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6. Product Spaces

In the following, I is a non-empty set.

Definition 50 Let (£2;)i;er be a family of sets, indexed by a non-
empty set 1. We call Cartesian product of the family (€2;);cr the
set, denoted I1;c18;, and defined by:

HQZ é{w : I—>Ui€]Qi s OJ(Z) cQ; R Vi e I}

iel
In other words, 1;c1€); is the set of all maps w defined on I, with
values in U;er€;, such that w(i) € Q; for alli € 1.

Theorem 25 (Axiom of choice) Let (;)icr be a family of sets,
indezed by a non-empty set I. Then, ;c1$; is non-empty, if and
only if Q; is non-empty for all i € I'.

"When I is finite, this theorem is traditionally derived from other axioms.
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EXERCISE 1.

1.

Let 2 be a set and suppose that €; = Q,Vi € I. We use the
notation Q! instead of I1;c€2;. Show that Q7 is the set of all
maps w : I — Q.

. What are the sets R®" | RN | [0,1]N , RR?

. Suppose I = N*. We sometimes use the notation IT7>9€, in-

stead of IT,en+€,. Let S be the set of all sequences (z,)n>1
such that x, € Q, for all n > 1. Is S the same thing as the
product I11299,,?

. Suppose I = N,, = {1,...,n}, n > 1. We use the notation

Q1 x ... xQ, instead of gy, n1 2. Forw € Oy x...x Qy, it
is customary to write (w1, ...,w,) instead of w, where we have
w; = w(i). What is your guess for the definition of sets such as
R",R",Q", C".

. Let E, F,G be three sets. Define E x F' x G.
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Definition 51 Let I be a non-empty set. We say that a family of
sets (In)aen, where A # (), is a partition of I, if and only if:

() YAEA, Iy £0
(i) VAN EA, NAN =L NIy =10
(ZZZ) I =Uxealn

EXERCISE 2. Let (€;);cr be a family of sets indexed by I, and (Iy)xea
be a partition of the set I.

1. For each A € A, recall the definition of IL;¢y, €2;.

2. Recall the definition of ITxep (T;er, ).

3. Define a natural bijection @ : ;e — aep (e, ).

4. Define a natural bijection v : R x R"® — RPT", for all n,p > 1.
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Definition 52 Let (;),er be a family of sets, indexed by a non-
empty set I. For alli € I, let & be a set of subsets of Q;. We define
a rectangle of the family (£;)icr, as any subset A of ;€Y of the
form A = e A; where A; € & U{Q;} for all i € I, and such that
A; = Q; except for a finite number of indices i € I. Consequently, the
set of all rectangles, denoted 1;c1E;, is defined as:

H& é{HAi c A € E U}, A £ Q; for finitely many i € I}
el iel
EXERCISE 3. (£;)ier and (&;);er being as above:

1. Show that if I = N, and €; € & for all i = 1,...,n, then
51H...H5n:{A1X...XAn : Aie&-,VieI}.

2. Let A be a rectangle. Show that there exists a finite subset J
of I such that: A = {w € ILieQ; @ w(j) € A, Vj € J} for
some A;’s such that A; € &;, for all j € J.
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Definition 53 Let (4, F;)icr be a family of measurable spaces, in-
dexed by a non-empty set I. We call measurable rectangle , any
rectangle of the family (F;)icr. The set of all measurable rectangles
is given by 2:

H}‘ié{HAi AT, Ai;éQiforﬁmtelymanyiEI}

el i€l

Definition 54 Let (2, F;)icr be a family of measurable spaces, in-
dezed by a non-empty set I. We define the product o-algebra of
(Fi)ier, as the o-algebra on Il;c;€);, denoted ®;c1F;, and generated
by all measurable rectangles, i.e.

®fiéa<H]—}>

icl el

2Note that Q; € F; for all i € I.
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EXERCISE 4.

1. Suppose I = N,,. Show that F; ® ... ® F,, is generated by all
sets of the form Ay x...x A, where A; € F; foralli=1,... n.

2. Show that B(R) ® B(R) ® B(R) is generated by sets of the form
A x B x C where A, B,C € B(R).

3. Show that if (£2,F) is a measurable space, B(RT) ® F is the
o-algebra on R x Q generated by sets of the form B x F' where
BeBRT)and F € F.

EXERCISE 5. Let (£2;);er be a family of non-empty sets and &; be a
subset of the power set P(;) for all ¢ € I.

1. Give a generator of the o-algebra ®;c;0(&;) on ;.
2. Show that:
o (]_[ 52») c @ a(&)
iel i€l
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3. Let A be a rectangle of the family (0(&;))icr. Show that if A is
not empty, then the representation A = I, A; with 4; € o(&;)
is unique. Define J4 = {i € I : A; # Q;}. Explain why J4 is a
well-defined finite subset of I.

4. If A € I;er0(&;), Show that if A =0, or A # () and J4 = 0,
then A € O’(Hiejgi).

EXERCISE 6. Everything being as before, Let n > 0. We assume that
the following induction hypothesis has been proved:

Ae]]eoE),A#0,cardJa=n = Aco (]_[51-)
el i€l

We assume that A is a non empty measurable rectangle of (0(&;))ier
with cardJa =n+ 1. Let J4 = {i1,..., 0,41} be an extension of Jy.
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For all B C Q;,, we define:

AP 2T 4

icl

where each A; is equal to A; except A;, = B. We define the set:

- W

ot

Fé{BgQil : ABEJ<H&>}
il

. Show that A% # (), cardJ e, = n and that A% € Ilier0(&;).

Show that €;, €T
Show that for all B C Q;,, we have AR \B = A%, \ AB.
Show that BeT' =, \ BeT.

Let B, C Q;,, n > 1. Show that AYBr = U, 51 AP,

. Show that I' is a o-algebra on €, .
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7. Let B € &;,, and for i € I define B; = Q; for all i’s except
Bil = B. Show that AB = AQil n (HZEIBZ)

8. Show that o(&;,) C T.

9. Show that A = A% and A € o(I1;c1&)).
10. Show that I;c;0(&;) C o(Ilicr&s).
11. Show that o (I1;c7&;) = Riero(&:).

Theorem 26 Let (€;);cr be a family of non-empty sets indexed by a
non-empty set I. For alli € I, let & be a set of subsets of Q;. Then,
the product o-algebra R;cro(E;) on the Cartesian product ;e is
generated by the rectangles of (£;)ier, t.e. :

Qo) =0 (]_[ &-)

i€l i€l
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EXERCISE 7. Let 7r denote the usual topology in R. Let n > 1.

1.
2.
3.

ShOWthatTRH...HTR:{Al X ...x A, : AiETR}.
Show that B(R)® ... B(R) = o(Tg II.... I Tr).

Define Co = {Ja1,b1] X ... X]an,bn] : a;,b; € R}. Show that
Co CSI... IS, where S = {]a,b] : a,b € R}, but that the
inclusion is strict.

. Show that SII...II S C o(Ca).
. Show that B(R)®...® B(R) = d(Ca).

EXERCISE 8. Let  and €’ be two non-empty sets. Let A be a subset
of Q such that ) £ A # Q. Let £ = {A} CP(Q) and & =0 C P().

1.
2.

Show that o(&) = {0, A, A°,Q}.
Show that (&) = {0, Q'}.
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3. Define C={Ex F, F€& F €&} and show that C = 0.
4. Show that 11" = {A x ,Q x /).

5. Show that (&) @ o (&) = {0, A x ', A° x O/, Q x Q'}.

6. Conclude that o(€) @ o(&') # o(C) = {0, x Q'}.

EXERCISE 9. Let n > 1 and p > 1 be two positive integers.

1. Define F = B(R)®...@ B(R), and G = B(R)®...® B(R).

n p
Explain why F ® G can be viewed as a o-algebra on R""P.

2. Show that F®@ is generated by sets of the form A; x...x A,
where 4; € B(R),i=1,...,n+p.
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3. Show that:
BR)®...9BR)=(BR)®...BR))2(B(R)®...@B(R))

n+p n P

EXERCISE 10. Let (9, F;)icr be a family of measurable spaces. Let
(In)aca, where A # (0, be a partition of I. Let Q = II;c;€; and
Q' = aea(MWier ).

1. Define a natural bijection between P () and P(Q').

2. Show that through such bijection, A = Il;c;A; C Q, where
A; C Q;, is identified with A" = H)\GA(HiGIA Al) c .

3. Show that Hie[fi = H)\GA(HiGIA fz)

4. Show that ®;erFi = @xea(®icr, Fi)-

www.probability.net


http://www.probability.net

Tutorial 6: Product Spaces 13

Definition 55 Let Q) be set and A be a set of subsets of Q. We call
topology generated by A, the topology on ), denoted T (A), equal
to the intersection of all topologies on ), which contain A.
EXERCISE 11. Let 2 be a set and A C P(Q).

1. Explain why 7 (A) is indeed a topology on €.

2. Show that 7 (A) is the smallest topology 7 such that 4 C 7.

3. Show that the metric topology on a metric space (F,d) is gen-
erated by the open balls A = {B(x,¢) : x € E,e > 0}.

Definition 56 Let (§2;,7;)icr be a family of topological spaces, in-
dezed by a non-empty set I. We define the product topology of
(Ti)icr, as the topology on I;c1Q;, denoted ®;e17T;, and generated by
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all rectangles of (7;)icr, i.e.
O (1I7)

icl el

EXERCISE 12. Let (€24, 7;)ier be a family of topological spaces.
1. Show that U € ®;¢17;, if and only if:
VeeU, Velljg7T,, xe VU
2. Show that II;c;7; € ®ierZ;.
3. Show that ®,c/B(Q;) = o(ILic1T;).
4. Show that ®,c1B(Q;) C B(IL;c18;).
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EXERCISE 13. Let n > 1 be a positive integer. For all z,y € R", let:

n
A
(z,y) =) iy
1=1

and we put ||z|| = /(z,x).
1. Show that for all t € R, ||z + ty||> = ||=||® + t2|jy||> + 2t(z, ).

2. From ||z + ty||? > 0 for all ¢, deduce that |(x,)| < ||2[.]|y]|.

3. Conclude that ||z + y|| < [|z|| + ||y]|-

EXERCISE 14. Let (1,71),...,(Q,,7,), n > 1, be metrizable topo-
logical spaces. Let di,...,d, be metrics on Q1,...,,, inducing the
topologies 71, ..., 7, respectively. Let Q@ = Oy x ... x Q,, and 7 be
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the product topology on €. For all z,y € Q, we define:

n

dix,y) = | S (dilai,yi))?

i=1

1. Show that d: Q x Q — RT is a metric on Q.

2. Show that U C Q is open in €2, if and only if, for all x € U there
are open sets Uy, ..., U, in Q4,...,Q, respectively, such that:

relU x...xU, CU
3. Let U € T and x € U. Show the existence of ¢ > 0 such that:
Vi=1,....,nd;i(x;,y;) <€) = yeU
4. Show that 7 C 7.

5. Let U € 7 and = € U. Show the existence of € > 0 such that:
z € B(z1,€) X ... X B(xp,e) CU
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10.

. Show that ’Zg cT.

Show that the product topological space (€2, 7) is metrizable.

. For all z,y € Q, define:

n

Zdi(xi»yi)

i=1

d'(z,y)

d"(x,y) = max  di(zi, ;)

i=1,...,n

Show that d’, d” are metrics on €.

. Show the existence of o/, §’, @” and 3" > 0, such that we have

o'd <d< 6/d/ and o d" <d< ﬂ”d”.
Show that d’ and d” also induce the product topology on €.

EXERCISE 15. Let (2, 7,,)n>1 be a sequence of metrizable topological
spaces. For all n > 1, let d,, be a metric on (2,, inducing the topology
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7,,. Let Q = I/ Q, be the Cartesian product and 7 be the product
topology on Q. For all z,y € ), we define:
A1
d(x,y) = Z 2_n(1 A dn(Tn, Yn))

n=1
1. Show that for all a,b € R™, we have 1A (a+b) <1Aa+1Ab.
2. Show that d is a metric on (.

3. Show that U C Q is open in £, if and only if, for all z € U, there
is an integer N > 1 and open sets Uy,..., Uy in Q,...,Qxn
respectively, such that:

+oo
relU; x...x Uy X H Q, CU
n=N-+1

4. Show that d(x,y) < 1/2" = d,,(zn,yn) < 2"d(x,y).
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5.

10.

Show that for all U € 7 and = € U, there exists ¢ > 0 such that
dlz,y) <e = yeU.

. Show that 7 C 7.

Let U € Tf‘f and x € U. Show the existence of ¢ > 0 and N > 1,
such that:

|
ZQ— (IAdp(zp,yn)) <€ = yeU

. Show that for all U € 7§ and = € U, there is ¢ > 0 and N > 1

such that:
—+oo
x € B(z1,€) X ... X B(zn,€) X H Q,CU
n=N+1

. Show that 7§ C 7.

Show that the product topological space (€2, 7) is metrizable.
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Definition 57 Let (2,7) be a topological space. A subset H of T
is called a countable base of (2, 7), if and only if H is al most
countable, and has the property:

VUeT,3HCH, U= ]V
VeH’

EXERCISE 16.

1.
2.

Show that H = {]r,q[: 7, ¢ € Q} is a countable base of (R, Tr).

Show that if (£2,7) is a topological space with countable base,
and Q' C Q, then the induced topological space (', 7jo/) also
has a countable base.

. Show that [—1, 1] has a countable base.
. Show that if (Q,7) and (S, 7s) are homeomorphic, then (2, 7)

has a countable base if and only if (S, 7g) has a countable base.
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5. Show that (R, 7g) has a countable base.

EXERCISE 17. Let (Q,,7,)n>1 be a sequence of topological spaces
with countable base. For n > 1, Let {V,*¥ : k € I,,} be a countable
base of (£2,,, 7,,) where I, is a finite or countable set. Let @ = 152 ,Q,,
be the Cartesian product and 7 be the product topology on €. For
all p > 1, we define:

—+oo
Hpé{vflx...xvjpx I 2. : (k‘l,...,kp)eflx...xfp}
n=p+1

and we put H = Up>1 HP.
1. Show that for all p > 1, H? C 7.
2. Show that H C 7.

3. For all p > 1, show the existence of an injection j, : H? — NP.
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4
5
6
7.
8
9

10.
11.
12.

. Show the existence of a bijection ¢5 : N? — N.

. For p > 1, show the existence of an bijection ¢, : N¥ — N.
. Show that HP is at most countable for all p > 1.

Show the existence of an injection j : H — NZ2.

. Show that H is a finite or countable set of open sets in €.

. Let U € 7 and x € U. Show that thereis p > 1 and Uy,...,U,
open sets in Q,...,Q, such that:

+oo
el x...xU,x H Q,CU
n=p+1

Show the existence of some V,, € H such that z € V, C U.
Show that H is a countable base of the topological space (2, 7).
Show that ®;>3B(2,) C B(%).
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13. Show that H C @, B(Q,).

14. Show that B(Q) = @, B(Q,,)

Theorem 27 Let (2, Tn)n>1 be a sequence of topological spaces
with countable base. Then, the product space (11230, ©F7T,) has
a countable base and:

+oo +oo
B (H Qn> =) B(2)
n=1 n=1
EXERCISE 18.

1. Show that if (£2,7) has a countable base and n > 1:
B(Q") =B(Q)®...0 B(Q)

n
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2. Show that B(R") = B(R) ® ... ® B(R).
3. Show that B(C) = B(R) ® B(R).

Definition 58 We say that a metric space (E,d) is separable, if
and only if there exists a finite or countable dense subset of E, i.e.

a finite or countable subset A of E such that E = A, where A is the
closure of A in E.

EXERCISE 19. Let (E,d) be a metric space.

1. Suppose that (E, d) is separable. Let H = {B(z,, %) in,p > 1},
where {x,, : n > 1} is a countable dense subset in E. Show that
H is a countable base of the metric topological space (E,T2).

2. Suppose conversely that (F,74) has a countable base H. For
all V' € H such that V # (), take xy € V. Show that the set
{zy : V.€H, V #0}is at most countable and dense in E.
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3. For all z,y,2’,y’ € E, show that:
|d(z, y) — d(a’, y)| < d(z,2") + d(y,y)

4. Let Tgx g be the product topology on E x E. Show that the
map d: (E x E,Tgxg) — (RT,Tg+) is continuous.
5. Show that d : (E x E,B(E x E)) — (R, B(R)) is measurable.

6. Show that d : (Ex E,B(E)®B(E)) — (R, B(R)) is measurable,
whenever (F,d) is a separable metric space.

7. Let (2, F) be a measurable space and f,g: (Q,F) — (E,B(E))
be measurable maps. Show that ® : (2, F) — E x E defined by

D(w) = (f(w), g(w)) is measurable with respect to the product
o-algebra B(E) ® B(E).

8. Show that if (E,d) is separable, then ¥ : (Q,F) — (R, B(R))
defined by ¥(w ) d(f(w), g(w)) is measurable.

9. Show that if (E,d) is separable then {f = g} € F.
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10. Let (E,,dn)n>1 be a sequence of separable metric spaces. Show
that the product space I E,, is metrizable and separable.

EXERCISE 20. Prove the following theorem.

Theorem 28 Let (24, F;)icr be a family of measurable spaces and
(Q, F) be a measurable space. For alli € I, let f; : Q@ — §; be a map,
and define f: Q — ;e by f(w) = (fi(w))icr. Then, the map:

f:(Q,F) — (HQi,®]—Q>

el el

is measurable, if and only if each f; - (Q,F) — (4, F;) is measurable.

EXERCISE 21.

1. Let ¢,% : R?> — R with ¢(z,y) = = +y and ¢¥(z,y) = z.9.
Show that both ¢ and v are continuous.
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2. Show that ¢, : (R?, B(R)®B(R))—(R, B(R)) are measurable.

3. Let (22, F) be a measurable space, and f, g : (,F) — (R, B(R))
be measurable maps. Using the previous results, show that f+g¢g
and f.g are measurable with respect to F and B(R).
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Solutions to Exercises

Exercise 1.

1.

IfQ; = Qforalli € I, then U;c1Q2; = Q. Forany map f: I — €,
the condition f(i) € Q; for all i € I, is automatically satisfied.
Hence, Q! is the set of all maps f: I — Q.

. RR" is the set of all maps f : RT — R. The set RN is that of

all maps f : N — R, or in other words, the set of all sequences
(un)n>0 with values in R. As for [0,1]N, it is the set of all
sequences (uy,),>0 with values in [0,1]. Finally, RR etc...

. Yes. Maps defined on N* or sequences are the same thing.
. For any set E, E™ is the set of all maps f: N,, — F.

. E x F x G is the set of all maps w: N3 — EU F UG such that

w1 € F, wy € F and w3 € G.

Exercise 1
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Exercise 2.

1. I;er, €2 is the set of all maps f defined on Iy, with f(i) € §;
for all 7 € I,.

2. Mxea(Iier, ) is the set of all maps « defined on A, such that
x(A) € er, 4, for all A € A.

3. Given w € Iier§2; and A € A, let w;, be the restriction of w to
I, C I. Since w(i) € Q; for all ¢ € I, in particular w(i) € Q; for
all i € I. Hence, w|;, € Il;e7, €. This being true for all A € A,
the map ®(w) = (w1, )aea defined on A by ®(w)(A) = wyy,, is
an element of IIxea (Il;er, ;). Hence, we have defined a map
D 12 — HAEA(HiEIAQi) Let y € HAGA(HiGIAQi)- Since
(In)xea is a partition of I, for all i € I, there exists a unique
A € A such that ¢ € I. Define w(i) = y(A) (7). Then, w(i) € Q;
for all i € I, i.e. w € I;erQ;. Moreover, by construction,
O(w)(A) = wir, = y(A), for all A € A. We have found a map
w € M9y, such that ®(w) = y. So @ is a surjective map.
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Suppose that ®(w) = ®(w’) for some w,w’ € ;8. Let i € I,
and A € A be such that i € I\. Then, we have:

w(i) = (wi1,)(i) = 2(w)(N)(i) = D(W)(N)(i) = (i)

So w = ', and ® is an injective map. We have found a natural
bijection from IT;e;€; to Ixea (e, §2;).

Given a map w € Il;;82;, it is customary to regard w as the
family (w;);e; where w; = w(i) for all i € I. (A map defined on
I is nothing but a family indexed by I). Hence, the restriction
w|r, is nothing but the family (w;)ier,, and the map ®(w) can
be written as:

Q((wi)ier) = ((wi)ier, )rea

The mapping ® looks like a pretty natural mapping, given the
partition (Ix)xea of the set I.

4. RP x R™ is the set of all maps w : No — RP U R" such that
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w1 € R? and wy € R™3. Each w; € R? is a map w; : N, - R,
and each wy € R™ is a map ws : N,, — R. Given w € RP x R",
define 1(w) € RPT™ as:

L wi(d) fl<i<p
1/J(W)(@)—{w;(i_p) ifp+1<i<p+n

Le. Y(w) = (wi(1),...,wi(p),w2(1),...,w2(n)). The mapping
w — P(w) from RP x R™ to RP™™ is a bijection, which may be
regarded as natural. . .

Exercise 2

3We view ordered pairs as maps defined on Na. ..
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Exercise 3.

1. Let A= A; x...x A, besuch that A; € & foralli=1,... ,n.
Then A is of the form A = Il;en, 4; with A; € & U{Q;}, and
the condition A; # §2; for finitely many ¢ € N, is obviously
satisfied. So A is a rectangle of the family (&;)en,,, that is
Ae& .. 10E,. Conversely, Let A = 1Il,en, A; be a rectangle
of the family (&;);en, . Then, each A; is an element of & U{Q;}.
Since ; € &; for all i € N,,, each A; is in fact an element of &;.
So A is of the form A = Ay x ... x A,, with A4; € £. We have
proved that the set of rectangles of (&;);en,, is given by:

51HH(€n:{A1><XAnAZESz,VZENn}

2. Let A be a rectangle of the family (&;);c;. Then A = I;c1A;,
where A; € £ U{Q;}, and A; # Q; for finitely many ¢ € I. Let
J be theset J = {i e€I:A; #;}. Then J is a finite subset
of I. Moreover, for all j € J, A; # Q;, yet Aj € £ U{Q;}. So
A;j €& Let w e A =1lierA;. Then w is a map defined on 1
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such that w(i) € 4; C Q; foralli € I. In particular, w € II;e€;,
and w(j) € A; for all j € J. Conversely, suppose w € IL;c;€; is
such that w(yj ) € Aj for all j € J. Then w is a map defined on
I such that w(i) € Q for all ¢ € I, and furthermore, w(j) € A
for all j € J. However, for all ¢ € I\ J, we have 4, = Q.
follows that w is a map defined on I such that w(i) € A; for all
i€ 1. Sow € Iljc;A; = A. We have proved that there exists
a finite subset J of I, and a family (4;);es with 4; € &;, such
that A = {w € e/ Qs :w(j) € Aj,Vj € J}.

Exercise 3

www.probability.net


http://www.probability.net

Solutions to Exercises 34

Exercise 4.

1. By definition, F; ®...®F, is generated by the set of measurable
rectangles F I1...11.F,. Since ; € F; for all « € N,,, and since
N, is finite, these rectangles are of the form A; x ...x A,, where
A; e Fi, for all i € N,,.

2. B(R) ® B(R) @ B(R) is generated by the set of measurable
rectangles B(R) II B(R) II B(R). These rectangles are of the
form A x B x C, where A, B,C € B(R).

3. Since R™ € B(R™") and Q € F, the set of measurable rectangles
B(R1)ILF is the set of all Bx F', where B € B(R") and F € F.
Such sets generate the o-algebra B(RT) @ F on R* x .

Exercise 4
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Exercise 5.

1. By definition, a generator of ®;c;0(&;) is the set of measurable
rectangles of the family (o(&;))ier, i.e. icro(&).

2. Let A = ;¢ A; be a rectangle in I1;c;&;. Then, each A; is an
element of & U {Q;}, and A; # Q; for finitely many ¢ € I. In
particular, A is also a rectangle in II;,c;0(&;). Hence, we have:

H&' - HU(&‘) Co (H U(&')) 2 Ricro (&)

il il il
and consequently, o(Il;c;&;) C ®icro(&;).

3. Let A # 0 be a rectangle of the family (o(&;));cr. Suppose that
A =1l;c;A; = ;1 B; are two representations of A. Since A is
non-empty, there exists f € A. The mapping f defined on I, is
such that f(i) € A;NB; foralli € I. Let j € I be given. Suppose
x € Aj. Define g on I, by g(i) = f(i) if ¢ # j, and ¢(j) = =.
Then, g(l) € A; for alli € I. So g < HiEIAi = A= 1,1 B;,
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and in particular, x = g(j) € B;. Hence, we see that A; C B;,
and similarly B; C A;. j € I being arbitrary, we have proved
that A; = B; for all i € I. The set J4 = {Z el A; 75 Ql}
is therefore well-defined, as the A;’s are uniquely determined.
Furthermore, A being a rectangle, the set J4 is finite.

4. Let A € Mcr0(&;). If A = 0, then A is an element of the
o-algebra o(I;cr&;). It A #£ () but J4 = 0, then A; = Q; for
alli € I, and A = Il;c1 A; = I1;19; is also an element of the
o-algebra o(IL;c &;).

Exercise 5
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Exercise 6.

1. By assumption, A # (). There exists a map f defined on I, such
that f(i) € A;, foralli € I. Since 4;, C Q;,, f is also an element
of A%1. So A% # (). By definition, J jo,, = {i € I : A; # Q;},
where each A; is equal to A;, except A;, = Q;,. It follows
that ‘]AQil = {Z € I\{Zl} DA # Ql} = Ja \ {Zl} Since
by assumption, i1 € Ja, and cardJ4 = n + 1, cardJAm1 = n.
Finally, A being a rectangle of the family (o(&;))ier, each 4; is
an element of (&) U {Q;} = o(&). It follows that A; € o(&;)
for all i € I. Since A; # €Q; for finitely many i € I, we conclude
that A%1 = Hie[ﬁi € Hl‘e]O'(gi).

2. Our induction hypothesis is that if A is a non-empty rectangle
of the family (c(&;))ier with cardJs = n, then A € o(I;c1E;).
Since from 1., A% satisfies such properties, A% € o(Il;c;&;).
It follows that €;, € I.

3. Let B C Q. Let f € A% \B,_ Then, f is a map defined on
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I, such that f(i) € A; for all ¢ € I'\ {i1}, and f(i1) € Q;, \ B.
In particular, f € A% and f ¢ AB. So f € A%1 \ AP and
A%\B C A%\ AB. Conversely, suppose f € A% \ AB.
f being an element of A%1, f(i) € A; for all i € I\ {i;}.
Since f ¢ AP, f(i1) cannot be an element of B. It follows
that f(i;) € Q;, \ B, and f € A% \B. We have proved that
A2 \B = A%\ AB,

4. Let B € T'. Then, AP € o(I1;¢1&;). All o-algebras being closed
under complementation, we have (A2)¢ € o(I1;¢;&;). Moreover,
from 2., A%1 € o(Il;c;&;). It follows that:

A%\E = A%\ AP = A% 0 (AP)° € o(ILierE)
We conclude that ;, \ B €T

5. Let (Bn)n>1 be a sequence of subsets of Q;,. If f € AYB» | then
f is a map defined on I, such that f(i) € A; for all i # iy,
and f(i1) € Up>1B,. There exists n > 1 such that f(i1) € By,
which implies that f € AP». So f € U,>1AP", and we see that
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AYBn C U, ABr. Conversely, suppose that f € U,>1ABn.
There exists n > 1, such that f € AP». In particular, f(i) € A;
for all 7 € I\{il}, and f(Zl) € B, C UnZan. So f e AYBn,
We have proved that AYP» = U,,>; AP,

6. From 2., Q;, € I'. From 4., I is closed under complementation.
To show that I' is a o-algebra on €2;,, it remains to show that I
is closed under countable union. Let (B,,),>1 be a sequence of
elements of I'. Then, for all n > 1, AB» € o(Il;¢7&;). Tt follows
that:

AP = U AP € o(IierE:)
So Up>1B, €T, and I' is indeed closed under countable union.
We have proved that I' is a o-algebra on €2;, .

7. Let B &,, Bi = for all i # i1, and B;, = B. Let f € AB.
Then, f is a map defined on I, such that f(i) € A; for all
i€ I\{zl} and f(i1) € B. In particular, f € A% and f(i) €
for all i € I, i.e. f € I;erB;. Hence, AP C A% N (HzGIB)
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Conversely, suppose that f € A%1 N (IL;e;B;). Then, f(i) € A;
for all i € I\ {i1} and f(i) € B; for all i € I. In particular,
fl(iy) € B;, = B. It follows that f € A®. We have proved that
AB = A% n (HzEIBz)

8. Let B€&;, and B; = Q; foralli € I\ {i;}, and B;, = B. Then,
HiEIBz‘ S Hielgia and in particular, HieIBz‘ € U(Hie[gi). From
2., Q;, €T, ie A% is also an element of o(IL;c7&;). Tt follows
from 7. that:

AB = A% (HieIBi) S U(Hie[gi)

We conclude that B € I'. This being true for all B € &;,, we
have &;, CT'. However, since I' is a o-algebra on €;,, we finally
see that o(&;,) CT.

9. Let f € A =1LiesA;. Then, f(i) € A; for all s € I\ {i1}, and
f(i1) € Ay, So f € A% . Conversely, if f € A% then f € A.
So A = A44. Since A is a rectangle of the family (0(&;))ier,
A € 0(&;,). From 8., o(&;,) CT. it follows that A;; € T', and
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10.

11.

consequently A = A41 € o(1l;c7&;). This proves our induction
hypothesis for cardJy = n + 1.

Let A € ;e 0(&;). If A= (), then A is an element of o(I1;¢1&;).
Let A # (. If cardJ4 = 0, then A = I;¢;Q; € 0(I;¢7E;). Using
an induction argument on cardJ4, we have proved that for all
n > 0:
cardJp =n = Ae O'(Hie[gi)

Since A is a rectangle of the family (0(&;))ier, Ja is a finite
set. It follows that A € o(IL;e;&;). Finally, We conclude that
icro(&;) C o(lier&s).

From 10., we have ®i€IU((€i) = U(Hie[U(gi)) - U(Hiejgi).
However, from exercise (5), o(Il;c1&;) C ®Ricro(&;). It follows
that ®;cr0(&;) = o(;erE;). The purpose of this difficult exer-
cise is to prove theorem (26). Congratulations !

Exercise 6
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Exercise 7.

1. Since R € Tg and N, is finite, from definition (52), the set of
rectangles Tg I1. . . I17g reduces to all sets of the form Il;en, A;,
where A; € Tr for all 7 € N,,. In other words:

TRH...HTR:{AlX...XAnZAiETR,ViENn}

2. By definition of the Borel o-algebra, B(R) is generated by the
topology Tr, i.e. B(R) = o(7g). From theorem (26), we have:

3. Let Cy = {Ja1,b1] x ... X]an,by] : a;,b; € R}, and let S be the
semi-ring on R, § = {]a,b] : a,b € R}. Since N, is finite, from
definition (52), the set of rectangles SII...II S is made of all
sets of the form Il;eN, A;, where A; € S U{R}. Hence, each
element of Cy is an element of SII... 11 S, i.e. Co C SII...IIS.
However, R™ is an element of SII...II S, but do not belong to
Cs. So the inclusion Co C SII...II S is strict.
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4. Let A¢ SII...IIS. Then A is of the form A= A; x ... x A,,
where each A; is an element of S, or A; = R. If all A;’sliein S,
then A € Co C 0(C2). Let Ji = {k € N,, : A, = R}. We have
just seen that if J4 = 0, or equivalently if cardJ} = 0, then
A € o(Ca). Suppose we have proved the induction hypothesis,
fork=0,...,n—1:

AeST... IS, card]J) =k = Aco(Ca)

and let A € SII...II S be such that cardJ} = k + 1. Let i;
be an arbitrary element of J%. Then, 4;, = R = U%]—p,p].
Hence, A can be written as:

“+o0
A=A x...x A, = UAlx...x]—p,p]x...xAn (1)
p=1

where Ay x... x]—p, p] x...x A, = By is a notation for I;en,, 4
where A; = A; for all i # iy, and A;; =]—p,p]. Since for all
p>1,]-p,p €S, Byis an element of SII...II S, and more
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importantly carngp = k. From our induction hypothesis, it
follows that B, € o(C2). Hence, we see from equation (1) that
A € o(Cy), and we have proved our induction hypothesis for
cardJ} = k + 1. We conclude that for all A e SII...II S, we
have A € 0(Cq), i.e. SII...II S C o(Co).

5. From theorem (6)*,we know that the semi-ring S generates the
Borel o-algebra B(R) on R, i.e. B(R) = o(S). Applying theo-
rem (26), we have:

BR)®...9BR)=o(SI...118) 2)

However, from 3., C; C STI...1IS, hence o(C3) C o(S1I...IIS).
Moreover, from 4., SII. . .IIS C o(C2), and consequently, we have
o(SI...IIS) C g(Cs). It follows that o(SII...IIS) = o(Ca).
Finally, from equation (2), B(R) ® ... ® B(R) = o(Cs).

Exercise 7

4Beware of external links!
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Exercise 8.

1. Let ¥ = 0(€) be the o-algebra generated by & = {A}. Let F be
the set of subsets of Q defined by F = {0, 4, A¢,Q}. Note that
Q) € F, Fis closed under complementation and countable union,
so F is a o-algebra on €. Since £ C F, we have ¥ = ¢(€) C F.
However, since £ C o(£), A € . So A° € ¥. Furthermore,
Qe Y and @ € X. Finally, F C X. We have proved that F = X.

2. Since {0,Q'} is a o-algebra on Q" with & C {0,Q'}, we have
a(&) C {0,Q'}. However, o(£’) being a o-algebra on ', we
have Q' € o(&’) and 0 € o(&’). Finally, o (&) = {0,Q'}.

3. Since &' =0,C={ExF:FEc&Fel}=0.

4. The rectangles in EI1E’ are the sets of the form A; x A, where
Ay € EU{Q} and Ay € E'U{Q'}. Since & = 0, the only possible
value for Ay is Q. Since & = {A}, A; can be equal to A or €.
It follows that EITE = {A x Q',Q x Q'}.
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5. From theorem (26), 0(£) ® 0(&) = o(ELTE’). Let F be defined
by F ={0,Ax Q' A x Q',Q x Q'}. Note that the complement
of AxQ in QxQ is (Ax Q) = A°x Q. So F is closed
under complementation, and in fact, F is a o-algebra on Q x Q.
However, from 4., EI1E = {Ax Q' ,Qx Q'}. So ENE C F,
and consequently o(€ IL ") C F. Since all elements of F have
to be in o(£I1E7), we also have F C o(E£11E’). We have proved
that F = o(E T E’). We conclude that o(&) @ 0(E') = F.

6. Since C = (), we have o(C) = {0, 2 x Q'}. Tt follows from 5. that
o(C) # o(E)®c(E"). The purpose of this exercise is to emphasize
an easy mistake to make, when applying theorem (26). This
theorem states that o(£)@0 (') = o(ELE’). 1t is very tempting
to conclude that:

o) @) =o({ExF:Ec&Fef'l)

But this is wrong ! The reason being that the set of rectangles
E T &' is larger than the set of all E x F', where E € £ and
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F € &'. The elements of £ I1 £’ are indeed of the form E x F,
but with £ € £EU{Q} and F € & U{Q'}. (Do not forget the
U). Soc(&)@a(E') =c({ExXF : E € EU{Q}, F € &U{Q'}}).
You have been warned. . .

Exercise 8
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Exercise 9.

1. Strictly speaking, 7 ® G is a o-algebra on R"™ x RP. However,
R"” x R? and R™"? can be identified, through the bijection ) :
R" x R? — R""P, defined by ¢¥(z,y) = (Z1,. -, TnsY1s-- -, Yp)-
Hence, F ® G can be viewed as a o-algebra on R""TP,

2. By definition, F = o(Cy), where C; is the set of measurable
rectangles C; = {A1 x...x A, : A; € B(R),Vi € N, }. Similarly,
if Cy = {An+1 X ... X An+p : An+i S B(R),VZ S Np}, then
G = o(C2). From theorem (26), we have F ® G = o(Cy 11 C3).
Furthermore, since R™ € C; and R? € Cs, the set of rectangles
C1Cois given by C1 I1Co = {Ax A" : A€ Cy, A € Ca}. T we
identify sets of the form (A; X ... x Ap) X (Apg1 X ... X Apyyp)
with Ay x ... X Ap4p, then C; I Cy can be written as:

CilICo={A1 x...xApyp: A € B(R),Vi € Nyyp}
We conclude that F ® G is generated by the sets of the form
Ay X ... x Apyp, where A; € B(R) for all i € N, .
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3. Let C={A1 x...x Apyp: 4 € B(R),Vi € N4, }. From 2.,
F®G=0(C). However, C is the set of measurable rectangles in
R™"P. Consequently, o(C) = B(R) ®...® B(R) (n + p terms).
We conclude that B(R)®...@ B(R)=F ®4, i.e.

BR)®...9B(R)=(BR)®...9BR))2(B(R)®...@B(R))

n+p n p

Exercise 9
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Exercise 10.
1. In exercise (2), we defined a natural bijection ® : Q — Q' by:

P((wi)ier) = (wi)iery )rea
This allows us to define ® : P(Q) — P(Q), by:

2

B(A) 2 D(A) 2 {D(w) :we A}
for all A C . In other words, ® maps every subset A of Q,
with its direct image ®(A) by the bijection ® : O — Q. Let
A" C Q. Since ® is a bijection, we have A’ = &(d~1(A")), i.e.
the direct image of the inverse image of A’ by ® is equal to A’.
So A" = ®(®~1(A")), and P is a surjective map. If A, B C Q are

such that ®(A) = ®(B), taking the inverse images of both sides,
we have A = B. So ® is an injective map. We have proved that
® is a bijection from P(Q) to P(Q'). Informally, ® is a bijection

allowing us to identify an element of I1;c;2; with an element of

www.probability.net


http://www.probability.net

Solutions to Exercises 51

Haea(Iier, ©;). The bijection @ allows us to identify a subset
of ;182 with a subset of TIxea (er, ). .

2. Let A be a subset of Q of the form A = II;c;A;. Let A’ be the
corresponding set A’ = Tlxea (Ier, Ai). Saying that A and A’
are identified through the bijection ®, is just another way of
saying that A’ = ®(A). Suppose y € ®(A). There exists x € A
such that y = ®(z). For all A € A, we have y(\) = ®(z)(\) =
x|7,. Since x € A, each x|;, is an element of IL;c7, A;. So y(\) €
Hieb\Ai for all A € A. It follows that Yy € H)\GA(HiGIA Al) =A'.
So ®(A) C A’. Conversely, suppose y € A’. y is a map defined
on A, such that y(\) € ILier, A; for all A € A. Each y()) is a
map defined on Iy, such that y(A\)(i) € A; for all i € I. Let =
be the map defined on I by z(i) = y(A)(4), where given ¢ € I,
A is the unique element of A such that i € Iy. Then, x is such
that x(i) € A; for all i € I, so x € T;c;A; = A. Moreover,
by construction, for all A € A, z);, = y()\). So y(A) = &(x)(\)
for all A € A, iie. y = ®(x). We have found x € A, such
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that y = ®(z). So y € ®(A) = ®(A). We have proved that
A" C ®(A). Finally, A’ = ®(A). We have proved that the sets
MierA; and Ixea (ITier, A;) are indeed identified through the

bijection ®.

3. Let HiEIAi € 1 Fi. Then, for all i € 1, A; € Fi, and A; 75 Q;
for finitely many ¢ € I. For each A € A, Il;er, A; is therefore
such that A; € F; for all i € I, and A; # Q; for finitely many
i€ Ix. So HiEIAAi S Hie[/\fi. It follows that HieIAi can be
written as (through identification):

ILicr A = xea(Iier, A;) = aea By

where By € I,;er, F; for all A € A. Moreover, the set of all
A € A for which By # Ilicz, €, is necessarily finite. It follows
that ILicr Ay € aea(Wier, Fi). So WierFi € Myer(ier, F)-
Conversely, let TIxepa By € xea(Ilier, Fi). For all A € A, we
have By € ey, F;, and By # e, §; for finitely many A € A.
Hence, each B is of the form Il,cr, A;, where A; € F; for all
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i € Iy, and A; # Q; for finitely many i € I. It follows that
IT\ca By can be written (with identification) as:
Myea By = Hxea(Iier, Ai) = icr A;

where A; € F; for all i € I, and A; # §; for finitely many i € I.
So IIyea By € e Fi, and H/\EA(HieIAfi) C ;e Fi. We have
proved that II;c; F; = HAEA(HiEIA}-i)

4. From definition (54), for all A € A, ®ier,Fi = o(llicr, F).
Using theorem (26), ®xea(®ier, Fi) = o(Ixea(Hier, Fi)). Us-
ing 3., we conclude that ®xea (®icr, Fi) = 0(llic1 Fi) = QicrFi-

Exercise 10
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Exercise 11.

1. Let T'(A) be the set of all topologies 7 on §2, which contain A,
i.e. such that A C 7. Note that T'(A) is not the empty set, as
the power set P(Q) is clearly a topology on € (called the discrete
topology) which satisfies A C P(Q). By definition (55), the
topology 7 (A) generated by A, is equal to Nycp(4)7 . In order
to show that 7(A) is indeed a topology on €2, it is sufficient
to prove that an arbitrary intersection of topologies on 2, is
also a topology on €. Let (7;);er be an arbitrary family of
topologies on €, and let 7 = M;e;7;. Since # and Q belong
to 7; for all 4 € I, () and Q are elements of 7. If A,B € T,
then A, B € 7; for all i € I, and therefore AN B € 7; for all
i € I. It follows that AN B € 7, and 7 is closed under finite
intersection. If (A;),cs is an arbitrary family of elements of 7,
then for all ¢ € I, (A;);es is an arbitrary family of elements of
7;, and consequently U;csA; € 7;. This being true for all i € I,
UjesAj € T, and 7 is closed under arbitrary union. We have
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proved that 7 is a topology on . An arbitrary intersection of
topologies on 2, is a topology on (). In particular, the topology
T(A) is a topology on €.

2. Given T(A) = {7 : 7T topology on Q , A C T}, the topology
T(A) generated by A is given by 7(A) = Nrepa)7. Hence,
we have A C T (A). Suppose 7T is another topology on €2, such
that A C 7. Then, T € T(A). It follows that 7(A) C 7. We
have proved that 7 (A) is the smallest topology on €2, such that
ACT(A).

3. Let (E,d) be a metric space, and A be the set of all open balls:
A={B(z,¢) :x € E,e >0}

Let ’Tg be the metric topology on E. Since any open ball in F is
open with respect to the metric topology, i.e. belongs to TEd, we
have A C 7¢ and therefore 7 (A) C TZ2. Conversely, let U € T4.
Define I' = {B(x,¢) : « € E;e > 0,B(x,¢) C U}, i.e. let T be
the set of all open balls in ¥ which are contained in U. Since
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U is open for the metric topology, from definition (30), for all
x € U, there exists € > 0 such that B(x,¢) C U. In particular,
there exists B € I' such that x+ € B. Hence, U C UpgerB.
Conversely, for all x € Uper B, there exists B € T' such that
x € B. But BCU. Sox € U. Hence, we see that U = UpcrB.
However, I' is a subset of A C 7 (A). It follows that UgerB is
an element of 7(A). We have proved that U € T(A). Hence
T2 C T(A). Finally, T2 = T (A), i.e. the metric topology on E
is generated by the set of all open balls in E.

Exercise 11
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Exercise 12.

1. Let U be a subset of I1;c;€2; with the property:
VeeU, VellieZ, : z€VCU (3)

Define I' = {V € W,e;7; : V C U}. Given z € U, since
property (3) holds, there exists V' € I' such that € V. So
U C UyerV. Conversely, if £ € UyerV, there exists V € T’
such that z € V. But V. C U. So xz € U. Hence, we see that
U = UyerV. Since I' C I;e;7; € ®ier7;, each V € I is an
element of the product topology ®;cr7Z;. So UycrV is also an
element of ®;c;7;. We have proved that U € ®;¢;7;, and there-
fore, any subset of II;c;€; with property (3), belongs to the
product topology ®;c;7;. Let 7 be the set of all U subset of
L 1€2; which satisfy property (3). We claim that in fact, 7 is a
topology on IL;c ;. Indeed, () satisfies property (3) vacuously.
So @ € T. The set of all rectangles I1;c;7; is a subset of 7. In
particular, I1;c;Q; € 7. Suppose A,B € 7. Let z € AN B.

www.probability.net


http://www.probability.net

Solutions to Exercises 58

Since A satisfies property (3), there exists V' € I;e;7; such
that z € V C A. Similarly, there exists W € Il;c;7; such that
r € W C B. It follows that x € VN W C AN B. However,
V and W being rectangles of (7;);ecs, they can be written as
V =1lic;A; and W = [l;c; B;, where A;, B; € 7T; U {Ql} =17
and A; # Q; or B; # ; for finitely many ¢ € I. It follows that
VW =1;er(A;NB;), where each A;NB; lie in 7; (it is a topol-
ogy), and A; N B; # Q; for finitely many i € I. So VNW is a
rectangle of (7;)cr, i.e. VAW € ;e 7;, and x € VNW C ANB.
We have proved that AN B satisfies property (3), i.e. ANB € 7.
So 7T is closed under finite intersection. Finally, let (A4;);es be
a family of elements of 7. Let x € UjcsA;. There exists j € J
such that z € A;. Since A; € 7T, there exists V' € Il;¢;7; such
that « € V C A;. In particular, z € V C Ujc;A;. Hence,
we see that UjesA; satisfies property (3), ie. UjesA4; € 7.
So 7T is closed under arbitrary union. We have proved that 7°
is a topology on IT;c;€;. Since I;c;7; € 7, we conclude that
®icrTi = T(IierT;) € 7. Tt follows that any element of the
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product topology satisfies property (3). We have proved that
a subset U of I;c;8); is an element of ®;c;7;, if and only if it
satisfies property (3).

2. Wier T €T (WierTi) = ©ier T
3. From theorem (26), ®;cB(;) = Qic10(T;) = o(WierTh).

4. From 2., we have 0(I;e;7;) C 0(®icr7i) = B(ILic1$2;). Using
3., we obtain ®;e;B(€;) C B(I;er).

Exercise 12
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Exercise 13.
1. The scalar product (z,y) being semi-linear and commutative:
o +tyl? = (x+ty,z+ty)

(z,2) + t(y, ) + t(z,y) + > (y,y)
= |lz|l* + [yl]* + 2t(z,y)

2. When y # 0, the polynomial ¢t — p(t) = 2||y||% + 2t(x,y) + |||
has a minimum attained at t = —(x,7)/||y||>. The value of this
minimum is —(xz,y)?/[[y[|> + [[«]|*. Since p(t) = ||z + ty||* > 0
for all t € R, in particular, we have —(z,v)?/||y||* + ||z]|> > 0,
ie. |(z,y)| < |lz].]ly||. This inequality still holds if y = 0.

3. We have:

lz+yl* = llol* +2(z,y) + llyl®
1 + 2llz - llyll + 1y 1% = (]l + llyl)?

IN

Exercise 13
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Exercise 14.

1. Each metric d; has values in R*. So d(x,y) < +oo for all x,y,
i.e. d also has values in RT. It is clear that d(z,y) = d(y,x)
for all z,y € Q. Suppose that d(z,y) = 0. Then, for all i € N,
we have d;(z;,y;) = 0 and consequently z; = y;. So z = y.
Conversely, it is clear that d(z,x) = 0. Let x,y,2z € Q. For all
i € N,,, we have:

di(xi, yi) < di2s, zi) + di (23, y4)

and therefore:

d(z,y) < \| D (dilwi,z0) + di(zi,90))?

i=1

Using exercise (13), we conclude that:

n n

d(z,y) < | Y (dimi, 20))2 + | Y (di(zi,5))2

i=1 i=1
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ie. d(z,y) < d(z,2) + d(z,y). It follows from definition (28)°
that d is indeed a metric on €.

2. The set of rectangles Il;en, 7; is given by:
HlGN {Ul ..XUnIUiE/Ti,VZ'ENn}

It follows from exercise (12) that U C Qis openin €, i.e. belongs
to the product topology 7, if and only if for all x € U, there
exist Uy,...,U, open in €y, ..., €, respectively, such that:

relU x...xU, CU

3. Let U € 7. From 2., for all x € U, there exist Uy, ..., U, open
in Qy,...,€Q, respectively, such that z € Uy x ... x U, CU. By
assumption, each topology 7; is induced by the metric d;, i.e.
T, = ’Td For all ¢ € N,,, z; € U;. Hence, there exists €; > 0,
such that B(x;,¢;) C Ui, where B(x;,¢€;) denotes the open ball

5Beware of external links!
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in Q;. Let ¢ = min(eq,...,€,). Suppose y €  is such that
di(xzi,y;) < ¢, for all i € N,,. Then, y; € B(z;,¢;) C U; for all
i € N, and consequently y € Uy x ... x U, C U. We have
found € > 0 such that:

(Vi e Ny, di(xi,y:) <€) = yelU

4. Let U € T, and z € U. Let € > 0 be as in 3. Let y € B(z,¢),
where B(z,€) denotes the open ball in Q@ = Qq x ... x Q,,, with
respect to the metric d. Then, d(z,y) < €. Since for all i € N,
di(zi,y;) < d(x,y), we have d;(z;,y;) < € for all i € N,,. From
3., we see that y € U. So B(x,¢) C U. For all x € U, we have
found € > 0 such that B(x,¢) C U. It follows that U belongs to
the metric topology 7. We have proved that 7 C 7.

5 Let U € 7¢ and = € U. From definition (30)° of the metric
topology, there exists ¢ > 0 such that B(x,¢’) C U. Define

6Beware of external links!
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e=¢€/yn, and let y € B(x1,€) X ... X B(xp,€). Then, for all
i € Ny, di(z,y:) < e. Hence, d(x,y) < Vne2 = y/ne = €. So
y € U. We have found € > 0 such that:

x € B(x1,€) X ... X B(xp,e) CU

6. Let U € 7¢ and # € U. Let € > 0 be as in 5. Then, we have
x € B(x1,€) X ... x B(xy,¢) CU. Each B(z;,¢€) being open in
Q;, we have found Uy,...,U, open in y,...,(), respectively,
such that z € Uy x ... x U, € U. From 2., we conclude that
UeT.SoTdCT.

7. From 4. and 6., we have 7 = Tf‘f. In other words, the product
topology 7 = 71 ® ... ® 7,, is equal to the metric topology 7§
on (), induced by the metric d. In particular, the topological
space (€, 7) is metrizable.

8. Both d’ and d” have values in RT. For all z,y € , we have
d'(x,y) =d(y,z) and d"(z,y) = d’(y,z). Moreover, it is clear
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that d'(x,y) = 0 is equivalent to each d;(z;,y;) being equal to 0,
hence equivalent to x; = y; for all ¢’s, i.e. equivalent to x = y.
Similarly, d”(z,y) = 0 is equivalent to © = y. Given z,y,z € Q,
for all i € N,,, we have:

di(xi, yi) < di2s, zi) + di (23, y4)
< d

It follows immediately that d’(z,y) "(z,2) + d'(z,y), and

furthermore, for all i =1,...,n:
di(xia y’L) S d//(l', Z) + d//(z7 y)

From which we conclude that d”(z,y) < d”(x,z) +d"(z,y). We
have proved that d’ and d” are metrics on €.

9. Let z,y € Q. For alli € N,,, define a; = d;(z;,y;). Let a,b € R”
be given a = (a1, ...,a,) and b = (1,...,1). From exercise (13),
we have [(a,b)| < ||al]|.]|b||, and consequently:

d'(z,y) < Vnd(x,y)
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From (31", a;)> > Y., a?, we obtain:

i=1 ">
d(z,y) < d'(z,y)
Hence, o’d’ < d < 'd’, where o/ =1/y/n and ' = 1.
From Y"1 | a? < n(max; a;)?, we obtain:
d(z,y) < vnd"(z,y)
From (max; a;)? < ", a? we obtain:
d"(z,y) < d(z,y)
Hence, o'd” < d < 8”d"”, where o' =1 and 8" = /n.

10. From 9., there exist 3’ > 0 such that d < #'d’. Let U € 7,
and x € U. There exists ¢ > 0 such that By(x,e) C U,
where Bg(x,€) denotes the open ball in €, relative to the met-
ric d. Suppose y € Q is such that d'(x,y) < ¢/6’. Then, we

have d(z,y) < #d'(x,y) < €, and it follows that y € U. So
By (z,e/3') CU. For all x € U, we have found ¢ =¢/5 > 0
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such that By (z,€') C U. It follows that U € 7§". We have
proved that 7¢ C 7¢". Using 9., from d' < (1/a’)d, we con-
clude similarly that 7§ C 7¢. Hence, 7¢ = 7¢. Similarly,
from o’d” < d < 3"d", we have Tg” = ’Tg. We have proved
that 7§ = T4 = T¢". Since T¢ = T is the product topology on
Q, we conclude that d’ and d” also induce the product topology
T=T10...07, on Q.

Exercise 14
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Exercise 15.

1. For all @ € RY, 1 Aa = min(1,a). Let a,b € RT. Suppose
a+b<1. Then, both a <1 and b < 1, and we have:

IN(a+b)=a+b=1ANa+1AD
Suppose a +b > 1. If both a <1 and b < 1, we have:
IN(a+b)=1<a+b=1ANa+1AD
if @ > 1, we have:
IN(a+b)=1=1ANa<1Aa+1Ab
In any case, we see that:

IA(a+b) <1Aa+1ADb

2. For all z,y € €, we have:

“+oo —+o0
1 1
d(z,y) = Z 2_n(1 A dn (2, Yn)) < Z on < +0o0
n=1 n=1
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So d has values in R™. It is clear that d(x,y) = d(y,z). More-
over, d(z,y) = 0 is equivalent to dy(xn,y,) = 0 for all n > 1,
which is in turn equivalent to x = y. For all z,y,z € €, and
n > 1, we have:

dn(xna yn) < dn(xna Zn) + dn(zna yn)
and consequently, using 1.:
INdp(zn,yn) < 1TAdp(Tn, 20) + LA dn(Zn, Yn)

It follows that d(z,y) < d(x, z) + d(z,y). We have proved that
d is a metric on Q.

3. Let V = H;L"i'jUn be a rectangle of the family (7,),>1. The
set {n >1:U, # Q,} being finite, it is either empty or has a
maximal element N > 1. it follows that V can be written as:

“+o00
V=U; x...xUyn X H Q. (4)
n=N+1
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where Uy, ...,Un are open in €y, ..., Qn respectively. If the set
{n>1:U, # Q,} is empty, then V is also of the form (4), for
any N > 1. Conversely, any set V of the form (4) is a rectangle
in I11297,,. From exercise (12), U € T = ©>7,, if and only
if, for all z € U, there exists V € II;/>7,, such that z € V C U.
It follows that U C € is open in 2, i.e. belongs to the product
topology 7, if and only if for all x € U, there exists N > 1 and
open sets Uy, ..., Uy in Qq,...,Qpn respectively, such that:
+oo
relU x...x Uy X H 0, CU
n=N-+1

4. Suppose that d(z,y) < 1/2", for some n > 1. Then, d,,(zn, yn)
has to be less than 1. Specifically:

1 1
d(xay) > 2_n(1 A dn(xnayn)) = 2_ndn(xnayn)

So d(z,y) < 1/2" = dp,(zn, yn) < 2"d(z,y)
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5. Let U € 7 and =z € U. From 3., there exist N > 1 and

Uy, ..., Uy open in €, ..., Qn respectively, such that:
+oo
zelix..xUxvx J[ QcU
n=N-+1

Let i € {1,...,N}. Then a; € U; € 7;. The topology 7; being
the metric topology ’TQ;, there exists ¢; > 0 such that we have
B(w,¢;) CU;. Let € = min(1/2,€1/2,...,enx/2Y) and y € Q
be such that d(z,y) < e. In particular, we have d(z,y) < 1/2¢,
for all i = 1,...,N. Hence, from 4., we see that d;(z;,y;) <
2id(x,y) < 2% < ¢;. It follows that y; € U; for alli =1,..., N
and consequently y € Uy X ... x Uy X H N+IQ CU. We have
found € > 0 such that d(:c,y) <e=vy E U.

6. From 5. for all U € 7 and = € U, there exists € > 0 such that
B(z,€) CU. It follows that U € 7¢. So T C 74.

7. Let U € 7¢ and = € U. By definition (30) of the metric topol-
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ogy, there exists €’ > 0 such that B(z,€’) C U. In other words,
there exists ¢ > 0 such that for all y € Q:
d(z,y) <€ = yeU
Let e = €//2 and N > 1 be such that:
+oo

<e€

1
on
n=N+1

Suppose y € €2 is such that:
N

1
22— (IAdp(Tn,yn)) <e

n=1

Then, we have:

d(z,y) < e+ Z 1/\d (Tn,yn)) < 2e=¢
nNJrl
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It follows that y € U. We have found € > 0 and N > 1 such
that:

Y1
22— (IAdp(zp,yn)) <e = yeU

8. Let U € 7¢ and z € U. Let ¢ > 0 an N > 1 be as in 7. Let
y € € be such that:

yEB(.’IJl,G)X...X {L'N, H Qn
n=N-+1

For all n € {1,...,N}, dy(xn, yn) < €. Hence:
N

N
22—1/\d Ty Yn) <€Z—<€

n=1

From 7., we conclude that y € U. We have found € > 0 and
N > 1 such that:

x € B(wy,€) X ... x Blan,e) x ILI 5, Q, CU
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9.

10.

LetUETg‘fandeU. Let N > 1 and ¢ > 0 be as in 8. Each
open ball B(x,,¢€) for n =1,..., N being open in Q,,, we have
found Uy,...,Un open in 24, ...,Qy respectively, such that:
+oo
relUp x...x Uy x H 0, CU
n=N+1

From 3., it follows that U € T = ®,;'297,,. We have proved that
T4 CT.

From 6. and 9., 7¢ = 7. In other words, the product topology
T = ©>7, is induced by the metric d on . In particular,
the topological space (€2,7) is metrizable. The purpose of this
exercise, is to show that a countable product of metrizable topo-
logical spaces, is itself a metrizable topological space.

Exercise 15
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Exercise 16.

1. H={]r,q[: r,q € Q} is a countable subset of 7. Let U € Tg.
Define H' ={V € H:V C U}. For all x € U, there exists € > 0
such that |z — €, 2 + ¢[C U. In fact, the set of rational numbers
Q being dense in R, there exist r, ¢ € Q such that = €]r, ¢[C U.
In other words, there exists V' € H’ such that x € V. Hence,
we see that U C Uyep V. The reverse inclusion being clearly
satisfied, we have U = Uy¢p/V, i.e. U can be expressed as a
union of elements of H. This being true for all open sets U € TR,
we have proved that H is a countable base of (R, Tr).

2. Let 'H be a countable base of (2,7). Let H|q be the trace of
Hon Y, ie Higp ={Q' NV :V eH} Since H is a countable
or finite subset of the topology 7', H o/ is a countable or finite
subset of the induced topology 7jo/. Let U’ € 7o/ be an open
subset in . Then U’ is of the form U’ = Q'NU where U € 7. 'H
being a countable base of (2, 7), there exists a family (V;);cr of
elements of H such that U = U7 V;. It follows that (' NV;)ier
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is a family of elements of H | such that U’ = Uier (' NV;). We
conclude that H g/ is a countable base of the induced topological
space (', Tjg).

3. From 1., R has a countable base. It follows from 2. that the
induced topological space [—1, 1] also has a countable base.

4. Let h: (2,7) — (5, 7s) be a homeomorphism, i.e. a continuous
bijection such that h~! is also continuous. Suppose (2,7) has
a countable base H. Define h(H) = {h(V) : V € H}. Since
H is a countable or finite subset of 7, h~! being continuous,
h(H) is a countable or finite subset of 7g. (Note that each
direct image h(V) of V by h can be viewed the inverse image
(h=1)=Y(V) of V by h™1). Let U’ € 7s. h being continuous,
h=Y(U’) € T. H being a countable base of (Q,7), there exists
a family (V;);es of elements of H, such that h=1(U’) = U1 V.
However, h(h=1(U’)) = U’, and moreover:

h(UierVi) = (B 1) " (UierVi) = Uier(h™) 71 (Vi)
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So U = Uierh(V;). We conclude that U’ can be expressed
as a union of elements of h(H). So h(H) is a countable base of
(S,7s). We have proved that if (€2, 7) has a countable base, then
(S,7s) also has a countable base. Using the same argument,
switching the roles of h and h~!, we see that conversely, if (S, 7g)
has a countable base, then so does (£2,7). We have proved that
given two homeomorphic topological spaces, one has a countable
base, if and only if the other also has a countable base.

5. The topological spaces (R, 7Tg) and ([—1,1], 71 1)) being home-
omorphic, we conclude from 3. and 4. that (R, 7g) has a count-
able base.

Exercise 16
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Exercise 17.
1. Let p > 1 and A € HP of the form:
A=V x x>

For all n > 1, the set {V*¥ : k € I,,} being a countable base of
7., it is a subset of 7,,. Hence, for all i € {1,...,p}, we have
Viki € 7;. It follows that A is a rectangle of the family (7,),>1,
ie. A €Il/>7,. From definition (56), the product topology 7
on 11> Q,, being generated by II>7,,, we have II>=7, C 7.

n=1

In particular, A € 7. We have proved that H? C 7.
2. Using 1., H=Up> HP C T.

3. By assumption, for all n > 1, the index set I,, is finite or count-
able. There exists an injective map i, : I, — N. Given p > 1,
consider the map j, : H? — NP, defined in the following way:

for A=V x ... x V})kp X Hj;f;H_lQn € HP, we put:

Jp(A) = (ix(k), - - - ip(Kyp))
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Suppose B = Vlk/1 X ..o X Vpkp X H;L":; 1182, is another element
of H? such that j,(A) = jp(B). Then:

(il(kl)v s 7ip(kp)) = (Zl(kll)v s 7zp(k;/)))

Hence, for all m € Ny, im(km) = im(k),), and i,, being in-
jective, we have k,, = k/,. So A = B. We have proved the
existence of an injective map j, : HP — NP.

4. The existence of a bijection ¢ : N2> — N is a standard result,
which we may have used in these tutorials before. Now is a
good opportunity to give a formal proof of it. Informally, ¢- is
defined as ¢2(0,0) = 0, ¢2(1,0) = 1, ¢2(0,1) = 2, ¢2(2,0) = 3,
d2(1,1) = 4, ¢2(0,2) = 5, etc...As you can see, going through
each diagonal one after the other, we are able to count the ele-
ments of N2, thus defining the bijection ¢». Formally, we define
the map ¢» : N2 — N as follows:

V(n,p) €N?, go(n,p) =p+[0+1+...4 (n+p)]
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or equivalently, ¢2(n,p) = p+ h(n + p) where:
h(m)=0+1+...4+m

Let N € N. Since h(m) 1 400, the set {m € N : h(m) < N} is
finite and it is also non-empty. Hence, it has a maximal element
m, and we have h(m) < N < h(m +1). Let p = N — h(m).
Then p € N, and we have 0 < p < h(m + 1) — h(m) = m + 1.
So p < m. If we define n = m — p, then n is also an element
of N. So (n,p) is an element of N2, such that m = n + p, and
N =p+ h(m). It follows that:

¢2(n,p) =p+h(n+p)=p+h(m)=N

We have proved that ¢s is a surjective map. Suppose (n,p) and
(n/,p') are elements of N2, with ¢o(n,p) = ¢2(n/,p’). Since
@2(n,p) = p+ h(n+p), in particular h(n + p) < ¢o2(n, p). How-
ever, h(in+p+1)=p+h(n+p)+n+1> ¢a(n,p). It follows
that for all (n,p) € N2, we have:

h(n+p) < ¢a(n,p) < h(n+p+1) (5)
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Since given N € N, any m € N such that h(m) < N < h(m+1)
is unique, it follows from ¢q(n,p) = ¢2(n’,p’) and equation (5)
that n +p =n' + p’. Hence:

p = d2(n,p) — h(n+p) = gao(n',p") — h(n' +p') =p’

and finally n = (n+p) —p = (n' +p') —p’ = n’. We have proved
that ¢ is an injective map. We conclude that ¢ : N2 — N is
a bijection

5. Let p > 1. The existence of a bijection ¢, : N” — N is true for
p =1 and p = 2. Suppose the existence of ¢, has been proved,
and let ¢ : N> — N be as in 4. Let ¢p1 : NPT — N be
defined by:

Gpr1(n1, .. npr1) = G2(dp(n1, ... np), Npya]

for all (n1,...,n,41) € NPTL Let N € N. ¢, being a surjec-
tion, there exists (n,n,41) € N? with ¢a(n,n,41) = N. From
our induction hypothesis, ¢, : N? — N is also a surjective map.
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There exists (n1,...,np) € NP, such that ¢,(n1,...,n,) = n.
It follows that (ni,...,n,11) is an element of NP*! such that
Opr1(ni, ..., npyr1) = N. So ¢pi1 is itself a surjective map.
Suppose (11, .. .,np41) and (nf, ..., ny,, ;) are elements of Nrt!
such that:
Gp1(na, ... npy1) = ¢p+1(n/17 s 7”;-&-1)
Then, ¢2 being injective, n,1 = ny,, 1, and:
Gp(ni,...,np) = gp(ni, ... ,n;)

¢p being itself injective, (ni,...,n,) = (ny,...,n;,), and we
conclude that (ni,...,np41) = (n],...,n541). So ¢p1 is an

injective map, and finally a bijection. This induction argument
proves the existence of a bijection ¢, : N? — N, for all p > 1.

6. Let p > 1. From 3., there exists an injective map j, : H? — NP.
From 5., there exists a bijection ¢, : N? — N. It follows that
¢p 0 jp : H? — N is an injective map. This proves that H? is
finite or countable, i.e. HP is at most countable.
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7. From 6., for all p > 1, there exists an injection 1, : H? — N.
Let j : H — N? be defined by j(A) = (p, ¢¥p(A)), where p > 1
is chosen such that A € HP, (there is at least one such p for
any A € H). Suppose j(A) = j(B) for some A, B € H. Then,
there exists p > 1 such that A, B € H? and ¢,(A) = ¥,(B),
and consequently A = B. So j is an injection. We have proved
the existence of an injective map j : H — NZ2.

8. Let ¢ : N> — N be a bijection. From 7., there exists an
injection j : H — N2. It follows that ¢ 0 j : H — N is an
injection. This proves that H is finite or countable, i.e. it is
at most countable. From 2., H C 7. Hence, all elements of H
are open sets in €, (with respect to the product topology). We
conclude that H is a finite or countable set of open sets in (2.

9. From exercise (12), U € T = 7T, if and only if for all
x € U, there exists V € 11727, such that z € V C U. Since all
elements of I} 297, can be written as Uy x ... x U, x III2° . Q,

for some p > 1 and Uy, ...,U, open in Qy, ..., ), respectively,
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10.

it follows in particular that if U € 7 and = € U, there exist
p>1and Uy,...,U, open in Qq,...,, such that:

“+oo
el x...xU,x H Q,CU
n=p+1

LetU €T andz € U. Letp>land Uy,...,Upopen Qy,...,Q,
respectively, such that z € Uy x ... x Up x Hj;f;H_lQn CU. By
assumption, for all n > 1, the set {V,* : k € I,,} is a countable
base of the topology 7,,. Hence, for all n € N, there exists a
subset I/, of I,,, such that U,, = Uker, V,f. In particular, since
x, € U,, there exists k,, € I’ C I,, such that z,, € V*» C U,.
We have found k1, ..., k, such that:

—+o0
eV x xVirx J[ @ueVacU

n=p-+1
There exists V,, € HP C 'H such that z € V, C U.

www.probability.net


http://www.probability.net

Solutions to Exercises 85

11.

12.

13.

14.

From 8., H is a finite or countable subset of the topology 7.
From 10., for all U € 7, U can be written as U = Uzcy Vs,
where V,, € H for all x € U. In other words, any open set U of
7T can be written as a union of elements of H. It follows from
definition (57) that H is a countable base of (2,7).

From theorem (26), since B(£2,) = o(7,) for all n > 1:
Da2B(Q) = o(INT,) € o(T) = B(Q)
Let p > 1 and A € HP. Then A is a rectangle of the family

(To)n>1. Hence A € 117297, C I B(Q,) € ®@,29B(Q2,). So
HP C ®,°5B(Q,). We conclude that:

H=JH Ce/x5BQ)

p>1

Since H is a countable base of (2,7, any open set U of 7 can
be expressed as a union of elements of H. Furthermore, H being
at most countable, such union is at most countable. It follows
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that any open set U in 7 is an element of o(H), i.e. 7 C o(H).
From 13., we have H C ®>B(Q,) and consequently, we have
o(H) € ®129B(Q,). Hence, we see that 7 C ®,>B(Q,), and

finally B(Q) = o(7) C ®>B(2,). Using 12., we conclude
that:

“+o00
B() = @ B(©)
n=1
The purpose of this exercise is to prove theorem (27).

Exercise 17
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Exercise 18.

1. Since (€2,7) has a countable base, a finite version of theo-
rem (27) would allow us to conclude immediately that:

B(Q")=B(Q)®...0B(Q)
Since B(Q) = o(7), from theorem (26), we have:
BQ)®...BQ)=c(TI...IUT) Co(Togn) =B(Q")

Let U be open in 2", and € U. From exercise (12), there exist
Vi,...,V, open in , such that:

reVix...xV,CU

Since () has a countable base, say H, each V; can be written as
a union of elements of H. In particular, there exist Wy,..., W,
in H, such that:

reWix...xW, CU
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Defining A, = W7 x ... x W,,, we have U = U,cpy A,. Since H
is a subset of 7, each A, is an element of 7 II... 117 C Zgn.
Although the set U may not be countable, the set I defined
by I = {A, : * € U} is at most countable, H being at most
countable. So U = U,ep A, is in fact a countable (or finite)
union of elements of 7II...II7T. SoU € o(TII...IIT). We
have proved that:
Ton Co(THO...IT)CB(Q)®...0B(N)

We conclude that:

B(Q") =0(Tagn) CB(Q)®...®@ B(Q)
We have proved that B(Q") = B(Q) ®@...® B(Q).

2. This is an immediate consequence of 1. and exercise (16).

3. From 1., B(R?) = B(R)®B(R). C and R? being identified, the
usual topology on C is induced by the metric:

A=) = Ve =P+ = yP
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with obvious notations. From exercise (14), such metric induces
the product topology on R2. It follows that the usual topology
on C and the product topology on R? coincide. So 7¢ = Tgr>,
and finally B(C) = B(R?) = B(R) ® B(R).

Exercise 18
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Exercise 19.

1. H = {B(2n,1/p) : n,p > 1} is a finite or countable subset of
T3, Let U € T2 and = € U. There exists € > 0, such that
B(x,¢) C U. By assumption, the set {z,, : n > 1} is dense in F.
p > 1 being such that 1/p < €/2, there exists n > 1 such that
Zn € B(x,1/p). In particular, x € B(zy,1/p). Moreover, for all
y € B(xp,1/p), we have:

2
d({l?,y) < d(.’IJ,.’L‘n) +d(x’ﬂ7y) <-—<e€
p

So y € B(z,e) C U. Hence, we see that © € B(z,,1/p) C U.
For all x € U, we have found V, € H such that x € V, C U.
It follows that U = U,cpyVz. So U is a union of elements of H.
We have proved that H is a countable base of (E, 7).

2. Let A={xzy :V € H,V # 0}. H being a countable base of
(E,T2), it is at most countable. There exists an injective map
j:H — N. Let i : A — H be defined by i(zy) = V. Then i is
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clearly an injection, and joi : A — N is therefore an injective
map. So A is a finite or countable subset of E. Let x € E. Let
U € T such that € U. Since U can be written as a union of
elements of H, there exists V € H, such that x € V C U. In
particular, V # () and xy is well-defined, with 2y € V C U. So
ry € ANU # (). We have proved that for all U € 72 such that
x €U, UNA# (. From definition (37)7, x is an element of A,
the closure of A. We have proved that £ C A. So E = A, and
A is dense in E. Finally, A is at most countable and dense in
E. So (E,d) is a separable metric space. The purpose of 1. and
2. is to show that for metric spaces, being separable, or having
a countable base, are equivalent.

3. Let z,y,2',y' € E. We have:
d(z,y) < d(z,2") +d(2",y") + d(y', y)

"Beware of external links!
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and therefore:
d(w,y) —d(a’,y") < d(z,2") + d(y.y')
Similarly:
d(@',y") — d(z,y) < d(w,2") +d(y,y')
It follows that:
ld(z,y) —d(@’,y")| < d(z,2") +d(y,y)
4. Let § : (E x E)?> — R™ be the metric on E x E defined by:
dl(z,y), (@, ¢)] = d(z,2") + d(y,y')
From 3., we have:
ld(z,y) —d(@",y")| < é[(z,y), (@, y)] (6)

From exercise (14), the product topology 7gxg on E x E is
induced by the metric §. Using exercise (4) of Tutorial 4, we
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conclude from equation (6) that d : (Ex E, Tpxp) — (RT, Tr+)
is a continuous map.

5. From exercise (13) of Tutorial 4, and the continuity of the map
d: Ex E — RT proved in 4., we conclude that:

d:(ExE,B(ExE))— (R",B(R"))
is a measurable map. It follows that:
d:(Ex E,B(ExE))— (R,B(R))
is a also a measurable map.

6. If (E,d) is a separable metric space, from 1. , it has a countable
base. From exercise (18), B(E x E) = B(E) @ B(E). We con-
clude from 5. that d : (E x E,B(E) ® B(E)) — (R,B(R)) is a
measurable map.

7. By definition (54), the product o-algebra B(F) ® B(F) is gen-
erated by the set of measurable rectangles B(E) II B(E). From
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theorem (14), in order to prove the measurability of:
d:(Q,F)— (Ex E,B(FE)®B(E))

it is sufficient to prove that ®~1(B) € F forall B € B(E)IIB(E).
However, any measurable rectangle B of B(E) 11 B(E) is of the
form B = A; x Ay, where Ay, As € B(E). It follows that:

eN(B)=fTH(A)Ng T (A) € F

since by assumption, both f,g: (Q,F) — (E, B(FE)) are measur-
able maps. We have proved that ® : Q@ — E x E is measurable
with respect to F and B(E) @ B(E).

8. Suppose (E,d) is a separable metric space. From 6., the map:
d: (Ex E,B(E)®B(E)) — (R,B(R))
is measurable. However, from 7., the map:

d:(NF)— (Ex E,B(F)®B(E))
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10.

is also measurable. It follows that ¥ = d(f,g) = d o ® is mea-
surable with respect to F and B(R).

. From 8., when (FE, d) is separable, the map ¥ = d(f, g) is mea-

surable. Hence:
{(f=gt=0""'{0})eF

Let (Ey,dn)n>1 be a sequence of separable metric spaces. From
exercise (15), the product topological space I} > E,, is metriz-
able. From 1., each FE,, has a countable base. From theo-
rem (27), IL' > E,, also has a countable base. Being metrizable,
it follows from 2., that it is in fact separable. We have proved
that 117> E,, is metrizable and separable.

Exercise 19
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Exercise 20. Suppose each f; : (2, F) — (€, F;) is measurable.
From theorem (14), in order to prove the measurability of:

[ (L F) — (iery, QicrFi)

It is sufficient to show that f~1(B) € F, for all B € ;e F;. Let
B = Tl,c1A; be a measurable rectangle of the family (F;);er. For all
1el, Aje Fi,and J={ie€l:A; #Q;}is a finite set. Hence:
By =({ficA}=({ficA}eF
iel ieJ
since each f; is measurable. So f is indeed measurable. Conversely,

suppose f = (fi)ier is measurable. Let j € I and A; € F;. We have:

fj_l(Aj) = fﬁl(Aj X Hz#jQz) eF

since B = A; x II;%;); is a measurable rectangle, and lies in ®;c1.F;.
So fj : (Q,F) — (5, F,) is a measurable map.

Exercise 20
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Exercise 21.
1. Let (z,y) and (2/,y’) be elements of R?. We have:
¢z, y) — o2, y)| < |z — 2’| + |y — ¥/ (7)
By definition (17), the usual topology on R is the metric topol-

ogy induced by d(z,y) = |z—y|. From exercise (14), the product
topology on R? is induced by:

ol(z,y), (")) =z — 2| + [y — /|
It follows from equation (7), and exercise (4) of Tutorial 4 that:
¢ : (R27TR2) - (Rv TR)

is a continuous map.
Let (20,y0) € R? and € > 0. For all (x,7) € R?, we have:

[, y) — (w0, y0)| < |yl.|z — 20| + |w0l.]y — Yol
Suppose n > 0 is such that:
[z — 20| + [y —yol <n <1
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Then in particular, |y| <1+ |yo|, and consequently:
(@, y) — (xo,y0)| < M.(Jz — zo| + |y — yol)

where M = max(|xol, 1 + |yo|). Hence, we see that:

6[(x,y), (o, yo)l <n = |(x,y) —P(w0,40)| < €

where 7 has been chosen as 77 = min(e/M, 1). We conclude from
exercise (4) of Tutorial 4 that ¢ : (R?,Tgr2) — (R,7R) is a
continuous map.

2. ¢ and ¢ being continuous, from exercise (13) of Tutorial 4:
.0 : (R*, B(R?)) — (R, B(R))
are measurable maps. Since (R, 7g) has a countable base, from
exercise (18), we have B(R?) = B(R) ® B(R). We conclude
that: - -
¢,¢ : (R*, B(R) ® B(R)) — (R, B(R))

are measurable maps.
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3. Given f,¢: (Q,F) — (R, B(R)) measurable, the fact that f+g¢
and f.g are measurable was already proved in Tutorial 4. The
purpose of this exercise is to emphasize a more direct proof.
From theorem (28), the map:

h=(f9):(QF)— (RxR,B(R)®B(R))
is measurable, since both f and g are measurable. From 2:
¢,%: (R x R, B(R) ® B(R)) — (R, B(R))

are also measurable. It follows that f+g = ¢oh and f.g =1oh
are measurable with respect to F and B(R). Being real-valued,
they are also measurable with respect to F and B(R).

Exercise 21
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