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6. Product Spaces
In the following, I is a non-empty set.

Definition 50 Let (Ωi)i∈I be a family of sets, indexed by a non-
empty set I. We call Cartesian product of the family (Ωi)i∈I the
set, denoted Πi∈IΩi, and defined by:∏

i∈I

Ωi
�
= {ω : I → ∪i∈IΩi , ω(i) ∈ Ωi , ∀i ∈ I}

In other words, Πi∈IΩi is the set of all maps ω defined on I, with
values in ∪i∈IΩi, such that ω(i) ∈ Ωi for all i ∈ I.

Theorem 25 (Axiom of choice) Let (Ωi)i∈I be a family of sets,
indexed by a non-empty set I. Then, Πi∈IΩi is non-empty, if and
only if Ωi is non-empty for all i ∈ I1.

1When I is finite, this theorem is traditionally derived from other axioms.
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Exercise 1.

1. Let Ω be a set and suppose that Ωi = Ω, ∀i ∈ I. We use the
notation ΩI instead of Πi∈IΩi. Show that ΩI is the set of all
maps ω : I → Ω.

2. What are the sets RR+
, RN , [0, 1]N , R̄R?

3. Suppose I = N∗. We sometimes use the notation Π+∞
n=1Ωn in-

stead of Πn∈N∗Ωn. Let S be the set of all sequences (xn)n≥1

such that xn ∈ Ωn for all n ≥ 1. Is S the same thing as the
product Π+∞

n=1Ωn?

4. Suppose I = Nn = {1, . . . , n}, n ≥ 1. We use the notation
Ω1× . . .×Ωn instead of Πi∈{1,...,n}Ωi. For ω ∈ Ω1× . . .× Ωn, it
is customary to write (ω1, . . . , ωn) instead of ω, where we have
ωi = ω(i). What is your guess for the definition of sets such as
Rn, R̄n,Qn,Cn.

5. Let E,F,G be three sets. Define E × F ×G.
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Definition 51 Let I be a non-empty set. We say that a family of
sets (Iλ)λ∈Λ, where Λ �= ∅, is a partition of I, if and only if:

(i) ∀λ ∈ Λ , Iλ �= ∅
(ii) ∀λ, λ′ ∈ Λ , λ �= λ′ ⇒ Iλ ∩ Iλ′ = ∅

(iii) I = ∪λ∈ΛIλ

Exercise 2. Let (Ωi)i∈I be a family of sets indexed by I, and (Iλ)λ∈Λ

be a partition of the set I.

1. For each λ ∈ Λ, recall the definition of Πi∈Iλ
Ωi.

2. Recall the definition of Πλ∈Λ(Πi∈Iλ
Ωi).

3. Define a natural bijection Φ : Πi∈IΩi → Πλ∈Λ(Πi∈Iλ
Ωi).

4. Define a natural bijection ψ : Rp×Rn → Rp+n, for all n, p ≥ 1.
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Definition 52 Let (Ωi)i∈I be a family of sets, indexed by a non-
empty set I. For all i ∈ I, let Ei be a set of subsets of Ωi. We define
a rectangle of the family (Ei)i∈I , as any subset A of Πi∈IΩi, of the
form A = Πi∈IAi where Ai ∈ Ei ∪ {Ωi} for all i ∈ I, and such that
Ai = Ωi except for a finite number of indices i ∈ I. Consequently, the
set of all rectangles, denoted �i∈IEi, is defined as:∐
i∈I

Ei
�
=

{∏
i∈I

Ai : Ai ∈ Ei ∪ {Ωi} , Ai �= Ωi for finitely many i ∈ I

}

Exercise 3. (Ωi)i∈I and (Ei)i∈I being as above:

1. Show that if I = Nn and Ωi ∈ Ei for all i = 1, . . . , n, then
E1 � . . .� En = {A1 × . . .×An : Ai ∈ Ei , ∀i ∈ I}.

2. Let A be a rectangle. Show that there exists a finite subset J
of I such that: A = {ω ∈ Πi∈IΩi : ω(j) ∈ Aj , ∀j ∈ J} for
some Aj ’s such that Aj ∈ Ej , for all j ∈ J .
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Definition 53 Let (Ωi,Fi)i∈I be a family of measurable spaces, in-
dexed by a non-empty set I. We call measurable rectangle , any
rectangle of the family (Fi)i∈I . The set of all measurable rectangles
is given by 2:

∐
i∈I

Fi
�
=

{∏
i∈I

Ai : Ai ∈ Fi , Ai �= Ωi for finitely many i ∈ I

}

Definition 54 Let (Ωi,Fi)i∈I be a family of measurable spaces, in-
dexed by a non-empty set I. We define the product σ-algebra of
(Fi)i∈I , as the σ-algebra on Πi∈IΩi, denoted ⊗i∈IFi, and generated
by all measurable rectangles, i.e.

⊗
i∈I

Fi
�
= σ

(∐
i∈I

Fi

)

2Note that Ωi ∈ Fi for all i ∈ I.
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Exercise 4.

1. Suppose I = Nn. Show that F1 ⊗ . . . ⊗ Fn is generated by all
sets of the form A1× . . .×An, where Ai ∈ Fi for all i = 1, . . . , n.

2. Show that B(R)⊗B(R)⊗B(R) is generated by sets of the form
A×B × C where A,B,C ∈ B(R).

3. Show that if (Ω,F) is a measurable space, B(R+) ⊗ F is the
σ-algebra on R+×Ω generated by sets of the form B×F where
B ∈ B(R+) and F ∈ F .

Exercise 5. Let (Ωi)i∈I be a family of non-empty sets and Ei be a
subset of the power set P(Ωi) for all i ∈ I.

1. Give a generator of the σ-algebra ⊗i∈Iσ(Ei) on Πi∈IΩi.

2. Show that:

σ

(∐
i∈I

Ei

)
⊆
⊗
i∈I

σ(Ei)
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3. Let A be a rectangle of the family (σ(Ei))i∈I . Show that if A is
not empty, then the representation A = Πi∈IAi with Ai ∈ σ(Ei)
is unique. Define JA = {i ∈ I : Ai �= Ωi}. Explain why JA is a
well-defined finite subset of I.

4. If A ∈ �i∈Iσ(Ei), Show that if A = ∅, or A �= ∅ and JA = ∅,
then A ∈ σ(�i∈IEi).

Exercise 6. Everything being as before, Let n ≥ 0. We assume that
the following induction hypothesis has been proved:

A ∈
∐
i∈I

σ(Ei), A �= ∅, cardJA = n ⇒ A ∈ σ

(∐
i∈I

Ei

)

We assume that A is a non empty measurable rectangle of (σ(Ei))i∈I

with cardJA = n+ 1. Let JA = {i1, . . . , in+1} be an extension of JA.
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For all B ⊆ Ωi1 , we define:

AB �
=
∏
i∈I

Āi

where each Āi is equal to Ai except Āi1 = B. We define the set:

Γ
�
=

{
B ⊆ Ωi1 : AB ∈ σ

(∐
i∈I

Ei

)}

1. Show that AΩi1 �= ∅, cardJ
A

Ωi1 = n and that AΩi1 ∈ �i∈Iσ(Ei).

2. Show that Ωi1 ∈ Γ.

3. Show that for all B ⊆ Ωi1 , we have AΩi1\B = AΩi1 \AB .

4. Show that B ∈ Γ ⇒ Ωi1 \B ∈ Γ.

5. Let Bn ⊆ Ωi1 , n ≥ 1. Show that A∪Bn = ∪n≥1A
Bn .

6. Show that Γ is a σ-algebra on Ωi1 .
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7. Let B ∈ Ei1 , and for i ∈ I define B̄i = Ωi for all i’s except
B̄i1 = B. Show that AB = AΩi1 ∩ (Πi∈I B̄i).

8. Show that σ(Ei1) ⊆ Γ.

9. Show that A = AAi1 and A ∈ σ(�i∈IEi).

10. Show that �i∈Iσ(Ei) ⊆ σ(�i∈IEi).

11. Show that σ(�i∈IEi) = ⊗i∈Iσ(Ei).

Theorem 26 Let (Ωi)i∈I be a family of non-empty sets indexed by a
non-empty set I. For all i ∈ I, let Ei be a set of subsets of Ωi. Then,
the product σ-algebra ⊗i∈Iσ(Ei) on the Cartesian product Πi∈IΩi is
generated by the rectangles of (Ei)i∈I , i.e. :

⊗
i∈I

σ(Ei) = σ

(∐
i∈I

Ei

)
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Exercise 7. Let TR denote the usual topology in R. Let n ≥ 1.

1. Show that TR � . . .� TR = {A1 × . . .×An : Ai ∈ TR}.

2. Show that B(R)⊗ . . .⊗ B(R) = σ(TR � . . .� TR).

3. Define C2 = {]a1, b1] × . . .×]an, bn] : ai, bi ∈ R}. Show that
C2 ⊆ S � . . . � S, where S = {]a, b] : a, b ∈ R}, but that the
inclusion is strict.

4. Show that S � . . .� S ⊆ σ(C2).

5. Show that B(R)⊗ . . .⊗ B(R) = σ(C2).

Exercise 8. Let Ω and Ω′ be two non-empty sets. Let A be a subset
of Ω such that ∅ �= A �= Ω. Let E = {A} ⊆ P(Ω) and E ′ = ∅ ⊆ P(Ω′).

1. Show that σ(E) = {∅, A,Ac,Ω}.

2. Show that σ(E ′) = {∅,Ω′}.
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3. Define C = {E × F , E ∈ E , F ∈ E ′} and show that C = ∅.

4. Show that E � E ′ = {A× Ω′,Ω × Ω′}.

5. Show that σ(E) ⊗ σ(E ′) = {∅, A× Ω′, Ac × Ω′,Ω × Ω′}.

6. Conclude that σ(E) ⊗ σ(E ′) �= σ(C) = {∅,Ω× Ω′}.

Exercise 9. Let n ≥ 1 and p ≥ 1 be two positive integers.

1. Define F = B(R)⊗ . . .⊗ B(R)︸ ︷︷ ︸
n

, and G = B(R) ⊗ . . .⊗ B(R)︸ ︷︷ ︸
p

.

Explain why F ⊗ G can be viewed as a σ-algebra on Rn+p.

2. Show that F⊗G is generated by sets of the form A1× . . .×An+p

where Ai ∈ B(R), i = 1, . . . , n+ p.
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3. Show that:

B(R)⊗. . .⊗B(R)︸ ︷︷ ︸
n+p

= (B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
n

⊗(B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
p

Exercise 10. Let (Ωi,Fi)i∈I be a family of measurable spaces. Let
(Iλ)λ∈Λ, where Λ �= ∅, be a partition of I. Let Ω = Πi∈IΩi and
Ω′ = Πλ∈Λ(Πi∈Iλ

Ωi).

1. Define a natural bijection between P(Ω) and P(Ω′).

2. Show that through such bijection, A = Πi∈IAi ⊆ Ω, where
Ai ⊆ Ωi, is identified with A′ = Πλ∈Λ(Πi∈Iλ

Ai) ⊆ Ω′.

3. Show that �i∈IFi = �λ∈Λ(�i∈Iλ
Fi).

4. Show that ⊗i∈IFi = ⊗λ∈Λ(⊗i∈Iλ
Fi).
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Definition 55 Let Ω be set and A be a set of subsets of Ω. We call
topology generated by A, the topology on Ω, denoted T (A), equal
to the intersection of all topologies on Ω, which contain A.

Exercise 11. Let Ω be a set and A ⊆ P(Ω).

1. Explain why T (A) is indeed a topology on Ω.

2. Show that T (A) is the smallest topology T such that A ⊆ T .

3. Show that the metric topology on a metric space (E, d) is gen-
erated by the open balls A = {B(x, ε) : x ∈ E, ε > 0}.

Definition 56 Let (Ωi, Ti)i∈I be a family of topological spaces, in-
dexed by a non-empty set I. We define the product topology of
(Ti)i∈I , as the topology on Πi∈IΩi, denoted �i∈ITi, and generated by
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all rectangles of (Ti)i∈I , i.e.

⊙
i∈I

Ti
�
= T

(∐
i∈I

Ti

)

Exercise 12. Let (Ωi, Ti)i∈I be a family of topological spaces.

1. Show that U ∈ �i∈ITi, if and only if:

∀x ∈ U , ∃V ∈ �i∈ITi , x ∈ V ⊆ U

2. Show that �i∈ITi ⊆ �i∈ITi.

3. Show that ⊗i∈IB(Ωi) = σ(�i∈ITi).

4. Show that ⊗i∈IB(Ωi) ⊆ B(Πi∈IΩi).
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Exercise 13. Let n ≥ 1 be a positive integer. For all x, y ∈ Rn, let:

(x, y)
�
=

n∑
i=1

xiyi

and we put ‖x‖ =
√

(x, x).

1. Show that for all t ∈ R, ‖x+ ty‖2 = ‖x‖2 + t2‖y‖2 + 2t(x, y).

2. From ‖x+ ty‖2 ≥ 0 for all t, deduce that |(x, y)| ≤ ‖x‖.‖y‖.

3. Conclude that ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Exercise 14. Let (Ω1, T1), . . . , (Ωn, Tn), n ≥ 1, be metrizable topo-
logical spaces. Let d1, . . . , dn be metrics on Ω1, . . . ,Ωn, inducing the
topologies T1, . . . , Tn respectively. Let Ω = Ω1 × . . . × Ωn and T be
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the product topology on Ω. For all x, y ∈ Ω, we define:

d(x, y)
�
=

√√√√ n∑
i=1

(di(xi, yi))2

1. Show that d : Ω × Ω → R+ is a metric on Ω.

2. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U there
are open sets U1, . . . , Un in Ω1, . . . ,Ωn respectively, such that:

x ∈ U1 × . . .× Un ⊆ U

3. Let U ∈ T and x ∈ U . Show the existence of ε > 0 such that:

(∀i = 1, . . . , n di(xi, yi) < ε) ⇒ y ∈ U

4. Show that T ⊆ T d
Ω .

5. Let U ∈ T d
Ω and x ∈ U . Show the existence of ε > 0 such that:

x ∈ B(x1, ε) × . . .×B(xn, ε) ⊆ U
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6. Show that T d
Ω ⊆ T .

7. Show that the product topological space (Ω, T ) is metrizable.

8. For all x, y ∈ Ω, define:

d′(x, y)
�
=

n∑
i=1

di(xi, yi)

d′′(x, y)
�
= max

i=1,...,n
di(xi, yi)

Show that d′, d′′ are metrics on Ω.

9. Show the existence of α′, β′, α′′ and β′′ > 0, such that we have
α′d′ ≤ d ≤ β′d′ and α′′d′′ ≤ d ≤ β′′d′′.

10. Show that d′ and d′′ also induce the product topology on Ω.

Exercise 15. Let (Ωn, Tn)n≥1 be a sequence of metrizable topological
spaces. For all n ≥ 1, let dn be a metric on Ωn inducing the topology
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Tn. Let Ω = Π+∞
n=1Ωn be the Cartesian product and T be the product

topology on Ω. For all x, y ∈ Ω, we define:

d(x, y)
�
=

+∞∑
n=1

1
2n

(1 ∧ dn(xn, yn))

1. Show that for all a, b ∈ R+, we have 1∧ (a+ b) ≤ 1∧ a+ 1 ∧ b.

2. Show that d is a metric on Ω.

3. Show that U ⊆ Ω is open in Ω, if and only if, for all x ∈ U , there
is an integer N ≥ 1 and open sets U1, . . . , UN in Ω1, . . . ,ΩN

respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

4. Show that d(x, y) < 1/2n ⇒ dn(xn, yn) ≤ 2nd(x, y).
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5. Show that for all U ∈ T and x ∈ U , there exists ε > 0 such that
d(x, y) < ε ⇒ y ∈ U .

6. Show that T ⊆ T d
Ω .

7. Let U ∈ T d
Ω and x ∈ U . Show the existence of ε > 0 and N ≥ 1,

such that:
N∑

n=1

1
2n

(1 ∧ dn(xn, yn)) < ε ⇒ y ∈ U

8. Show that for all U ∈ T d
Ω and x ∈ U , there is ε > 0 and N ≥ 1

such that:

x ∈ B(x1, ε) × . . .×B(xN , ε) ×
+∞∏

n=N+1

Ωn ⊆ U

9. Show that T d
Ω ⊆ T .

10. Show that the product topological space (Ω, T ) is metrizable.
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Definition 57 Let (Ω, T ) be a topological space. A subset H of T
is called a countable base of (Ω, T ), if and only if H is at most
countable, and has the property:

∀U ∈ T , ∃H′ ⊆ H , U =
⋃

V ∈H′
V

Exercise 16.

1. Show that H = {]r, q[ : r, q ∈ Q} is a countable base of (R, TR).

2. Show that if (Ω, T ) is a topological space with countable base,
and Ω′ ⊆ Ω, then the induced topological space (Ω′, T|Ω′) also
has a countable base.

3. Show that [−1, 1] has a countable base.

4. Show that if (Ω, T ) and (S, TS) are homeomorphic, then (Ω, T )
has a countable base if and only if (S, TS) has a countable base.
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5. Show that (R̄, TR̄) has a countable base.

Exercise 17. Let (Ωn, Tn)n≥1 be a sequence of topological spaces
with countable base. For n ≥ 1, Let {V k

n : k ∈ In} be a countable
base of (Ωn, Tn) where In is a finite or countable set. Let Ω = Π∞

n=1Ωn

be the Cartesian product and T be the product topology on Ω. For
all p ≥ 1, we define:

Hp �
=

{
V k1

1 × . . .× V kp
p ×

+∞∏
n=p+1

Ωn : (k1, . . . , kp) ∈ I1 × . . .× Ip

}

and we put H = ∪p≥1Hp.

1. Show that for all p ≥ 1, Hp ⊆ T .

2. Show that H ⊆ T .

3. For all p ≥ 1, show the existence of an injection jp : Hp → Np.
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4. Show the existence of a bijection φ2 : N2 → N.

5. For p ≥ 1, show the existence of an bijection φp : Np → N.

6. Show that Hp is at most countable for all p ≥ 1.

7. Show the existence of an injection j : H → N2.

8. Show that H is a finite or countable set of open sets in Ω.

9. Let U ∈ T and x ∈ U . Show that there is p ≥ 1 and U1, . . . , Up

open sets in Ω1, . . . ,Ωp such that:

x ∈ U1 × . . .× Up ×
+∞∏

n=p+1

Ωn ⊆ U

10. Show the existence of some Vx ∈ H such that x ∈ Vx ⊆ U .

11. Show that H is a countable base of the topological space (Ω, T ).

12. Show that ⊗+∞
n=1B(Ωn) ⊆ B(Ω).
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13. Show that H ⊆ ⊗+∞
n=1B(Ωn).

14. Show that B(Ω) = ⊗+∞
n=1B(Ωn)

Theorem 27 Let (Ωn, Tn)n≥1 be a sequence of topological spaces
with countable base. Then, the product space (Π+∞

n=1Ωn,�+∞
n=1Tn) has

a countable base and:

B
(

+∞∏
n=1

Ωn

)
=

+∞⊗
n=1

B(Ωn)

Exercise 18.

1. Show that if (Ω, T ) has a countable base and n ≥ 1:

B(Ωn) = B(Ω) ⊗ . . .⊗ B(Ω)︸ ︷︷ ︸
n
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2. Show that B(R̄n) = B(R̄) ⊗ . . .⊗ B(R̄).

3. Show that B(C) = B(R)⊗ B(R).

Definition 58 We say that a metric space (E, d) is separable, if
and only if there exists a finite or countable dense subset of E, i.e.
a finite or countable subset A of E such that E = Ā, where Ā is the
closure of A in E.

Exercise 19. Let (E, d) be a metric space.

1. Suppose that (E, d) is separable. Let H = {B(xn,
1
p ) : n, p ≥ 1},

where {xn : n ≥ 1} is a countable dense subset in E. Show that
H is a countable base of the metric topological space (E, T d

E ).

2. Suppose conversely that (E, T d
E ) has a countable base H. For

all V ∈ H such that V �= ∅, take xV ∈ V . Show that the set
{xV : V ∈ H , V �= ∅} is at most countable and dense in E.
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3. For all x, y, x′, y′ ∈ E, show that:

|d(x, y) − d(x′, y′)| ≤ d(x, x′) + d(y, y′)

4. Let TE×E be the product topology on E × E. Show that the
map d : (E × E, TE×E) → (R+, TR+) is continuous.

5. Show that d : (E × E,B(E × E)) → (R̄,B(R̄)) is measurable.

6. Show that d : (E×E,B(E)⊗B(E)) → (R̄,B(R̄)) is measurable,
whenever (E, d) is a separable metric space.

7. Let (Ω,F) be a measurable space and f, g : (Ω,F) → (E,B(E))
be measurable maps. Show that Φ : (Ω,F) → E×E defined by
Φ(ω) = (f(ω), g(ω)) is measurable with respect to the product
σ-algebra B(E) ⊗ B(E).

8. Show that if (E, d) is separable, then Ψ : (Ω,F) → (R̄,B(R̄))
defined by Ψ(ω) = d(f(ω), g(ω)) is measurable.

9. Show that if (E, d) is separable then {f = g} ∈ F .
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10. Let (En, dn)n≥1 be a sequence of separable metric spaces. Show
that the product space Π+∞

n=1En is metrizable and separable.

Exercise 20. Prove the following theorem.

Theorem 28 Let (Ωi,Fi)i∈I be a family of measurable spaces and
(Ω,F) be a measurable space. For all i ∈ I, let fi : Ω → Ωi be a map,
and define f : Ω → Πi∈IΩi by f(ω) = (fi(ω))i∈I . Then, the map:

f : (Ω,F) →
(∏

i∈I

Ωi,
⊗
i∈I

Fi

)

is measurable, if and only if each fi : (Ω,F) → (Ωi,Fi) is measurable.

Exercise 21.

1. Let φ, ψ : R2 → R with φ(x, y) = x + y and ψ(x, y) = x.y.
Show that both φ and ψ are continuous.
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2. Show that φ, ψ : (R2,B(R)⊗B(R))→(R̄,B(R̄)) are measurable.

3. Let (Ω,F) be a measurable space, and f, g : (Ω,F) → (R,B(R))
be measurable maps. Using the previous results, show that f+g
and f.g are measurable with respect to F and B(R).

www.probability.net

http://www.probability.net


Solutions to Exercises 28

Solutions to Exercises
Exercise 1.

1. If Ωi = Ω for all i ∈ I, then ∪i∈IΩi = Ω. For any map f : I → Ω,
the condition f(i) ∈ Ωi for all i ∈ I, is automatically satisfied.
Hence, ΩI is the set of all maps f : I → Ω.

2. RR+
is the set of all maps f : R+ → R. The set RN is that of

all maps f : N → R, or in other words, the set of all sequences
(un)n≥0 with values in R. As for [0, 1]N, it is the set of all
sequences (un)n≥0 with values in [0, 1]. Finally, R̄R etc. . .

3. Yes. Maps defined on N∗ or sequences are the same thing.

4. For any set E, En is the set of all maps f : Nn → E.

5. E ×F ×G is the set of all maps ω : N3 → E ∪F ∪G such that
ω1 ∈ E, ω2 ∈ F and ω3 ∈ G.

Exercise 1
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Exercise 2.

1. Πi∈Iλ
Ωi is the set of all maps f defined on Iλ, with f(i) ∈ Ωi

for all i ∈ Iλ.

2. Πλ∈Λ(Πi∈Iλ
Ωi) is the set of all maps x defined on Λ, such that

x(λ) ∈ Πi∈Iλ
Ωi, for all λ ∈ Λ.

3. Given ω ∈ Πi∈IΩi and λ ∈ Λ, let ω|Iλ
be the restriction of ω to

Iλ ⊆ I. Since ω(i) ∈ Ωi for all i ∈ I, in particular ω(i) ∈ Ωi for
all i ∈ Iλ. Hence, ω|Iλ

∈ Πi∈Iλ
Ωi. This being true for all λ ∈ Λ,

the map Φ(ω) = (ω|Iλ
)λ∈Λ defined on Λ by Φ(ω)(λ) = ω|Iλ

, is
an element of Πλ∈Λ(Πi∈Iλ

Ωi). Hence, we have defined a map
Φ : Πi∈IΩi → Πλ∈Λ(Πi∈Iλ

Ωi). Let y ∈ Πλ∈Λ(Πi∈Iλ
Ωi). Since

(Iλ)λ∈Λ is a partition of I, for all i ∈ I, there exists a unique
λ ∈ Λ such that i ∈ Iλ. Define ω(i) = y(λ)(i). Then, ω(i) ∈ Ωi

for all i ∈ I, i.e. ω ∈ Πi∈IΩi. Moreover, by construction,
Φ(ω)(λ) = ω|Iλ

= y(λ), for all λ ∈ Λ. We have found a map
ω ∈ Πi∈IΩi, such that Φ(ω) = y. So Φ is a surjective map.
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Suppose that Φ(ω) = Φ(ω′) for some ω, ω′ ∈ Πi∈IΩi. Let i ∈ I,
and λ ∈ Λ be such that i ∈ Iλ. Then, we have:

ω(i) = (ω|Iλ
)(i) = Φ(ω)(λ)(i) = Φ(ω′)(λ)(i) = ω′(i)

So ω = ω′, and Φ is an injective map. We have found a natural
bijection from Πi∈IΩi to Πλ∈Λ(Πi∈Iλ

Ωi).
Given a map ω ∈ Πi∈IΩi, it is customary to regard ω as the
family (ωi)i∈I where ωi = ω(i) for all i ∈ I. (A map defined on
I is nothing but a family indexed by I). Hence, the restriction
ω|Iλ

is nothing but the family (ωi)i∈Iλ
, and the map Φ(ω) can

be written as:

Φ((ωi)i∈I) = ((ωi)i∈Iλ
)λ∈Λ

The mapping Φ looks like a pretty natural mapping, given the
partition (Iλ)λ∈Λ of the set I.

4. Rp × Rn is the set of all maps ω : N2 → Rp ∪ Rn such that
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ω1 ∈ Rp and ω2 ∈ Rn3. Each ω1 ∈ Rp is a map ω1 : Np → R,
and each ω2 ∈ Rn is a map ω2 : Nn → R. Given ω ∈ Rp ×Rn,
define ψ(ω) ∈ Rp+n as:

ψ(ω)(i) =
{
ω1(i) if 1 ≤ i ≤ p
ω2(i− p) if p+ 1 ≤ i ≤ p+ n

i.e. ψ(ω) = (ω1(1), . . . , ω1(p), ω2(1), . . . , ω2(n)). The mapping
ω → ψ(ω) from Rp × Rn to Rp+n is a bijection, which may be
regarded as natural. . .

Exercise 2

3We view ordered pairs as maps defined on N2. . .
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Exercise 3.

1. Let A = A1 × . . .×An be such that Ai ∈ Ei for all i = 1, . . . , n.
Then A is of the form A = Πi∈NnAi with Ai ∈ Ei ∪ {Ωi}, and
the condition Ai �= Ωi for finitely many i ∈ Nn, is obviously
satisfied. So A is a rectangle of the family (Ei)i∈Nn , that is
A ∈ E1 � . . .� En. Conversely, Let A = Πi∈NnAi be a rectangle
of the family (Ei)i∈Nn . Then, each Ai is an element of Ei∪{Ωi}.
Since Ωi ∈ Ei for all i ∈ Nn, each Ai is in fact an element of Ei.
So A is of the form A = A1 × . . .× An, with Ai ∈ Ei. We have
proved that the set of rectangles of (Ei)i∈Nn is given by:

E1 � . . . � En = {A1 × . . .×An : Ai ∈ Ei, ∀i ∈ Nn}

2. Let A be a rectangle of the family (Ei)i∈I . Then A = Πi∈IAi,
where Ai ∈ Ei ∪ {Ωi}, and Ai �= Ωi for finitely many i ∈ I. Let
J be the set J = {i ∈ I : Ai �= Ωi}. Then J is a finite subset
of I. Moreover, for all j ∈ J , Aj �= Ωj , yet Aj ∈ Ej ∪ {Ωj}. So
Aj ∈ Ej . Let ω ∈ A = Πi∈IAi. Then ω is a map defined on I

www.probability.net

http://www.probability.net


Solutions to Exercises 33

such that ω(i) ∈ Ai ⊆ Ωi for all i ∈ I. In particular, ω ∈ Πi∈IΩi,
and ω(j) ∈ Aj for all j ∈ J . Conversely, suppose ω ∈ Πi∈IΩi is
such that ω(j) ∈ Aj for all j ∈ J . Then ω is a map defined on
I such that ω(i) ∈ Ωi for all i ∈ I, and furthermore, ω(j) ∈ Aj

for all j ∈ J . However, for all i ∈ I \ J , we have Ai = Ωi. It
follows that ω is a map defined on I such that ω(i) ∈ Ai for all
i ∈ I. So ω ∈ Πi∈IAi = A. We have proved that there exists
a finite subset J of I, and a family (Aj)j∈J with Aj ∈ Ej , such
that A = {ω ∈ Πi∈IΩi : ω(j) ∈ Aj , ∀j ∈ J}.

Exercise 3
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Exercise 4.

1. By definition, F1⊗. . .⊗Fn is generated by the set of measurable
rectangles F1� . . .�Fn. Since Ωi ∈ Fi for all i ∈ Nn, and since
Nn is finite, these rectangles are of the form A1× . . .×An where
Ai ∈ Fi, for all i ∈ Nn.

2. B(R) ⊗ B(R) ⊗ B(R) is generated by the set of measurable
rectangles B(R) � B(R) � B(R). These rectangles are of the
form A×B × C, where A,B,C ∈ B(R).

3. Since R+ ∈ B(R+) and Ω ∈ F , the set of measurable rectangles
B(R+)�F is the set of all B×F , where B ∈ B(R+) and F ∈ F .
Such sets generate the σ-algebra B(R+) ⊗F on R+ × Ω.

Exercise 4
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Exercise 5.

1. By definition, a generator of ⊗i∈Iσ(Ei) is the set of measurable
rectangles of the family (σ(Ei))i∈I , i.e. �i∈Iσ(Ei).

2. Let A = Πi∈IAi be a rectangle in �i∈IEi. Then, each Ai is an
element of Ei ∪ {Ωi}, and Ai �= Ωi for finitely many i ∈ I. In
particular, A is also a rectangle in �i∈Iσ(Ei). Hence, we have:

∐
i∈I

Ei ⊆
∐
i∈I

σ(Ei) ⊆ σ

(∐
i∈I

σ(Ei)

)
�
= ⊗i∈Iσ(Ei)

and consequently, σ(�i∈IEi) ⊆ ⊗i∈Iσ(Ei).

3. Let A �= ∅ be a rectangle of the family (σ(Ei))i∈I . Suppose that
A = Πi∈IAi = Πi∈IBi are two representations of A. Since A is
non-empty, there exists f ∈ A. The mapping f defined on I, is
such that f(i) ∈ Ai∩Bi for all i ∈ I. Let j ∈ I be given. Suppose
x ∈ Aj . Define g on I, by g(i) = f(i) if i �= j, and g(j) = x.
Then, g(i) ∈ Ai for all i ∈ I. So g ∈ Πi∈IAi = A = Πi∈IBi,
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and in particular, x = g(j) ∈ Bj . Hence, we see that Aj ⊆ Bj ,
and similarly Bj ⊆ Aj . j ∈ I being arbitrary, we have proved
that Ai = Bi for all i ∈ I. The set JA = {i ∈ I : Ai �= Ωi}
is therefore well-defined, as the Ai’s are uniquely determined.
Furthermore, A being a rectangle, the set JA is finite.

4. Let A ∈ �i∈Iσ(Ei). If A = ∅, then A is an element of the
σ-algebra σ(�i∈IEi). If A �= ∅ but JA = ∅, then Ai = Ωi for
all i ∈ I, and A = Πi∈IAi = Πi∈IΩi is also an element of the
σ-algebra σ(�i∈IEi).

Exercise 5
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Exercise 6.

1. By assumption, A �= ∅. There exists a map f defined on I, such
that f(i) ∈ Ai, for all i ∈ I. Since Ai1 ⊆ Ωi1 , f is also an element
of AΩi1 . So AΩi1 �= ∅. By definition, J

A
Ωi1 = {i ∈ I : Āi �= Ωi},

where each Āi is equal to Ai, except Āi1 = Ωi1 . It follows
that J

A
Ωi1 = {i ∈ I \ {i1} : Ai �= Ωi} = JA \ {i1}. Since

by assumption, i1 ∈ JA, and cardJA = n + 1, cardJ
A

Ωi1 = n.
Finally, A being a rectangle of the family (σ(Ei))i∈I , each Ai is
an element of σ(Ei) ∪ {Ωi} = σ(Ei). It follows that Āi ∈ σ(Ei)
for all i ∈ I. Since Āi �= Ωi for finitely many i ∈ I, we conclude
that AΩi1 = Πi∈IĀi ∈ �i∈Iσ(Ei).

2. Our induction hypothesis is that if A is a non-empty rectangle
of the family (σ(Ei))i∈I with cardJA = n, then A ∈ σ(�i∈IEi).
Since from 1., AΩi1 satisfies such properties, AΩi1 ∈ σ(�i∈IEi).
It follows that Ωi1 ∈ Γ.

3. Let B ⊆ Ωi1 . Let f ∈ AΩi1\B . Then, f is a map defined on
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I, such that f(i) ∈ Ai for all i ∈ I \ {i1}, and f(i1) ∈ Ωi1 \ B.
In particular, f ∈ AΩi1 and f �∈ AB. So f ∈ AΩi1 \ AB, and
AΩi1\B ⊆ AΩi1 \ AB . Conversely, suppose f ∈ AΩi1 \ AB .
f being an element of AΩi1 , f(i) ∈ Ai for all i ∈ I \ {i1}.
Since f �∈ AB , f(i1) cannot be an element of B. It follows
that f(i1) ∈ Ωi1 \ B, and f ∈ AΩi1\B. We have proved that
AΩi1\B = AΩi1 \AB.

4. Let B ∈ Γ. Then, AB ∈ σ(�i∈IEi). All σ-algebras being closed
under complementation, we have (AB)c ∈ σ(�i∈IEi). Moreover,
from 2., AΩi1 ∈ σ(�i∈IEi). It follows that:

AΩi1\B = AΩi1 \AB = AΩi1 ∩ (AB)c ∈ σ(�i∈IEi)

We conclude that Ωi1 \B ∈ Γ.

5. Let (Bn)n≥1 be a sequence of subsets of Ωi1 . If f ∈ A∪Bn , then
f is a map defined on I, such that f(i) ∈ Ai for all i �= i1,
and f(i1) ∈ ∪n≥1Bn. There exists n ≥ 1 such that f(i1) ∈ Bn,
which implies that f ∈ ABn . So f ∈ ∪n≥1A

Bn , and we see that
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A∪Bn ⊆ ∪n≥1A
Bn . Conversely, suppose that f ∈ ∪n≥1A

Bn .
There exists n ≥ 1, such that f ∈ ABn . In particular, f(i) ∈ Ai

for all i ∈ I \ {i1}, and f(i1) ∈ Bn ⊆ ∪n≥1Bn. So f ∈ A∪Bn .
We have proved that A∪Bn = ∪n≥1A

Bn .

6. From 2., Ωi1 ∈ Γ. From 4., Γ is closed under complementation.
To show that Γ is a σ-algebra on Ωi1 , it remains to show that Γ
is closed under countable union. Let (Bn)n≥1 be a sequence of
elements of Γ. Then, for all n ≥ 1, ABn ∈ σ(�i∈IEi). It follows
that:

A∪Bn = ∪+∞
n=1A

Bn ∈ σ(�i∈IEi)
So ∪n≥1Bn ∈ Γ, and Γ is indeed closed under countable union.
We have proved that Γ is a σ-algebra on Ωi1 .

7. Let B ∈ Ei1 , B̄i = Ωi for all i �= i1, and B̄i1 = B. Let f ∈ AB .
Then, f is a map defined on I, such that f(i) ∈ Ai for all
i ∈ I\{i1}, and f(i1) ∈ B. In particular, f ∈ AΩi1 and f(i) ∈ B̄i

for all i ∈ I, i.e. f ∈ Πi∈IB̄i. Hence, AB ⊆ AΩi1 ∩ (Πi∈I B̄i).
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Conversely, suppose that f ∈ AΩi1 ∩ (Πi∈I B̄i). Then, f(i) ∈ Ai

for all i ∈ I \ {i1} and f(i) ∈ B̄i for all i ∈ I. In particular,
f(i1) ∈ B̄i1 = B. It follows that f ∈ AB. We have proved that
AB = AΩi1 ∩ (Πi∈I B̄i).

8. Let B ∈ Ei1 and B̄i = Ωi for all i ∈ I \{i1}, and B̄i1 = B. Then,
Πi∈IB̄i ∈ �i∈IEi, and in particular, Πi∈I B̄i ∈ σ(�i∈IEi). From
2., Ωi1 ∈ Γ, i.e. AΩi1 is also an element of σ(�i∈IEi). It follows
from 7. that:

AB = AΩi1 ∩ (Πi∈I B̄i) ∈ σ(�i∈IEi)

We conclude that B ∈ Γ. This being true for all B ∈ Ei1 , we
have Ei1 ⊆ Γ. However, since Γ is a σ-algebra on Ωi1 , we finally
see that σ(Ei1) ⊆ Γ.

9. Let f ∈ A = Πi∈IAi. Then, f(i) ∈ Ai for all i ∈ I \ {i1}, and
f(i1) ∈ Ai1 . So f ∈ AAi1 . Conversely, if f ∈ AAi1 , then f ∈ A.
So A = AAi1 . Since A is a rectangle of the family (σ(Ei))i∈I ,
Ai1 ∈ σ(Ei1 ). From 8., σ(Ei1) ⊆ Γ. it follows that Ai1 ∈ Γ, and
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consequently A = AAi1 ∈ σ(�i∈IEi). This proves our induction
hypothesis for cardJA = n+ 1.

10. Let A ∈ �i∈Iσ(Ei). If A = ∅, then A is an element of σ(�i∈IEi).
Let A �= ∅. If cardJA = 0, then A = Πi∈IΩi ∈ σ(�i∈IEi). Using
an induction argument on cardJA, we have proved that for all
n ≥ 0:

cardJA = n⇒ A ∈ σ(�i∈IEi)
Since A is a rectangle of the family (σ(Ei))i∈I , JA is a finite
set. It follows that A ∈ σ(�i∈IEi). Finally, We conclude that
�i∈Iσ(Ei) ⊆ σ(�i∈IEi).

11. From 10., we have ⊗i∈Iσ(Ei) = σ(�i∈Iσ(Ei)) ⊆ σ(�i∈IEi).
However, from exercise (5), σ(�i∈IEi) ⊆ ⊗i∈Iσ(Ei). It follows
that ⊗i∈Iσ(Ei) = σ(�i∈IEi). The purpose of this difficult exer-
cise is to prove theorem (26). Congratulations !

Exercise 6
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Exercise 7.

1. Since R ∈ TR and Nn is finite, from definition (52), the set of
rectangles TR� . . .�TR reduces to all sets of the form Πi∈NnAi,
where Ai ∈ TR for all i ∈ Nn. In other words:

TR � . . .� TR = {A1 × . . .×An : Ai ∈ TR, ∀i ∈ Nn}

2. By definition of the Borel σ-algebra, B(R) is generated by the
topology TR, i.e. B(R) = σ(TR). From theorem (26), we have:

B(R) ⊗ . . .⊗ B(R) = σ(TR � . . .� TR)

3. Let C2 = {]a1, b1] × . . .×]an, bn] : ai, bi ∈ R}, and let S be the
semi-ring on R, S = {]a, b] : a, b ∈ R}. Since Nn is finite, from
definition (52), the set of rectangles S � . . . � S is made of all
sets of the form Πi∈NnAi, where Ai ∈ S ∪ {R}. Hence, each
element of C2 is an element of S � . . .�S, i.e. C2 ⊆ S � . . .�S.
However, Rn is an element of S � . . .�S, but do not belong to
C2. So the inclusion C2 ⊆ S � . . . � S is strict.
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4. Let A ∈ S � . . .� S. Then A is of the form A = A1 × . . .×An,
where each Ai is an element of S, or Ai = R. If all Ai’s lie in S,
then A ∈ C2 ⊆ σ(C2). Let J∗

A = {k ∈ Nn : Ak = R}. We have
just seen that if J∗

A = ∅, or equivalently if cardJ∗
A = 0, then

A ∈ σ(C2). Suppose we have proved the induction hypothesis,
for k = 0, . . . , n− 1:

A ∈ S � . . .� S , cardJ∗
A = k ⇒ A ∈ σ(C2)

and let A ∈ S � . . . � S be such that cardJ∗
A = k + 1. Let i1

be an arbitrary element of J∗
A. Then, Ai1 = R = ∪+∞

p=1]−p, p].
Hence, A can be written as:

A = A1 × . . .×An =
+∞⋃
p=1

A1 × . . .×]−p, p]× . . .×An (1)

where A1×. . .×]−p, p]×. . .×An = Bp is a notation for Πi∈Nn Āi

where Āi = Ai for all i �= i1, and Āi1 =]−p, p]. Since for all
p ≥ 1, ]−p, p] ∈ S, Bp is an element of S � . . . � S, and more
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importantly cardJ∗
Bp

= k. From our induction hypothesis, it
follows that Bp ∈ σ(C2). Hence, we see from equation (1) that
A ∈ σ(C2), and we have proved our induction hypothesis for
cardJ∗

A = k + 1. We conclude that for all A ∈ S � . . . � S, we
have A ∈ σ(C2), i.e. S � . . .� S ⊆ σ(C2).

5. From theorem (6)4,we know that the semi-ring S generates the
Borel σ-algebra B(R) on R, i.e. B(R) = σ(S). Applying theo-
rem (26), we have:

B(R)⊗ . . .⊗ B(R) = σ(S � . . .� S) (2)

However, from 3., C2 ⊆ S� . . .�S, hence σ(C2) ⊆ σ(S� . . .�S).
Moreover, from 4., S�. . .�S ⊆ σ(C2), and consequently, we have
σ(S � . . . � S) ⊆ σ(C2). It follows that σ(S � . . . � S) = σ(C2).
Finally, from equation (2), B(R) ⊗ . . .⊗ B(R) = σ(C2).

Exercise 7

4Beware of external links!
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Exercise 8.

1. Let Σ = σ(E) be the σ-algebra generated by E = {A}. Let F be
the set of subsets of Ω defined by F = {∅, A,Ac,Ω}. Note that
Ω ∈ F , F is closed under complementation and countable union,
so F is a σ-algebra on Ω. Since E ⊆ F , we have Σ = σ(E) ⊆ F .
However, since E ⊆ σ(E), A ∈ Σ. So Ac ∈ Σ. Furthermore,
Ω ∈ Σ and ∅ ∈ Σ. Finally, F ⊆ Σ. We have proved that F = Σ.

2. Since {∅,Ω′} is a σ-algebra on Ω′ with E ′ ⊆ {∅,Ω′}, we have
σ(E ′) ⊆ {∅,Ω′}. However, σ(E ′) being a σ-algebra on Ω′, we
have Ω′ ∈ σ(E ′) and ∅ ∈ σ(E ′). Finally, σ(E ′) = {∅,Ω′}.

3. Since E ′ = ∅, C = {E × F : E ∈ E , F ∈ E ′} = ∅.

4. The rectangles in E �E ′ are the sets of the form A1 ×A2, where
A1 ∈ E∪{Ω} and A2 ∈ E ′∪{Ω′}. Since E ′ = ∅, the only possible
value for A2 is Ω′. Since E = {A}, A1 can be equal to A or Ω.
It follows that E � E ′ = {A× Ω′,Ω × Ω′}.
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5. From theorem (26), σ(E)⊗ σ(E ′) = σ(E �E ′). Let F be defined
by F = {∅, A×Ω′, Ac ×Ω′,Ω×Ω′}. Note that the complement
of A × Ω′ in Ω × Ω′ is (A × Ω′)c = Ac × Ω′. So F is closed
under complementation, and in fact, F is a σ-algebra on Ω×Ω′.
However, from 4., E � E ′ = {A × Ω′,Ω × Ω′}. So E � E ′ ⊆ F ,
and consequently σ(E � E ′) ⊆ F . Since all elements of F have
to be in σ(E �E ′), we also have F ⊆ σ(E �E ′). We have proved
that F = σ(E � E ′). We conclude that σ(E) ⊗ σ(E ′) = F .

6. Since C = ∅, we have σ(C) = {∅,Ω×Ω′}. It follows from 5. that
σ(C) �= σ(E)⊗σ(E ′). The purpose of this exercise is to emphasize
an easy mistake to make, when applying theorem (26). This
theorem states that σ(E)⊗σ(E ′) = σ(E�E ′). It is very tempting
to conclude that:

σ(E) ⊗ σ(E ′) = σ({E × F : E ∈ E , F ∈ E ′})

But this is wrong ! The reason being that the set of rectangles
E � E ′ is larger than the set of all E × F , where E ∈ E and
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F ∈ E ′. The elements of E � E ′ are indeed of the form E × F ,
but with E ∈ E ∪ {Ω} and F ∈ E ′ ∪ {Ω′}. (Do not forget the
’∪’). So σ(E)⊗σ(E ′) = σ({E×F : E ∈ E∪{Ω}, F ∈ E ′∪{Ω′}}).
You have been warned. . .

Exercise 8
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Exercise 9.

1. Strictly speaking, F ⊗ G is a σ-algebra on Rn × Rp. However,
Rn × Rp and Rn+p can be identified, through the bijection ψ :
Rn ×Rp → Rn+p, defined by ψ(x, y) = (x1, . . . , xn, y1, . . . , yp).
Hence, F ⊗ G can be viewed as a σ-algebra on Rn+p.

2. By definition, F = σ(C1), where C1 is the set of measurable
rectangles C1 = {A1×. . .×An : Ai ∈ B(R), ∀i ∈ Nn}. Similarly,
if C2 = {An+1 × . . . × An+p : An+i ∈ B(R), ∀i ∈ Np}, then
G = σ(C2). From theorem (26), we have F ⊗ G = σ(C1 � C2).
Furthermore, since Rn ∈ C1 and Rp ∈ C2, the set of rectangles
C1 � C2 is given by C1 � C2 = {A× A′ : A ∈ C1, A

′ ∈ C2}. If we
identify sets of the form (A1 × . . .×An)× (An+1 × . . .×An+p)
with A1 × . . .×An+p, then C1 � C2 can be written as:

C1 � C2 = {A1 × . . .×An+p : Ai ∈ B(R), ∀i ∈ Nn+p}
We conclude that F ⊗ G is generated by the sets of the form
A1 × . . .×An+p, where Ai ∈ B(R) for all i ∈ Nn+p.
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3. Let C = {A1 × . . . × An+p : Ai ∈ B(R), ∀i ∈ Nn+p}. From 2.,
F ⊗G = σ(C). However, C is the set of measurable rectangles in
Rn+p. Consequently, σ(C) = B(R)⊗ . . .⊗ B(R) (n+ p terms).
We conclude that B(R)⊗ . . .⊗ B(R) = F ⊗ G, i.e.

B(R)⊗. . .⊗B(R)︸ ︷︷ ︸
n+p

= (B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
n

⊗(B(R)⊗. . .⊗B(R))︸ ︷︷ ︸
p

Exercise 9
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Exercise 10.

1. In exercise (2), we defined a natural bijection Φ : Ω → Ω′, by:

Φ((ωi)i∈I)
�
= ((ωi)i∈Iλ

)λ∈Λ

This allows us to define Φ̄ : P(Ω) → P(Ω′), by:

Φ̄(A)
�
= Φ(A)

�
= {Φ(ω) : ω ∈ A}

for all A ⊆ Ω. In other words, Φ̄ maps every subset A of Ω,
with its direct image Φ(A) by the bijection Φ : Ω → Ω′. Let
A′ ⊆ Ω′. Since Φ is a bijection, we have A′ = Φ(Φ−1(A′)), i.e.
the direct image of the inverse image of A′ by Φ is equal to A′.
So A′ = Φ̄(Φ−1(A′)), and Φ̄ is a surjective map. If A,B ⊆ Ω are
such that Φ̄(A) = Φ̄(B), taking the inverse images of both sides,
we have A = B. So Φ̄ is an injective map. We have proved that
Φ̄ is a bijection from P(Ω) to P(Ω′). Informally, Φ is a bijection
allowing us to identify an element of Πi∈IΩi with an element of
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Πλ∈Λ(Πi∈Iλ
Ωi). The bijection Φ̄ allows us to identify a subset

of Πi∈IΩi with a subset of Πλ∈Λ(Πi∈Iλ
Ωi). . .

2. Let A be a subset of Ω of the form A = Πi∈IAi. Let A′ be the
corresponding set A′ = Πλ∈Λ(Πi∈Iλ

Ai). Saying that A and A′

are identified through the bijection Φ̄, is just another way of
saying that A′ = Φ̄(A). Suppose y ∈ Φ̄(A). There exists x ∈ A
such that y = Φ(x). For all λ ∈ Λ, we have y(λ) = Φ(x)(λ) =
x|Iλ

. Since x ∈ A, each x|Iλ
is an element of Πi∈Iλ

Ai. So y(λ) ∈
Πi∈Iλ

Ai for all λ ∈ Λ. It follows that y ∈ Πλ∈Λ(Πi∈Iλ
Ai) = A′.

So Φ̄(A) ⊆ A′. Conversely, suppose y ∈ A′. y is a map defined
on Λ, such that y(λ) ∈ Πi∈Iλ

Ai for all λ ∈ Λ. Each y(λ) is a
map defined on Iλ, such that y(λ)(i) ∈ Ai for all i ∈ Iλ. Let x
be the map defined on I by x(i) = y(λ)(i), where given i ∈ I,
λ is the unique element of Λ such that i ∈ Iλ. Then, x is such
that x(i) ∈ Ai for all i ∈ I, so x ∈ Πi∈IAi = A. Moreover,
by construction, for all λ ∈ Λ, x|Iλ

= y(λ). So y(λ) = Φ(x)(λ)
for all λ ∈ Λ, i.e. y = Φ(x). We have found x ∈ A, such
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that y = Φ(x). So y ∈ Φ(A) = Φ̄(A). We have proved that
A′ ⊆ Φ̄(A). Finally, A′ = Φ̄(A). We have proved that the sets
Πi∈IAi and Πλ∈Λ(Πi∈Iλ

Ai) are indeed identified through the
bijection Φ̄.

3. Let Πi∈IAi ∈ �i∈IFi. Then, for all i ∈ I, Ai ∈ Fi, and Ai �= Ωi

for finitely many i ∈ I. For each λ ∈ Λ, Πi∈Iλ
Ai is therefore

such that Ai ∈ Fi for all i ∈ Iλ, and Ai �= Ωi for finitely many
i ∈ Iλ. So Πi∈Iλ

Ai ∈ �i∈Iλ
Fi. It follows that Πi∈IAi can be

written as (through identification):

Πi∈IAi = Πλ∈Λ(Πi∈Iλ
Ai) = Πλ∈ΛBλ

where Bλ ∈ �i∈Iλ
Fi for all λ ∈ Λ. Moreover, the set of all

λ ∈ Λ for which Bλ �= Πi∈Iλ
Ωi, is necessarily finite. It follows

that Πi∈IAi ∈ �λ∈Λ(�i∈Iλ
Fi). So �i∈IFi ⊆ �λ∈λ(�i∈Iλ

Fi).
Conversely, let Πλ∈ΛBλ ∈ �λ∈Λ(�i∈Iλ

Fi). For all λ ∈ Λ, we
have Bλ ∈ �i∈Iλ

Fi, and Bλ �= Πi∈Iλ
Ωi for finitely many λ ∈ Λ.

Hence, each Bλ is of the form Πi∈Iλ
Ai, where Ai ∈ Fi for all
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i ∈ Iλ, and Ai �= Ωi for finitely many i ∈ Iλ. It follows that
Πλ∈ΛBλ can be written (with identification) as:

Πλ∈ΛBλ = Πλ∈Λ(Πi∈Iλ
Ai) = Πi∈IAi

where Ai ∈ Fi for all i ∈ I, and Ai �= Ωi for finitely many i ∈ I.
So Πλ∈ΛBλ ∈ �i∈IFi, and �λ∈Λ(�i∈Iλ

Fi) ⊆ �i∈IFi. We have
proved that �i∈IFi = �λ∈Λ(�i∈Iλ

Fi).

4. From definition (54), for all λ ∈ Λ, ⊗i∈Iλ
Fi = σ(�i∈Iλ

Fi).
Using theorem (26), ⊗λ∈Λ(⊗i∈Iλ

Fi) = σ(�λ∈Λ(�i∈Iλ
Fi)). Us-

ing 3., we conclude that ⊗λ∈Λ(⊗i∈Iλ
Fi) = σ(�i∈IFi) = ⊗i∈IFi.

Exercise 10

www.probability.net

http://www.probability.net


Solutions to Exercises 54

Exercise 11.

1. Let T (A) be the set of all topologies T on Ω, which contain A,
i.e. such that A ⊆ T . Note that T (A) is not the empty set, as
the power set P(Ω) is clearly a topology on Ω (called the discrete
topology) which satisfies A ⊆ P(Ω). By definition (55), the
topology T (A) generated by A, is equal to ∩T ∈T (A)T . In order
to show that T (A) is indeed a topology on Ω, it is sufficient
to prove that an arbitrary intersection of topologies on Ω, is
also a topology on Ω. Let (Ti)i∈I be an arbitrary family of
topologies on Ω, and let T = ∩i∈ITi. Since ∅ and Ω belong
to Ti for all i ∈ I, ∅ and Ω are elements of T . If A,B ∈ T ,
then A,B ∈ Ti for all i ∈ I, and therefore A ∩ B ∈ Ti for all
i ∈ I. It follows that A ∩ B ∈ T , and T is closed under finite
intersection. If (Aj)j∈J is an arbitrary family of elements of T ,
then for all i ∈ I, (Aj)j∈J is an arbitrary family of elements of
Ti, and consequently ∪j∈JAj ∈ Ti. This being true for all i ∈ I,
∪j∈JAj ∈ T , and T is closed under arbitrary union. We have
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proved that T is a topology on Ω. An arbitrary intersection of
topologies on Ω, is a topology on Ω. In particular, the topology
T (A) is a topology on Ω.

2. Given T (A) = {T : T topology on Ω ,A ⊆ T }, the topology
T (A) generated by A is given by T (A) = ∩T ∈T (A)T . Hence,
we have A ⊆ T (A). Suppose T is another topology on Ω, such
that A ⊆ T . Then, T ∈ T (A). It follows that T (A) ⊆ T . We
have proved that T (A) is the smallest topology on Ω, such that
A ⊆ T (A).

3. Let (E, d) be a metric space, and A be the set of all open balls:

A = {B(x, ε) : x ∈ E, ε > 0}
Let T d

E be the metric topology on E. Since any open ball in E is
open with respect to the metric topology, i.e. belongs to T d

E , we
have A ⊆ T d

E and therefore T (A) ⊆ T d
E . Conversely, let U ∈ T d

E .
Define Γ = {B(x, ε) : x ∈ E, ε > 0, B(x, ε) ⊆ U}, i.e. let Γ be
the set of all open balls in E which are contained in U . Since
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U is open for the metric topology, from definition (30), for all
x ∈ U , there exists ε > 0 such that B(x, ε) ⊆ U . In particular,
there exists B ∈ Γ such that x ∈ B. Hence, U ⊆ ∪B∈ΓB.
Conversely, for all x ∈ ∪B∈ΓB, there exists B ∈ Γ such that
x ∈ B. But B ⊆ U . So x ∈ U . Hence, we see that U = ∪B∈ΓB.
However, Γ is a subset of A ⊆ T (A). It follows that ∪B∈ΓB is
an element of T (A). We have proved that U ∈ T (A). Hence
T d

E ⊆ T (A). Finally, T d
E = T (A), i.e. the metric topology on E

is generated by the set of all open balls in E.

Exercise 11
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Exercise 12.

1. Let U be a subset of Πi∈IΩi with the property:

∀x ∈ U , ∃V ∈ �i∈ITi : x ∈ V ⊆ U (3)

Define Γ = {V ∈ �i∈ITi : V ⊆ U}. Given x ∈ U , since
property (3) holds, there exists V ∈ Γ such that x ∈ V . So
U ⊆ ∪V ∈ΓV . Conversely, if x ∈ ∪V ∈ΓV , there exists V ∈ Γ
such that x ∈ V . But V ⊆ U . So x ∈ U . Hence, we see that
U = ∪V ∈ΓV . Since Γ ⊆ �i∈ITi ⊆ �i∈ITi, each V ∈ Γ is an
element of the product topology �i∈ITi. So ∪V ∈ΓV is also an
element of �i∈ITi. We have proved that U ∈ �i∈ITi, and there-
fore, any subset of Πi∈IΩi with property (3), belongs to the
product topology �i∈ITi. Let T be the set of all U subset of
Πi∈IΩi which satisfy property (3). We claim that in fact, T is a
topology on Πi∈IΩi. Indeed, ∅ satisfies property (3) vacuously.
So ∅ ∈ T . The set of all rectangles �i∈ITi is a subset of T . In
particular, Πi∈IΩi ∈ T . Suppose A,B ∈ T . Let x ∈ A ∩ B.
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Since A satisfies property (3), there exists V ∈ �i∈ITi such
that x ∈ V ⊆ A. Similarly, there exists W ∈ �i∈ITi such that
x ∈ W ⊆ B. It follows that x ∈ V ∩W ⊆ A ∩ B. However,
V and W being rectangles of (Ti)i∈I , they can be written as
V = Πi∈IAi and W = Πi∈IBi, where Ai, Bi ∈ Ti ∪ {Ωi} = Ti

and Ai �= Ωi or Bi �= Ωi for finitely many i ∈ I. It follows that
V ∩W = Πi∈I(Ai∩Bi), where each Ai∩Bi lie in Ti (it is a topol-
ogy), and Ai ∩ Bi �= Ωi for finitely many i ∈ I. So V ∩W is a
rectangle of (Ti)i∈I , i.e. V ∩W ∈ �i∈ITi, and x ∈ V ∩W ⊆ A∩B.
We have proved that A∩B satisfies property (3), i.e. A∩B ∈ T .
So T is closed under finite intersection. Finally, let (Aj)j∈J be
a family of elements of T . Let x ∈ ∪j∈JAj . There exists j ∈ J
such that x ∈ Aj . Since Aj ∈ T , there exists V ∈ �i∈ITi such
that x ∈ V ⊆ Aj . In particular, x ∈ V ⊆ ∪j∈JAj . Hence,
we see that ∪j∈JAj satisfies property (3), i.e. ∪j∈JAj ∈ T .
So T is closed under arbitrary union. We have proved that T
is a topology on Πi∈IΩi. Since �i∈ITi ⊆ T , we conclude that
�i∈ITi = T (�i∈ITi) ⊆ T . It follows that any element of the
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product topology satisfies property (3). We have proved that
a subset U of Πi∈IΩi is an element of �i∈ITi, if and only if it
satisfies property (3).

2. �i∈ITi ⊆ T (�i∈ITi) = �i∈ITi.

3. From theorem (26), ⊗i∈IB(Ωi) = ⊗i∈Iσ(Ti) = σ(�i∈ITi).

4. From 2., we have σ(�i∈ITi) ⊆ σ(�i∈ITi) = B(Πi∈IΩi). Using
3., we obtain ⊗i∈IB(Ωi) ⊆ B(Πi∈IΩi).

Exercise 12
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Exercise 13.

1. The scalar product (x, y) being semi-linear and commutative:

‖x+ ty‖2 = (x+ ty, x+ ty)
= (x, x) + t(y, x) + t(x, y) + t2(y, y)
= ‖x‖2 + t2‖y‖2 + 2t(x, y)

2. When y �= 0, the polynomial t→ p(t) = t2‖y‖2 +2t(x, y)+‖x‖2

has a minimum attained at t = −(x, y)/‖y‖2. The value of this
minimum is −(x, y)2/‖y‖2 + ‖x‖2. Since p(t) = ‖x + ty‖2 ≥ 0
for all t ∈ R, in particular, we have −(x, y)2/‖y‖2 + ‖x‖2 ≥ 0,
i.e. |(x, y)| ≤ ‖x‖.‖y‖. This inequality still holds if y = 0.

3. We have:

‖x+ y‖2 = ‖x‖2 + 2(x, y) + ‖y‖2

≤ ‖x‖2 + 2‖x‖.‖y‖+ ‖y‖2 = (‖x‖ + ‖y‖)2

Exercise 13
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Exercise 14.

1. Each metric di has values in R+. So d(x, y) < +∞ for all x, y,
i.e. d also has values in R+. It is clear that d(x, y) = d(y, x)
for all x, y ∈ Ω. Suppose that d(x, y) = 0. Then, for all i ∈ Nn,
we have di(xi, yi) = 0 and consequently xi = yi. So x = y.
Conversely, it is clear that d(x, x) = 0. Let x, y, z ∈ Ω. For all
i ∈ Nn, we have:

di(xi, yi) ≤ di(xi, zi) + di(zi, yi)

and therefore:

d(x, y) ≤

√√√√ n∑
i=1

(di(xi, zi) + di(zi, yi))2

Using exercise (13), we conclude that:

d(x, y) ≤

√√√√ n∑
i=1

(di(xi, zi))2 +

√√√√ n∑
i=1

(di(zi, yi))2
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i.e. d(x, y) ≤ d(x, z) + d(z, y). It follows from definition (28)5

that d is indeed a metric on Ω.

2. The set of rectangles �i∈NnTi is given by:

�i∈NnTi = {U1 × . . .× Un : Ui ∈ Ti, ∀i ∈ Nn}
It follows from exercise (12) that U ⊆ Ω is open in Ω, i.e. belongs
to the product topology T , if and only if for all x ∈ U , there
exist U1, . . . , Un open in Ω1, . . . ,Ωn respectively, such that:

x ∈ U1 × . . .× Un ⊆ U

3. Let U ∈ T . From 2., for all x ∈ U , there exist U1, . . . , Un open
in Ω1, . . . ,Ωn respectively, such that x ∈ U1× . . .×Un ⊆ U . By
assumption, each topology Ti is induced by the metric di, i.e.
Ti = T di

Ωi
. For all i ∈ Nn, xi ∈ Ui. Hence, there exists εi > 0,

such that B(xi, εi) ⊆ Ui, where B(xi, εi) denotes the open ball

5Beware of external links!
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in Ωi. Let ε = min(ε1, . . . , εn). Suppose y ∈ Ω is such that
di(xi, yi) < ε, for all i ∈ Nn. Then, yi ∈ B(xi, εi) ⊆ Ui for all
i ∈ Nn, and consequently y ∈ U1 × . . . × Un ⊆ U . We have
found ε > 0 such that:

(∀i ∈ Nn, di(xi, yi) < ε) ⇒ y ∈ U

4. Let U ∈ T , and x ∈ U . Let ε > 0 be as in 3. Let y ∈ B(x, ε),
where B(x, ε) denotes the open ball in Ω = Ω1 × . . .× Ωn, with
respect to the metric d. Then, d(x, y) < ε. Since for all i ∈ Nn,
di(xi, yi) ≤ d(x, y), we have di(xi, yi) < ε for all i ∈ Nn. From
3., we see that y ∈ U . So B(x, ε) ⊆ U . For all x ∈ U , we have
found ε > 0 such that B(x, ε) ⊆ U . It follows that U belongs to
the metric topology T d

Ω . We have proved that T ⊆ T d
Ω .

5. Let U ∈ T d
Ω and x ∈ U . From definition (30)6 of the metric

topology, there exists ε′ > 0 such that B(x, ε′) ⊆ U . Define

6Beware of external links!
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ε = ε′/
√
n, and let y ∈ B(x1, ε) × . . . × B(xn, ε). Then, for all

i ∈ Nn, di(xi, yi) < ε. Hence, d(x, y) <
√
nε2 =

√
nε = ε′. So

y ∈ U . We have found ε > 0 such that:

x ∈ B(x1, ε) × . . .×B(xn, ε) ⊆ U

6. Let U ∈ T d
Ω and x ∈ U . Let ε > 0 be as in 5. Then, we have

x ∈ B(x1, ε) × . . .× B(xn, ε) ⊆ U . Each B(xi, ε) being open in
Ωi, we have found U1, . . . , Un open in Ω1, . . . ,Ωn respectively,
such that x ∈ U1 × . . . × Un ⊆ U . From 2., we conclude that
U ∈ T . So T d

Ω ⊆ T .

7. From 4. and 6., we have T = T d
Ω . In other words, the product

topology T = T1 � . . .� Tn is equal to the metric topology T d
Ω

on Ω, induced by the metric d. In particular, the topological
space (Ω, T ) is metrizable.

8. Both d′ and d′′ have values in R+. For all x, y ∈ Ω, we have
d′(x, y) = d′(y, x) and d′′(x, y) = d′′(y, x). Moreover, it is clear
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that d′(x, y) = 0 is equivalent to each di(xi, yi) being equal to 0,
hence equivalent to xi = yi for all i’s, i.e. equivalent to x = y.
Similarly, d′′(x, y) = 0 is equivalent to x = y. Given x, y, z ∈ Ω,
for all i ∈ Nn, we have:

di(xi, yi) ≤ di(xi, zi) + di(zi, yi)

It follows immediately that d′(x, y) ≤ d′(x, z) + d′(z, y), and
furthermore, for all i = 1, . . . , n:

di(xi, yi) ≤ d′′(x, z) + d′′(z, y)

From which we conclude that d′′(x, y) ≤ d′′(x, z)+ d′′(z, y). We
have proved that d′ and d′′ are metrics on Ω.

9. Let x, y ∈ Ω. For all i ∈ Nn, define ai = di(xi, yi). Let a, b ∈ Rn

be given a = (a1, . . . , an) and b = (1, . . . , 1). From exercise (13),
we have |(a, b)| ≤ ‖a‖.‖b‖, and consequently:

d′(x, y) ≤
√
nd(x, y)
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From (
∑n

i=1 ai)2 ≥
∑n

i=1 a
2
i , we obtain:

d(x, y) ≤ d′(x, y)

Hence, α′d′ ≤ d ≤ β′d′, where α′ = 1/
√
n and β′ = 1.

From
∑n

i=1 a
2
i ≤ n(maxi ai)2, we obtain:

d(x, y) ≤
√
nd′′(x, y)

From (maxi ai)2 ≤
∑n

i=1 a
2
i we obtain:

d′′(x, y) ≤ d(x, y)

Hence, α′′d′′ ≤ d ≤ β′′d′′, where α′′ = 1 and β′′ =
√
n.

10. From 9., there exist β′ > 0 such that d ≤ β′d′. Let U ∈ T d
Ω ,

and x ∈ U . There exists ε > 0 such that Bd(x, ε) ⊆ U ,
where Bd(x, ε) denotes the open ball in Ω, relative to the met-
ric d. Suppose y ∈ Ω is such that d′(x, y) < ε/β′. Then, we
have d(x, y) ≤ β′d′(x, y) < ε, and it follows that y ∈ U . So
Bd′(x, ε/β′) ⊆ U . For all x ∈ U , we have found ε′ = ε/β′ > 0
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such that Bd′(x, ε′) ⊆ U . It follows that U ∈ T d′
Ω . We have

proved that T d
Ω ⊆ T d′

Ω . Using 9., from d′ ≤ (1/α′)d, we con-
clude similarly that T d′

Ω ⊆ T d
Ω . Hence, T d′

Ω = T d
Ω . Similarly,

from α′′d′′ ≤ d ≤ β′′d′′, we have T d′′
Ω = T d

Ω . We have proved
that T d′

Ω = T d
Ω = T d′′

Ω . Since T d
Ω = T is the product topology on

Ω, we conclude that d′ and d′′ also induce the product topology
T = T1 � . . .� Tn on Ω.

Exercise 14
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Exercise 15.

1. For all a ∈ R+, 1 ∧ a = min(1, a). Let a, b ∈ R+. Suppose
a+ b ≤ 1. Then, both a ≤ 1 and b ≤ 1, and we have:

1 ∧ (a+ b) = a+ b = 1 ∧ a+ 1 ∧ b
Suppose a+ b ≥ 1. If both a ≤ 1 and b ≤ 1, we have:

1 ∧ (a+ b) = 1 ≤ a+ b = 1 ∧ a+ 1 ∧ b
if a ≥ 1, we have:

1 ∧ (a+ b) = 1 = 1 ∧ a ≤ 1 ∧ a+ 1 ∧ b
In any case, we see that:

1 ∧ (a+ b) ≤ 1 ∧ a+ 1 ∧ b

2. For all x, y ∈ Ω, we have:

d(x, y) =
+∞∑
n=1

1
2n

(1 ∧ dn(xn, yn)) ≤
+∞∑
n=1

1
2n

< +∞
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So d has values in R+. It is clear that d(x, y) = d(y, x). More-
over, d(x, y) = 0 is equivalent to dn(xn, yn) = 0 for all n ≥ 1,
which is in turn equivalent to x = y. For all x, y, z ∈ Ω, and
n ≥ 1, we have:

dn(xn, yn) ≤ dn(xn, zn) + dn(zn, yn)

and consequently, using 1.:

1 ∧ dn(xn, yn) ≤ 1 ∧ dn(xn, zn) + 1 ∧ dn(zn, yn)

It follows that d(x, y) ≤ d(x, z) + d(z, y). We have proved that
d is a metric on Ω.

3. Let V = Π+∞
n=1Un be a rectangle of the family (Tn)n≥1. The

set {n ≥ 1 : Un �= Ωn} being finite, it is either empty or has a
maximal element N ≥ 1. it follows that V can be written as:

V = U1 × . . .× UN ×
+∞∏

n=N+1

Ωn (4)
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where U1, . . . , UN are open in Ω1, . . . ,ΩN respectively. If the set
{n ≥ 1 : Un �= Ωn} is empty, then V is also of the form (4), for
any N ≥ 1. Conversely, any set V of the form (4) is a rectangle
in �+∞

n=1Tn. From exercise (12), U ∈ T = �+∞
n=1Tn, if and only

if, for all x ∈ U , there exists V ∈ �+∞
n=1Tn such that x ∈ V ⊆ U .

It follows that U ⊆ Ω is open in Ω, i.e. belongs to the product
topology T , if and only if for all x ∈ U , there exists N ≥ 1 and
open sets U1, . . . , UN in Ω1, . . . ,ΩN respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

4. Suppose that d(x, y) < 1/2n, for some n ≥ 1. Then, dn(xn, yn)
has to be less than 1. Specifically:

d(x, y) ≥ 1
2n

(1 ∧ dn(xn, yn)) =
1
2n
dn(xn, yn)

So d(x, y) < 1/2n ⇒ dn(xn, yn) ≤ 2nd(x, y)
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5. Let U ∈ T and x ∈ U . From 3., there exist N ≥ 1 and
U1, . . . , UN open in Ω1, . . . ,ΩN respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

Let i ∈ {1, . . . , N}. Then xi ∈ Ui ∈ Ti. The topology Ti being
the metric topology T di

Ωi
, there exists εi > 0 such that we have

B(xi, εi) ⊆ Ui. Let ε = min(1/2N , ε1/2, . . . , εN/2N) and y ∈ Ω
be such that d(x, y) < ε. In particular, we have d(x, y) < 1/2i,
for all i = 1, . . . , N . Hence, from 4., we see that di(xi, yi) ≤
2id(x, y) < 2iε ≤ εi. It follows that yi ∈ Ui for all i = 1, . . . , N
and consequently y ∈ U1× . . .×UN ×Π+∞

n=N+1Ωn ⊆ U . We have
found ε > 0 such that d(x, y) < ε⇒ y ∈ U .

6. From 5. for all U ∈ T and x ∈ U , there exists ε > 0 such that
B(x, ε) ⊆ U . It follows that U ∈ T d

Ω . So T ⊆ T d
Ω .

7. Let U ∈ T d
Ω and x ∈ U . By definition (30) of the metric topol-
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ogy, there exists ε′ > 0 such that B(x, ε′) ⊆ U . In other words,
there exists ε′ > 0 such that for all y ∈ Ω:

d(x, y) < ε′ ⇒ y ∈ U

Let ε = ε′/2 and N ≥ 1 be such that:
+∞∑

n=N+1

1
2n

≤ ε

Suppose y ∈ Ω is such that:
N∑

n=1

1
2n

(1 ∧ dn(xn, yn)) < ε

Then, we have:

d(x, y) < ε+
+∞∑

n=N+1

1
2n

(1 ∧ dn(xn, yn)) ≤ 2ε = ε′
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It follows that y ∈ U . We have found ε > 0 and N ≥ 1 such
that:

N∑
n=1

1
2n

(1 ∧ dn(xn, yn)) < ε ⇒ y ∈ U

8. Let U ∈ T d
Ω and x ∈ U . Let ε > 0 an N ≥ 1 be as in 7. Let

y ∈ Ω be such that:

y ∈ B(x1, ε) × . . .× B(xN , ε) ×
+∞∏

n=N+1

Ωn

For all n ∈ {1, . . . , N}, dn(xn, yn) < ε. Hence:
N∑

n=1

1
2n

(1 ∧ dn(xn, yn)) ≤ ε

N∑
n=1

1
2n

< ε

From 7., we conclude that y ∈ U . We have found ε > 0 and
N ≥ 1 such that:

x ∈ B(x1, ε) × . . .×B(xN , ε) × Π+∞
n=N+1Ωn ⊆ U
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9. Let U ∈ T d
Ω and x ∈ U . Let N ≥ 1 and ε > 0 be as in 8. Each

open ball B(xn, ε) for n = 1, . . . , N being open in Ωn, we have
found U1, . . . , UN open in Ω1, . . . ,ΩN respectively, such that:

x ∈ U1 × . . .× UN ×
+∞∏

n=N+1

Ωn ⊆ U

From 3., it follows that U ∈ T = �+∞
n=1Tn. We have proved that

T d
Ω ⊆ T .

10. From 6. and 9., T d
Ω = T . In other words, the product topology

T = �+∞
n=1Tn is induced by the metric d on Ω. In particular,

the topological space (Ω, T ) is metrizable. The purpose of this
exercise, is to show that a countable product of metrizable topo-
logical spaces, is itself a metrizable topological space.

Exercise 15
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Exercise 16.

1. H = {]r, q[: r, q ∈ Q} is a countable subset of TR. Let U ∈ TR.
Define H′ = {V ∈ H : V ⊆ U}. For all x ∈ U , there exists ε > 0
such that ]x− ε, x+ ε[⊆ U . In fact, the set of rational numbers
Q being dense in R, there exist r, q ∈ Q such that x ∈]r, q[⊆ U .
In other words, there exists V ∈ H′ such that x ∈ V . Hence,
we see that U ⊆ ∪V ∈H′V . The reverse inclusion being clearly
satisfied, we have U = ∪V ∈H′V , i.e. U can be expressed as a
union of elements of H. This being true for all open sets U ∈ TR,
we have proved that H is a countable base of (R, TR).

2. Let H be a countable base of (Ω, T ). Let H|Ω′ be the trace of
H on Ω′, i.e. H|Ω′ = {Ω′ ∩ V : V ∈ H}. Since H is a countable
or finite subset of the topology T , H|Ω′ is a countable or finite
subset of the induced topology T|Ω′ . Let U ′ ∈ T|Ω′ be an open
subset in Ω′. Then U ′ is of the form U ′ = Ω′∩U where U ∈ T . H
being a countable base of (Ω, T ), there exists a family (Vi)i∈I of
elements of H such that U = ∪i∈IVi. It follows that (Ω′∩Vi)i∈I
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is a family of elements of H|Ω′ such that U ′ = ∪i∈I(Ω′∩Vi). We
conclude that H|Ω′ is a countable base of the induced topological
space (Ω′, T|Ω′).

3. From 1., R has a countable base. It follows from 2. that the
induced topological space [−1, 1] also has a countable base.

4. Let h : (Ω, T ) → (S, TS) be a homeomorphism, i.e. a continuous
bijection such that h−1 is also continuous. Suppose (Ω, T ) has
a countable base H. Define h(H) = {h(V ) : V ∈ H}. Since
H is a countable or finite subset of T , h−1 being continuous,
h(H) is a countable or finite subset of TS . (Note that each
direct image h(V ) of V by h can be viewed the inverse image
(h−1)−1(V ) of V by h−1). Let U ′ ∈ TS . h being continuous,
h−1(U ′) ∈ T . H being a countable base of (Ω, T ), there exists
a family (Vi)i∈I of elements of H, such that h−1(U ′) = ∪i∈IVi.
However, h(h−1(U ′)) = U ′, and moreover:

h(∪i∈IVi) = (h−1)−1(∪i∈IVi) = ∪i∈I(h−1)−1(Vi)
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So U ′ = ∪i∈Ih(Vi). We conclude that U ′ can be expressed
as a union of elements of h(H). So h(H) is a countable base of
(S, TS). We have proved that if (Ω, T ) has a countable base, then
(S, TS) also has a countable base. Using the same argument,
switching the roles of h and h−1, we see that conversely, if (S, TS)
has a countable base, then so does (Ω, T ). We have proved that
given two homeomorphic topological spaces, one has a countable
base, if and only if the other also has a countable base.

5. The topological spaces (R̄, TR̄) and ([−1, 1], T[−1,1]) being home-
omorphic, we conclude from 3. and 4. that (R̄, TR̄) has a count-
able base.

Exercise 16
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Exercise 17.

1. Let p ≥ 1 and A ∈ Hp of the form:

A = V k1
1 × . . .× V kp

p × Π+∞
n=p+1Ωn

For all n ≥ 1, the set {V k
n : k ∈ In} being a countable base of

Tn, it is a subset of Tn. Hence, for all i ∈ {1, . . . , p}, we have
V ki

i ∈ Ti. It follows that A is a rectangle of the family (Tn)n≥1,
i.e. A ∈ �+∞

n=1Tn. From definition (56), the product topology T
on Π+∞

n=1Ωn being generated by �+∞
n=1Tn, we have �+∞

n=1Tn ⊆ T .
In particular, A ∈ T . We have proved that Hp ⊆ T .

2. Using 1., H = ∪p≥1Hp ⊆ T .

3. By assumption, for all n ≥ 1, the index set In is finite or count-
able. There exists an injective map in : In → N. Given p ≥ 1,
consider the map jp : Hp → Np, defined in the following way:
for A = V k1

1 × . . .× V
kp
p × Π+∞

n=p+1Ωn ∈ Hp, we put:

jp(A) = (i1(k1), . . . , ip(kp))
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Suppose B = V
k′
1

1 × . . . × V
k′

p
p × Π+∞

n=p+1Ωn is another element
of Hp such that jp(A) = jp(B). Then:

(i1(k1), . . . , ip(kp)) = (i1(k′1), . . . , ip(k
′
p))

Hence, for all m ∈ Np, im(km) = im(k′m), and im being in-
jective, we have km = k′m. So A = B. We have proved the
existence of an injective map jp : Hp → Np.

4. The existence of a bijection φ2 : N2 → N is a standard result,
which we may have used in these tutorials before. Now is a
good opportunity to give a formal proof of it. Informally, φ2 is
defined as φ2(0, 0) = 0, φ2(1, 0) = 1, φ2(0, 1) = 2, φ2(2, 0) = 3,
φ2(1, 1) = 4, φ2(0, 2) = 5, etc. . . As you can see, going through
each diagonal one after the other, we are able to count the ele-
ments of N2, thus defining the bijection φ2. Formally, we define
the map φ2 : N2 → N as follows:

∀(n, p) ∈ N2 , φ2(n, p) = p+ [0 + 1 + . . .+ (n+ p)]
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or equivalently, φ2(n, p) = p+ h(n+ p) where:

h(m) = 0 + 1 + . . .+m

Let N ∈ N. Since h(m) ↑ +∞, the set {m ∈ N : h(m) ≤ N} is
finite and it is also non-empty. Hence, it has a maximal element
m, and we have h(m) ≤ N < h(m + 1). Let p = N − h(m).
Then p ∈ N, and we have 0 ≤ p < h(m + 1) − h(m) = m + 1.
So p ≤ m. If we define n = m − p, then n is also an element
of N. So (n, p) is an element of N2, such that m = n + p, and
N = p+ h(m). It follows that:

φ2(n, p) = p+ h(n+ p) = p+ h(m) = N

We have proved that φ2 is a surjective map. Suppose (n, p) and
(n′, p′) are elements of N2, with φ2(n, p) = φ2(n′, p′). Since
φ2(n, p) = p+ h(n+ p), in particular h(n+ p) ≤ φ2(n, p). How-
ever, h(n+ p+ 1) = p+ h(n+ p) + n+ 1 > φ2(n, p). It follows
that for all (n, p) ∈ N2, we have:

h(n+ p) ≤ φ2(n, p) < h(n+ p+ 1) (5)
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Since given N ∈ N, any m ∈ N such that h(m) ≤ N < h(m+1)
is unique, it follows from φ2(n, p) = φ2(n′, p′) and equation (5)
that n+ p = n′ + p′. Hence:

p = φ2(n, p) − h(n+ p) = φ2(n′, p′) − h(n′ + p′) = p′

and finally n = (n+p)−p = (n′ +p′)−p′ = n′. We have proved
that φ2 is an injective map. We conclude that φ2 : N2 → N is
a bijection

5. Let p ≥ 1. The existence of a bijection φp : Np → N is true for
p = 1 and p = 2. Suppose the existence of φp has been proved,
and let φ2 : N2 → N be as in 4. Let φp+1 : Np+1 → N be
defined by:

φp+1(n1, . . . , np+1) = φ2[φp(n1, . . . , np), np+1]

for all (n1, . . . , np+1) ∈ Np+1. Let N ∈ N. φ2 being a surjec-
tion, there exists (n, np+1) ∈ N2 with φ2(n, np+1) = N . From
our induction hypothesis, φp : Np → N is also a surjective map.
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There exists (n1, . . . , np) ∈ Np, such that φp(n1, . . . , np) = n.
It follows that (n1, . . . , np+1) is an element of Np+1 such that
φp+1(n1, . . . , np+1) = N . So φp+1 is itself a surjective map.
Suppose (n1, . . . , np+1) and (n′

1, . . . , n
′
p+1) are elements of Np+1

such that:

φp+1(n1, . . . , np+1) = φp+1(n′
1, . . . , n

′
p+1)

Then, φ2 being injective, np+1 = n′
p+1, and:

φp(n1, . . . , np) = φp(n′
1, . . . , n

′
p)

φp being itself injective, (n1, . . . , np) = (n′
1, . . . , n

′
p), and we

conclude that (n1, . . . , np+1) = (n′
1, . . . , n

′
p+1). So φp+1 is an

injective map, and finally a bijection. This induction argument
proves the existence of a bijection φp : Np → N, for all p ≥ 1.

6. Let p ≥ 1. From 3., there exists an injective map jp : Hp → Np.
From 5., there exists a bijection φp : Np → N. It follows that
φp ◦ jp : Hp → N is an injective map. This proves that Hp is
finite or countable, i.e. Hp is at most countable.
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7. From 6., for all p ≥ 1, there exists an injection ψp : Hp → N.
Let j : H → N2 be defined by j(A) = (p, ψp(A)), where p ≥ 1
is chosen such that A ∈ Hp, (there is at least one such p for
any A ∈ H). Suppose j(A) = j(B) for some A,B ∈ H. Then,
there exists p ≥ 1 such that A,B ∈ Hp and ψp(A) = ψp(B),
and consequently A = B. So j is an injection. We have proved
the existence of an injective map j : H → N2.

8. Let φ2 : N2 → N be a bijection. From 7., there exists an
injection j : H → N2. It follows that φ2 ◦ j : H → N is an
injection. This proves that H is finite or countable, i.e. it is
at most countable. From 2., H ⊆ T . Hence, all elements of H
are open sets in Ω, (with respect to the product topology). We
conclude that H is a finite or countable set of open sets in Ω.

9. From exercise (12), U ∈ T = �+∞
n=1Tn, if and only if for all

x ∈ U , there exists V ∈ �+∞
n=1Tn such that x ∈ V ⊆ U . Since all

elements of �+∞
n=1Tn can be written as U1× . . .×Up×Π+∞

n=p+1Ωn

for some p ≥ 1 and U1, . . . , Up open in Ω1, . . . ,Ωp respectively,
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it follows in particular that if U ∈ T and x ∈ U , there exist
p ≥ 1 and U1, . . . , Up open in Ω1, . . . ,Ωp such that:

x ∈ U1 × . . .× Up ×
+∞∏

n=p+1

Ωn ⊆ U

10. Let U ∈ T and x ∈ U . Let p ≥ 1 and U1, . . . , Up open Ω1, . . . ,Ωp

respectively, such that x ∈ U1 × . . .× Up × Π+∞
n=p+1Ωn ⊆ U . By

assumption, for all n ≥ 1, the set {V k
n : k ∈ In} is a countable

base of the topology Tn. Hence, for all n ∈ Np, there exists a
subset I ′n of In, such that Un = ∪k∈I′

n
V k

n . In particular, since
xn ∈ Un, there exists kn ∈ I ′n ⊆ In such that xn ∈ V kn

n ⊆ Un.
We have found k1, . . . , kp such that:

x ∈ V k1
1 × . . .× V kp

p ×
+∞∏

n=p+1

Ωn
�
= Vx ⊆ U

There exists Vx ∈ Hp ⊆ H such that x ∈ Vx ⊆ U .
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11. From 8., H is a finite or countable subset of the topology T .
From 10., for all U ∈ T , U can be written as U = ∪x∈UVx,
where Vx ∈ H for all x ∈ U . In other words, any open set U of
T can be written as a union of elements of H. It follows from
definition (57) that H is a countable base of (Ω, T ).

12. From theorem (26), since B(Ωn) = σ(Tn) for all n ≥ 1:

⊗+∞
n=1B(Ωn) = σ(�+∞

n=1Tn) ⊆ σ(T ) = B(Ω)

13. Let p ≥ 1 and A ∈ Hp. Then A is a rectangle of the family
(Tn)n≥1. Hence A ∈ �+∞

n=1Tn ⊆ �+∞
n=1B(Ωn) ⊆ ⊗+∞

n=1B(Ωn). So
Hp ⊆ ⊗+∞

n=1B(Ωn). We conclude that:

H =
⋃
p≥1

Hp ⊆ ⊗+∞
n=1B(Ωn)

14. Since H is a countable base of (Ω, T ), any open set U of T can
be expressed as a union of elements of H. Furthermore, H being
at most countable, such union is at most countable. It follows
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that any open set U in T is an element of σ(H), i.e. T ⊆ σ(H).
From 13., we have H ⊆ ⊗+∞

n=1B(Ωn) and consequently, we have
σ(H) ⊆ ⊗+∞

n=1B(Ωn). Hence, we see that T ⊆ ⊗+∞
n=1B(Ωn), and

finally B(Ω) = σ(T ) ⊆ ⊗+∞
n=1B(Ωn). Using 12., we conclude

that:

B(Ω) =
+∞⊗
n=1

B(Ωn)

The purpose of this exercise is to prove theorem (27).

Exercise 17
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Exercise 18.

1. Since (Ω, T ) has a countable base, a finite version of theo-
rem (27) would allow us to conclude immediately that:

B(Ωn) = B(Ω) ⊗ . . .⊗ B(Ω)

Since B(Ω) = σ(T ), from theorem (26), we have:

B(Ω) ⊗ . . .⊗ B(Ω) = σ(T � . . .� T ) ⊆ σ(TΩn) = B(Ωn)

Let U be open in Ωn, and x ∈ U . From exercise (12), there exist
V1, . . . , Vn open in Ω, such that:

x ∈ V1 × . . .× Vn ⊆ U

Since Ω has a countable base, say H, each Vi can be written as
a union of elements of H. In particular, there exist W1, . . . ,Wn

in H, such that:

x ∈W1 × . . .×Wn ⊆ U
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Defining Ax = W1 × . . .×Wn, we have U = ∪x∈UAx. Since H
is a subset of T , each Ax is an element of T � . . . � T ⊆ TΩn .
Although the set U may not be countable, the set I defined
by I = {Ax : x ∈ U} is at most countable, H being at most
countable. So U = ∪x∈UAx is in fact a countable (or finite)
union of elements of T � . . . � T . So U ∈ σ(T � . . . � T ). We
have proved that:

TΩn ⊆ σ(T � . . .� T ) ⊆ B(Ω) ⊗ . . .⊗ B(Ω)

We conclude that:

B(Ωn) = σ(TΩn) ⊆ B(Ω) ⊗ . . .⊗ B(Ω)

We have proved that B(Ωn) = B(Ω) ⊗ . . .⊗ B(Ω).

2. This is an immediate consequence of 1. and exercise (16).

3. From 1., B(R2) = B(R)⊗B(R). C and R2 being identified, the
usual topology on C is induced by the metric:

d(z, z′) =
√

(x− x′)2 + (y − y′)2
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with obvious notations. From exercise (14), such metric induces
the product topology on R2. It follows that the usual topology
on C and the product topology on R2 coincide. So TC = TR2 ,
and finally B(C) = B(R2) = B(R)⊗ B(R).

Exercise 18
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Exercise 19.

1. H = {B(xn, 1/p) : n, p ≥ 1} is a finite or countable subset of
T d

E . Let U ∈ T d
E and x ∈ U . There exists ε > 0, such that

B(x, ε) ⊆ U . By assumption, the set {xn : n ≥ 1} is dense in E.
p ≥ 1 being such that 1/p ≤ ε/2, there exists n ≥ 1 such that
xn ∈ B(x, 1/p). In particular, x ∈ B(xn, 1/p). Moreover, for all
y ∈ B(xn, 1/p), we have:

d(x, y) ≤ d(x, xn) + d(xn, y) <
2
p
≤ ε

So y ∈ B(x, ε) ⊆ U . Hence, we see that x ∈ B(xn, 1/p) ⊆ U .
For all x ∈ U , we have found Vx ∈ H such that x ∈ Vx ⊆ U .
It follows that U = ∪x∈UVx. So U is a union of elements of H.
We have proved that H is a countable base of (E, T d

E ).

2. Let A = {xV : V ∈ H, V �= ∅}. H being a countable base of
(E, T d

E ), it is at most countable. There exists an injective map
j : H → N. Let i : A → H be defined by i(xV ) = V . Then i is
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clearly an injection, and j ◦ i : A → N is therefore an injective
map. So A is a finite or countable subset of E. Let x ∈ E. Let
U ∈ T d

E such that x ∈ U . Since U can be written as a union of
elements of H, there exists V ∈ H, such that x ∈ V ⊆ U . In
particular, V �= ∅ and xV is well-defined, with xV ∈ V ⊆ U . So
xV ∈ A ∩U �= ∅. We have proved that for all U ∈ T d

E such that
x ∈ U , U ∩A �= ∅. From definition (37)7, x is an element of Ā,
the closure of A. We have proved that E ⊆ Ā. So E = Ā, and
A is dense in E. Finally, A is at most countable and dense in
E. So (E, d) is a separable metric space. The purpose of 1. and
2. is to show that for metric spaces, being separable, or having
a countable base, are equivalent.

3. Let x, y, x′, y′ ∈ E. We have:

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y)

7Beware of external links!
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and therefore:

d(x, y) − d(x′, y′) ≤ d(x, x′) + d(y, y′)

Similarly:

d(x′, y′) − d(x, y) ≤ d(x, x′) + d(y, y′)

It follows that:

|d(x, y) − d(x′, y′)| ≤ d(x, x′) + d(y, y′)

4. Let δ : (E × E)2 → R+ be the metric on E × E defined by:

δ[(x, y), (x′, y′)] = d(x, x′) + d(y, y′)

From 3., we have:

|d(x, y) − d(x′, y′)| ≤ δ[(x, y), (x′, y′)] (6)

From exercise (14), the product topology TE×E on E × E is
induced by the metric δ. Using exercise (4) of Tutorial 4, we
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conclude from equation (6) that d : (E×E, TE×E) → (R+, TR+)
is a continuous map.

5. From exercise (13) of Tutorial 4, and the continuity of the map
d : E × E → R+ proved in 4., we conclude that:

d : (E × E,B(E × E)) → (R+,B(R+))

is a measurable map. It follows that:

d : (E × E,B(E × E)) → (R̄,B(R̄))

is a also a measurable map.

6. If (E, d) is a separable metric space, from 1. , it has a countable
base. From exercise (18), B(E × E) = B(E) ⊗ B(E). We con-
clude from 5. that d : (E × E,B(E) ⊗ B(E)) → (R̄,B(R̄)) is a
measurable map.

7. By definition (54), the product σ-algebra B(E) ⊗ B(E) is gen-
erated by the set of measurable rectangles B(E) � B(E). From
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theorem (14), in order to prove the measurability of:

Φ : (Ω,F) → (E × E,B(E) ⊗ B(E))

it is sufficient to prove that Φ−1(B) ∈ F for allB ∈ B(E)�B(E).
However, any measurable rectangle B of B(E) � B(E) is of the
form B = A1 ×A2, where A1, A2 ∈ B(E). It follows that:

Φ−1(B) = f−1(A1) ∩ g−1(A2) ∈ F

since by assumption, both f, g : (Ω,F) → (E,B(E)) are measur-
able maps. We have proved that Φ : Ω → E × E is measurable
with respect to F and B(E) ⊗ B(E).

8. Suppose (E, d) is a separable metric space. From 6., the map:

d : (E × E,B(E) ⊗ B(E)) → (R̄,B(R̄))

is measurable. However, from 7., the map:

Φ : (Ω,F) → (E × E,B(E) ⊗ B(E))
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is also measurable. It follows that Ψ = d(f, g) = d ◦ Φ is mea-
surable with respect to F and B(R̄).

9. From 8., when (E, d) is separable, the map Ψ = d(f, g) is mea-
surable. Hence:

{f = g} = Ψ−1({0}) ∈ F

10. Let (En, dn)n≥1 be a sequence of separable metric spaces. From
exercise (15), the product topological space Π+∞

n=1En is metriz-
able. From 1., each En has a countable base. From theo-
rem (27), Π+∞

n=1En also has a countable base. Being metrizable,
it follows from 2., that it is in fact separable. We have proved
that Π+∞

n=1En is metrizable and separable.

Exercise 19
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Exercise 20. Suppose each fi : (Ω,F) → (Ωi,Fi) is measurable.
From theorem (14), in order to prove the measurability of:

f : (Ω,F) → (Πi∈IΩi,⊗i∈IFi)

It is sufficient to show that f−1(B) ∈ F , for all B ∈ �i∈IFi. Let
B = Πi∈IAi be a measurable rectangle of the family (Fi)i∈I . For all
i ∈ I, Ai ∈ Fi, and J = {i ∈ I : Ai �= Ωi} is a finite set. Hence:

f−1(B) =
⋂
i∈I

{fi ∈ Ai} =
⋂
i∈J

{fi ∈ Ai} ∈ F

since each fi is measurable. So f is indeed measurable. Conversely,
suppose f = (fi)i∈I is measurable. Let j ∈ I and Aj ∈ Fj . We have:

f−1
j (Aj) = f−1(Aj × Πi	=jΩi) ∈ F

since B = Aj ×Πi	=jΩi is a measurable rectangle, and lies in ⊗i∈IFi.
So fj : (Ω,F) → (Ωj ,Fj) is a measurable map.

Exercise 20
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Exercise 21.

1. Let (x, y) and (x′, y′) be elements of R2. We have:

|φ(x, y) − φ(x′, y′)| ≤ |x− x′| + |y − y′| (7)

By definition (17), the usual topology on R is the metric topol-
ogy induced by d(x, y) = |x−y|. From exercise (14), the product
topology on R2 is induced by:

δ[(x, y), (x′, y′)] = |x− x′| + |y − y′|
It follows from equation (7), and exercise (4) of Tutorial 4 that:

φ : (R2, TR2) → (R, TR)

is a continuous map.
Let (x0, y0) ∈ R2 and ε > 0. For all (x, y) ∈ R2, we have:

|ψ(x, y) − ψ(x0, y0)| ≤ |y|.|x− x0| + |x0|.|y − y0|
Suppose η > 0 is such that:

|x− x0| + |y − y0| < η ≤ 1
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Then in particular, |y| ≤ 1 + |y0|, and consequently:

|ψ(x, y) − ψ(x0, y0)| ≤M.(|x− x0| + |y − y0|)

where M = max(|x0|, 1 + |y0|). Hence, we see that:

δ[(x, y), (x0, y0)] < η ⇒ |ψ(x, y) − ψ(x0, y0)| < ε

where η has been chosen as η = min(ε/M, 1). We conclude from
exercise (4) of Tutorial 4 that ψ : (R2, TR2) → (R, TR) is a
continuous map.

2. φ and ψ being continuous, from exercise (13) of Tutorial 4:

φ, ψ : (R2,B(R2)) → (R̄,B(R̄))

are measurable maps. Since (R, TR) has a countable base, from
exercise (18), we have B(R2) = B(R) ⊗ B(R). We conclude
that:

φ, ψ : (R2,B(R) ⊗ B(R)) → (R̄,B(R̄))
are measurable maps.
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3. Given f, g : (Ω,F) → (R,B(R)) measurable, the fact that f + g
and f.g are measurable was already proved in Tutorial 4. The
purpose of this exercise is to emphasize a more direct proof.
From theorem (28), the map:

h = (f, g) : (Ω,F) → (R × R,B(R)⊗ B(R))

is measurable, since both f and g are measurable. From 2:

φ, ψ : (R × R,B(R) ⊗ B(R)) → (R̄,B(R̄))

are also measurable. It follows that f+g = φ◦h and f.g = ψ◦h
are measurable with respect to F and B(R̄). Being real-valued,
they are also measurable with respect to F and B(R).

Exercise 21
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