (Q,F, 1) be such
that 0 < w < 1. We define i = [ wdy, i.e.

VE € F, ﬁ(E)é/wdu
E

1. Show that fi is a finite measure on (2, F).
2. Show that ¢ = v+ [i is also a finite measure on (€2, F).

3. Show that for all f € L5(Q,F,¢), we have f € L5(Q, F,v),
fw € LE(Q, F,p), and:

[ o= [ gavs [ fuds
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4. Show that for all f € LL(Q,F, ), we have:

[1s1av < [ 1516 < (/f| d¢>) (b))}

5. Show that L%,(Q, F,¢) C L§(Q, F,v), and for f € LL(Q,F, ¢):
[ 5] < V@i
6. Show the existence of g € LE(2, F, ¢) such that:

Ve LA, F,6) / fdv = / fgds (1)

7. Show that for all E € F such that ¢(E) > 0, we have:
1

M/EQCM € [0,1]
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8. Show the existence of g € L%(€2,F,¢) such that g(w) € [0,1]
for all w € 2, and (1) still holds.

9. Show that for all f € LL(Q,F, ¢), we have:

/f l—g dv—/fgwdu

10. Show that for alln > 1 and F € F,
FE@A+g+.. +g")p € LE(QF,9)

11. Show that for alln > 1 and F € F,

/(1—g"+1)du:/g(l—i—g—i—...—i—g")wdu
E E

A = n
h = gw Zg
n=0

12. Define:
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Show that if A= {0 < g < 1}, then for all E € F:

v(ENA)= /Ehdu

13. Show that {h = +o00} = A° and conclude that p(A°) = 0.
14. Show that for all E € F, we have v(E) = [, hdpu.

15. Show that if p is o-finite on (2, F), and v is a finite measure
on (£, F) such that v << p, there exists h € L (€2, F, i), such
that A > 0 and:

VE € F, V(E)z/hdu
B

16. Prove the following:
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Theorem 60 (Radon-Nikodym:1) Let i be a o-finite measure on
(Q,F). Let v be a complex measure on (2, F) such that v << p.
Then, there exists some h € L§(Q, F, 1) such that:
VE € F, V(E)z/hdu
E

If v is a signed measure on (0, F), we can assume h € L (0, F, u).
If v is a finite measure on (2, F), we can assume h > 0.

EXERCISE 7. Let f = u +iv € L&(Q, F, 1), such that:

VEeF, /fdu:O
E

where p is a measure on (2, F).

/u+du :/ udp
{u=0}

1. Show that:
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2. Show that f =0 p-a.s.

3. State and prove some uniqueness property in theorem (60).

EXERCISE 8. Let p and v be two o-finite measures on (2, F) such
that v << p. Let (E,)n>1 be a sequence in F such that E, 7 Q and
v(Ey,) < 4oo for all n > 1. We define:

Yn>1, VnéVE"éV(Enﬁ~)

1. Show that there exists h,, € L (Q, F, ) with h,, > 0 and:

VE € F, v,(E) :/ hndp (2)
E
for all n > 1.

2. Show that for all £ € F,

/ hdp < / hdp
E E
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3.

10.

Show that for all n,p > 1,
1
1({hn — hny1 > ;}) =0

Show that h, < hpy1 p-a.s.

. Show the existence of a sequence (hy)n>1 in Li(Q, F, ) such

that 0 < h,, < hy41 for all n > 1 and with (2) still holding.

. Let h = sup,,> hy,. Show that:

VEEF , v(E)= [Ehdu (3)

. Show that for all n > 1, fEn hdp < +oo.
. Show that h < 400 p-a.s.
. Show there exists h : (2, F) — R measurable, while (3) holds.

Show that for all n > 1, h € L (Q, F, uf).
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Theorem 61 (Radon-Nikodym:2) Let p and v be two o-finite

measures on (2, F) such that v << u. There exists a measurable
map h: (Q,F) — (R, B(R")) such that:

VE €T, I/(E):/hdu
E

EXERCISE 9. Let h,h' : (2,F) — [0,+0c] be two non-negative and
measurable maps. Let p be a o-finite measure on (€2, 7). We assume:

VE e F, /hd,uz/h’du
E E

Let (E,)n>1 be a sequence in F with E, T Q and p(E,) < +oo for
all n > 1. We define F,, = E, N{h <n} for all n > 1.

1. Show that for all n and E € F, [, hdp®™ = [, h'dp*™ < +oc.
2. Show that for all n,p > 1, u(F, Nn{h > h'+1/p}) =0.
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3. Show that for all n > 1, u({F, N{h #K'}) = 0.
4. Show that p({h # h'} N {h < 4o00}) = 0.
5. Show that h = b’ p-a.s.

6. State and prove some uniqueness property in theorem (61).

EXERCISE 10. Take Q = {x} and F = P(Q) = {0, {x}}. Let p be
the measure on (Q, F) defined by p(f)) = 0 and u({*}) = +oo. Let
hyoh/ o (Q,F) — [0,+00] be defined by h(x) = 1 # 2 = h/(x). Show

that we have:
VE € F, /hd,u:/h’du
E E

Explain why this does not contradict the previous exercise.

EXERCISE 11. Let p be a complex measure on (€2, F).

1. Show that u << |ul.
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2. Show the existence of some h € L§(Q, F,|u|) such that:

VE € F, u(E) = [ hd
E

3. If p1 is a signed measure, can we assume h € L (0, F, |u|)?

EXERCISE 12. Further to ex. (11), define A, = {|h| < r} for all > 0.

1. Show that for all measurable partition (E,)n>1 of A,:

Zlu )| < rlul(Ar)

2. Show that |u|(A4,) =0 for all 0 < r < 1.
3. Show that |h| > 1 |ul-a.s.
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4. Suppose that E € F is such that |u|(E) > 0. Show that:

gy [l <1

5. Show that |h| <1 |ul|-a.s.

6. Prove the following:

Theorem 62 For all complex measure p on (2, F), there exists h
belonging to L&(Q, F, |u|) such that |h| =1 and:

VEEF  u(E)= [ hdlu
E

If w is a signed measure on (2, F), we can assume h € L (2, F, |pul).

EXERCISE 13. Let A € F, and (A4,,),>1 be a sequence in F.
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1. Show that if A, T A then 14, T 14.

2. Show that if A, | Athen 14, | 14.

3. Show that if 14, — 14, then for all p € M*(Q, F):
p(A) = lim  p(An)

EXERCISE 14. Let p be a measure on (2, F) and f € LE(Q, F, p).
1. Show that v = [ fdu € M'(Q, F).

2. Let h € L5(Q2, F,|v]) be such that |h| = 1 and v = [ hd|v|.
Show that for all £, F € F:

E E
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3. Show thatif g : (2, F) — (C,B(C)) is bounded and measurable:
VE e F /fgdu:/ hgd|v|
E E

4. Show that:
VEeF, [v|[(E /fhd,u

5. Show that for all £ € F,
[ retianz0 . [ 1m(siydn =0
E E

6. Show that fh € Rt p-a.s.
7. Show that fh = |f| p-a.s.

8. Prove the following:
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Theorem 63 Let pu be a measure on (2, F) and f € LE(Q,F,pn).
Then, v = [ fdu defined by:

VE € F, u(E)é/fdu
E

is a complex measure on (2, F) with total variation:

VE € WI(B) = [ I1idn

EXERCISE 15. Let u € M'(Q, F) be a signed measure. Suppose that
h € Li(,F,|pu|) is such that |h| = 1 and u = [ hd|pu|. Define
A={h=1} and B={h = —1}.
1. Show that for all E € F, p™(E) = [, 2(1+ h)d|p|.
(E) = [ 5(1 = h)d|ul.
3. Show that ut = pu? = (AN -).

2. Show that for all £ € F, u~
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4. Show that u= = —pu? = —u(BnN -).

Theorem 64 (Hahn Decomposition) Let p be a signed measure
on (Q,F). There exist A,B € F, such that ANB =10, Q=AWB
and for all E € F, u™(E) = w(ANE) and p~ (E) = —pu(BN E).

Definition 97 Let u be a complex measure on (2, F). We define:

A
Le(Q,F n) = Le(Q.F, |ul)
and for all f € LE(Q, F, 1), the Lebesgue integral of f with respect

to u, is defined as:
N
[ ran® [ shdi

where h € L&(Q, F, |ul|) is such that |h| =1 and p = [ hd|u).
EXERCISE 16. Let p be a complex measure on (2, F).
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1. Show that for all f: (Q,F) — (C, B(C)) measurable:
feLb@Fp) & [ Ifldul < +oo

2. Show that for f € L& (2, F, u), [ fdp is unambiguously defined.
Show that for all E € F, 1 € LE(Q, F, 1) and [ 1gdu = u(E).

- w

Show that if g is a finite measure, then |u| = pu.

5. Show that if 4 is a finite measure, definition (97) of integral
and space L&(€2,F,u) is consistent with that already known
for measures.

6. Show that L&(Q, F, u) is a C-vector space and that:

/(f+ag)du=/fdu+a/gdu

for all f,g € L§(Q,F,p) and a € C.
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7.

Show that for all f € L5(Q2,F, 1), we have:

] / fdu‘ [ 151

EXERCISE 17. Let p,v € M(Q,F), let a € C.

1.
2.
3.
. Show that for all £ € F:

Show that |av| = |al.|V]
Show that |p+ v| < |u| + |v|
Show that L&(Q, F,u) N LE(Q, F,v) C LE(Q, F,p+ av)

/IEd(u—l—ou/) z/lgdu—l—a/lEdV

. Show that for all f € L5(Q,F,u) N LE(Q,F,v):

/fdu—I—oa/ /fdu—i—a/fdz/

www.probability.net


http://www.probability.net

Tutorial 12: Radon-Nikodym Theorem 23

EXERCISE 18. Let f : (€, F) — [0, +00] be non-negative and measur-
able. Let p and v be measures on (2, F), and « € [0, +o00]:

1. Show that g+ av is a measure on (2, F) and:

/fdu—i—ow /fdu—i—a/fdz/

2. Show that if 4 < v, then:
[rin< [ sav

EXERCISE 19. Let p € MY(Q,F), p1 = Re(p) and pg = Im(p).
1. Show that |p1| < |u| and |ua| < |u|.

2. Show that [u] < |p1] + [p2l.

www.probability.net


http://www.probability.net

Tutorial 12: Radon-Nikodym Theorem 24

3. Show that LL(Q, F, ) = LE(Q, F, 1) N LE(Q, F, pz).

4. Show that:
Le(Q,Fm) = Le(Q,F,uf) N Le(Q,Fouy)
Lé(ﬂval@) = LE(Q,}—,/L;)DLE(Q,]—',ME)

5. Show that for all f € L&(Q, F, p):
/fdu /fdul /fdu1 + 1 (/fduz /fduz)

EXERCISE 20. Let p € MY(Q,F). Let A€ F. Let h € LE(Q, F, |ul)
be such that |h| = 1 and u = [ hd|p|. Recall that u?* = u(AN -) and
Wa = pi(F ,) Where Fla={ANE, E€F}CF.

1. Show that we also have |4 ={E: EcF , EC A}
2. Show that p?* € M*(Q,F) and pys € M'(A, Fa).
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3. Let E € F and (Ey),>1 be a measurable partition of E. Show:
Z A (En)| < ul*(B)

4. Show that we have [u4| < |u|*.

5. Let £ € F and (E,),>1 be a measurable partition of AN E.
Show that:

Zlu )| < (AN E)

6. Show that |u?|(A¢) =0
7. Show that |u?| = |u|*.

8. Let £ € F|4 and (En)n>1 be an F| a-measurable partition of E.
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10.

11.
12.
13.

Show that:

Z [a(En)| < [ulja(E)

. Show that 4| < |pla-

Let E € Fj4 C F and (E,),>1 be a measurable partition of E.
Show that (E,),>1 is also an F|4-measurable partition of E,
and conclude:

Zlu )| < |pal(E)

Show that |pa| = |p]ja-
Show that u? = [ hd|u?]|.
Show that k4 € LG(A, Fia, |pal) and pa = [ hjad|pal.
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14. Show that for all f € L5(Q2,F, 1), we have:
flA € LlC(Qvfmu) ) f € LlC(Qvfa,uA) ) f\A € LlC(Aa'ﬂAyﬂ\A)

and:
[ Fradn= [ saut = [ faduns

Definition 98 Let f € L&(QU, F, u) , where p is a complex measure
on (Q,F). let A€ F. We call partial Lebesgue integral of [ with
respect to p over A, the integral denoted fA fdu, defined as:

/A fau? [(sradn = [ raut = [ (Giada

where p? is the complex measure on (Q,F), p* = p(AnN ), fla is
the restriction of f to A and jua is the restriction of p to F|a, the
trace of F on A.

EXERCISE 21. Prove the following:

www.probability.net


http://www.probability.net

Tutorial 12: Radon-Nikodym Theorem 28

Theorem 65 Let f € L5(Q, F, i), where p is a complexr measure
n (Q,F). Then, v = [ fdu defined as:

VE € F, u(E)é/fdu
E
is a complex measure on (2, F), with total variation:
VE € F . WI(B) = [ 17idld

Moreover, for all measurable map g : (Q,F) — (C,B(C)), we have:
g€ Lc(QF,v) & gf € Lo(Q,F, p)

and when such condition is satisfied:

/ng=/gfdu

EXERCISE 22. Let (1, F1), ..., (Q, Frn) be measurable spaces, where
n>2. Let uy € MY (Qq, F1), ...y pin € MY (Qp, Fy). For all i € N,
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let h; belonging to Lg(€Q4, Fi, |ui|) be such that |h;| = 1 and p; =
J hid|p;]. Forall E € Fy @ ... ® F,, we define:

A
u(E)=/Eh1...hnd\u1\®...®|un\

1. Show that p € MY(Q; x ... x ), F1 ®...® F,)
2. Show that for all measurable rectangle A; x ... x A,:

,u(A1 X ... X An) = ,ul(Al) .. ,un(An)

3. Prove the following:

Theorem 66 Let py, ..., 1, be n complex measures on measurable
spaces (1, F1), .., (L, Fn) respectively, where n > 2. There exists
a unique complex measure (1 ®. . .Qpyn on (L X... XQy, F1R@...QF,)
such that for all measurable rectangle A1 X ... X A,, we have:

,U1®...®/1,n(A1 XXAn):,ul(Al),un(An)
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EXERCISE 23. Further to theorem (66) and exercise (22):
1. Show that [u1 ® ... ® pn| = || @ ... @ |n].
2. Show that [l @ ... & pall = [lpall - l1nl]-
3. Show that for all E € F1 ®...Q Fp:

u1®...®,un(E):/hl...hnd|u1®...®,un\
E
4. Let fEeLE(Q X .. X Qn, F1 @ ... @ Fpy 11 @ ... @ fa). Show:

5. let o be a permutation of {1,...,n}. Show that:

/fd,u1®...®un:/ fd,ua(l)...dug(n)
Qo (n) Qo(1)
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Solutions to Exercises

Exercise 1. Let p be a measure on (2, F) and v € M*(Q, F). Sup-
pose that v << p. Let E € F be such that y(E) = 0. Let (Ey)n>1
be a measurable partition of E. For each n > 1, we have E,, C E and
consequently pu(E,) < p(E). It follows that u(E,) =0 for all n > 1,
and from v << g we obtain that v(E,) = 0 for all n > 1. Hence:

“+o0
S Ip(E) =0
n=1

This being true for all measurable partition (E,)n>1 of E, it follows
from definition (94) that |v|(E) = 0. We have proved the implication
that u(E) =0 = |v|(E) = 0 and consequently |v| << u. Conversely,
if v| << p and p(E) =0, then |v|(E) = 0. From |[v(E)| < [v|(E) we
conclude that v(E) = 0. So v << pu. We have proved the equivalence
between v << p and |v| << p. Note that p is assumed to be a
measure, and not a complex measure.

Exercise 1
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Exercise 2.
1. Define B,, = Uy>, E} for n > 1. By assumption, u(Ey) < 1/2*
for all £ > 1 and consequently:

—+oo

+oo
1 1
u(Bn) <D p(ER) <Y op = 5oy < +00
k=n k=n

It follows that p(B,) — 0 as n — +oo. Furthermore, since £
is defined as £ = Np>1B8,, and B,41 C By, for all n > 1, we
have B,, | E. From u(B;) < 400 and theorem (8), we obtain
w(By) — u(E) as n — +o00. We have proved that:

wE) = lim u UEk =0

n—-+oo
k>n
2. If B, = UanEk, then £ = ﬂnZan and B,4+1 € B, for all
n > 1. From theorem (57), the total variation |v| of the complex

measure v is a finite measure. In particular |v|(By) < +oo,
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and applying theorem (8), it follows that |v|(B,) — |v|(E) as
n — +o0o. Furthermore, since E,, C B,, for all n > 1, we have:

€ < [V(En)| < [V[(En) < [v[(Bn)

and in particular lim |v|(B,) > e. We have proved that:

WI(E)= lim [v|| | Ex|>e

n—-+oo
k>n

3. Let A be ameasure on (2, F) and B,, = Ug>, Ej, forn > 1. Since
E =Ny>1B, and By,41 € B, for all n > 1, it is very tempting
to conclude that A(B,,) — A(F) asn — +o0o0. However, a careful
reading of theorem (8) shows that we cannot safely apply this
theorem, unless A\(B1) < 400 (or at least A(Bp) < 400 for some
p > 1), which in general is not true. So in general, we cannot
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conclude that:

ANE)= lim M| | Ex

n—-+oo
k>n

When A = p or A = |v|, we crucially used the assumption that
w(Er) < 1/2F for all k > 1, and the fact that |v| is a finite
measure, to obtain A\(Bp) < +00.

4. Let p be a measure on (2, F) and v be a complex measure on
(Q,F). The fact that v << p is equivalent to |v| << p, has
already been proved in exercise (1). Suppose the condition:

Ve> 0,30 >0,VE € F,u(E) <6 = |v(E)| <e (4)

holds. Let E' € F be such that pu(F) = 0. Applying (4), for all
€ > 0, there exists § > 0 such that if B/ € F satisfies u(E’) <9,
then [v(E')| < e. Since u(E) = 0, we have u(E) < ¢ for all
0 > 0 and consequently |v(E)| < € for all ¢ > 0. So v(E) = 0.
This shows that v is absolutely continuous with respect to pu,
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and we have proved that (4) = v << p. Conversely, suppose
that v << p, and that condition (4) does not hold. There exists
€ > 0 such that for all § > 0 we can find some Es € F with
the property that u(Es) < § and |v(Es)| > €. Taking 6 of the
form 6 = 1/2™ for n > 1, there exists a sequence (E),),>1 in F,
such that p(F,) < 1/2™ and |v(E,)| > € for all n > 1. Defining
E = limsup B, = Np>1 Ug>n By, we have p(E) = 0 from 1.
and |v|(E) > € from 2. This contradicts the fact that |v| << pu,
or equivalently the fact that v << u. We have proved that
v << g = (4), which completes the proof of theorem (58).

Exercise 2
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Exercise 3.

1. Let p be a measure on (2, F) and v € M*(Q, F). Suppose that
v << p. Let E € F be such that p(E) = 0. Then v(E) =0. In
particular, 11 (E) = Re(v(E)) = 0 and 1»(E) = Im(v(E)) = 0.
This shows that v1 << p and v << p.

2. From 1. we have v; << p. From exercise (1), this is equivalent
to |v1| << p. Hence, if E € F is such that u(E) = 0, then
v1(E) =0 and |v1|(E) = 0. It follows that:

v (B) = 5(l(B) + 1 (B)) =0

and
v (B) = 5(bl(B) ~ m(E) =0

We conclude that v} << p and v; << p. We prove similarly
that v; and v, are absolutely continuous with respect to .

Exercise 3
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Exercise 4.

1. Since S is a closed proper subset of C, its complement S¢ is an
open subset of C, which is not empty. Let z = x + iy € S°.
There exists € > 0 such that B(z,¢) C S¢. Let 2/,y € Q be
such that |z — 2/| < ¢/2v/2 and |y — /| < €/2v/2, and define
2/ =2’ +iy'. Then:

2= =]z —aP+ly -y <e/2

Let ¢ € Q be such that |z — 2| < € < /2. Then it is clear
that z € B(z',€') and furthermore, for all z”/ € C such that
|z — 2"| < €, we have:

|z =2"| <]z =2+ | —2"| <2 <e

It follows that z € B(z',¢') C B(z,e) C S¢, where B(Z/,¢)
denotes the closed disc with center 2’ and radius €. Hence, for
all z € §¢, we are able to find a closed disc D, in C, such that
z € D, C 5S¢ and furthermore, such closed disc can be chosen
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to have a rational radius (¢/ € Q), and a center with rational
coordinates (', y" € Q). In particular, to each D, where z € S¢,
can be associated a triple (z.,%.,¢€.) in Q3, defining a mapping
which is injective. Q32 being a countable set, it follows that
D = {D, : z € S° is at most countable (and non-empty),
and consequently there exists a surjective map ¢ : N* — D.
Defining D,, = ¢(n), from S¢ = U,cg<D, we obtain:

+oo
- Uo-Ust-U».
DeD n=1

2. Since p is a finite measure and p(E,) > 0, it is always possible
to write the complex number «,, as a, = u(E f B, anpdp.
Consequently, using theorem (24), we have:

1
‘u(Em/E flp = o) < uulsn)/E I = caldp

Since E,, = {f € D,,} = {|f — an| < r,}, we have the inequality
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|f —anlle, <rplg,, and consequently:

1 1
B i, ool S gy [ ot =

We have proved that:

1 1
m/E Jelp = o Sm/E I = anldp <

3. Let n>1and E, = {f € D, }. Suppose p(E,) > 0. Then:

) /E fdu € 5 (5)

by assumption. However, from 2.:
),

— [ fdp—on

wWEn) Jp,

fdp € Dy (6)

or equivalently:
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Since D,, C 5¢, (5) and (6) form a contradiction. It follows that
the assumption u(FE,) > 0 is absurd and therefore u(E,) = 0.
We have proved that u({f € D,}) =0 for all n > 1.

4. Let p be a finite measure on (Q, F) and f € L&(Q, F, u). Let S
be a closed subset of C such that for all E € F with u(E) > 0:

1
M/Efd“ €

We claim that f € S p-a.s. If S = C, there is nothing further
to prove. We assume that S is a proper (closed) subset of C.
Let (Dy,)n>1 be a sequence of closed discs in C as in 1. Then
S¢ =U,>1D,, and from 3. p({f € D, }) =0 for all n > 1. From
{f €5 =U,>1{f € D,,} we obtain:

+00
p({fesy) <y u{feDu})=0

n=1

It follows that if N = {f € S}, then N € F, pu(N) = 0 and
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f(w) € S for all w € N¢. This shows that f € S u-a.s. We have
proved theorem (59).

Exercise 4
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Exercise 5.
1. Let w € Q. Since E, T €, in particular Q = U, >1E,. There
exists p > 1 such that w € E,. Hence:

R | 1

w(w) = 2 Q—nmllﬂn (w) >

1

1
= >0
20 1+ p(Ep)

Furthermore:
+oo too
1 1 1
w(w) = 2 1+ u(Ey) Ea W) S Q5

n=1 n=1

2. w is R-valued, measurable, and from theorem (19):

X1 1
= = - 1
/\w\du /wdu 227 1+ () / B, dp < +00

Sow € L (Q,F, ).

Exercise 5
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Exercise 6.

1. The fact that i = [wdp is a measure on (Q,F) stems from
a direct application of theorem (21). However, the result is
pretty straightforward, with or without theorem (21): it is clear
that f1(0) = 0 and furthermore from the monotone convergence
theorem (19):

+oo

+oo
p(E) = [ tpwdi= Y [ 1, wdu= 3 alEn)

for any E € F and (E,),>1 measurable partition of E. Since w
is non-negative and is an element of L (Q, F, i), we have:

p(6) = [ wdn = [ Juldu < +0
So i is a finite measure.

2. Since both v and fi are finite measures on (2, F), they are com-
plex measures with values in RT. So ¢ = v + [i is a complex
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measure on (Q, F) (M1(Q, F) is a vector space), and it has val-
ues in R*. Tt follows that ¢ is a finite measure. Alternatively,
you may wish to argue that ¢ is a measure (as the sum of two
measures), and that ¢(Q) = v(Q) + @(Q2) < +oo since both v
and fi are finite.

3. Let f: (Q,F) — [0,400] be a non-negative and measurable
map, and consider the equality:

[ o= [ gav-s [ fuds (7)

Since ¢ = v+ p and i = [ wdy, this equality is true whenever
f is of the form f = 1 with £ € F. By linearity, equation (7)
is also true whenever f is a simple function on (Q, F). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (s,)n>1 of simple functions on (€2, F),
such that s, T f. Applying equation (7) for each n > 1, we
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/sndqb: /sndu-l—/snwdu (8)

Since w is non-negative, (s,w),>1 is a non-decreasing sequence
of non-negative and measurable maps, converging simply (i.e.
pointwise ) to fw. In short, we have s,w 7 fw, and from the
monotone convergence theorem (19), taking the limit in (8) as
n — 400, we conclude that equation (7) is also true for f.
Suppose now that f € L§(Q,F,$). Applying (7) to |f|, we

obtain:
[1stdv+ [ 1fluwdn = [ 151d0 < +oc

and consequently f € L&(Q2, F,v) and fw € L§(Q, F,p). If f
is real-valued, Applying equation (7) once more to f and f~,

we obtain:
[reao= [ sravs [ sy (9)

obtain:
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[ o= [5avs [ i (10)

Subtracting (10) to (9) (all terms being finite, w being non-
negative and ftw, f~w being finite), we see that equation (7)
is true for f, whenever f € L (Q, F,¢). If f =u + iv where u
and v are elements of Ly (2, F, ¢), we conclude that equation (7)
is true for f by the linearity of the integral, and the fact that it
is true for u and v. This proves that equation (7) is in fact true
for all f € L§(Q,F, ).

and:

4. Let f € LE(Q, F, ¢). From the Cauchy-Schwarz inequality (42):

Junas< ([ Qdd’)é (/ 12d¢>>é -(/ f|2d<zs>é (6(52)*

In particular, ¢ being a finite measure, [ |f|d¢ < +oo and f is
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also an element of L&(€2, F,¢). 1 Applying 3. to | f|, we have:

[t < [ifiav+ [ \flwdn = [ 17100

It follows that:

/‘f|d”5/|f\d¢é (/f|2d¢>é(¢(9))é

5. ¢ being a finite measure, from 4. the inequality [ |f[?d¢ < +oo
implies [ |f|dv < +o00. So L&(Q, F,¢) C L5 (2, F,v). Further-
more, given f € LEL(Q, F, ¢), from 4. and theorem (24):

]/fdu < [ 111w < /oIl

I This shows that L%} (Q,F,¢) C Lé (92, F, ¢) whenever ¢ is a finite measure.
We don’t need |f| € LE(S2, F, ¢) for equation (7) to be true (see proof of 3.)
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6. Consider the map A : LEL(Q, F, $) — C defined by:

Vf e LE(Q, F, ), /fdu
Since LE(Q,F,¢) C LE(Q,F,v) X is well deﬁned and it is
clearly linear. Furthermore from 5., |A(f)| < /o(Q)]|f||2 for

all f € LE(Q,F,¢). So A is also contmuous Applylng theo-
rem (55), there exists ¢’ € LE(Q, F, ¢) such that A(f) = [ fg'd¢
for all f’s. Taking g = g’ € L&(Q, F, ¢), we obtain:

v e 2@ 70). [ sav= [ fods

7. Let E € F be such that ¢(E) > 0. ¢ being a finite measure, the
map 1g is an element of LZ,(Q, F, #). From 6. we have:

/gd(;ﬁ /1Egd¢ /1EdV—V
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Furthermore, since 0 < v(E) < v(E)+ a(E) = ¢(E), we obtain:
0< [ gdo < ()

Finally since ¢(E) > 0, we see that ¢(E)~! [, gd¢ € [0,1].

8. Since ¢ is a finite measure, we have L%(Q,]—", ®) CLE(Q,F, ),
as can be seen from the Cauchy-Schwarz inequality (42). In
particular, ¢ is an element of L&(€, F,¢). Furthermore, the
interval [0,1] is a closed subset of C, and for all E € F with
¢(F) > 0, we have:

@/Egdas e [0,1]

Applying theorem (59), it follows that g € [0, 1] ¢-almost surely.
There exists N € F with ¢(N) = 0 such that g(w) € [0, 1] for
all w € N¢ Define h = glye. Then h € LL(Q,F,¢) and
h(w) € [0,1] for all w € Q. Furthermore, for all f € L%(Q, F, ¢)
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we have from 6.:

[ tiv= [ s910= [ o1nas+ [ g1n-do— [ rhas

Renaming h by ’g’, we have found g € LE(, F, ¢) such that
g(w) € [0,1] for all w €  and (1) still holds.

9. Let f € LL(Q, F,¢). Since g € LL(Q, F, ¢), from the Cauchy-
Schwarz inequality (42):

[1ralao< (| f|2d<zs)é (/ |g|2d¢)é < 400

It follows that fg € L5(2,F, ¢). From 3. we have:

[ toao= [ saiv+ [ fguan (1)

all three integrals being well-defined. From 6. we have:

[ tiv= [ roa0 (12)
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From (11) and (12), using the linearity of the integral, we obtain:

/fl— dV—/fgwdu

10. Letn>1land E€ F. Let f=(1+g+...+¢")1g. Then f is
a measurable map and furthermore, since 0 < g < 1, f is also
bounded. ¢ being a finite measure on (2, F), we conclude that

feLEL(QLF,¢).

11. Letn>land F€ F. Let f=(14+g+ ...+ ¢")1g. From 10.
[ is an element of L% (Q, F, ). Applying 9. we obtain:

/f(l —g)dv = /fgwdu
or equivalently:
/ (1— g™ dv = / gl4+g+...+g")wdy (13)
E E
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12. Let A ={0< g < 1} and define:
A =
h = gw (Z gk>
k=0

and h, = gw(3i_,9") for n > 1. Then, for all E € F,
(hnlg)n>1 is a non-decreasing sequence of non-negative and
measurable maps, converging simply to hlg. By the monotone
convergence theorem (19), we have [ h,1pdu — [ hlgdpy, ie.

lim gl+g+...+¢")wdu = / hdpu (14)
n—-4o0o E E

Furthermore for all w € A4, (1 — ¢""(w)) — 1 as n — +o0,
and if w € A, since 0 < g < 1 we have 1 — g"*1(w) = 0 for
all n > 1. Tt follows that (1 — ¢"*1)1g — 1gna, and v being
a finite measure, the condition |(1 — ¢g"™1)1g| < 1 allows us to
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13.

apply to dominated convergence theorem (23) to obtain:

lirf (1—g"™dv = / lgnadv =v(ENA) (15)
n—-1+0o0o E

Using (14) and (15), taking the limit in (13) as n — +oc:

v(ENA)= / hdu
E

Let w € Q with h(w) = +o0 = g(w)w(w) > pey g"(w). Since
0<g<1land0 < w < 1, the series Z::of) g"(w) cannot be
convergent, and consequently g(w) = 1. So w € A° and we have
proved that {h = 400} C A°. Conversely, suppose that w € A°.
Since 0 < g < 1, we have g(w) = 1. Hence 3., ¢"(w) = +o0,
and since w(w) > 0 it follows that h(w) = +o00. This shows that
A¢ C {h = 400} and finally that {h = 400} = A°. Applying
12. to F = A€, we obtain:

0=w(A"NA) = | hdu = (+o0)u(4")
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from which we conclude that p(A¢) = 0.

14. Let E € F. From 12. we have:
v(ENA)= / hdu
E

From 13. we have p(A¢) = 0. Since by assumption, v is abso-
lutely continuous with respect to p (i.e. v << p), we also have
v(A°) = 0. It follows that:

v(E)=v(ENA)+v(ENA°) = / hdu
E

15. Let p be a o-finite measure on (2, F) and v be a finite measure
on (Q,F) such that v << p. From 14. we have found a map
h:(Q,F) — [0, +0o0] non-negative and measurable, such that:

VE € F , v(E) :/ hdy (16)
E
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16.

Furthermore, from 13. we have pu({h = +oo}) = 0. It follows
that property (16) will also hold, if we replace h by hlp« oy
Hence, without loss of generality, we can assume that h satisfy-
ing (16) has valueb in RT. Since v is a finite measure, taking
E =Q in (16) we obtain:

/|h\du /hd,u =v(Q?) < 400

So h € LL(Q,F,n). We have proved the existence of a map
h € LK (92, F, ) such that h > 0 and property (16) holds.

Let 11 be a o-finite measure on (€, F), and v be a complex
measure on (2, F) such that v << p. If v is in fact a finite
measure, then 15. guarantees the existence of h € L5 (R, F, 1)
such that:

VE € F , v(E) :/ hdy (17)
E

In fact, the result in 15. is slightly stronger, and allows us to
choose h with values in RT. If v is a signed measure (i.e. it
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has values in R), then it can be written as v = v+ — v~ where
v+ and v~ are respectively the positive part and negative part
of v. Since v and v~ are finite measures (see exercise (12) of
Tutorial 11), which are absolutely continuous with respect to
u (see exercise (3)), there exist h™, h™ elements of L (Q2,F, )
with values in RT, such that v* = [htdp and v= = [h™dpu.
Defining h = h™ — h™, we obtain an element of Ly (2, F, i)
for which (by linearity of the integral) property (17) holds. In
the general case when v is an arbitrary complex measure, v
can be written as v = vy + ivy where vy, vy are two signed
measures which are absolutely continuous with respect to p (see
exercise (3)). Hence, there exist hq, ha in Lx (2, F, i) such that
v1 = [hidp and vo = [ hodp. Defining h = hy + iha, we
obtain an element of L&(€, F, i) for which (by linearity of the
integral) property (17) holds. This proves the complex version
of the Radon-Nikodym theorem (60).

Exercise 6
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Exercise 7.

1. The positive part ™ of w is defined as vt = max(0,u). It
follows that v = ulyf,>0y and consequently:

/u*du = /ul{u>0}du :/ ud
N {u=0}

2. By assumption, using F = {u > 0} € F, we have:

/ fduzOz/ udu—H’/ vd
{u=0} {u=0} {u=0}

It follows in particular that | (u>0} udp = 0 and consequently
using 1., [uTdp = 0. Since u™ is non-negative, this implies
that ut = 0 p-a.s. (See Exercise (7) of Tutorial 5.). Similarly,
from v~ = max(—u,0) = —ul{,<o} we obtain:

/u*du = —/ul{u<0}du = —/ udp
- {u<0}
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and from:

/ fduzOz/ udu+i/ m
{u<0} {u<0} {u<0}

we see that [u~dp = 0 and finally v~ = 0 p-a.s. An identical
proof will show that v+ = 0 p-a.s. and v~ = 0 p-a.s. Having
proved that u*, u=, v* and v~ are all p-almost surely equal
to zero, there exist sets Ny, N, N3 and Ny, elements of F,
with u(Ny) = u(N2) = pu(N3) = u(Ny) = 0 and such that
ut(w)=u (w)=vT(w)=v (w)=0forallw e NfN...NNJ.
Taking N = Ny U...UNy, we have found N € F with u(N) =0
such that f(w) = 0 for all w € N¢. This shows that f = 0 p-a.s.

3. Suppose there exist two maps hi, he € L5(Q, F, p) which satisfy
the conclusion of theorem (60), i.e. such that:

VE € F V(E)z/hlduz/hgd,u
E E
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Defining f = hy — hy € L5(Q, F, 1), we obtain:

VE € F, /fdu:O
E

and from 2. we conclude that f = 0 p-a.s., or equivalently
hy = hy p-a.s. This shows that the Radon-Nikodym deriva-
tive of v with respect to pu (i.e. the element h of L&(Q,F, u)
which satisfies the conclusion of theorem (60)), is unique up to
p-almost sure equality.

Exercise 7
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Exercise 8.

1. Let n > 1. We have v,,(Q2) = v(E,NQ) = v(E,) < +00. So v, is
a finite measure, and in particular a complex measure on (2, F).
Furthermore, if E € F is such that u(E) = 0, then p(E,NE) =0
and it follows from v << p that v(E, N E) =0 i.e. v,(F) = 0.
This shows that v, << p, and the assumptions of theorem (60)
are therefore all satisfied. There exists h,, € L&(Q, F, p) such
that:

VE € F, v,(E) z/ hndp
E

Furthermore, v, being a finite measure, the map h, can be
chosen to lie in LK (R, F, ), with h,, > 0.

2. Let £ € F and n > 1. By assumption, F,, C E, 1. Hence:

/ hpdp = I/(En OE) < V(En+1 OE) :/ hpr1dp
E E
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3. Let n,p > 1. Since hy, hy1 have values in R (in fact RY), the
difference h,, — hy41 is meaningful, and from 2. we have:

/ (s — ) < 0
E

Applying this inequality to E = {h,, — hp41 > 1/p} we obtain:
1 1
S oy > 1) < [ (= has)dn <0
p p E
from which we conclude that pu({h, — hny1 > 1/p}) = 0.
4. Let n > 1. From:

+oo
1
{hn > hnya} = [ J{hn = hoyr > }—7}

p=1

and the fact that u({h, — hny1 > 1/p}) = 0 for all p > 1, we
conclude that p({h, > hpi1}) =0. So hyy < hpgq p-.a.s.
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5. Given n > 1, let N,, = {hy, > hpy1}. Define N = U,>1N,.
Then, u(N) = 0 and replacing all h,,’s by h, 1y, we obtain a
sequence (hy,)p>1 in Lk (Q, F, p) such that 0 < h,, < hy,4q (this
time everywhere), where the new hy,’s are p-almost equal to our
original h! s, and therefore such that equation (2) still holds.

6. Let h = sup,,~q hy, and £ € F. From (2), for all n > 1 we have:

v(E, NE) :/1Ehndu (18)

From (E, N E) 1 E and theorem (7), v(E, N E) — v(E) as
n — 4o00. From 1gh, T 1gh and the monotone convergence
theorem (19), [1gh,dp — [1ghdp as n — +oo. Taking the
limit in (18) as n — 400, we conclude that:

VE € F, V(E)z/hdu
E
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7. Let n > 1. From 6. we have:

/ hdp =v(E,) < 400

n

8. From (4+00)1{p—4oc} < h and 7. we obtain:

(+o0)u(En N{h = +o00}) < / hdu < +oo

n

It follows that u(E, N {h = +oo}) = 0 for all n > 1. From
E,N{h=+c}1{h=+o00} and theorem (7), we obtain:

p({h =+oo}) = lim u(E,N{h=+oo})=0
We conclude that h < 400 p-a.s.

9. Replacing h by hl{,<i}, we obtain a measurable map with
values in R, which is p-almost surely equal to our original h,
and therefore such that equation (3) still holds.
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10. h has values in RT and is measurable, while from 7.:

/ hdpfr = / hdp < +o0
By,

So h € LE(Q, F, ufn).

Exercise 8
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Exercise 9.

1. Let n > 1 and F € 7. We have:

/ hdpt = / hdp = / h'dp = / n dpt
E Fp,NE Fp,NE E

n n

Furthermore:
/ hd/j,F" = /1Eh1En1{h§n}du < n,u(En) < +00
E
2. Let n>1and p > 1. Applying 1. to E ={h > h' +1/p}:

1
/ Wdp' = / hdpFn > / W du" + = p(Fy N E)
E E E p
and since [, h'dp"™ < +oo, it follows that u(F, N E) = 0.

3. Let n > 1. From the equality:

i 1
{h>n}= U{h>h’+1—7}

p=1
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and the fact that u(F, N {h > b’ +1/p}) = 0 for all p > 1,
we have p(F, N{h > h'}) = 0. A similar argument shows that
w(F, n{h' > h})=0. It follows that pu(F, N{h #h'})=0

4. By assumption, F,, = E, N {h < n}. Hence, F,, C F,,1; for all
n > 1 and U,>1F, = {h < 4+o0}. In short, F,, T {h < +oo},
and consequently we have F,,N{h # h'} T {h # h'}N{h < 400}
Applying theorem (7), we conclude that:

P # WY {h < +ooh) = lim u(Fu 1 {h 1)) = 0

5. The assumption made on h and h’, namely:

VEef,/hdu:/h’du
E E

is symmetric in terms h and h'. Using 4. where h and h’ have
been interchanged, we obtain p({h # A’} N {h" < 4+o00}) = 0.
Since the set {h # h'} can be decomposed as:

{h# 1Y = ({h # WY {h < +oo}) U ({h# W'} 0 R < +o0})
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we conclude that u({h # h'}) =0, i.e. h =h" p-a.s.

6. Let h and B’ be two maps satisfying the conclusion of theo-
rem (61). Then in particular, h and h’ are non-negative and
measurable, while satisfying:

VEef,/hdu:/h’du
E E

This exercise shows that h = h’ p-a.s. In other words, the
Radon Nikodym derivative of v with respect to p (i.e. the map
h which satisfies the conclusion of theorem (61)) is unique, up
to p-almost sure equality.

Exercise 9
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Exercise 10. The sigma-algebra F has only two elements, () and {x}.
If E =0, then:
/hduzOz/ hdu
E E
If E = {x}, then:

/ hdp =1 x p({*}) = +00 =2 x p({x}) = / W dp
E E

In any case, we have [, hdy = [, h'du. Although h and A’ are not
u-almost surely equal, this does not contradict exercise (9), as the
measure g is not sigma-finite.

Exercise 10
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Exercise 11.

1. Let E € F be such that |u|(E) = 0. Since |u(E)| < |u|(E) we
have pu(F) = 0, and consequently p << |u/.

2. From theorem (57), the total variation |u| of 1 is a finite measure
on (2, F). In particular, it is sigma-finite. p being a complex
measure such that u << |u|, we can apply theorem (60): there
exists h € L§(Q, F, |u|) such that:

VECF, u(E) = [ hd
E

3. If p is in fact a signed measure, then from theorem (60), h can
indeed be chosen to lie in Li (2, F, |u]).

Exercise 11
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Exercise 12.

1. Let A, = {|h] < r} (for some r > 0) and (E,),>1 be a measur-
able partition of A,. From exercise (11), for all n > 1:

e = | [ hdm]s [ bl < )

where the first inequality stems from theorem (24), and the
second from the fact that E, C {|h] < r}. It follows that:

+oo +oo
DB <Y |ul(En) = rlul(Ar)
n=1 n=1

2. |u|(A,) being the least upper bound of all sums Y% |u(E, )| as
(En)n>1 ranges across all measurable partitions of A,, it follows
from 1. that |u|(A,) < 7|p|(Ar). When 0 < r < 1, this can only
occur if |u|(A,) = 0.
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3. From the equality:

{Inl <1} = U{Ih\ < 1——}

p=2

and the fact that |u|({|h] <1—1/p}) = |p|(A1-1/p) = 0 for all
p > 2, it follows that |u|({|h| < 1}) =0, ie. |h| > 1 |u|-as.

4. Let E € F be such that |u|(E) > 0. We have:

1 / ‘ ‘ ’ ()|
E =
e L] = | )] = i)
5. Applying theorem (59) to the closed disc S = {|z| < 1} and the

finite measure |u|, we conclude from 4. that h € S |u|-a.s. or
equivalently that |h| <1 |pl-a.s.

1

IN

6. Having proved that |h| > 1 |u|-a.s. and |h| < 1 |u|-a.s., the set
N ={|h] > 1} U{|h| < 1} is such that |u|(N) = 0. Replacing h
by hlye + 1y, we obtain an element of L(2, F, |u|) such that
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|[h| = 1 (this time everywhere), which is almost surely equal to
our original h, and therefore such that:

VE € F, u(E) = [ hd
E

From 3. of exercise (11), if u is a signed measure, then h can be
chosen to lie in L (€2, F, |u|). This proves theorem (62).

Exercise 12
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Exercise 13.

1. Suppose A, T A. Then A,, C A,y for all n > 1, and further-
more A = Up>14,. Let w € Qandn > 1. If 14, (w) = 0,
then 14, (w) < 14,.,(w) is clear. If 14, (w) = 1, then w € A,
and consequently w € A, 41, 50 14,,,(w) = 1. In any case, we
have 14, (w) < 14, ,(w). This shows that 14, < 14,,, for all
n > 1. Since A, C A for all n > 1, we obtain similarly that
1a, <14 foralln > 1, and consequently sup,,~; 14, < 14. Let
w € Q. If 1a(w) = 0, then 14(w) < sup,>; 1a, (w) is clear. If
la(w) =1 then w € A =U,>14,, and there exists n > 1 such
that w € A,,. So 14, (w) =1 <sup,>; 14, (w). In any case, we
have 14(w) < sup,,»; 1a, (w). This shows that:

la=suply, = lim 14,

n>1 n—-+4oo
and finally, we have proved that 14, T 14.

2. Suppose that A, | A. Then A,;; C A, for all n > 1 and
A = Ny>1A4,. It follows that A5 C AﬁH_l for all n > 1 and
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A¢ = Up>1 A%, or equivalently that A T A°. Applying 1. we
obtain that 14c T 14c. Since 14c =1 —14, for all n > 1 and
lae =1 —14, we conclude that 14,,, <14, for alln > 1 and
14 =lim, 14,. We have proved that 14, | 14.

3. Suppose that 14, — 14 and let u € M'(Q,F). From theo-
rem (62), there exists h € L5(Q, F,|u|) such that:

VE € F () = [ nil

In particular, u(A4, flA hd|p| for all n > 1. The hypoth-
esis 14, — 14 1mphes in particular that 14,h — 14h, and
since |14, h| < |h| € LL(Q, F, |pu|), the dominated convergence
theorem (23) allows us to conclude that:

lim_p(4,) = lim / Lo, hdls| = / Lahdlu| = p(A)

n—-+oo

Exercise 13
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Exercise 14.

1. Let f € L&(Q, F,u) and v : F — C be defined by:
VE € F , V(E):/ fdu
E

The fact that v € M*(£2, F) has already been proved in ex. (3)
of Tutorial 11. For a slightly leaner proof, here is the following:
let E € F and (E,)n>1 be a measurable partition of E. For
all n > 1, we define A, = EyW...w E,. Then, from 14, =
1g, + ...+ 1, we obtain:

o) = [1a fdn =" [1efdn=Y"v(E)  (19)
k=1 k=1

Furthermore, from A, T E we have 14, T 1g and consequently
la,f— 1gf. Since |14, f| <|f| € LR(, F,p) for alln > 1, it
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follows from the dominated convergence theorem (23) that:

lim v(A,) = nEI—‘,I:loc/lAnfdM :/1Efd,u =v(E) (20)

n—-+oo

Comparing (19) with (20), it appears that the series ZZ;’? v(Ey)
converges to v(E). So v is indeed a complex measure on (£, F).

2. From theorem (62), there is h € L&(Q, F, |v|) with |h| = 1 and:
VE € F, u(E) = / hdjy]
E
Let E, F € F. We have:
/ flpdy = fd,u:V(EﬂF):/ hlpd|v|
E ENF E
3. Given g : 2 — C bounded and measurable, we claim that:

VE € F, /fgduz/hgdh/\ (21)
E E
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From 2., equation (21) is true whenever g is of the form g = 1p
with F' € F. By the linearity of the integral, (21) is also true
whenever ¢ is a simple function on (2, F). Suppose g is non-
negative and measurable, while being bounded. From theo-
rem (18), there exists a sequence (sy)n>1 of simple functions
on (2, F), such that s, 1 ¢g. Having proved (21) for simple
functions, for all n > 1 we have:

/lEfSnd[LZ /lEhSnd‘l/| (22)

From s, — ¢ we obtain 1gfs, — 1lgfg and 1ghs, — 1ghg.
Since |1gfsn| < |flg € Lx(Q,F,pn) (since g is bounded) and
|1phs,| < |hlg € LR(2, F,|v|), it follows from the dominated
convergence theorem (23) that [1gfs,dp — [1gfgdp and
[ 1ghspdlv| — [1ghgd|v| asn — +oo. Taking the limit in (22)
as n — —+o00, we see that (21) is true whenever g is non-negative
and measurable, while being bounded. If g is now an arbitrary
C-valued map which is measurable and bounded, then it can be
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expressed as g = g1 —g2+1(g3—ga) where each g; is non-negative,
measurable and bounded. From the linearity of the integral, we
conclude that (21) is also true for g, which completes the proof
of our initial claim.

4. Since |h| = 1, applying (21) to g = h, we obtain for all E € F:

[ tha= [ vl = [ awl = wim)

5. The total variation |v| of the complex measure v being a finite
measure on (€, F) (theorem (57)), it has values in R*. Hence:

| retshin = re ( / fhdu> — Re(|v|(E)) > 0

and:

[ tmtgidn = ([ shau) =t <o
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6. Define g; = Re(fh) and go = Im(fh). Then g; and go are
elements of L (Q, F, 1), and from 5. we have [, g1dp > 0 while
Jpg2dp = 0 for all E € F. Since S = R* and S = {0} are
closed subset of C, it is very tempting to apply theorem (59) in
an attempt to conclude that g1 € RT p-a.s. and go = 0 p-a.s.
Unfortunately, u is not assumed to be a finite measure (it is
not even assumed to be sigma-finite) and theorem (59) should
therefore be forgotten here. Taking E = {g1 < —1/n} for some
n > 1, we obtain:

1
0< / g1dp < —E,U({g1 <-1/n}) <0
E

from which we see that u({¢g1 < —1/n}) =0 for alln > 1. Since
{1 <0} = Up>1{g1 < —1/n}, it follows that u({g1 < 0}) =0
and consequently, g1 € R p-a.s. Similarly, from [} godp = 0
for all E € F, we obtain go € R" p-a.s. and —go € R" p-a.s.
It follows that go = 0 p-a.s. We have proved that Re(fh) € R*
p-a.s. while Im(fh) =0 p-a.s., so fh € R p-a.s.
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7. From 6. there exists N € F with u(N) =0 and f(w)h(w) € R
for all w € N¢. In particular, since |h| = 1, for all w € N

f)h(w) = [f(@)h(w)| = |f(w)|
It follows that fh = |f| p-a.s.

8. Let u be a measure on (Q, F) and f € L5(Q, F, u). Then, from
part 1. of this exercise, v = [ fdu is a complex measure on
(Q, F). Furthermore, from 4. we have:

VE € F, [v|(E / fhdu

Finally, from 7. we have fh = |f| p-a.s. We conclude that:
VE € F L 1ul(B) = [ 17idn

This completes the proof of theorem (63).

Exercise 14
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Exercise 15.

1. The positive part put of the signed measure p is defined by the
formula pt = (Ju| + p©)/2 (see exercise (12) of Tutorial 11). It
follows that for all £ € F:

i (8) = 5l E)+ 5 [ ndlul = [ S0+ md

2. The negative part p~ of the signed measure p is defined as
u~ = (|p| — p)/2. Hence, for all E € F:

W (E) = lel(B) = 5 [ hiel = [ 50—y

3. Since h € Li(Q,F,|u|) is R-valued and |h| = 1, h can only
assume the values 1 and —1. Having defined A = {h = 1},
(1+h)/2=0o0n A° and for all E € F we have:

1 1
it (B) = [ emdu = [ Saemde @3
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Furthermore, since h = (14 h)/2 on A:
1
pAnE) = [ ndl= [ Sasmdu @
ANE ANE
Comparing (23) with (24), we obtain ut = p4.
4. Having defined B = {h = —1}, we have for all E € F:
_ 1 1
po(B) = [ Sa=mdul = [ S
E BNE

since (1 — h)/2 = 0 on B€. Furthermore:

1
WBOE) = [ hdul = [ - bl
BNE BNE
since h = —(1 — h)/2 on B. This shows that u~ = —u”, and

completes the proof of theorem (64).

Exercise 15
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Exercise 16.

1. Let f: (Q,F)—(C,B(C)) be measurable. From definition (97),
any element of L&(Q, F, ) is an element of L&(€2, F, |u]), and
therefore satisfies:

[ 11dlal <+ (25)

Conversely, if f satisfies the integrability condition (25), then
it is an element of L& (2, F,|u|) and therefore an element of
L&(Q,F, p).

2. Let f € L§ (2, F, p). The integral of f w.r. to u is defined as:
A
[ #an® [ ua (26)

where h is any element of L&(Q, F, |pu|) with |h| = 1 and p =
J hd|p| (there is at least one such h by virtue of theorem (62)).
This definition is potentially ambiguous, as h may not be unique.
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However, if b’ is another element of L§(Q, F,|u|) with |p/| =1
and p = [ W'd|p|, then for all E € F, we have:

u(2) = [ nul = [ W

which implies that [, (h — h')d|u| = 0. Using exercise (7), it
follows that h = b’ |pu|-a.s. and consequently the r.h.s integral
of equation (26) is unchanged, when replacing h by h'. We
conclude that equation (26) is in fact unambiguous, as its r.h.s
integral does not depend on the particular choice of element
h e LE(Q,F, |pu|) with |h| =1 and p = [ hd|pul.

3. Let E € F. Then 1g : (2, F) — (C,B(C)) is measurable, and
furthermore:

[ el = [ 1l = ul(B) < +oc

since |p| is a finite measure on (2, F) (see theorem (57)). Using
1. it follows that 1p is an element of L&(£2, F, ), as defined in
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definition (97). Moreover, we have:

[ 1pdu= [ 1ehdil = [ halul = ()
E

4. If p is a finite measure (complex measure with values in R™),
then for all E € F and (E,),>1 measurable partition of E:

+oo +oo
Do lu(E) =D ulEn) = p(E)

In particular, ;(E) is an upper bound of all sums 3% |u(E,)|,
as (Ep)n>1 ranges through all measurable partitions of E. It
follows that |u|(E) < w(E). Since w(E) = |u(E)| < |u|(E) is
clear, we conclude that |u| = p.

5. Suppose that p is a finite measure. Then p is not only a measure,
but also a complex measure. It follows that definition (97) of the
space L5 (2, F, i), and of the integral [ fdu (valid for complex
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measures), is potentially in conflict with the definitions already
known for measures (definitions (46) and (48)). However, since
w = |pl, the space LE(Q, F, u) of definition (97) being defined
as L& (2, F, |u)), coincide with that of definition (46). Further-
more, h = 1 being an element of L& (Q, F,|u|) with |h] = 1
and 1 = [ hd|p|, the integral [ fdu of definition (97) can be
expressed as:

[ tdn= [ shial = [ sl = [ sa

where the r.h.s integral is that of definition (48). We conclude
that definition (97) which extends the notion of integral with
respect to complex measures, is consistent with previous defini-
tions laid out for measures.

6. The space L&(€2, F,u) being defined as L& (Q,F,|u|), it is a
C-vector space. Let h € L§(Q,F,|u|) be such that |h| = 1
and p = [ hd|p|. Then, for all f,g € L§(2, F,p) and a € C,
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following definition (97) we have:

[tr+agdn = [(+aghdl

[ hdiul +a [ ghd
= /fdu+a/gdu

where the second equality stems from the linearity of the inte-
gral, already established for measures.

7. Let f € L§(Q,F, 1) and h be as in definition (97). Then, from
theorem ( 24) we have:

‘/fdu’ ]/ fhdm] [ 1wt = [ 151

Exercise 16
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Exercise 17.

1. Let E € F and (E),,)n>1 be a measurable partition of E. Then:
—+oo

D lav(E, I—IQIZ\V )| < lallv[(E)

n=1

It follows that |||v|(E) is an upper bound of all 3> |av(E,)|
as (Ey,)n>1 ranges through all measurable partitions of E. Since
|av|(E) is the smallest of such upper bounds, we obtain the
inequality |av|(E) < |a||v|(E). This being true for all E € F,
we have proved that |av| < |a||v] for all & € C. If a = 0, then
lav| = |a||v| is clear. If o # 0, then applying what we have just
proved to v = av and o/ = 1/«, we obtain:

=) < 1

and consequently |a||v| < |av|. This shows that |av| = |a||v|
for all v € M1(Q, F) and « € C.

|IOWI
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2. Let E € F and (E,),>1 be a measurable partition of E. Then:

+oo too
Dol +v)EN <Y |nE |+Z w(En)| < (lul + VD (E)
n=1 n=1

It follows that (|u| + |v|)(F) is an upper bound of all sums
Z:ﬁ (p+v)(Ey)| as (E,)n>1 ranges through all measurable
partitions of E. |u + v|(E) being the smallest of such upper
bounds, we have |p+v|(E) < (|u|+ |v|)(E). This being true for
all E € F, we have proved that |u+ v| < |u| + |v|.

3. Let f € LE(Q, F, u)NLE(Q, F,v). Then f is C-valued, measur-
able, and satisfies [ |f|d|p| < +oo with [ |f|d|v| < +oo. Using
2. and 1., for all a € C:

lw+av| < |p| + lov| = |u| + |af[v]
Hence, for all E € F, we have:

/ Ledlp+ av] < / Ledlu] + lof / Lpdly]
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By linearity, if s is a simple function on (2, F), we obtain:

{/wm+aWS/?ﬂM+kw/MW

Approximating |f| by a sequence simple functions (see theo-
rem (18)) and using the monotone convergence theorem (19):

/uum+m4s/uuw+ww/uww<+m

So f € L&(Q2, F, u+ av), and we have proved the inclusion:
L&(QF, ) NLE(Q, F,v) C Le(QLF, i+ av)
4. Using 3. of exercise (16), we have:
/ lgdp+av) = (u+ av)(E)
u(E) + av(E)

/IEdu—l—a/lEdu
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5. Let f € LE(Q,F, 1n) N LE(Q,F,v). We claim that:

/fd(u+au):/fdu+a/fdu (27)

Note from 3. that f € L5(Q,F,u+ av) and all integrals of
equation (27) are therefore well defined. Furthermore from 4.,
(27) is true whenever f is of the form f = 1p with E € F.
By linearity (proved in 6. of exercise (16)), equation (27) is in
fact true whenever f is a simple function on (2, F). Suppose
now that f: (Q,F) — [0, +0o0] is non-negative and measurable,
while being an element of L&(Q, F, 1) N LE(Q, F,v). From the-
orem (18), there exists a sequence (sy),>1 of simple functions
on (2, F) such that s, T f. Let h € L§(Q, F, |1 + av|) be such
that |h| =1 and g+ av = [ hd|p + av|. Then, s,h — fh and
furthermore |s,h| = |s,| = s, < f € L&(Q, F, |p+ av|). From
the dominated convergence theorem (23), we have:

lim snd(p+av) = lirf /snhdm + av|

n—-+4
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/fhd|u + av|
[ ftu+av)

We show similarly that:
li ndp = d
i [ o= [ i
and:

lim snduz/fdu

n—-+oo

Having proved (27) for all simple functions on (€2, F), we have:

/snd(,u—kou/) = /sndu+a/sndu

and taking the limit as n — +o0, we see that (27) is also true for f
non-negative, measurable and belonging to L& (2, F, u)NL&(Q2, F,v).
If f is an arbitrary element of L&(Q,F, u) N L&(Q,F,v), then it
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can be expressed as [ = f1 — fa + i(fs — fa) where each f; is non-
negative, measurable and belonging to L&(Q,F,u) N LE(2, F,v).
Equation (27) being true for each f;, it follows by linearity that (27)
is also true for f. We have proved that (27) is true for all elements f
of € LE(Q, F,u) N LE(Q, F,v).

Exercise 17
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Exercise 18.
1. Let p, v be two measures on (2, F) and « € [0, +00]. Then:
(4 av)(0) = u(®) + av() =0 (28)

Note that from the convention (+00) x 0 = 0, equation (28) is
still true in the case when o = +00. Furthermore, if A € F and
(An)n>1 is a sequence of pairwise disjoint elements of F with
A =dp>14,, then:

(1 + av)(A4)

n(A) + av(A)
+oo +oo
= S uA) +ad Ay
oo oy
= LA + 3 av4n)
= Zu )+ av(4y)
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“+oo
= > (n+ar)(4)
n=1
Note that the third equality is still true if o = 400 or v(A4) =
> nsq V(An) = +oo. It follows that p+aw is countably additive,
and we have proved that it is indeed a measure on (2, F). Now,
given f: (Q,F) — [0, +00], we claim that:

/fd,u—|—oa/ /fd/H—a/fdv (29)

(29) is obviously true when f is of the form f = 1 with F €
F. By linearity (which is still valid, even if & = +00), (29)
is also true when f is a simple function on (2, F). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (s,)n>1 of simple functions on (€2, F),
such that s, 1 f. Having proved (29) for any simple function,
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for all n > 1 we have:

/snd(u+au) = /sndu +a/sndu (30)

From the monotone convergence theorem (19), taking the limit
in (30) as n — 400, we conclude that (29) is also true for f.
Note that if & = +o00 and (un)n>1 is a sequence in [0, +o0]
converging to some u € [0, +o0], then it is not true in general
that au, — ou. Indeed, consider the case when w, = 1/n.
Then au = (+00) x 0 = 0 while au, = (+00) x (1/n) = 400
for all n > 1, and (auy,)p>1 does not converge to au. However,
if u, < upyq for all n > 1, then the convergence au, — au is
true. Indeed, if u = sup,,~; 4, = 0, then u,, = 0 for alln > 1
and consequently o, = 0 = au. If u # 0, then u, # 0 for n
large enough, and consequently au, = 400 = au for n large
enough. All this to say that even in the case when o = 400,
the convergence a [ s,dv — « [ fdv is true.
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[ tin< [ sav (31)

Since p < v, (31) is true when f = 1g, and F € F. By linearity,
(31) is also true when f is a simple function on (£, ). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (sy),>1 of simple functions on (€2, F),
such that s, 1 f. Having proved (31) for any simple function,

for all n > 1 we have:
/sndu < /sndy (32)

From the monotone convergence theorem (19), taking the limit
in (32) as n — +00, we conclude that (31) is also true for f.

2. We claim that:

Exercise 18
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Exercise 19.

1. Since 1 = Re(u), for all F € F we have |u1(F)| < |u(F)|.
Hence, if E € F and (E,),>1 is a measurable partition of E:

+oo
> lm(E \<Zlu ) < |pl(E)
n=1

It follows that |u|(E) is an upper bound of all 2% |u1(E,)|,
as (Ey,)n>1 ranges through all measurable partitions of E. Since
|p1|(E) is the smallest of such upper bounds, |u1|(E) < |u|(E).
This being true for all E € F, we conclude that |u;| < |u|. We
show similarly that |us| < |ul.

2. Let E € F and (Ey)n>1 be a measurable partition of E:

+oo
> (B \<Zlu1 )|+ l2(En)| < || (E) + |p2| (E)
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|| (E) being the supremum of all sums involved on the l.h.s of
this inequality, we conclude that |u|(E) < |p1|(E) + |p2|(E) for
all E € F, ie. that |u| < |pu1]+ |pel

3. Let f: (2, F) — (C,B(C)) be a measurable map. Proving:
LlC(Qvau) = LlC(Qvaul) N LlC(QvfMUQ)

amounts to showing the equivalence:

/ Fldlul < +oo & / Fldla] < +oo, / Fldlus] < oo (33)

From |p1| < |p| and |pe| < |u| using exercise (18) we obtain:

/ Fldl] < / Fldlul (34)

and:

/ Fldlual < / Fldlul (35)
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Furthermore, from |p| < |p1| + |pe2| and exercise (18):

[l < [ 1fiatu+ el = [ 1f1din]+ [ 1fldinal (30
The equivalence (33) follows easily from (34), (35) and (36).

4. Let f: (2, F) — (C,B(C)) be a measurable map. Proving:
Lo(Q, F, ) = Lo(Q, F, i) N Lo (2, F, o)
amounts to showing the equivalence:
[kl < +00 2 [ [fldut < oo, [ Ifldur <-+00 (37)
The positive and negative parts y; and p; of p1 being defined

as pif = (1| — pa)/2 and g’ = (] — u1),2 (see exercise (12)
of Tutorial 11), we have |u1| = uj + py . Using exercise (18):

[l = [ 1flaut + [ \riduz
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Hence, the equivalence (37) is clear. We show similarly that:
L&(,F.p2) = Le(Q, Fop3) N Le (9, F, 1)

5. Let f € LE(Q,F,1). We claim that

[ tdn= [ it = [ rau; +z< [ sans - [ fdu2) (35)

Note that from 3. and 4. we have:
fe Lo(Q,F, il )NLe(Q F, 1 )NLe (0 F, 13 )N Le (4, F, 13

and consequently all integrals in (38) are well-defined. Applying
exercise (17) to the complex measures (in fact signed measures)
1, p2 and o = 4, we obtain:

[ tdn= [ aw i [ o (39)

Applying exercise (17) to the complex measures (in fact finite
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measures) ), u; and o = —1, we obtain:

[ taw = [ o - [ sau; (10)

Similarly, we have:

[ tina= [ oz - [ sauz (41)

Equation (38) follows from (39), (40) and (41).

Exercise 19
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Exercise 20.
1. By definition, the trace of F on A is given by:
Fa2{ANE:EcF}
Since A is an element of F, it is clear that 7|4 C ', where:
F'={E:EcF,ECA}

For the reverse inclusion, note that if £ € F’ then E can be
written as £ = AN E and E € F. So E is an element of F| 4.

2. Let E € F and (Ey),>1 be a measurable partition of E. Then
(AN E,)n>1 is a measurable partition of AN E. Since p is a
complex measure of (2, F), we have:

wWANE) Z,uAﬁE (42)
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i.e. the right-hand-side series converges to u(A N E). By the
very definition of p4, (42) can be re-expressed as:

+oo
WAE) =3 i () (43)

i.e. the right-hand-side series converges to u(E). This shows
that u? is a complex measure on (Q, F).

Let £ € F4 and (E,)n>1 be a measurable partition of I, i.e. a
sequence of pairwise disjoint elements of F|4 with E = W, E,,.
From 1., E and every E, is an element of F, (while being a
subset of A). p being a complex measure on ({2, F), we have:

+oo
WE) =Y n(E) (44)
n=1

i.e. the right-hand-side series converges to u(FE). Since p4 is
defined as the restriction of y to F| 4, and since E and all E,’s
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are elements of F|4, (45) can be equivalently expressed as:

wa(E Z wa(E (45)

i.e. the right-hand-side series converges to 4 (E). This shows
that pj4 is a complex measure on (A, Fj4).

3. Let E € F and (E,),>1 be a measurable partition of E. Then
(AN E),)p>1 is a measurable partition of AN E. Hence:

+oo
S AN E)| < |ul(AN E)

n=1

or equivalently:

Z W (Bn)| < ul*(B)
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4. From the previous section 3., |u|*(E) is an upper bound of all
sums Y% [ (Ey)|, as (Ep)n>1 ranges through all measurable
partitions of E. Since |u?|(E) is the smallest of such upper

bounds, we have |u?|(E) < |u|/*(E). This being true for all
E € F, we conclude that |p?| < |u]A.

5. Let E € F and (Ey,)n>1 be a measurable partition of ANE. For
alln > 1, E, C A and consequently u(E,) = u*(E,). Hence:

“+o0
> lu(E, \—Zlu )l < (AN E)
n=1

6. Let (E),)n>1 be a measurable partition of A°. Then:

“+o0 +oo
Z 1 (Bn)| = Z (AN Ey)| =0

|14 (A°) being the supremum of all sums 7> |u4(E,)|, as
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(En)n>1 ranges through all measurable partitions of A¢, we con-
clude that |u?|(A°) = 0.

7. From 5. it follows that |u4|(A N E) is an upper bound of all
sums E:ﬁ |1(Ey)|, as (Ey)n>1 ranges through all measurable
partitions of ANE. |u|(ANE) being the smallest of such upper
bounds, we have |u[(A N E) < |p4|(AN E). However, from 6.
we have |p?|(A°) = 0, and consequently:

AN(E) = [ (AN B) + 1| (A° N B) = i | (AN E)

It follows that |u|(AN E) < |p?|(E). This being true for all
E € F, we see that |u|4 < |p|. Having proved in 4. that
lud| < |u|?, we conclude that |u?| = |u|*. In other words,
the total variation of the restriction of p to A, is equal to the
restriction of the total variation of u to A.

8. Let £ € F|4 and (En)n>1 be an F| a-measurable partition of E.
Since Fj4 € F, F € F and (En)n>1 is also an F-measurable
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10.

partition of E. Hence:

Zlu )< |pl(E) (46)

4 and |u||4 being respectively the restrictions of p and || to
F|a, (46) can be re-expressed as:

Z [a(En)| < [plja(E)

. Given E € Fly, it appears from 8. that |u[|4(E) is an upper

bound of all sums Y, Llma(Ern)|, as (En)n>1 ranges through
all F| 4-measurable partltlons of . Since |pj4|(E) is the small-
est of such upper bounds, we have |u4|(E) < |u[ja(E). This
being true for all £ € F4, we conclude that [ 4| < |p]4.

Let E € F|4 and (E,),>1 be an F-measurable partition of E.
From 1. we have F € F and E C A. It follows that F,, C A
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11.

for all n > 1 and consequently E,, € Fj4. So (Ej)n>1 is also an
JF|a-measurable partition of E. Hence:

Z A (En)| < [pal(E)

which can be equivalently written as:
Z [u(En)| < |pal(E)

Given E € Fy, it appears from 10. that |u4|(E) is an upper
bound of all sums Z L n(En)], as (Ep)p>1 ranges through all
F-measurable partltlons of E. Since |u|(E) is the smallest of
such upper bounds, we have |u[(E) < [u4|(E), or equivalently
since E € Fla, |u|ja(E) < |pal(E). This being true for all
E € Fla, |pulja < |pjal- Having proved in 9. that |pja| < |ul4,
we conclude that [p4] = [pu]j4-
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12. By assumption, h € L&(Q, F,|p|) is such that |h| = 1 and
p = [ hd|p|. In particular, for all E € F:

WAE) = AN E)

/ hd|
ANE

/ (1) Ladu
- /(h1E>d|mA

/ A

E

- / ha ||
E

where the first equality stems from the definition of pu?, the
second from the fact that p = [ hd|u|, the third, fourth and
fifth from a use of definition (49) and finally the sixth from the

www.probability.net


http://www.probability.net

Solutions to Exercises 111

fact that |u|* = |u?|. This being true for all E € F, we have
proved that p = [ hd|u?|.

13. Since h € L&(0, F, |pl), from definition (49), hy4 is an element
of L (A, Fia, |ulja). Having proved that |u|ja = | 4], it follows
that hy4 € LIC(A,}]A, lal) 2. Furthermore, for all E € Fla:

pa(E) = p(E)
HANE)

/ )
ANE

[ 1) Lad
/h\A(lE)\AdMMA

= / Dy ad|p])a
FE

20One may argue that || 4| =1 and |p4] is a finite measure. . .
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14.

= / hyad| ) ]
E

where the first equality stems from the definition of p 4, the
second from the fact that £ C A, the third from the fact that
w = [ hd|p|, the fourth, fifth and sixth from definition (49) an
finally the seventh from the fact that |u||.4 = [p4]. This being
true for all E € Fj4, we conclude that 4 = [ hjad|pal.

Let f € LE(Q, F, p). From definition (97), this is equivalent to
[ € L&(Q, F, |p]). Applying definition (49), we have:

flAeLlc(Qva |/~L‘)»f€Llc(Qa-7'-» ‘M|A),f‘AELlc(A,f'|A, ‘N“A)

and since [p|* = |p?| and |p| |4 = |p4], We obtain:

flA ELlC(Qva |/1'D7 fELlc(Qva ‘:uA|)7 f\A ELlc(A,f]A, ‘N|A|)
Moreover, since |h| =1 and p = [ hd|p/|, from definition (97):

[ Fradu= [ futdlu (47)
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and similarly, since p? = [ hd|u?| and |p|? = |p?):
[ ant = [ snati = [ fhajul? (15)
Furthermore since juj4 = [ hyad|pja| and |ulja = |p)al:

/f\Ad.UlA =/f|Ah|Ad\M|A| Z/(fh)md\MhA (49)

Finally, from definition (49):

/ Phladi] = / FhdlplA = / fhyadiula (50)

Comparing (47), (48) and (49) with (50), we conclude that:

[ Fiadn= [ saut = [ faduns

Exercise 20
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Exercise 21. Let f € LL(Q,F, 1), where p is a complex measure on

(Q,F). Let h € LE(Q, F, |p]) be such that || =1 and p = [ hd|pul.
Let v = [ fdu, i.e. be the map defined by:

VEeF, V(E):/fdp
From definitions (98), (97) and (49), for all E € F:

/ [lpdn = / iyl = [ fhdy

It follows that v = [ fhd|p|, and applying theorem (63), v is therefore
a complex measure on (£, F), with total variation |v| given by:

VEcF , [v|(E / (FRldl] = / Fldlul

Let g : (2, F) — (C,B(C)) be measurable. Applying theorem (21) to
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lv| = [|f|d|u|, we obtain:

[1slail = [ 1al\71al

and therefore we have the equivalence:

/ gldv] < +oo & / lgf1dl] < +oo

gELE(Q,F,v) & gf € L&(Q,F, p)

When such condition is satisfied, we claim that:

/gdi/ = /gfdu (51)

This equality is clearly true when g is of the form g = 15 where £ € F
(such a g would automatically lie in L&(€2,F,v) since |v]| is a finite
measure). By the linearity of the integral (with respect to complex
measures, such a linearity is proved in exercise (16)), equation (51) is
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also true when ¢ is a simple function on (2, F). If g is non-negative
and measurable, while being an element of L&(Q, F,v), from theo-
rem (18) there exists a sequence (s, ),>1 of simple functions on (€2, F),
such that s, T g. Let k be an arbitrary element of L&(Q, F, |v|) with
|k| =1 and v = [ kd|v|. Then:

lim spdv = lim spkd|v|
n—-+oo n—-+oo

[ ohan
/gdu

where the first and third equalities stem from definition (97), and the
second from the dominated convergence theorem (23) (and the fact
that s,k — gk with [s, k| = s, < g€ L&(Q, F,|v|)). Similarly:

lim Snfdp = lirf /snfhdm\

n—-+oo
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[onalu
/ gfdu

where the first and third equalities stem from definition (97), and
the second from the dominated convergence theorem (23) (and the
fact that s, fh — gfh with |s,fh| = s,|f| < g|f] € L&(Q, F, |u))).
Having proved (51) for simple functions, for all n > 1:

/sndu:/snfd,u

and taking the limit as n — 400, we see that (51) is also true when-
ever ¢ is non-negative and measurable, while being an element of
L&(Q, F,v). If g is an arbitrary element L&(€, F,v), then it can be
decomposed as g = g1 — g2 + (g3 — g4) where each g; is non-negative
and measurable, while being an element of L (2, F,v). By linearity,
equation (51) is also true for g.

Exercise 21
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Exercise 22.

1.Let Q=M x .. xQ,and F=F, ® ... F,. Then:

VEE]:,,u(E)z/th
E

where h = hy...h, and v = |pu1| ® ... ® |pun| is the product
measure, as defined in definition (62). Each total variation |u;]|
being a finite measure, v is also a finite measure, and further-
more |h| = |hy|...|h,| = 1. Moreover, the map h is clearly
measurable with respect to F, as the equality:

VBeB(C), hy ' (B)=Q x ... xh; }(B) x ... x Q,

3

shows that each h; (viewed as a map defined on the product
space (€2, F)) is measurable. It follows that y is of the form y =
| hdv, where h € L&(Q, F,v). From theorem (63), we conclude
that 4 is a complex measure on (2, F). In fact, theorem (63)
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goes further, asserting that the total variation of p is:
VEef,mmmz/wmy:/iwy:mm
E

Le. [l =v=|m|®...Q |l

2. Let A= A; x ... x A, be a measurable rectangle. We have:

/ hihad|pn| ® || = /hlhzlAlezd|/~L1\®\M2|
A

1X Az

= [(n1a) et )|

_ /(/mﬂAxmungodml
- /hllA1 </h21A2d|N2|) d|p1]

= /hllAlm(Az)dWl\
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= Mz(Az)/hllAldMl\

= (A1) - p2(A2)

Where crucially, the third equality stems from Fubini theo-
rem (33). If n = 2, then we have nothing further to prove.
If n > 2, we consider the induction hypothesis, for 2 < k < n:

[ v =m(a). ) (52)
By,

where B, = A; X ... X A, v = || ® ... @ |uk| and gy, is defined
as gx = hi...hg. If we assume that such induction hypothesis

is true for some k with 2 < k <n — 1, then:

/ Ger1dveyr = /(glek)(hk+11Ak+1)duk®\Mic+1\
B

k+1
= /glek </hk+11Ak+1d|uk+1|) dvg

www.probability.net


http://www.probability.net

Solutions to Exercises 121

1 (Agt1) / grdvy,

By,

= (A1) pegr (Aesa)

where the second equality stems from Fubini theorem (33) and
the fourth from our induction hypothesis (52). This shows
that (52) is in fact true for all k = 2,...,n, and finally:

W) = [ gudn = ()i (4,)

n

3. We have proved that p is a complex measure on (£, F) such
that for all measurable rectangle A = A; x ... x A,:

P(A) = pi(Ar) ... pn(Ay)

In order to prove theorem (66), it remains to show that such a
measure is unique. Suppose p and v are two complex measures
on (9, F) which coincide on the set of measurable rectangles
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FiI... 11 F,. We define:
D={EcF, k) =v(E)}
Then AL II... 10 F,, C D, and D is easily seen to be a Dynkin
system on (£, F). Indeed, Q2 being a measurable rectangle, we
have Q € D. Furthermore, If A, B € D and A C B, Then:
wWB\A) = p(A)+p(B\A)—p(Ad)
(B) — u(A)

= v(B)—v(4)

= v(B\4)
and therefore B\ A € D. Moreover, if (A4, ),>1 is a sequence of
elements of D such that A,, T A, then using exercise (13):

pd) = lm p(An)= lhm v(A,)=v(4)

NI

and therefore A € D. So D is indeed a Dynkin system on
(©Q,F). The set of measurable rectangles being closed under
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finite intersection (and being a subset of D), from the Dynkin
system theorem (1), we have:

o(FA ... IF,)CD

and consequently F = F1®...®F, C D. It follows that D = F
and finally p = v. This proves theorem (66).

Exercise 22
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Exercise 23.

1. We saw in exercise (22) that the complex measure u defined by:
VE e F, u(E) =/ ha.. hpdlpn] @ .. ® |un|  (53)
E

satisfies the requirement of theorem (66), and is therefore equal
to the product measure p; ® ... ® p,. Furthermore, we proved
using theorem (63) that |u| = |u1| ® ... & |unl-

11 @ @pnll = |1 ®...® pun|()
= || ®...®[ua|(Q)

pal(21) - - [ | ()

lpall - Nl
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3. From (53) and |p| = |u1| ® ... @ |un|, we obtain:
VE € F, u(E) :/ B .. hodp]
E

4. Having shown that u = [ hd|p| with h = hq ... h, (Jh] = 1), it
follows from definition (97) that for all f € LE(Q, F, p):

[ fdn= [ shdi
or equivalently:

/fdp1®...®,un:/fhl...hnd|u1|®...®\,un\
5. Let o be a permutation of N,, and h = hy...h,. Then:

/fdu1®~-~®un - /fhd\m\@---@mnl

[ o] dia]
Qo (n) Q1)
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= / Ce fd,u,,(l) ce dug(n)
2o (n) Q1)

where the second equality stems from exercise (17) of Tutorial 7,
and the third equality from:

/ Thdlpeyl = ho) - ~~ha(n)/ Thoydlpem)l
Qg(l) a(1)

= h0(2)~'~h0(n)/ Jdps)
(1)

followed by an induction argument.

Exercise 23
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