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12. Radon-Nikodym Theorem
In the following, (Ω,F) is an arbitrary measurable space.

Definition 96 Let μ and ν be two (possibly complex) measures on
(Ω,F). We say that ν is absolutely continuous with respect to μ,
and we write ν << μ, if and only if, for all E ∈ F :

μ(E) = 0 ⇒ ν(E) = 0

Exercise 1. Let μ be a measure on (Ω,F) and ν ∈ M1(Ω,F). Show
that ν << μ is equivalent to |ν| << μ.

Exercise 2. Let μ be a measure on (Ω,F) and ν ∈ M1(Ω,F). Let
ε > 0. Suppose there exists a sequence (En)n≥1 in F such that:

∀n ≥ 1 , μ(En) ≤ 1
2n

, |ν(En)| ≥ ε

Define:
E

�
= lim sup

n≥1
En

�
=
⋂
n≥1

⋃
k≥n

Ek
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1. Show that:

μ(E) = lim
n→+∞μ

⎛
⎝⋃

k≥n

Ek

⎞
⎠ = 0

2. Show that:

|ν|(E) = lim
n→+∞ |ν|

⎛
⎝⋃

k≥n

Ek

⎞
⎠ ≥ ε

3. Let λ be a measure on (Ω,F). Can we conclude in general that:

λ(E) = lim
n→+∞λ

⎛
⎝⋃

k≥n

Ek

⎞
⎠

4. Prove the following:
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Theorem 58 Let μ be a measure on (Ω,F) and ν be a complex
measure on (Ω,F). The following are equivalent:

(i) ν << μ

(ii) |ν| << μ

(iii) ∀ε > 0, ∃δ > 0, ∀E ∈ F , μ(E) ≤ δ ⇒ |ν(E)| < ε

Exercise 3. Let μ be a measure on (Ω,F) and ν ∈ M1(Ω,F) such
that ν << μ. Let ν1 = Re(ν) and ν2 = Im(ν).

1. Show that ν1 << μ and ν2 << μ.

2. Show that ν+
1 , ν−

1 , ν+
2 , ν−

2 are absolutely continuous w.r. to μ.

Exercise 4. Let μ be a finite measure on (Ω,F) and f ∈ L1
C(Ω,F , μ).

Let S be a closed proper subset of C. We assume that for all E ∈ F
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such that μ(E) > 0, we have:

1
μ(E)

∫
E

fdμ ∈ S

1. Show there is a sequence (Dn)n≥1 of closed discs in C, with:

Sc =
+∞⋃
n=1

Dn

Let αn ∈ C, rn > 0 be such that Dn = {z ∈ C : |z−αn| ≤ rn}.
2. Suppose μ(En) > 0 for some n ≥ 1, where En = {f ∈ Dn}.

Show that:∣∣∣∣ 1
μ(En)

∫
En

fdμ − αn

∣∣∣∣ ≤ 1
μ(En)

∫
En

|f − αn|dμ ≤ rn

3. Show that for all n ≥ 1, μ({f ∈ Dn}) = 0.

4. Prove the following:
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Theorem 59 Let μ be a finite measure on (Ω,F), f ∈ L1
C(Ω,F , μ).

Let S be a closed subset of C such that for all E ∈ F with μ(E) > 0,
we have:

1
μ(E)

∫
E

fdμ ∈ S

Then, f ∈ S μ-a.s.

Exercise 5. Let μ be a σ-finite measure on (Ω,F). Let (En)n≥1 be
a sequence in F such that En ↑ Ω and μ(En) < +∞ for all n ≥ 1.
Define w : (Ω,F) → (R,B(R)) as:

w
�
=

+∞∑
n=1

1
2n

1
1 + μ(En)

1En

1. Show that for all ω ∈ Ω, 0 < w(ω) ≤ 1.

2. Show that w ∈ L1
R(Ω,F , μ).
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Exercise 6. Let μ be a σ-finite measure on (Ω,F) and ν be a finite
measure on (Ω,F), such that ν << μ. Let w ∈ L1

R(Ω,F , μ) be such
that 0 < w ≤ 1. We define μ̄ =

∫
wdμ, i.e.

∀E ∈ F , μ̄(E)
�
=
∫

E

wdμ

1. Show that μ̄ is a finite measure on (Ω,F).

2. Show that φ = ν + μ̄ is also a finite measure on (Ω,F).

3. Show that for all f ∈ L1
C(Ω,F , φ), we have f ∈ L1

C(Ω,F , ν),
fw ∈ L1

C(Ω,F , μ), and:∫
fdφ =

∫
fdν +

∫
fwdμ
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4. Show that for all f ∈ L2
C(Ω,F , φ), we have:∫

|f |dν ≤
∫

|f |dφ ≤
(∫

|f |2dφ

) 1
2

(φ(Ω))
1
2

5. Show that L2
C(Ω,F , φ) ⊆ L1

C(Ω,F , ν), and for f ∈ L2
C(Ω,F , φ):∣∣∣∣

∫
fdν

∣∣∣∣ ≤√φ(Ω).‖f‖2

6. Show the existence of g ∈ L2
C(Ω,F , φ) such that:

∀f ∈ L2
C(Ω,F , φ) ,

∫
fdν =

∫
fgdφ (1)

7. Show that for all E ∈ F such that φ(E) > 0, we have:

1
φ(E)

∫
E

gdφ ∈ [0, 1]
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8. Show the existence of g ∈ L2
C(Ω,F , φ) such that g(ω) ∈ [0, 1]

for all ω ∈ Ω, and (1) still holds.

9. Show that for all f ∈ L2
C(Ω,F , φ), we have:∫

f(1 − g)dν =
∫

fgwdμ

10. Show that for all n ≥ 1 and E ∈ F ,

f
�
= (1 + g + . . . + gn)1E ∈ L2

C(Ω,F , φ)

11. Show that for all n ≥ 1 and E ∈ F ,∫
E

(1 − gn+1)dν =
∫

E

g(1 + g + . . . + gn)wdμ

12. Define:

h
�
= gw

(
+∞∑
n=0

gn

)
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Show that if A = {0 ≤ g < 1}, then for all E ∈ F :

ν(E ∩ A) =
∫

E

hdμ

13. Show that {h = +∞} = Ac and conclude that μ(Ac) = 0.

14. Show that for all E ∈ F , we have ν(E) =
∫

E hdμ.

15. Show that if μ is σ-finite on (Ω,F), and ν is a finite measure
on (Ω,F) such that ν << μ, there exists h ∈ L1

R(Ω,F , μ), such
that h ≥ 0 and:

∀E ∈ F , ν(E) =
∫

E

hdμ

16. Prove the following:
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Theorem 60 (Radon-Nikodym:1) Let μ be a σ-finite measure on
(Ω,F). Let ν be a complex measure on (Ω,F) such that ν << μ.
Then, there exists some h ∈ L1

C(Ω,F , μ) such that:

∀E ∈ F , ν(E) =
∫

E

hdμ

If ν is a signed measure on (Ω,F), we can assume h ∈ L1
R(Ω,F , μ).

If ν is a finite measure on (Ω,F), we can assume h ≥ 0.

Exercise 7. Let f = u + iv ∈ L1
C(Ω,F , μ), such that:

∀E ∈ F ,

∫
E

fdμ = 0

where μ is a measure on (Ω,F).

1. Show that: ∫
u+dμ =

∫
{u≥0}

udμ
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2. Show that f = 0 μ-a.s.

3. State and prove some uniqueness property in theorem (60).

Exercise 8. Let μ and ν be two σ-finite measures on (Ω,F) such
that ν << μ. Let (En)n≥1 be a sequence in F such that En ↑ Ω and
ν(En) < +∞ for all n ≥ 1. We define:

∀n ≥ 1 , νn
�
= νEn

�
= ν(En ∩ ·)

1. Show that there exists hn ∈ L1
R(Ω,F , μ) with hn ≥ 0 and:

∀E ∈ F , νn(E) =
∫

E

hndμ (2)

for all n ≥ 1.

2. Show that for all E ∈ F ,∫
E

hndμ ≤
∫

E

hn+1dμ
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3. Show that for all n, p ≥ 1,

μ({hn − hn+1 >
1
p
}) = 0

4. Show that hn ≤ hn+1 μ-a.s.

5. Show the existence of a sequence (hn)n≥1 in L1
R(Ω,F , μ) such

that 0 ≤ hn ≤ hn+1 for all n ≥ 1 and with (2) still holding.

6. Let h = supn≥1 hn. Show that:

∀E ∈ F , ν(E) =
∫

E

hdμ (3)

7. Show that for all n ≥ 1,
∫

En
hdμ < +∞.

8. Show that h < +∞ μ-a.s.

9. Show there exists h : (Ω,F) → R+ measurable, while (3) holds.

10. Show that for all n ≥ 1, h ∈ L1
R(Ω,F , μEn).
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Theorem 61 (Radon-Nikodym:2) Let μ and ν be two σ-finite
measures on (Ω,F) such that ν << μ. There exists a measurable
map h : (Ω,F) → (R+,B(R+)) such that:

∀E ∈ F , ν(E) =
∫

E

hdμ

Exercise 9. Let h, h′ : (Ω,F) → [0, +∞] be two non-negative and
measurable maps. Let μ be a σ-finite measure on (Ω,F). We assume:

∀E ∈ F ,

∫
E

hdμ =
∫

E

h′dμ

Let (En)n≥1 be a sequence in F with En ↑ Ω and μ(En) < +∞ for
all n ≥ 1. We define Fn = En ∩ {h ≤ n} for all n ≥ 1.

1. Show that for all n and E ∈ F ,
∫

E hdμFn =
∫

E h′dμFn < +∞.

2. Show that for all n, p ≥ 1, μ(Fn ∩ {h > h′ + 1/p}) = 0.
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3. Show that for all n ≥ 1, μ({Fn ∩ {h �= h′}) = 0.

4. Show that μ({h �= h′} ∩ {h < +∞}) = 0.

5. Show that h = h′ μ-a.s.

6. State and prove some uniqueness property in theorem (61).

Exercise 10. Take Ω = {∗} and F = P(Ω) = {∅, {∗}}. Let μ be
the measure on (Ω,F) defined by μ(∅) = 0 and μ({∗}) = +∞. Let
h, h′ : (Ω,F) → [0, +∞] be defined by h(∗) = 1 �= 2 = h′(∗). Show
that we have:

∀E ∈ F ,

∫
E

hdμ =
∫

E

h′dμ

Explain why this does not contradict the previous exercise.

Exercise 11. Let μ be a complex measure on (Ω,F).

1. Show that μ << |μ|.
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2. Show the existence of some h ∈ L1
C(Ω,F , |μ|) such that:

∀E ∈ F , μ(E) =
∫

E

hd|μ|

3. If μ is a signed measure, can we assume h ∈ L1
R(Ω,F , |μ|)?

Exercise 12. Further to ex. (11), define Ar = {|h| < r} for all r > 0.

1. Show that for all measurable partition (En)n≥1 of Ar:
+∞∑
n=1

|μ(En)| ≤ r|μ|(Ar)

2. Show that |μ|(Ar) = 0 for all 0 < r < 1.

3. Show that |h| ≥ 1 |μ|-a.s.
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4. Suppose that E ∈ F is such that |μ|(E) > 0. Show that:∣∣∣∣ 1
|μ|(E)

∫
E

hd|μ|
∣∣∣∣ ≤ 1

5. Show that |h| ≤ 1 |μ|-a.s.

6. Prove the following:

Theorem 62 For all complex measure μ on (Ω,F), there exists h
belonging to L1

C(Ω,F , |μ|) such that |h| = 1 and:

∀E ∈ F , μ(E) =
∫

E

hd|μ|

If μ is a signed measure on (Ω,F), we can assume h ∈ L1
R(Ω,F , |μ|).

Exercise 13. Let A ∈ F , and (An)n≥1 be a sequence in F .
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1. Show that if An ↑ A then 1An ↑ 1A.

2. Show that if An ↓ A then 1An ↓ 1A.

3. Show that if 1An → 1A, then for all μ ∈ M1(Ω,F):

μ(A) = lim
n→+∞μ(An)

Exercise 14. Let μ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , μ).

1. Show that ν =
∫

fdμ ∈ M1(Ω,F).

2. Let h ∈ L1
C(Ω,F , |ν|) be such that |h| = 1 and ν =

∫
hd|ν|.

Show that for all E, F ∈ F :∫
E

f1F dμ =
∫

E

h1F d|ν|
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3. Show that if g : (Ω,F) → (C,B(C)) is bounded and measurable:

∀E ∈ F ,

∫
E

fgdμ =
∫

E

hgd|ν|

4. Show that:
∀E ∈ F , |ν|(E) =

∫
E

fh̄dμ

5. Show that for all E ∈ F ,∫
E

Re(fh̄)dμ ≥ 0 ,

∫
E

Im(fh̄)dμ = 0

6. Show that fh̄ ∈ R+ μ-a.s.

7. Show that fh̄ = |f | μ-a.s.

8. Prove the following:
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Theorem 63 Let μ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , μ).

Then, ν =
∫

fdμ defined by:

∀E ∈ F , ν(E)
�
=
∫

E

fdμ

is a complex measure on (Ω,F) with total variation:

∀E ∈ F , |ν|(E) =
∫

E

|f |dμ

Exercise 15. Let μ ∈ M1(Ω,F) be a signed measure. Suppose that
h ∈ L1

R(Ω,F , |μ|) is such that |h| = 1 and μ =
∫

hd|μ|. Define
A = {h = 1} and B = {h = −1}.

1. Show that for all E ∈ F , μ+(E) =
∫

E
1
2 (1 + h)d|μ|.

2. Show that for all E ∈ F , μ−(E) =
∫

E
1
2 (1 − h)d|μ|.

3. Show that μ+ = μA = μ(A ∩ · ).
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4. Show that μ− = −μB = −μ(B ∩ · ).

Theorem 64 (Hahn Decomposition) Let μ be a signed measure
on (Ω,F). There exist A, B ∈ F , such that A ∩ B = ∅, Ω = A � B
and for all E ∈ F , μ+(E) = μ(A ∩ E) and μ−(E) = −μ(B ∩ E).

Definition 97 Let μ be a complex measure on (Ω,F). We define:

L1
C(Ω,F , μ)

�
= L1

C(Ω,F , |μ|)
and for all f ∈ L1

C(Ω,F , μ), the Lebesgue integral of f with respect
to μ, is defined as: ∫

fdμ
�
=
∫

fhd|μ|
where h ∈ L1

C(Ω,F , |μ|) is such that |h| = 1 and μ =
∫

hd|μ|.

Exercise 16. Let μ be a complex measure on (Ω,F).
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1. Show that for all f : (Ω,F) → (C,B(C)) measurable:

f ∈ L1
C(Ω,F , μ) ⇔

∫
|f |d|μ| < +∞

2. Show that for f ∈ L1
C(Ω,F , μ),

∫
fdμ is unambiguously defined.

3. Show that for all E ∈ F , 1E ∈ L1
C(Ω,F , μ) and

∫
1Edμ = μ(E).

4. Show that if μ is a finite measure, then |μ| = μ.

5. Show that if μ is a finite measure, definition (97) of integral
and space L1

C(Ω,F , μ) is consistent with that already known
for measures.

6. Show that L1
C(Ω,F , μ) is a C-vector space and that:∫

(f + αg)dμ =
∫

fdμ + α

∫
gdμ

for all f, g ∈ L1
C(Ω,F , μ) and α ∈ C.
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7. Show that for all f ∈ L1
C(Ω,F , μ), we have:∣∣∣∣
∫

fdμ

∣∣∣∣ ≤
∫

|f |d|μ|

Exercise 17. Let μ, ν ∈ M1(Ω,F), let α ∈ C.

1. Show that |αν| = |α|.|ν|
2. Show that |μ + ν| ≤ |μ| + |ν|
3. Show that L1

C(Ω,F , μ) ∩ L1
C(Ω,F , ν) ⊆ L1

C(Ω,F , μ + αν)

4. Show that for all E ∈ F :∫
1Ed(μ + αν) =

∫
1Edμ + α

∫
1Edν

5. Show that for all f ∈ L1
C(Ω,F , μ) ∩ L1

C(Ω,F , ν):∫
fd(μ + αν) =

∫
fdμ + α

∫
fdν
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Exercise 18. Let f : (Ω,F) → [0, +∞] be non-negative and measur-
able. Let μ and ν be measures on (Ω,F), and α ∈ [0, +∞]:

1. Show that μ + αν is a measure on (Ω,F) and:∫
fd(μ + αν) =

∫
fdμ + α

∫
fdν

2. Show that if μ ≤ ν, then:∫
fdμ ≤

∫
fdν

Exercise 19. Let μ ∈ M1(Ω,F), μ1 = Re(μ) and μ2 = Im(μ).

1. Show that |μ1| ≤ |μ| and |μ2| ≤ |μ|.
2. Show that |μ| ≤ |μ1| + |μ2|.
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3. Show that L1
C(Ω,F , μ) = L1

C(Ω,F , μ1) ∩ L1
C(Ω,F , μ2).

4. Show that:

L1
C(Ω,F , μ1) = L1

C(Ω,F , μ+
1 ) ∩ L1

C(Ω,F , μ−
1 )

L1
C(Ω,F , μ2) = L1

C(Ω,F , μ+
2 ) ∩ L1

C(Ω,F , μ−
2 )

5. Show that for all f ∈ L1
C(Ω,F , μ):∫

fdμ =
∫

fdμ+
1 −

∫
fdμ−

1 + i

(∫
fdμ+

2 −
∫

fdμ−
2

)

Exercise 20. Let μ ∈ M1(Ω,F). Let A ∈ F . Let h ∈ L1
C(Ω,F , |μ|)

be such that |h| = 1 and μ =
∫

hd|μ|. Recall that μA = μ(A∩ · ) and
μ|A = μ|(F|A) where F|A = {A ∩ E , E ∈ F} ⊆ F .

1. Show that we also have F|A = {E : E ∈ F , E ⊆ A}.
2. Show that μA ∈ M1(Ω,F) and μ|A ∈ M1(A,F|A).
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3. Let E ∈ F and (En)n≥1 be a measurable partition of E. Show:
+∞∑
n=1

|μA(En)| ≤ |μ|A(E)

4. Show that we have |μA| ≤ |μ|A.

5. Let E ∈ F and (En)n≥1 be a measurable partition of A ∩ E.
Show that:

+∞∑
n=1

|μ(En)| ≤ |μA|(A ∩ E)

6. Show that |μA|(Ac) = 0.

7. Show that |μA| = |μ|A.

8. Let E ∈ F|A and (En)n≥1 be an F|A-measurable partition of E.
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Show that:
+∞∑
n=1

|μ|A(En)| ≤ |μ||A(E)

9. Show that |μ|A| ≤ |μ||A.

10. Let E ∈ F|A ⊆ F and (En)n≥1 be a measurable partition of E.
Show that (En)n≥1 is also an F|A-measurable partition of E,
and conclude:

+∞∑
n=1

|μ(En)| ≤ |μ|A|(E)

11. Show that |μ|A| = |μ||A.

12. Show that μA =
∫

hd|μA|.
13. Show that h|A ∈ L1

C(A,F|A, |μ|A|) and μ|A =
∫

h|Ad|μ|A|.

www.probability.net

http://www.probability.net


Tutorial 12: Radon-Nikodym Theorem 27

14. Show that for all f ∈ L1
C(Ω,F , μ), we have:

f1A ∈ L1
C(Ω,F , μ) , f ∈ L1

C(Ω,F , μA) , f|A ∈ L1
C(A,F|A, μ|A)

and: ∫
f1Adμ =

∫
fdμA =

∫
f|Adμ|A

Definition 98 Let f ∈ L1
C(Ω,F , μ) , where μ is a complex measure

on (Ω,F). let A ∈ F . We call partial Lebesgue integral of f with
respect to μ over A, the integral denoted

∫
A fdμ, defined as:∫

A

fdμ
�
=
∫

(f1A)dμ =
∫

fdμA =
∫

(f|A)dμ|A

where μA is the complex measure on (Ω,F), μA = μ(A ∩ · ), f|A is
the restriction of f to A and μ|A is the restriction of μ to F|A, the
trace of F on A.

Exercise 21. Prove the following:
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Theorem 65 Let f ∈ L1
C(Ω,F , μ), where μ is a complex measure

on (Ω,F). Then, ν =
∫

fdμ defined as:

∀E ∈ F , ν(E)
�
=
∫

E

fdμ

is a complex measure on (Ω,F), with total variation:

∀E ∈ F , |ν|(E) =
∫

E

|f |d|μ|

Moreover, for all measurable map g : (Ω,F) → (C,B(C)), we have:

g ∈ L1
C(Ω,F , ν) ⇔ gf ∈ L1

C(Ω,F , μ)

and when such condition is satisfied:∫
gdν =

∫
gfdμ

Exercise 22. Let (Ω1,F1), . . . , (Ωn,Fn) be measurable spaces, where
n ≥ 2. Let μ1 ∈ M1(Ω1,F1), . . ., μn ∈ M1(Ωn,Fn). For all i ∈ Nn,
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let hi belonging to L1
C(Ωi,Fi, |μi|) be such that |hi| = 1 and μi =∫

hid|μi|. For all E ∈ F1 ⊗ . . . ⊗Fn, we define:

μ(E)
�
=
∫

E

h1 . . . hnd|μ1| ⊗ . . . ⊗ |μn|

1. Show that μ ∈ M1(Ω1 × . . . × Ωn,F1 ⊗ . . . ⊗Fn)

2. Show that for all measurable rectangle A1 × . . . × An:

μ(A1 × . . . × An) = μ1(A1) . . . μn(An)

3. Prove the following:

Theorem 66 Let μ1, . . . , μn be n complex measures on measurable
spaces (Ω1,F1), . . . , (Ωn,Fn) respectively, where n ≥ 2. There exists
a unique complex measure μ1⊗. . .⊗μn on (Ω1×. . .×Ωn,F1⊗. . .⊗Fn)
such that for all measurable rectangle A1 × . . . × An, we have:

μ1 ⊗ . . . ⊗ μn(A1 × . . . × An) = μ1(A1) . . . μn(An)
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Exercise 23. Further to theorem (66) and exercise (22):

1. Show that |μ1 ⊗ . . . ⊗ μn| = |μ1| ⊗ . . . ⊗ |μn|.
2. Show that ‖μ1 ⊗ . . . ⊗ μn‖ = ‖μ1‖ . . . ‖μn‖.
3. Show that for all E ∈ F1 ⊗ . . . ⊗Fn:

μ1 ⊗ . . . ⊗ μn(E) =
∫

E

h1 . . . hnd|μ1 ⊗ . . . ⊗ μn|

4. Let f ∈ L1
C(Ω1 × . . .×Ωn,F1 ⊗ . . .⊗Fn, μ1 ⊗ . . .⊗ μn). Show:∫

fdμ1 ⊗ . . . ⊗ μn =
∫

fh1 . . . hnd|μ1| ⊗ . . . ⊗ |μn|

5. let σ be a permutation of {1, . . . , n}. Show that:∫
fdμ1 ⊗ . . . ⊗ μn =

∫
Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)
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Solutions to Exercises
Exercise 1. Let μ be a measure on (Ω,F) and ν ∈ M1(Ω,F). Sup-
pose that ν << μ. Let E ∈ F be such that μ(E) = 0. Let (En)n≥1

be a measurable partition of E. For each n ≥ 1, we have En ⊆ E and
consequently μ(En) ≤ μ(E). It follows that μ(En) = 0 for all n ≥ 1,
and from ν << μ we obtain that ν(En) = 0 for all n ≥ 1. Hence:

+∞∑
n=1

|ν(En)| = 0

This being true for all measurable partition (En)n≥1 of E, it follows
from definition (94) that |ν|(E) = 0. We have proved the implication
that μ(E) = 0 ⇒ |ν|(E) = 0 and consequently |ν| << μ. Conversely,
if |ν| << μ and μ(E) = 0, then |ν|(E) = 0. From |ν(E)| ≤ |ν|(E) we
conclude that ν(E) = 0. So ν << μ. We have proved the equivalence
between ν << μ and |ν| << μ. Note that μ is assumed to be a
measure, and not a complex measure.

Exercise 1
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Exercise 2.

1. Define Bn = ∪k≥nEk for n ≥ 1. By assumption, μ(Ek) ≤ 1/2k

for all k ≥ 1 and consequently:

μ(Bn) ≤
+∞∑
k=n

μ(Ek) ≤
+∞∑
k=n

1
2k

=
1

2n−1
< +∞

It follows that μ(Bn) → 0 as n → +∞. Furthermore, since E
is defined as E = ∩n≥1Bn and Bn+1 ⊆ Bn for all n ≥ 1, we
have Bn ↓ E. From μ(B1) < +∞ and theorem (8), we obtain
μ(Bn) → μ(E) as n → +∞. We have proved that:

μ(E) = lim
n→+∞μ

⎛
⎝⋃

k≥n

Ek

⎞
⎠ = 0

2. If Bn = ∪k≥nEk, then E = ∩n≥1Bn and Bn+1 ⊆ Bn for all
n ≥ 1. From theorem (57), the total variation |ν| of the complex
measure ν is a finite measure. In particular |ν|(B1) < +∞,
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and applying theorem (8), it follows that |ν|(Bn) → |ν|(E) as
n → +∞. Furthermore, since En ⊆ Bn for all n ≥ 1, we have:

ε ≤ |ν(En)| ≤ |ν|(En) ≤ |ν|(Bn)

and in particular lim |ν|(Bn) ≥ ε. We have proved that:

|ν|(E) = lim
n→+∞ |ν|

⎛
⎝⋃

k≥n

Ek

⎞
⎠ ≥ ε

3. Let λ be a measure on (Ω,F) and Bn = ∪k≥nEk for n ≥ 1. Since
E = ∩n≥1Bn and Bn+1 ⊆ Bn for all n ≥ 1, it is very tempting
to conclude that λ(Bn) → λ(E) as n → +∞. However, a careful
reading of theorem (8) shows that we cannot safely apply this
theorem, unless λ(B1) < +∞ (or at least λ(Bp) < +∞ for some
p ≥ 1), which in general is not true. So in general, we cannot
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conclude that:

λ(E) = lim
n→+∞λ

⎛
⎝⋃

k≥n

Ek

⎞
⎠

When λ = μ or λ = |ν|, we crucially used the assumption that
μ(Ek) ≤ 1/2k for all k ≥ 1, and the fact that |ν| is a finite
measure, to obtain λ(B1) < +∞.

4. Let μ be a measure on (Ω,F) and ν be a complex measure on
(Ω,F). The fact that ν << μ is equivalent to |ν| << μ, has
already been proved in exercise (1). Suppose the condition:

∀ε > 0, ∃δ > 0, ∀E ∈ F , μ(E) ≤ δ ⇒ |ν(E)| < ε (4)

holds. Let E ∈ F be such that μ(E) = 0. Applying (4), for all
ε > 0, there exists δ > 0 such that if E′ ∈ F satisfies μ(E′) ≤ δ,
then |ν(E′)| < ε. Since μ(E) = 0, we have μ(E) ≤ δ for all
δ > 0 and consequently |ν(E)| < ε for all ε > 0. So ν(E) = 0.
This shows that ν is absolutely continuous with respect to μ,
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and we have proved that (4) ⇒ ν << μ. Conversely, suppose
that ν << μ, and that condition (4) does not hold. There exists
ε > 0 such that for all δ > 0 we can find some Eδ ∈ F with
the property that μ(Eδ) ≤ δ and |ν(Eδ)| ≥ ε. Taking δ of the
form δ = 1/2n for n ≥ 1, there exists a sequence (En)n≥1 in F ,
such that μ(En) ≤ 1/2n and |ν(En)| ≥ ε for all n ≥ 1. Defining
E = lim sup En = ∩n≥1 ∪k≥n Ek, we have μ(E) = 0 from 1.
and |ν|(E) ≥ ε from 2. This contradicts the fact that |ν| << μ,
or equivalently the fact that ν << μ. We have proved that
ν << μ ⇒ (4), which completes the proof of theorem (58).

Exercise 2
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Exercise 3.

1. Let μ be a measure on (Ω,F) and ν ∈ M1(Ω,F). Suppose that
ν << μ. Let E ∈ F be such that μ(E) = 0. Then ν(E) = 0. In
particular, ν1(E) = Re(ν(E)) = 0 and ν2(E) = Im(ν(E)) = 0.
This shows that ν1 << μ and ν2 << μ.

2. From 1. we have ν1 << μ. From exercise (1), this is equivalent
to |ν1| << μ. Hence, if E ∈ F is such that μ(E) = 0, then
ν1(E) = 0 and |ν1|(E) = 0. It follows that:

ν+
1 (E) =

1
2
(|ν1|(E) + ν1(E)) = 0

and
ν−
1 (E) =

1
2
(|ν1|(E) − ν1(E)) = 0

We conclude that ν+
1 << μ and ν−

1 << μ. We prove similarly
that ν+

2 and ν−
2 are absolutely continuous with respect to μ.

Exercise 3

www.probability.net

http://www.probability.net


Solutions to Exercises 37

Exercise 4.

1. Since S is a closed proper subset of C, its complement Sc is an
open subset of C, which is not empty. Let z = x + iy ∈ Sc.
There exists ε > 0 such that B(z, ε) ⊆ Sc. Let x′, y′ ∈ Q be
such that |x − x′| < ε/2

√
2 and |y − y′| < ε/2

√
2, and define

z′ = x′ + iy′. Then:

|z − z′| =
√
|x − x′|2 + |y − y′|2 < ε/2

Let ε′ ∈ Q be such that |z − z′| < ε′ < ε/2. Then it is clear
that z ∈ B(z′, ε′) and furthermore, for all z′′ ∈ C such that
|z′ − z′′| ≤ ε′, we have:

|z − z′′| ≤ |z − z′| + |z′ − z′′| < 2ε′ < ε

It follows that z ∈ B̄(z′, ε′) ⊆ B(z, ε) ⊆ Sc, where B̄(z′, ε′)
denotes the closed disc with center z′ and radius ε′. Hence, for
all z ∈ Sc, we are able to find a closed disc Dz in C, such that
z ∈ Dz ⊆ Sc, and furthermore, such closed disc can be chosen
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to have a rational radius (ε′ ∈ Q), and a center with rational
coordinates (x′, y′ ∈ Q). In particular, to each Dz where z ∈ Sc,
can be associated a triple (xz , yz, εz) in Q3, defining a mapping
which is injective. Q3 being a countable set, it follows that
D = {Dz : z ∈ Sc} is at most countable (and non-empty),
and consequently there exists a surjective map φ : N∗ → D.
Defining Dn = φ(n), from Sc = ∪z∈ScDz we obtain:

Sc =
⋃

D∈D
D =

+∞⋃
n=1

φ(n) =
+∞⋃
n=1

Dn

2. Since μ is a finite measure and μ(En) > 0, it is always possible
to write the complex number αn as αn = μ(En)−1

∫
En

αndμ.
Consequently, using theorem (24), we have:∣∣∣∣ 1

μ(En)

∫
En

fdμ − αn

∣∣∣∣ ≤ 1
μ(En)

∫
En

|f − αn|dμ

Since En = {f ∈ Dn} = {|f −αn| ≤ rn}, we have the inequality
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|f − αn|1En ≤ rn1En , and consequently:

1
μ(En)

∫
En

|f − αn|dμ ≤ 1
μ(En)

∫
rn1Endμ = rn

We have proved that:∣∣∣∣ 1
μ(En)

∫
En

fdμ − αn

∣∣∣∣ ≤ 1
μ(En)

∫
En

|f − αn|dμ ≤ rn

3. Let n ≥ 1 and En = {f ∈ Dn}. Suppose μ(En) > 0. Then:

1
μ(En)

∫
En

fdμ ∈ S (5)

by assumption. However, from 2.:∣∣∣∣ 1
μ(En)

∫
En

fdμ − αn

∣∣∣∣ ≤ rn

or equivalently:
1

μ(En)

∫
En

fdμ ∈ Dn (6)
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Since Dn ⊆ Sc, (5) and (6) form a contradiction. It follows that
the assumption μ(En) > 0 is absurd and therefore μ(En) = 0.
We have proved that μ({f ∈ Dn}) = 0 for all n ≥ 1.

4. Let μ be a finite measure on (Ω,F) and f ∈ L1
C(Ω,F , μ). Let S

be a closed subset of C such that for all E ∈ F with μ(E) > 0:

1
μ(E)

∫
E

fdμ ∈ S

We claim that f ∈ S μ-a.s. If S = C, there is nothing further
to prove. We assume that S is a proper (closed) subset of C.
Let (Dn)n≥1 be a sequence of closed discs in C as in 1. Then
Sc = ∪n≥1Dn and from 3. μ({f ∈ Dn}) = 0 for all n ≥ 1. From
{f ∈ Sc} = ∪n≥1{f ∈ Dn} we obtain:

μ({f ∈ Sc}) ≤
+∞∑
n=1

μ({f ∈ Dn}) = 0

It follows that if N = {f ∈ Sc}, then N ∈ F , μ(N) = 0 and
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f(ω) ∈ S for all ω ∈ N c. This shows that f ∈ S μ-a.s. We have
proved theorem (59).

Exercise 4
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Exercise 5.

1. Let ω ∈ Ω. Since En ↑ Ω, in particular Ω = ∪n≥1En. There
exists p ≥ 1 such that ω ∈ Ep. Hence:

w(ω) =
+∞∑
n=1

1
2n

1
1 + μ(En)

1En(ω) ≥ 1
2p

1
1 + μ(Ep)

> 0

Furthermore:

w(ω) =
+∞∑
n=1

1
2n

1
1 + μ(En)

1En(ω) ≤
+∞∑
n=1

1
2n

= 1

2. w is R-valued, measurable, and from theorem (19):∫
|w|dμ =

∫
wdμ =

+∞∑
n=1

1
2n

1
1 + μ(En)

∫
1Endμ < +∞

So w ∈ L1
R(Ω,F , μ).

Exercise 5
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Exercise 6.

1. The fact that μ̄ =
∫

wdμ is a measure on (Ω,F) stems from
a direct application of theorem (21). However, the result is
pretty straightforward, with or without theorem (21): it is clear
that μ̄(∅) = 0 and furthermore from the monotone convergence
theorem (19):

μ̄(E) =
∫

1Ewdμ =
+∞∑
n=1

∫
1Enwdμ =

+∞∑
n=1

μ̄(En)

for any E ∈ F and (En)n≥1 measurable partition of E. Since w
is non-negative and is an element of L1

R(Ω,F , μ), we have:

μ̄(Ω) =
∫

wdμ =
∫

|w|dμ < +∞

So μ̄ is a finite measure.

2. Since both ν and μ̄ are finite measures on (Ω,F), they are com-
plex measures with values in R+. So φ = ν + μ̄ is a complex
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measure on (Ω,F) (M1(Ω,F) is a vector space), and it has val-
ues in R+. It follows that φ is a finite measure. Alternatively,
you may wish to argue that φ is a measure (as the sum of two
measures), and that φ(Ω) = ν(Ω) + μ̄(Ω) < +∞ since both ν
and μ̄ are finite.

3. Let f : (Ω,F) → [0, +∞] be a non-negative and measurable
map, and consider the equality:∫

fdφ =
∫

fdν +
∫

fwdμ (7)

Since φ = ν + μ̄ and μ̄ =
∫

wdμ, this equality is true whenever
f is of the form f = 1E with E ∈ F . By linearity, equation (7)
is also true whenever f is a simple function on (Ω,F). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (sn)n≥1 of simple functions on (Ω,F),
such that sn ↑ f . Applying equation (7) for each n ≥ 1, we
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obtain: ∫
sndφ =

∫
sndν +

∫
snwdμ (8)

Since w is non-negative, (snw)n≥1 is a non-decreasing sequence
of non-negative and measurable maps, converging simply (i.e.
pointwise ) to fw. In short, we have snw ↑ fw, and from the
monotone convergence theorem (19), taking the limit in (8) as
n → +∞, we conclude that equation (7) is also true for f .
Suppose now that f ∈ L1

C(Ω,F , φ). Applying (7) to |f |, we
obtain: ∫

|f |dν +
∫

|f |wdμ =
∫

|f |dφ < +∞
and consequently f ∈ L1

C(Ω,F , ν) and fw ∈ L1
C(Ω,F , μ). If f

is real-valued, Applying equation (7) once more to f+ and f−,
we obtain: ∫

f+dφ =
∫

f+dν +
∫

f+wdμ (9)
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and: ∫
f−dφ =

∫
f−dν +

∫
f−wdμ (10)

Subtracting (10) to (9) (all terms being finite, w being non-
negative and f+w, f−w being finite), we see that equation (7)
is true for f , whenever f ∈ L1

R(Ω,F , φ). If f = u + iv where u
and v are elements of L1

R(Ω,F , φ), we conclude that equation (7)
is true for f by the linearity of the integral, and the fact that it
is true for u and v. This proves that equation (7) is in fact true
for all f ∈ L1

C(Ω,F , φ).

4. Let f ∈ L2
C(Ω,F , φ). From the Cauchy-Schwarz inequality (42):∫

|f |dφ ≤
(∫

|f |2dφ

) 1
2
(∫

12dφ

) 1
2

=
(∫

|f |2dφ

) 1
2

(φ(Ω))
1
2

In particular, φ being a finite measure,
∫ |f |dφ < +∞ and f is
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also an element of L1
C(Ω,F , φ). 1 Applying 3. to |f |, we have:∫

|f |dν ≤
∫

|f |dν +
∫

|f |wdμ =
∫

|f |dφ

It follows that:∫
|f |dν ≤

∫
|f |dφ ≤

(∫
|f |2dφ

) 1
2

(φ(Ω))
1
2

5. φ being a finite measure, from 4. the inequality
∫ |f |2dφ < +∞

implies
∫ |f |dν < +∞. So L2

C(Ω,F , φ) ⊆ L1
C(Ω,F , ν). Further-

more, given f ∈ L2
C(Ω,F , φ), from 4. and theorem (24):∣∣∣∣

∫
fdν

∣∣∣∣ ≤
∫

|f |dν ≤
√

φ(Ω)‖f‖2

1This shows that L2
C(Ω,F , φ) ⊆ L1

C(Ω,F , φ) whenever φ is a finite measure.
We don’t need |f | ∈ L1

C(Ω,F , φ) for equation (7) to be true (see proof of 3.)

www.probability.net

http://www.probability.net


Solutions to Exercises 48

6. Consider the map λ : L2
C(Ω,F , φ) → C defined by:

∀f ∈ L2
C(Ω,F , φ) , λ(f) =

∫
fdν

Since L2
C(Ω,F , φ) ⊆ L1

C(Ω,F , ν) λ is well-defined, and it is
clearly linear. Furthermore from 5., |λ(f)| ≤ √

φ(Ω)‖f‖2 for
all f ∈ L2

C(Ω,F , φ). So λ is also continuous. Applying theo-
rem (55), there exists g′ ∈ L2

C(Ω,F , φ) such that λ(f) =
∫

f ḡ′dφ
for all f ’s. Taking g = ḡ′ ∈ L2

C(Ω,F , φ), we obtain:

∀f ∈ L2
C(Ω,F , φ) ,

∫
fdν =

∫
fgdφ

7. Let E ∈ F be such that φ(E) > 0. φ being a finite measure, the
map 1E is an element of L2

C(Ω,F , φ). From 6. we have:∫
E

gdφ =
∫

1Egdφ =
∫

1Edν = ν(E)
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Furthermore, since 0 ≤ ν(E) ≤ ν(E)+ μ̄(E) = φ(E), we obtain:

0 ≤
∫

E

gdφ ≤ φ(E)

Finally since φ(E) > 0, we see that φ(E)−1
∫

E gdφ ∈ [0, 1].

8. Since φ is a finite measure, we have L2
C(Ω,F , φ) ⊆ L1

C(Ω,F , φ),
as can be seen from the Cauchy-Schwarz inequality (42). In
particular, g is an element of L1

C(Ω,F , φ). Furthermore, the
interval [0, 1] is a closed subset of C, and for all E ∈ F with
φ(E) > 0, we have:

1
φ(E)

∫
E

gdφ ∈ [0, 1]

Applying theorem (59), it follows that g ∈ [0, 1] φ-almost surely.
There exists N ∈ F with φ(N) = 0 such that g(ω) ∈ [0, 1] for
all ω ∈ N c. Define h = g1Nc . Then h ∈ L2

C(Ω,F , φ) and
h(ω) ∈ [0, 1] for all ω ∈ Ω. Furthermore, for all f ∈ L2

C(Ω,F , φ)
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we have from 6.:∫
fdν =

∫
fgdφ =

∫
fg1Ndφ +

∫
fg1Ncdφ =

∫
fhdφ

Renaming h by ’g’, we have found g ∈ L2
C(Ω,F , φ) such that

g(ω) ∈ [0, 1] for all ω ∈ Ω and (1) still holds.

9. Let f ∈ L2
C(Ω,F , φ). Since g ∈ L2

C(Ω,F , φ), from the Cauchy-
Schwarz inequality (42):∫

|fg|dφ ≤
(∫

|f |2dφ

) 1
2
(∫

|g|2dφ

) 1
2

< +∞

It follows that fg ∈ L1
C(Ω,F , φ). From 3. we have:∫

fgdφ =
∫

fgdν +
∫

fgwdμ (11)

all three integrals being well-defined. From 6. we have:∫
fdν =

∫
fgdφ (12)
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From (11) and (12), using the linearity of the integral, we obtain:∫
f(1 − g)dν =

∫
fgwdμ

10. Let n ≥ 1 and E ∈ F . Let f = (1 + g + . . . + gn)1E . Then f is
a measurable map and furthermore, since 0 ≤ g ≤ 1, f is also
bounded. φ being a finite measure on (Ω,F), we conclude that
f ∈ L2

C(Ω,F , φ).

11. Let n ≥ 1 and E ∈ F . Let f = (1 + g + . . . + gn)1E . From 10.
f is an element of L2

C(Ω,F , φ). Applying 9. we obtain:∫
f(1 − g)dν =

∫
fgwdμ

or equivalently:∫
E

(1 − gn+1)dν =
∫

E

g(1 + g + . . . + gn)wdμ (13)
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12. Let A = {0 ≤ g < 1} and define:

h
�
= gw

(
+∞∑
k=0

gk

)

and hn = gw(
∑n

k=0 gk) for n ≥ 1. Then, for all E ∈ F ,
(hn1E)n≥1 is a non-decreasing sequence of non-negative and
measurable maps, converging simply to h1E . By the monotone
convergence theorem (19), we have

∫
hn1Edμ → ∫

h1Edμ, i.e.

lim
n→+∞

∫
E

g(1 + g + . . . + gn)wdμ =
∫

E

hdμ (14)

Furthermore for all ω ∈ A, (1 − gn+1(ω)) → 1 as n → +∞,
and if ω �∈ A, since 0 ≤ g ≤ 1 we have 1 − gn+1(ω) = 0 for
all n ≥ 1. It follows that (1 − gn+1)1E → 1E∩A, and ν being
a finite measure, the condition |(1 − gn+1)1E | ≤ 1 allows us to
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apply to dominated convergence theorem (23) to obtain:

lim
n→+∞

∫
E

(1 − gn+1)dν =
∫

1E∩Adν = ν(E ∩ A) (15)

Using (14) and (15), taking the limit in (13) as n → +∞:

ν(E ∩ A) =
∫

E

hdμ

13. Let ω ∈ Ω with h(ω) = +∞ = g(ω)w(ω)
∑∞

k=0 gk(ω). Since
0 ≤ g ≤ 1 and 0 < w ≤ 1, the series

∑+∞
k=0 gk(ω) cannot be

convergent, and consequently g(ω) = 1. So ω ∈ Ac and we have
proved that {h = +∞} ⊆ Ac. Conversely, suppose that ω ∈ Ac.
Since 0 ≤ g ≤ 1, we have g(ω) = 1. Hence

∑+∞
k=0 gk(ω) = +∞,

and since w(ω) > 0 it follows that h(ω) = +∞. This shows that
Ac ⊆ {h = +∞} and finally that {h = +∞} = Ac. Applying
12. to E = Ac, we obtain:

0 = ν(Ac ∩ A) =
∫

Ac

hdμ = (+∞)μ(Ac)
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from which we conclude that μ(Ac) = 0.

14. Let E ∈ F . From 12. we have:

ν(E ∩ A) =
∫

E

hdμ

From 13. we have μ(Ac) = 0. Since by assumption, ν is abso-
lutely continuous with respect to μ (i.e. ν << μ), we also have
ν(Ac) = 0. It follows that:

ν(E) = ν(E ∩ A) + ν(E ∩ Ac) =
∫

E

hdμ

15. Let μ be a σ-finite measure on (Ω,F) and ν be a finite measure
on (Ω,F) such that ν << μ. From 14. we have found a map
h : (Ω,F) → [0, +∞] non-negative and measurable, such that:

∀E ∈ F , ν(E) =
∫

E

hdμ (16)
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Furthermore, from 13. we have μ({h = +∞}) = 0. It follows
that property (16) will also hold, if we replace h by h1{h<+∞}.
Hence, without loss of generality, we can assume that h satisfy-
ing (16) has values in R+. Since ν is a finite measure, taking
E = Ω in (16) we obtain:∫

|h|dμ =
∫

hdμ = ν(Ω) < +∞

So h ∈ L1
R(Ω,F , μ). We have proved the existence of a map

h ∈ L1
R(Ω,F , μ) such that h ≥ 0 and property (16) holds.

16. Let μ be a σ-finite measure on (Ω,F), and ν be a complex
measure on (Ω,F) such that ν << μ. If ν is in fact a finite
measure, then 15. guarantees the existence of h ∈ L1

C(Ω,F , μ)
such that:

∀E ∈ F , ν(E) =
∫

E

hdμ (17)

In fact, the result in 15. is slightly stronger, and allows us to
choose h with values in R+. If ν is a signed measure (i.e. it
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has values in R), then it can be written as ν = ν+ − ν−, where
ν+ and ν− are respectively the positive part and negative part
of ν. Since ν+ and ν− are finite measures (see exercise (12) of
Tutorial 11), which are absolutely continuous with respect to
μ (see exercise (3)), there exist h+, h− elements of L1

R(Ω,F , μ)
with values in R+, such that ν+ =

∫
h+dμ and ν− =

∫
h−dμ.

Defining h = h+ − h−, we obtain an element of L1
R(Ω,F , μ)

for which (by linearity of the integral) property (17) holds. In
the general case when ν is an arbitrary complex measure, ν
can be written as ν = ν1 + iν2 where ν1, ν2 are two signed
measures which are absolutely continuous with respect to μ (see
exercise (3)). Hence, there exist h1, h2 in L1

R(Ω,F , μ) such that
ν1 =

∫
h1dμ and ν2 =

∫
h2dμ. Defining h = h1 + ih2, we

obtain an element of L1
C(Ω,F , μ) for which (by linearity of the

integral) property (17) holds. This proves the complex version
of the Radon-Nikodym theorem (60).

Exercise 6
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Exercise 7.

1. The positive part u+ of u is defined as u+ = max(0, u). It
follows that u+ = u1{u≥0} and consequently:∫

u+dμ =
∫

u1{u≥0}dμ =
∫
{u≥0}

udμ

2. By assumption, using E = {u ≥ 0} ∈ F , we have:∫
{u≥0}

fdμ = 0 =
∫
{u≥0}

udμ + i

∫
{u≥0}

vdμ

It follows in particular that
∫
{u≥0} udμ = 0 and consequently

using 1.,
∫

u+dμ = 0. Since u+ is non-negative, this implies
that u+ = 0 μ-a.s. (See Exercise (7) of Tutorial 5.). Similarly,
from u− = max(−u, 0) = −u1{u≤0} we obtain:∫

u−dμ = −
∫

u1{u≤0}dμ = −
∫
{u≤0}

udμ
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and from:∫
{u≤0}

fdμ = 0 =
∫
{u≤0}

udμ + i

∫
{u≤0}

vdμ

we see that
∫

u−dμ = 0 and finally u− = 0 μ-a.s. An identical
proof will show that v+ = 0 μ-a.s. and v− = 0 μ-a.s. Having
proved that u+, u−, v+ and v− are all μ-almost surely equal
to zero, there exist sets N1, N2, N3 and N4, elements of F ,
with μ(N1) = μ(N2) = μ(N3) = μ(N4) = 0 and such that
u+(ω) = u−(ω) = v+(ω) = v−(ω) = 0 for all ω ∈ N c

1 ∩ . . .∩N c
4 .

Taking N = N1∪ . . .∪N4, we have found N ∈ F with μ(N) = 0
such that f(ω) = 0 for all ω ∈ N c. This shows that f = 0 μ-a.s.

3. Suppose there exist two maps h1, h2 ∈ L1
C(Ω,F , μ) which satisfy

the conclusion of theorem (60), i.e. such that:

∀E ∈ F , ν(E) =
∫

E

h1dμ =
∫

E

h2dμ
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Defining f = h1 − h2 ∈ L1
C(Ω,F , μ), we obtain:

∀E ∈ F ,

∫
E

fdμ = 0

and from 2. we conclude that f = 0 μ-a.s., or equivalently
h1 = h2 μ-a.s. This shows that the Radon-Nikodym deriva-
tive of ν with respect to μ (i.e. the element h of L1

C(Ω,F , μ)
which satisfies the conclusion of theorem (60)), is unique up to
μ-almost sure equality.

Exercise 7
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Exercise 8.

1. Let n ≥ 1. We have νn(Ω) = ν(En∩Ω) = ν(En) < +∞. So νn is
a finite measure, and in particular a complex measure on (Ω,F).
Furthermore, if E ∈ F is such that μ(E) = 0, then μ(En∩E) = 0
and it follows from ν << μ that ν(En ∩ E) = 0 i.e. νn(E) = 0.
This shows that νn << μ, and the assumptions of theorem (60)
are therefore all satisfied. There exists hn ∈ L1

C(Ω,F , μ) such
that:

∀E ∈ F , νn(E) =
∫

E

hndμ

Furthermore, νn being a finite measure, the map hn can be
chosen to lie in L1

R(Ω,F , μ), with hn ≥ 0.

2. Let E ∈ F and n ≥ 1. By assumption, En ⊆ En+1. Hence:∫
E

hndμ = ν(En ∩ E) ≤ ν(En+1 ∩ E) =
∫

E

hn+1dμ
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3. Let n, p ≥ 1. Since hn, hn+1 have values in R (in fact R+), the
difference hn − hn+1 is meaningful, and from 2. we have:∫

E

(hn − hn+1)dμ ≤ 0

Applying this inequality to E = {hn − hn+1 > 1/p} we obtain:

1
p
μ({hn − hn+1 >

1
p
}) ≤

∫
E

(hn − hn+1)dμ ≤ 0

from which we conclude that μ({hn − hn+1 > 1/p}) = 0.

4. Let n ≥ 1. From:

{hn > hn+1} =
+∞⋃
p=1

{hn − hn+1 >
1
p
}

and the fact that μ({hn − hn+1 > 1/p}) = 0 for all p ≥ 1, we
conclude that μ({hn > hn+1}) = 0. So hn ≤ hn+1 μ-.a.s.
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5. Given n ≥ 1, let Nn = {hn > hn+1}. Define N = ∪n≥1Nn.
Then, μ(N) = 0 and replacing all hn’s by hn1Nc , we obtain a
sequence (hn)n≥1 in L1

R(Ω,F , μ) such that 0 ≤ hn ≤ hn+1 (this
time everywhere), where the new hn’s are μ-almost equal to our
original h′

ns, and therefore such that equation (2) still holds.

6. Let h = supn≥1 hn and E ∈ F . From (2), for all n ≥ 1 we have:

ν(En ∩ E) =
∫

1Ehndμ (18)

From (En ∩ E) ↑ E and theorem (7), ν(En ∩ E) → ν(E) as
n → +∞. From 1Ehn ↑ 1Eh and the monotone convergence
theorem (19),

∫
1Ehndμ → ∫

1Ehdμ as n → +∞. Taking the
limit in (18) as n → +∞, we conclude that:

∀E ∈ F , ν(E) =
∫

E

hdμ
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7. Let n ≥ 1. From 6. we have:∫
En

hdμ = ν(En) < +∞

8. From (+∞)1{h=+∞} ≤ h and 7. we obtain:

(+∞)μ(En ∩ {h = +∞}) ≤
∫

En

hdμ < +∞

It follows that μ(En ∩ {h = +∞}) = 0 for all n ≥ 1. From
En ∩ {h = +∞} ↑ {h = +∞} and theorem (7), we obtain:

μ({h = +∞}) = lim
n→+∞ μ(En ∩ {h = +∞}) = 0

We conclude that h < +∞ μ-a.s.

9. Replacing h by h1{h<+∞}, we obtain a measurable map with
values in R+, which is μ-almost surely equal to our original h,
and therefore such that equation (3) still holds.
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10. h has values in R+ and is measurable, while from 7.:∫
hdμEn =

∫
En

hdμ < +∞

So h ∈ L1
R(Ω,F , μEn).

Exercise 8
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Exercise 9.

1. Let n ≥ 1 and E ∈ F . We have:∫
E

hdμFn =
∫

Fn∩E

hdμ =
∫

Fn∩E

h′dμ =
∫

E

h′dμFn

Furthermore:∫
E

hdμFn =
∫

1Eh1En1{h≤n}dμ ≤ nμ(En) < +∞

2. Let n ≥ 1 and p ≥ 1. Applying 1. to E = {h > h′ + 1/p}:∫
E

h′dμFn =
∫

E

hdμFn ≥
∫

E

h′dμFn +
1
p
μ(Fn ∩ E)

and since
∫

E h′dμFn < +∞, it follows that μ(Fn ∩ E) = 0.

3. Let n ≥ 1. From the equality:

{h > h′} =
+∞⋃
p=1

{h > h′ +
1
p
}
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and the fact that μ(Fn ∩ {h > h′ + 1/p}) = 0 for all p ≥ 1,
we have μ(Fn ∩ {h > h′}) = 0. A similar argument shows that
μ(Fn ∩ {h′ > h}) = 0. It follows that μ(Fn ∩ {h �= h′}) = 0.

4. By assumption, Fn = En ∩ {h ≤ n}. Hence, Fn ⊆ Fn+1 for all
n ≥ 1 and ∪n≥1Fn = {h < +∞}. In short, Fn ↑ {h < +∞},
and consequently we have Fn∩{h �= h′} ↑ {h �= h′}∩{h < +∞}.
Applying theorem (7), we conclude that:

μ({h �= h′} ∩ {h < +∞}) = lim
n→+∞μ(Fn ∩ {h �= h′}) = 0

5. The assumption made on h and h′, namely:

∀E ∈ F ,

∫
E

hdμ =
∫

E

h′dμ

is symmetric in terms h and h′. Using 4. where h and h′ have
been interchanged, we obtain μ({h �= h′} ∩ {h′ < +∞}) = 0.
Since the set {h �= h′} can be decomposed as:

{h �= h′} = ({h �= h′} ∩ {h < +∞}) ∪ ({h �= h′} ∩ {h′ < +∞})
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we conclude that μ({h �= h′}) = 0, i.e. h = h′ μ-a.s.

6. Let h and h′ be two maps satisfying the conclusion of theo-
rem (61). Then in particular, h and h′ are non-negative and
measurable, while satisfying:

∀E ∈ F ,

∫
E

hdμ =
∫

E

h′dμ

This exercise shows that h = h′ μ-a.s. In other words, the
Radon Nikodym derivative of ν with respect to μ (i.e. the map
h which satisfies the conclusion of theorem (61)) is unique, up
to μ-almost sure equality.

Exercise 9
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Exercise 10. The sigma-algebra F has only two elements, ∅ and {∗}.
If E = ∅, then: ∫

E

hdμ = 0 =
∫

E

h′dμ

If E = {∗}, then:∫
E

hdμ = 1 × μ({∗}) = +∞ = 2 × μ({∗}) =
∫

E

h′dμ

In any case, we have
∫

E
hdμ =

∫
E

h′dμ. Although h and h′ are not
μ-almost surely equal, this does not contradict exercise (9), as the
measure μ is not sigma-finite.

Exercise 10
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Exercise 11.

1. Let E ∈ F be such that |μ|(E) = 0. Since |μ(E)| ≤ |μ|(E) we
have μ(E) = 0, and consequently μ << |μ|.

2. From theorem (57), the total variation |μ| of μ is a finite measure
on (Ω,F). In particular, it is sigma-finite. μ being a complex
measure such that μ << |μ|, we can apply theorem (60): there
exists h ∈ L1

C(Ω,F , |μ|) such that:

∀E ∈ F , μ(E) =
∫

E

hd|μ|

3. If μ is in fact a signed measure, then from theorem (60), h can
indeed be chosen to lie in L1

R(Ω,F , |μ|).
Exercise 11
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Exercise 12.

1. Let Ar = {|h| < r} (for some r > 0) and (En)n≥1 be a measur-
able partition of Ar. From exercise (11), for all n ≥ 1:

|μ(En)| =
∣∣∣∣
∫

En

hd|μ|
∣∣∣∣ ≤

∫
En

|h|d|μ| ≤ r|μ|(En)

where the first inequality stems from theorem (24), and the
second from the fact that En ⊆ {|h| < r}. It follows that:

+∞∑
n=1

|μ(En)| ≤ r

+∞∑
n=1

|μ|(En) = r|μ|(Ar)

2. |μ|(Ar) being the least upper bound of all sums
∑+∞

n=1 |μ(En)| as
(En)n≥1 ranges across all measurable partitions of Ar, it follows
from 1. that |μ|(Ar) ≤ r|μ|(Ar). When 0 < r < 1, this can only
occur if |μ|(Ar) = 0.
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3. From the equality:

{|h| < 1} =
+∞⋃
p=2

{|h| < 1 − 1
p
}

and the fact that |μ|({|h| < 1 − 1/p}) = |μ|(A1−1/p) = 0 for all
p ≥ 2, it follows that |μ|({|h| < 1}) = 0, i.e. |h| ≥ 1 |μ|-a.s.

4. Let E ∈ F be such that |μ|(E) > 0. We have:∣∣∣∣ 1
|μ|(E)

∫
E

hd|μ|
∣∣∣∣ =

∣∣∣∣ 1
|μ|(E)

μ(E)
∣∣∣∣ =

|μ(E)|
|μ|(E)

≤ 1

5. Applying theorem (59) to the closed disc S = {|z| ≤ 1} and the
finite measure |μ|, we conclude from 4. that h ∈ S |μ|-a.s. or
equivalently that |h| ≤ 1 |μ|-a.s.

6. Having proved that |h| ≥ 1 |μ|-a.s. and |h| ≤ 1 |μ|-a.s., the set
N = {|h| > 1} ∪ {|h| < 1} is such that |μ|(N) = 0. Replacing h
by h1Nc + 1N , we obtain an element of L1

C(Ω,F , |μ|) such that
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|h| = 1 (this time everywhere), which is almost surely equal to
our original h, and therefore such that:

∀E ∈ F , μ(E) =
∫

E

hd|μ|

From 3. of exercise (11), if μ is a signed measure, then h can be
chosen to lie in L1

R(Ω,F , |μ|). This proves theorem (62).

Exercise 12
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Exercise 13.

1. Suppose An ↑ A. Then An ⊆ An+1 for all n ≥ 1, and further-
more A = ∪n≥1An. Let ω ∈ Ω and n ≥ 1. If 1An(ω) = 0,
then 1An(ω) ≤ 1An+1(ω) is clear. If 1An(ω) = 1, then ω ∈ An

and consequently ω ∈ An+1, so 1An+1(ω) = 1. In any case, we
have 1An(ω) ≤ 1An+1(ω). This shows that 1An ≤ 1An+1 for all
n ≥ 1. Since An ⊆ A for all n ≥ 1, we obtain similarly that
1An ≤ 1A for all n ≥ 1, and consequently supn≥1 1An ≤ 1A. Let
ω ∈ Ω. If 1A(ω) = 0, then 1A(ω) ≤ supn≥1 1An(ω) is clear. If
1A(ω) = 1 then ω ∈ A = ∪n≥1An, and there exists n ≥ 1 such
that ω ∈ An. So 1An(ω) = 1 ≤ supn≥1 1An(ω). In any case, we
have 1A(ω) ≤ supn≥1 1An(ω). This shows that:

1A = sup
n≥1

1An = lim
n→+∞ 1An

and finally, we have proved that 1An ↑ 1A.

2. Suppose that An ↓ A. Then An+1 ⊆ An for all n ≥ 1 and
A = ∩n≥1An. It follows that Ac

n ⊆ Ac
n+1 for all n ≥ 1 and
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Ac = ∪n≥1A
c
n, or equivalently that Ac

n ↑ Ac. Applying 1. we
obtain that 1Ac

n
↑ 1Ac . Since 1Ac

n
= 1 − 1An for all n ≥ 1 and

1Ac = 1 − 1A, we conclude that 1An+1 ≤ 1An for all n ≥ 1 and
1A = limn 1An . We have proved that 1An ↓ 1A.

3. Suppose that 1An → 1A and let μ ∈ M1(Ω,F). From theo-
rem (62), there exists h ∈ L1

C(Ω,F , |μ|) such that:

∀E ∈ F , μ(E) =
∫

E

hd|μ|

In particular, μ(An) =
∫

1Anhd|μ| for all n ≥ 1. The hypoth-
esis 1An → 1A implies in particular that 1Anh → 1Ah, and
since |1Anh| ≤ |h| ∈ L1

R(Ω,F , |μ|), the dominated convergence
theorem (23) allows us to conclude that:

lim
n→+∞μ(An) = lim

n→+∞

∫
1Anhd|μ| =

∫
1Ahd|μ| = μ(A)

Exercise 13
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Exercise 14.

1. Let f ∈ L1
C(Ω,F , μ) and ν : F → C be defined by:

∀E ∈ F , ν(E) =
∫

E

fdμ

The fact that ν ∈ M1(Ω,F) has already been proved in ex. (3)
of Tutorial 11. For a slightly leaner proof, here is the following:
let E ∈ F and (En)n≥1 be a measurable partition of E. For
all n ≥ 1, we define An = E1 � . . . � En. Then, from 1An =
1E1 + . . . + 1En we obtain:

ν(An) =
∫

1Anfdμ =
n∑

k=1

∫
1Ek

fdμ =
n∑

k=1

ν(Ek) (19)

Furthermore, from An ↑ E we have 1An ↑ 1E and consequently
1Anf → 1Ef . Since |1Anf | ≤ |f | ∈ L1

R(Ω,F , μ) for all n ≥ 1, it
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follows from the dominated convergence theorem (23) that:

lim
n→+∞ ν(An) = lim

n→+∞

∫
1Anfdμ =

∫
1Efdμ = ν(E) (20)

Comparing (19) with (20), it appears that the series
∑+∞

k=1 ν(Ek)
converges to ν(E). So ν is indeed a complex measure on (Ω,F).

2. From theorem (62), there is h ∈ L1
C(Ω,F , |ν|) with |h| = 1 and:

∀E ∈ F , ν(E) =
∫

E

hd|ν|

Let E, F ∈ F . We have:∫
E

f1F dμ =
∫

E∩F

fdμ = ν(E ∩ F ) =
∫

E

h1F d|ν|

3. Given g : Ω → C bounded and measurable, we claim that:

∀E ∈ F ,

∫
E

fgdμ =
∫

E

hgd|ν| (21)
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From 2., equation (21) is true whenever g is of the form g = 1F

with F ∈ F . By the linearity of the integral, (21) is also true
whenever g is a simple function on (Ω,F). Suppose g is non-
negative and measurable, while being bounded. From theo-
rem (18), there exists a sequence (sn)n≥1 of simple functions
on (Ω,F), such that sn ↑ g. Having proved (21) for simple
functions, for all n ≥ 1 we have:∫

1Efsndμ =
∫

1Ehsnd|ν| (22)

From sn → g we obtain 1Efsn → 1Efg and 1Ehsn → 1Ehg.
Since |1Efsn| ≤ |f |g ∈ L1

R(Ω,F , μ) (since g is bounded) and
|1Ehsn| ≤ |h|g ∈ L1

R(Ω,F , |ν|), it follows from the dominated
convergence theorem (23) that

∫
1Efsndμ → ∫

1Efgdμ and∫
1Ehsnd|ν| → ∫

1Ehgd|ν| as n → +∞. Taking the limit in (22)
as n → +∞, we see that (21) is true whenever g is non-negative
and measurable, while being bounded. If g is now an arbitrary
C-valued map which is measurable and bounded, then it can be
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expressed as g = g1−g2+i(g3−g4) where each gi is non-negative,
measurable and bounded. From the linearity of the integral, we
conclude that (21) is also true for g, which completes the proof
of our initial claim.

4. Since |h| = 1, applying (21) to g = h̄, we obtain for all E ∈ F :∫
E

fh̄dμ =
∫

E

hh̄d|ν| =
∫

E

d|ν| = |ν|(E)

5. The total variation |ν| of the complex measure ν being a finite
measure on (Ω,F) (theorem (57)), it has values in R+. Hence:∫

E

Re(fh̄)dμ = Re

(∫
E

fh̄dμ

)
= Re(|ν|(E)) ≥ 0

and: ∫
E

Im(fh̄)dμ = Im

(∫
E

fh̄dμ

)
= Im(|ν|(E)) = 0
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6. Define g1 = Re(fh̄) and g2 = Im(fh̄). Then g1 and g2 are
elements of L1

R(Ω,F , μ), and from 5. we have
∫

E
g1dμ ≥ 0 while∫

E g2dμ = 0 for all E ∈ F . Since S = R+ and S = {0} are
closed subset of C, it is very tempting to apply theorem (59) in
an attempt to conclude that g1 ∈ R+ μ-a.s. and g2 = 0 μ-a.s.
Unfortunately, μ is not assumed to be a finite measure (it is
not even assumed to be sigma-finite) and theorem (59) should
therefore be forgotten here. Taking E = {g1 < −1/n} for some
n ≥ 1, we obtain:

0 ≤
∫

E

g1dμ ≤ − 1
n

μ({g1 < −1/n}) ≤ 0

from which we see that μ({g1 < −1/n}) = 0 for all n ≥ 1. Since
{g1 < 0} = ∪n≥1{g1 < −1/n}, it follows that μ({g1 < 0}) = 0
and consequently, g1 ∈ R+ μ-a.s. Similarly, from

∫
E

g2dμ = 0
for all E ∈ F , we obtain g2 ∈ R+ μ-a.s. and −g2 ∈ R+ μ-a.s.
It follows that g2 = 0 μ-a.s. We have proved that Re(fh̄) ∈ R+

μ-a.s. while Im(fh̄) = 0 μ-a.s., so fh̄ ∈ R+ μ-a.s.
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7. From 6. there exists N ∈ F with μ(N) = 0 and f(ω)h̄(ω) ∈ R+

for all ω ∈ N c. In particular, since |h| = 1, for all ω ∈ N c:

f(ω)h̄(ω) = |f(ω)h̄(ω)| = |f(ω)|
It follows that fh̄ = |f | μ-a.s.

8. Let μ be a measure on (Ω,F) and f ∈ L1
C(Ω,F , μ). Then, from

part 1. of this exercise, ν =
∫

fdμ is a complex measure on
(Ω,F). Furthermore, from 4. we have:

∀E ∈ F , |ν|(E) =
∫

E

fh̄dμ

Finally, from 7. we have fh̄ = |f | μ-a.s. We conclude that:

∀E ∈ F , |ν|(E) =
∫

E

|f |dμ

This completes the proof of theorem (63).

Exercise 14
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Exercise 15.

1. The positive part μ+ of the signed measure μ is defined by the
formula μ+ = (|μ| + μ)/2 (see exercise (12) of Tutorial 11). It
follows that for all E ∈ F :

μ+(E) =
1
2
|μ|(E) +

1
2

∫
E

hd|μ| =
∫

E

1
2
(1 + h)d|μ|

2. The negative part μ− of the signed measure μ is defined as
μ− = (|μ| − μ)/2. Hence, for all E ∈ F :

μ−(E) =
1
2
|μ|(E) − 1

2

∫
E

hd|μ| =
∫

E

1
2
(1 − h)d|μ|

3. Since h ∈ L1
R(Ω,F , |μ|) is R-valued and |h| = 1, h can only

assume the values 1 and −1. Having defined A = {h = 1},
(1 + h)/2 = 0 on Ac and for all E ∈ F we have:

μ+(E) =
∫

E

1
2
(1 + h)d|μ| =

∫
A∩E

1
2
(1 + h)d|μ| (23)
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Furthermore, since h = (1 + h)/2 on A:

μ(A ∩ E) =
∫

A∩E

hd|μ| =
∫

A∩E

1
2
(1 + h)d|μ| (24)

Comparing (23) with (24), we obtain μ+ = μA.

4. Having defined B = {h = −1}, we have for all E ∈ F :

μ−(E) =
∫

E

1
2
(1 − h)d|μ| =

∫
B∩E

1
2
(1 − h)d|μ|

since (1 − h)/2 = 0 on Bc. Furthermore:

μ(B ∩ E) =
∫

B∩E

hd|μ| = −
∫

B∩E

1
2
(1 − h)d|μ|

since h = −(1 − h)/2 on B. This shows that μ− = −μB, and
completes the proof of theorem (64).

Exercise 15
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Exercise 16.

1. Let f : (Ω,F)→(C,B(C)) be measurable. From definition (97),
any element of L1

C(Ω,F , μ) is an element of L1
C(Ω,F , |μ|), and

therefore satisfies: ∫
|f |d|μ| < +∞ (25)

Conversely, if f satisfies the integrability condition (25), then
it is an element of L1

C(Ω,F , |μ|) and therefore an element of
L1

C(Ω,F , μ).

2. Let f ∈ L1
C(Ω,F , μ). The integral of f w.r. to μ is defined as:∫

fdμ
�
=
∫

fhd|μ| (26)

where h is any element of L1
C(Ω,F , |μ|) with |h| = 1 and μ =∫

hd|μ| (there is at least one such h by virtue of theorem (62)).
This definition is potentially ambiguous, as h may not be unique.

www.probability.net

http://www.probability.net


Solutions to Exercises 84

However, if h′ is another element of L1
C(Ω,F , |μ|) with |h′| = 1

and μ =
∫

h′d|μ|, then for all E ∈ F , we have:

μ(E) =
∫

E

hd|μ| =
∫

E

h′d|μ|

which implies that
∫

E
(h − h′)d|μ| = 0. Using exercise (7), it

follows that h = h′ |μ|-a.s. and consequently the r.h.s integral
of equation (26) is unchanged, when replacing h by h′. We
conclude that equation (26) is in fact unambiguous, as its r.h.s
integral does not depend on the particular choice of element
h ∈ L1

C(Ω,F , |μ|) with |h| = 1 and μ =
∫

hd|μ|.
3. Let E ∈ F . Then 1E : (Ω,F) → (C,B(C)) is measurable, and

furthermore:∫
|1E |d|μ| =

∫
1Ed|μ| = |μ|(E) < +∞

since |μ| is a finite measure on (Ω,F) (see theorem (57)). Using
1. it follows that 1E is an element of L1

C(Ω,F , μ), as defined in
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definition (97). Moreover, we have:∫
1Edμ =

∫
1Ehd|μ| =

∫
E

hd|μ| = μ(E)

4. If μ is a finite measure (complex measure with values in R+),
then for all E ∈ F and (En)n≥1 measurable partition of E:

+∞∑
n=1

|μ(En)| =
+∞∑
n=1

μ(En) = μ(E)

In particular, μ(E) is an upper bound of all sums
∑+∞

n=1 |μ(En)|,
as (En)n≥1 ranges through all measurable partitions of E. It
follows that |μ|(E) ≤ μ(E). Since μ(E) = |μ(E)| ≤ |μ|(E) is
clear, we conclude that |μ| = μ.

5. Suppose that μ is a finite measure. Then μ is not only a measure,
but also a complex measure. It follows that definition (97) of the
space L1

C(Ω,F , μ), and of the integral
∫

fdμ (valid for complex

www.probability.net

http://www.probability.net


Solutions to Exercises 86

measures), is potentially in conflict with the definitions already
known for measures (definitions (46) and (48)). However, since
μ = |μ|, the space L1

C(Ω,F , μ) of definition (97) being defined
as L1

C(Ω,F , |μ|), coincide with that of definition (46). Further-
more, h = 1 being an element of L1

C(Ω,F , |μ|) with |h| = 1
and μ =

∫
hd|μ|, the integral

∫
fdμ of definition (97) can be

expressed as:∫
fdμ =

∫
fhd|μ| =

∫
fd|μ| =

∫
fdμ

where the r.h.s integral is that of definition (48). We conclude
that definition (97) which extends the notion of integral with
respect to complex measures, is consistent with previous defini-
tions laid out for measures.

6. The space L1
C(Ω,F , μ) being defined as L1

C(Ω,F , |μ|), it is a
C-vector space. Let h ∈ L1

C(Ω,F , |μ|) be such that |h| = 1
and μ =

∫
hd|μ|. Then, for all f, g ∈ L1

C(Ω,F , μ) and α ∈ C,
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following definition (97) we have:∫
(f + αg)dμ =

∫
(f + αg)hd|μ|

=
∫

fhd|μ| + α

∫
ghd|μ|

=
∫

fdμ + α

∫
gdμ

where the second equality stems from the linearity of the inte-
gral, already established for measures.

7. Let f ∈ L1
C(Ω,F , μ) and h be as in definition (97). Then, from

theorem (24), we have:∣∣∣∣
∫

fdμ

∣∣∣∣ =
∣∣∣∣
∫

fhd|μ|
∣∣∣∣ ≤

∫
|fh|d|μ| =

∫
|f |d|μ|

Exercise 16
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Exercise 17.

1. Let E ∈ F and (En)n≥1 be a measurable partition of E. Then:
+∞∑
n=1

|αν(En)| = |α|
+∞∑
n=1

|ν(En)| ≤ |α||ν|(E)

It follows that |α||ν|(E) is an upper bound of all
∑+∞

n=1 |αν(En)|
as (En)n≥1 ranges through all measurable partitions of E. Since
|αν|(E) is the smallest of such upper bounds, we obtain the
inequality |αν|(E) ≤ |α||ν|(E). This being true for all E ∈ F ,
we have proved that |αν| ≤ |α||ν| for all α ∈ C. If α = 0, then
|αν| = |α||ν| is clear. If α �= 0, then applying what we have just
proved to ν′ = αν and α′ = 1/α, we obtain:

|ν| =
∣∣∣∣ 1α (αν)

∣∣∣∣ ≤ 1
|α| |αν|

and consequently |α||ν| ≤ |αν|. This shows that |αν| = |α||ν|
for all ν ∈ M1(Ω,F) and α ∈ C.

www.probability.net

http://www.probability.net


Solutions to Exercises 89

2. Let E ∈ F and (En)n≥1 be a measurable partition of E. Then:
+∞∑
n=1

|(μ + ν)(En)| ≤
+∞∑
n=1

|μ(En)| +
+∞∑
n=1

|ν(En)| ≤ (|μ| + |ν|)(E)

It follows that (|μ| + |ν|)(E) is an upper bound of all sums∑+∞
n=1 |(μ + ν)(En)| as (En)n≥1 ranges through all measurable

partitions of E. |μ + ν|(E) being the smallest of such upper
bounds, we have |μ+ν|(E) ≤ (|μ|+ |ν|)(E). This being true for
all E ∈ F , we have proved that |μ + ν| ≤ |μ| + |ν|.

3. Let f ∈ L1
C(Ω,F , μ)∩L1

C(Ω,F , ν). Then f is C-valued, measur-
able, and satisfies

∫ |f |d|μ| < +∞ with
∫ |f |d|ν| < +∞. Using

2. and 1., for all α ∈ C:

|μ + αν| ≤ |μ| + |αν| = |μ| + |α||ν|
Hence, for all E ∈ F , we have:∫

1Ed|μ + αν| ≤
∫

1Ed|μ| + |α|
∫

1Ed|ν|
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By linearity, if s is a simple function on (Ω,F), we obtain:∫
sd|μ + αν| ≤

∫
sd|μ| + |α|

∫
sd|ν|

Approximating |f | by a sequence simple functions (see theo-
rem (18)) and using the monotone convergence theorem (19):∫

|f |d|μ + αν| ≤
∫

|f |d|μ| + |α|
∫

|f |d|ν| < +∞

So f ∈ L1
C(Ω,F , μ + αν), and we have proved the inclusion:

L1
C(Ω,F , μ) ∩ L1

C(Ω,F , ν) ⊆ L1
C(Ω,F , μ + αν)

4. Using 3. of exercise (16), we have:∫
1Ed(μ + αν) = (μ + αν)(E)

= μ(E) + αν(E)

=
∫

1Edμ + α

∫
1Edν
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5. Let f ∈ L1
C(Ω,F , μ) ∩ L1

C(Ω,F , ν). We claim that:∫
fd(μ + αν) =

∫
fdμ + α

∫
fdν (27)

Note from 3. that f ∈ L1
C(Ω,F , μ + αν) and all integrals of

equation (27) are therefore well defined. Furthermore from 4.,
(27) is true whenever f is of the form f = 1E with E ∈ F .
By linearity (proved in 6. of exercise (16)), equation (27) is in
fact true whenever f is a simple function on (Ω,F). Suppose
now that f : (Ω,F) → [0, +∞] is non-negative and measurable,
while being an element of L1

C(Ω,F , μ)∩L1
C(Ω,F , ν). From the-

orem (18), there exists a sequence (sn)n≥1 of simple functions
on (Ω,F) such that sn ↑ f . Let h ∈ L1

C(Ω,F , |μ + αν|) be such
that |h| = 1 and μ + αν =

∫
hd|μ + αν|. Then, snh → fh and

furthermore |snh| = |sn| = sn ≤ f ∈ L1
C(Ω,F , |μ + αν|). From

the dominated convergence theorem (23), we have:

lim
n→+∞

∫
snd(μ + αν) = lim

n→+∞

∫
snhd|μ + αν|

www.probability.net

http://www.probability.net


Solutions to Exercises 92

=
∫

fhd|μ + αν|

=
∫

fd(μ + αν)

We show similarly that:

lim
n→+∞

∫
sndμ =

∫
fdμ

and:
lim

n→+∞

∫
sndν =

∫
fdν

Having proved (27) for all simple functions on (Ω,F), we have:∫
snd(μ + αν) =

∫
sndμ + α

∫
sndν

and taking the limit as n → +∞, we see that (27) is also true for f
non-negative, measurable and belonging to L1

C(Ω,F , μ)∩L1
C(Ω,F , ν).

If f is an arbitrary element of L1
C(Ω,F , μ) ∩ L1

C(Ω,F , ν), then it
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can be expressed as f = f1 − f2 + i(f3 − f4) where each fi is non-
negative, measurable and belonging to L1

C(Ω,F , μ) ∩ L1
C(Ω,F , ν).

Equation (27) being true for each fi, it follows by linearity that (27)
is also true for f . We have proved that (27) is true for all elements f
of ∈ L1

C(Ω,F , μ) ∩ L1
C(Ω,F , ν).

Exercise 17
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Exercise 18.

1. Let μ, ν be two measures on (Ω,F) and α ∈ [0, +∞]. Then:

(μ + αν)(∅) = μ(∅) + αν(∅) = 0 (28)

Note that from the convention (+∞) × 0 = 0, equation (28) is
still true in the case when α = +∞. Furthermore, if A ∈ F and
(An)n≥1 is a sequence of pairwise disjoint elements of F with
A = �n≥1An, then:

(μ + αν)(A) = μ(A) + αν(A)

=
+∞∑
n=1

μ(An) + α

+∞∑
n=1

ν(An)

=
+∞∑
n=1

μ(An) +
+∞∑
n=1

αν(An)

=
+∞∑
n=1

μ(An) + αν(An)
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=
+∞∑
n=1

(μ + αν)(An)

Note that the third equality is still true if α = +∞ or ν(A) =∑
n≥1 ν(An) = +∞. It follows that μ+αν is countably additive,

and we have proved that it is indeed a measure on (Ω,F). Now,
given f : (Ω,F) → [0, +∞], we claim that:∫

fd(μ + αν) =
∫

fdμ + α

∫
fdν (29)

(29) is obviously true when f is of the form f = 1E with E ∈
F . By linearity (which is still valid, even if α = +∞), (29)
is also true when f is a simple function on (Ω,F). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (sn)n≥1 of simple functions on (Ω,F),
such that sn ↑ f . Having proved (29) for any simple function,
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for all n ≥ 1 we have:∫
snd(μ + αν) =

∫
sndμ + α

∫
sndν (30)

From the monotone convergence theorem (19), taking the limit
in (30) as n → +∞, we conclude that (29) is also true for f .
Note that if α = +∞ and (un)n≥1 is a sequence in [0, +∞]
converging to some u ∈ [0, +∞], then it is not true in general
that αun → αu. Indeed, consider the case when un = 1/n.
Then αu = (+∞) × 0 = 0 while αun = (+∞) × (1/n) = +∞
for all n ≥ 1, and (αun)n≥1 does not converge to αu. However,
if un ≤ un+1 for all n ≥ 1, then the convergence αun → αu is
true. Indeed, if u = supn≥1 un = 0, then un = 0 for all n ≥ 1
and consequently αun = 0 = αu. If u �= 0, then un �= 0 for n
large enough, and consequently αun = +∞ = αu for n large
enough. All this to say that even in the case when α = +∞,
the convergence α

∫
sndν → α

∫
fdν is true.
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2. We claim that: ∫
fdμ ≤

∫
fdν (31)

Since μ ≤ ν, (31) is true when f = 1E, and E ∈ F . By linearity,
(31) is also true when f is a simple function on (Ω,F). If f is an
arbitrary non-negative and measurable map, from theorem (18)
there exists a sequence (sn)n≥1 of simple functions on (Ω,F),
such that sn ↑ f . Having proved (31) for any simple function,
for all n ≥ 1 we have: ∫

sndμ ≤
∫

sndν (32)

From the monotone convergence theorem (19), taking the limit
in (32) as n → +∞, we conclude that (31) is also true for f .

Exercise 18

www.probability.net

http://www.probability.net


Solutions to Exercises 98

Exercise 19.

1. Since μ1 = Re(μ), for all F ∈ F we have |μ1(F )| ≤ |μ(F )|.
Hence, if E ∈ F and (En)n≥1 is a measurable partition of E:

+∞∑
n=1

|μ1(En)| ≤
+∞∑
n=1

|μ(En)| ≤ |μ|(E)

It follows that |μ|(E) is an upper bound of all
∑+∞

n=1 |μ1(En)|,
as (En)n≥1 ranges through all measurable partitions of E. Since
|μ1|(E) is the smallest of such upper bounds, |μ1|(E) ≤ |μ|(E).
This being true for all E ∈ F , we conclude that |μ1| ≤ |μ|. We
show similarly that |μ2| ≤ |μ|.

2. Let E ∈ F and (En)n≥1 be a measurable partition of E:
+∞∑
n=1

|μ(En)| ≤
+∞∑
n=1

|μ1(En)| + |μ2(En)| ≤ |μ1|(E) + |μ2|(E)
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|μ|(E) being the supremum of all sums involved on the l.h.s of
this inequality, we conclude that |μ|(E) ≤ |μ1|(E) + |μ2|(E) for
all E ∈ F , i.e. that |μ| ≤ |μ1| + |μ2|.

3. Let f : (Ω,F) → (C,B(C)) be a measurable map. Proving:

L1
C(Ω,F , μ) = L1

C(Ω,F , μ1) ∩ L1
C(Ω,F , μ2)

amounts to showing the equivalence:∫
|f |d|μ| < +∞ ⇔

∫
|f |d|μ1| < +∞,

∫
|f |d|μ2| < +∞ (33)

From |μ1| ≤ |μ| and |μ2| ≤ |μ| using exercise (18) we obtain:∫
|f |d|μ1| ≤

∫
|f |d|μ| (34)

and: ∫
|f |d|μ2| ≤

∫
|f |d|μ| (35)
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Furthermore, from |μ| ≤ |μ1| + |μ2| and exercise (18):∫
|f |d|μ| ≤

∫
|f |d(|μ1|+ |μ2|) =

∫
|f |d|μ1|+

∫
|f |d|μ2| (36)

The equivalence (33) follows easily from (34), (35) and (36).

4. Let f : (Ω,F) → (C,B(C)) be a measurable map. Proving:

L1
C(Ω,F , μ1) = L1

C(Ω,F , μ+
1 ) ∩ L1

C(Ω,F , μ−
1 )

amounts to showing the equivalence:∫
|f |d|μ1| < +∞ ⇔

∫
|f |dμ+

1 < +∞,

∫
|f |dμ−

1 < +∞ (37)

The positive and negative parts μ+
1 and μ−

1 of μ1 being defined
as μ+

1 = (|μ1| − μ1)/2 and μ−
1 = (|μ1| − μ1)/2 (see exercise (12)

of Tutorial 11), we have |μ1| = μ+
1 + μ−

1 . Using exercise (18):∫
|f |d|μ1| =

∫
|f |dμ+

1 +
∫

|f |dμ−
1
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Hence, the equivalence (37) is clear. We show similarly that:

L1
C(Ω,F , μ2) = L1

C(Ω,F , μ+
2 ) ∩ L1

C(Ω,F , μ−
2 )

5. Let f ∈ L1
C(Ω,F , μ). We claim that∫

fdμ =
∫

fdμ+
1 −

∫
fdμ−

1 + i

(∫
fdμ+

2 −
∫

fdμ−
2

)
(38)

Note that from 3. and 4. we have:

f ∈ L1
C(Ω,F , μ+

1 )∩L1
C(Ω,F , μ−

1 )∩L1
C(Ω,F , μ+

2 )∩L1
C(Ω,F , μ−

2 )

and consequently all integrals in (38) are well-defined. Applying
exercise (17) to the complex measures (in fact signed measures)
μ1, μ2 and α = i, we obtain:∫

fdμ =
∫

fdμ1 + i

∫
fdμ2 (39)

Applying exercise (17) to the complex measures (in fact finite
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measures) μ+
1 , μ−

1 and α = −1, we obtain:∫
fdμ1 =

∫
fdμ+

1 −
∫

fdμ−
1 (40)

Similarly, we have:∫
fdμ2 =

∫
fdμ+

2 −
∫

fdμ−
2 (41)

Equation (38) follows from (39), (40) and (41).

Exercise 19
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Exercise 20.

1. By definition, the trace of F on A is given by:

F|A
�
= {A ∩ E : E ∈ F}

Since A is an element of F , it is clear that F|A ⊆ F ′, where:

F ′ = {E : E ∈ F , E ⊆ A}
For the reverse inclusion, note that if E ∈ F ′ then E can be
written as E = A ∩ E and E ∈ F . So E is an element of F|A.

2. Let E ∈ F and (En)n≥1 be a measurable partition of E. Then
(A ∩ En)n≥1 is a measurable partition of A ∩ E. Since μ is a
complex measure of (Ω,F), we have:

μ(A ∩ E) =
+∞∑
n=1

μ(A ∩ En) (42)
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i.e. the right-hand-side series converges to μ(A ∩ E). By the
very definition of μA, (42) can be re-expressed as:

μA(E) =
+∞∑
n=1

μA(En) (43)

i.e. the right-hand-side series converges to μA(E). This shows
that μA is a complex measure on (Ω,F).

Let E ∈ F|A and (En)n≥1 be a measurable partition of E, i.e. a
sequence of pairwise disjoint elements of F|A with E = �+∞

n=1En.
From 1., E and every En is an element of F , (while being a
subset of A). μ being a complex measure on (Ω,F), we have:

μ(E) =
+∞∑
n=1

μ(En) (44)

i.e. the right-hand-side series converges to μ(E). Since μ|A is
defined as the restriction of μ to F|A, and since E and all En’s

www.probability.net

http://www.probability.net


Solutions to Exercises 105

are elements of F|A, (45) can be equivalently expressed as:

μ|A(E) =
+∞∑
n=1

μ|A(En) (45)

i.e. the right-hand-side series converges to μ|A(E). This shows
that μ|A is a complex measure on (A,F|A).

3. Let E ∈ F and (En)n≥1 be a measurable partition of E. Then
(A ∩ En)n≥1 is a measurable partition of A ∩ E. Hence:

+∞∑
n=1

|μ(A ∩ En)| ≤ |μ|(A ∩ E)

or equivalently:
+∞∑
n=1

|μA(En)| ≤ |μ|A(E)
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4. From the previous section 3., |μ|A(E) is an upper bound of all
sums

∑+∞
n=1 |μA(En)|, as (En)n≥1 ranges through all measurable

partitions of E. Since |μA|(E) is the smallest of such upper
bounds, we have |μA|(E) ≤ |μ|A(E). This being true for all
E ∈ F , we conclude that |μA| ≤ |μ|A.

5. Let E ∈ F and (En)n≥1 be a measurable partition of A∩E. For
all n ≥ 1, En ⊆ A and consequently μ(En) = μA(En). Hence:

+∞∑
n=1

|μ(En)| =
+∞∑
n=1

|μA(En)| ≤ |μA|(A ∩ E)

6. Let (En)n≥1 be a measurable partition of Ac. Then:
+∞∑
n=1

|μA(En)| =
+∞∑
n=1

|μ(A ∩ En)| = 0

|μA|(Ac) being the supremum of all sums
∑+∞

n=1 |μA(En)|, as
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(En)n≥1 ranges through all measurable partitions of Ac, we con-
clude that |μA|(Ac) = 0.

7. From 5. it follows that |μA|(A ∩ E) is an upper bound of all
sums

∑+∞
n=1 |μ(En)|, as (En)n≥1 ranges through all measurable

partitions of A∩E. |μ|(A∩E) being the smallest of such upper
bounds, we have |μ|(A ∩ E) ≤ |μA|(A ∩ E). However, from 6.
we have |μA|(Ac) = 0, and consequently:

|μA|(E) = |μA|(A ∩ E) + |μA|(Ac ∩ E) = |μA|(A ∩ E)

It follows that |μ|(A ∩ E) ≤ |μA|(E). This being true for all
E ∈ F , we see that |μ|A ≤ |μA|. Having proved in 4. that
|μA| ≤ |μ|A, we conclude that |μA| = |μ|A. In other words,
the total variation of the restriction of μ to A, is equal to the
restriction of the total variation of μ to A.

8. Let E ∈ F|A and (En)n≥1 be an F|A-measurable partition of E.
Since F|A ⊆ F , E ∈ F and (En)n≥1 is also an F -measurable
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partition of E. Hence:
+∞∑
n=1

|μ(En)| ≤ |μ|(E) (46)

μ|A and |μ||A being respectively the restrictions of μ and |μ| to
F|A, (46) can be re-expressed as:

+∞∑
n=1

|μ|A(En)| ≤ |μ||A(E)

9. Given E ∈ F|A, it appears from 8. that |μ||A(E) is an upper
bound of all sums

∑+∞
n=1 |μ|A(En)|, as (En)n≥1 ranges through

all F|A-measurable partitions of E. Since |μ|A|(E) is the small-
est of such upper bounds, we have |μ|A|(E) ≤ |μ||A(E). This
being true for all E ∈ F|A, we conclude that |μ|A| ≤ |μ||A.

10. Let E ∈ F|A and (En)n≥1 be an F -measurable partition of E.
From 1. we have E ∈ F and E ⊆ A. It follows that En ⊆ A
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for all n ≥ 1 and consequently En ∈ F|A. So (En)n≥1 is also an
F|A-measurable partition of E. Hence:

+∞∑
n=1

|μ|A(En)| ≤ |μ|A|(E)

which can be equivalently written as:
+∞∑
n=1

|μ(En)| ≤ |μ|A|(E)

11. Given E ∈ F|A, it appears from 10. that |μ|A|(E) is an upper
bound of all sums

∑+∞
n=1 |μ(En)|, as (En)n≥1 ranges through all

F -measurable partitions of E. Since |μ|(E) is the smallest of
such upper bounds, we have |μ|(E) ≤ |μ|A|(E), or equivalently
since E ∈ F|A, |μ||A(E) ≤ |μ|A|(E). This being true for all
E ∈ F|A, |μ||A ≤ |μ|A|. Having proved in 9. that |μ|A| ≤ |μ||A,
we conclude that |μ|A| = |μ||A.
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12. By assumption, h ∈ L1
C(Ω,F , |μ|) is such that |h| = 1 and

μ =
∫

hd|μ|. In particular, for all E ∈ F :

μA(E) = μ(A ∩ E)

=
∫

A∩E

hd|μ|

=
∫

(h1E)1Ad|μ|

=
∫

(h1E)d|μ|A

=
∫

E

hd|μ|A

=
∫

E

hd|μA|

where the first equality stems from the definition of μA, the
second from the fact that μ =

∫
hd|μ|, the third, fourth and

fifth from a use of definition (49) and finally the sixth from the
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fact that |μ|A = |μA|. This being true for all E ∈ F , we have
proved that μA =

∫
hd|μA|.

13. Since h ∈ L1
C(Ω,F , |μ|), from definition (49), h|A is an element

of L1
C(A,F|A, |μ||A). Having proved that |μ||A = |μ|A|, it follows

that h|A ∈ L1
C(A,F|A, |μ|A|) 2. Furthermore, for all E ∈ F|A:

μ|A(E) = μ(E)
= μ(A ∩ E)

=
∫

A∩E

hd|μ|

=
∫

(h1E)1Ad|μ|

=
∫

h|A(1E)|Ad|μ||A

=
∫

E

h|Ad|μ||A
2One may argue that |h|A| = 1 and |μ|A| is a finite measure. . .
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=
∫

E

h|Ad|μ|A|

where the first equality stems from the definition of μ|A, the
second from the fact that E ⊆ A, the third from the fact that
μ =

∫
hd|μ|, the fourth, fifth and sixth from definition (49) an

finally the seventh from the fact that |μ||A = |μ|A|. This being
true for all E ∈ F|A, we conclude that μ|A =

∫
h|Ad|μ|A|.

14. Let f ∈ L1
C(Ω,F , μ). From definition (97), this is equivalent to

f ∈ L1
C(Ω,F , |μ|). Applying definition (49), we have:

f1A∈L1
C(Ω,F , |μ|), f ∈L1

C(Ω,F , |μ|A), f|A∈L1
C(A,F|A, |μ||A)

and since |μ|A = |μA| and |μ||A = |μ|A|, we obtain:

f1A∈L1
C(Ω,F , |μ|), f ∈L1

C(Ω,F , |μA|), f|A∈L1
C(A,F|A, |μ|A|)

Moreover, since |h| = 1 and μ =
∫

hd|μ|, from definition (97):∫
f1Adμ =

∫
fh1Ad|μ| (47)
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and similarly, since μA =
∫

hd|μA| and |μ|A = |μA|:∫
fdμA =

∫
fhd|μA| =

∫
fhd|μ|A (48)

Furthermore since μ|A =
∫

h|Ad|μ|A| and |μ||A = |μ|A|:∫
f|Adμ|A =

∫
f|Ah|Ad|μ|A| =

∫
(fh)|Ad|μ||A (49)

Finally, from definition (49):∫
fh1Ad|μ| =

∫
fhd|μ|A =

∫
(fh)|Ad|μ||A (50)

Comparing (47), (48) and (49) with (50), we conclude that:∫
f1Adμ =

∫
fdμA =

∫
f|Adμ|A

Exercise 20
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Exercise 21. Let f ∈ L1
C(Ω,F , μ), where μ is a complex measure on

(Ω,F). Let h ∈ L1
C(Ω,F , |μ|) be such that |h| = 1 and μ =

∫
hd|μ|.

Let ν =
∫

fdμ, i.e. be the map defined by:

∀E ∈ F , ν(E) =
∫

E

fdμ

From definitions (98), (97) and (49), for all E ∈ F :

ν(E) =
∫

f1Edμ =
∫

fh1Ed|μ| =
∫

E

fhd|μ|

It follows that ν =
∫

fhd|μ|, and applying theorem (63), ν is therefore
a complex measure on (Ω,F), with total variation |ν| given by:

∀E ∈ F , |ν|(E) =
∫

E

|fh|d|μ| =
∫

E

|f |d|μ|

Let g : (Ω,F) → (C,B(C)) be measurable. Applying theorem (21) to
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|ν| =
∫ |f |d|μ|, we obtain:∫

|g|d|ν| =
∫

|g||f |d|μ|

and therefore we have the equivalence:∫
|g|d|ν| < +∞ ⇔

∫
|gf |d|μ| < +∞

i.e.
g ∈ L1

C(Ω,F , ν) ⇔ gf ∈ L1
C(Ω,F , μ)

When such condition is satisfied, we claim that:∫
gdν =

∫
gfdμ (51)

This equality is clearly true when g is of the form g = 1E where E ∈ F
(such a g would automatically lie in L1

C(Ω,F , ν) since |ν| is a finite
measure). By the linearity of the integral (with respect to complex
measures, such a linearity is proved in exercise (16)), equation (51) is
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also true when g is a simple function on (Ω,F). If g is non-negative
and measurable, while being an element of L1

C(Ω,F , ν), from theo-
rem (18) there exists a sequence (sn)n≥1 of simple functions on (Ω,F),
such that sn ↑ g. Let k be an arbitrary element of L1

C(Ω,F , |ν|) with
|k| = 1 and ν =

∫
kd|ν|. Then:

lim
n→+∞

∫
sndν = lim

n→+∞

∫
snkd|ν|

=
∫

gkd|ν|

=
∫

gdν

where the first and third equalities stem from definition (97), and the
second from the dominated convergence theorem (23) (and the fact
that snk → gk with |snk| = sn ≤ g ∈ L1

C(Ω,F , |ν|)). Similarly:

lim
n→+∞

∫
snfdμ = lim

n→+∞

∫
snfhd|μ|
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=
∫

gfhd|μ|

=
∫

gfdμ

where the first and third equalities stem from definition (97), and
the second from the dominated convergence theorem (23) (and the
fact that snfh → gfh with |snfh| = sn|f | ≤ g|f | ∈ L1

C(Ω,F , |μ|)).
Having proved (51) for simple functions, for all n ≥ 1:∫

sndν =
∫

snfdμ

and taking the limit as n → +∞, we see that (51) is also true when-
ever g is non-negative and measurable, while being an element of
L1

C(Ω,F , ν). If g is an arbitrary element L1
C(Ω,F , ν), then it can be

decomposed as g = g1 − g2 + i(g3 − g4) where each gi is non-negative
and measurable, while being an element of L1

C(Ω,F , ν). By linearity,
equation (51) is also true for g.

Exercise 21
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Exercise 22.

1. Let Ω = Ω1 × . . . × Ωn and F = F1 ⊗ . . . ⊗Fn. Then:

∀E ∈ F , μ(E) =
∫

E

hdν

where h = h1 . . . hn and ν = |μ1| ⊗ . . . ⊗ |μn| is the product
measure, as defined in definition (62). Each total variation |μi|
being a finite measure, ν is also a finite measure, and further-
more |h| = |h1| . . . |hn| = 1. Moreover, the map h is clearly
measurable with respect to F , as the equality:

∀B ∈ B(C) , h−1
i (B) = Ω1 × . . . × h−1

i (B) × . . . × Ωn

shows that each hi (viewed as a map defined on the product
space (Ω,F)) is measurable. It follows that μ is of the form μ =∫

hdν, where h ∈ L1
C(Ω,F , ν). From theorem (63), we conclude

that μ is a complex measure on (Ω,F). In fact, theorem (63)
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goes further, asserting that the total variation of μ is:

∀E ∈ F , |μ|(E) =
∫

E

|h|dν =
∫

1Edν = ν(E)

i.e. |μ| = ν = |μ1| ⊗ . . . ⊗ |μn|.
2. Let A = A1 × . . . × An be a measurable rectangle. We have:∫

A1×A2

h1h2d|μ1| ⊗ |μ2| =
∫

h1h21A1×A2d|μ1| ⊗ |μ2|

=
∫

(h11A1)(h21A2)d|μ1| ⊗ |μ2|

=
∫ (∫

(h11A1)(h21A2)d|μ2|
)

d|μ1|

=
∫

h11A1

(∫
h21A2d|μ2|

)
d|μ1|

=
∫

h11A1μ2(A2)d|μ1|
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= μ2(A2)
∫

h11A1d|μ1|
= μ1(A1) · μ2(A2)

Where crucially, the third equality stems from Fubini theo-
rem (33). If n = 2, then we have nothing further to prove.
If n > 2, we consider the induction hypothesis, for 2 ≤ k ≤ n:∫

Bk

gkdνk = μ1(A1) . . . μk(Ak) (52)

where Bk = A1× . . .×Ak, νk = |μ1|⊗ . . .⊗|μk| and gk is defined
as gk = h1 . . . hk. If we assume that such induction hypothesis
is true for some k with 2 ≤ k ≤ n − 1, then:∫

Bk+1

gk+1dνk+1 =
∫

(gk1Bk
)(hk+11Ak+1)dνk ⊗ |μk+1|

=
∫

gk1Bk

(∫
hk+11Ak+1d|μk+1|

)
dνk
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= μk+1(Ak+1)
∫

Bk

gkdνk

= μ1(A1) . . . μk+1(Ak+1)

where the second equality stems from Fubini theorem (33) and
the fourth from our induction hypothesis (52). This shows
that (52) is in fact true for all k = 2, . . . , n, and finally:

μ(A) =
∫

Bn

gndνn = μ1(A1) . . . μn(An)

3. We have proved that μ is a complex measure on (Ω,F) such
that for all measurable rectangle A = A1 × . . . × An:

μ(A) = μ1(A1) . . . μn(An)

In order to prove theorem (66), it remains to show that such a
measure is unique. Suppose μ and ν are two complex measures
on (Ω,F) which coincide on the set of measurable rectangles
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F1 � . . . � Fn. We define:

D = {E ∈ F , μ(E) = ν(E)}
Then F1 � . . . � Fn ⊆ D, and D is easily seen to be a Dynkin
system on (Ω,F). Indeed, Ω being a measurable rectangle, we
have Ω ∈ D. Furthermore, If A, B ∈ D and A ⊆ B, Then:

μ(B \ A) = μ(A) + μ(B \ A) − μ(A)
= μ(B) − μ(A)
= ν(B) − ν(A)
= ν(B \ A)

and therefore B \A ∈ D. Moreover, if (An)n≥1 is a sequence of
elements of D such that An ↑ A, then using exercise (13):

μ(A) = lim
n→+∞μ(An) = lim

n→+∞ ν(An) = ν(A)

and therefore A ∈ D. So D is indeed a Dynkin system on
(Ω,F). The set of measurable rectangles being closed under
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finite intersection (and being a subset of D), from the Dynkin
system theorem (1), we have:

σ(F1 � . . . � Fn) ⊆ D
and consequently F = F1⊗ . . .⊗Fn ⊆ D. It follows that D = F
and finally μ = ν. This proves theorem (66).

Exercise 22
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Exercise 23.

1. We saw in exercise (22) that the complex measure μ defined by:

∀E ∈ F , μ(E) =
∫

E

h1 . . . hnd|μ1| ⊗ . . . ⊗ |μn| (53)

satisfies the requirement of theorem (66), and is therefore equal
to the product measure μ1 ⊗ . . . ⊗ μn. Furthermore, we proved
using theorem (63) that |μ| = |μ1| ⊗ . . . ⊗ |μn|.

2.

‖μ1 ⊗ . . . ⊗ μn‖ = |μ1 ⊗ . . . ⊗ μn|(Ω)
= |μ1| ⊗ . . . ⊗ |μn|(Ω)
= |μ1|(Ω1) . . . |μn|(Ωn)
= ‖μ1‖ . . . ‖μn‖
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3. From (53) and |μ| = |μ1| ⊗ . . . ⊗ |μn|, we obtain:

∀E ∈ F , μ(E) =
∫

E

h1 . . . hnd|μ|

4. Having shown that μ =
∫

hd|μ| with h = h1 . . . hn (|h| = 1), it
follows from definition (97) that for all f ∈ L1

C(Ω,F , μ):∫
fdμ =

∫
fhd|μ|

or equivalently:∫
fdμ1 ⊗ . . . ⊗ μn =

∫
fh1 . . . hnd|μ1| ⊗ . . . ⊗ |μn|

5. Let σ be a permutation of Nn and h = h1 . . . hn. Then:∫
fdμ1 ⊗ . . . ⊗ μn =

∫
fhd|μ1| ⊗ . . . ⊗ |μn|

=
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fhd|μσ(1)| . . . d|μσ(n)|
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=
∫

Ωσ(n)

. . .

∫
Ωσ(1)

fdμσ(1) . . . dμσ(n)

where the second equality stems from exercise (17) of Tutorial 7,
and the third equality from:∫

Ωσ(1)

fhd|μσ(1)| = hσ(2) . . . hσ(n)

∫
Ωσ(1)

fhσ(1)d|μσ(1)|

= hσ(2) . . . hσ(n)

∫
Ωσ(1)

fdμσ(1)

followed by an induction argument.

Exercise 23
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