## 6. Product Spaces

In the following, $I$ is a non-empty set.
Definition 50 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a nonempty set $I$. We call Cartesian product of the family $\left(\Omega_{i}\right)_{i \in I}$ the set, denoted $\Pi_{i \in I} \Omega_{i}$, and defined by:

$$
\prod_{i \in I} \Omega_{i} \triangleq\left\{\omega: I \rightarrow \cup_{i \in I} \Omega_{i}, \omega(i) \in \Omega_{i}, \forall i \in I\right\}
$$

In other words, $\Pi_{i \in I} \Omega_{i}$ is the set of all maps $\omega$ defined on $I$, with values in $\cup_{i \in I} \Omega_{i}$, such that $\omega(i) \in \Omega_{i}$ for all $i \in I$.

Theorem 25 (Axiom of choice) Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a non-empty set $I$. Then, $\Pi_{i \in I} \Omega_{i}$ is non-empty, if and only if $\Omega_{i}$ is non-empty for all $i \in I^{1}$.
${ }^{1}$ When $I$ is finite, this theorem is traditionally derived from other axioms.

Exercise 1.

1. Let $\Omega$ be a set and suppose that $\Omega_{i}=\Omega, \forall i \in I$. We use the notation $\Omega^{I}$ instead of $\Pi_{i \in I} \Omega_{i}$. Show that $\Omega^{I}$ is the set of all maps $\omega: I \rightarrow \Omega$.
2. What are the sets $\mathbf{R}^{\mathbf{R}^{+}}, \mathbf{R}^{\mathbf{N}},[0,1]^{\mathbf{N}}, \overline{\mathbf{R}}^{\mathbf{R}}$ ?
3. Suppose $I=\mathbf{N}^{*}$. We sometimes use the notation $\Pi_{n=1}^{+\infty} \Omega_{n}$ instead of $\Pi_{n \in \mathbf{N} *} \Omega_{n}$. Let $\mathcal{S}$ be the set of all sequences $\left(x_{n}\right)_{n \geq 1}$ such that $x_{n} \in \Omega_{n}$ for all $n \geq 1$. Is $\mathcal{S}$ the same thing as the product $\Pi_{n=1}^{+\infty} \Omega_{n}$ ?
4. Suppose $I=\mathbf{N}_{n}=\{1, \ldots, n\}, n \geq 1$. We use the notation $\Omega_{1} \times \ldots \times \Omega_{n}$ instead of $\Pi_{i \in\{1, \ldots, n\}} \Omega_{i}$. For $\omega \in \Omega_{1} \times \ldots \times \Omega_{n}$, it is customary to write $\left(\omega_{1}, \ldots, \omega_{n}\right)$ instead of $\omega$, where we have $\omega_{i}=\omega(i)$. What is your guess for the definition of sets such as $\mathbf{R}^{n}, \overline{\mathbf{R}}^{n}, \mathbf{Q}^{n}, \mathbf{C}^{n}$.
5. Let $E, F, G$ be three sets. Define $E \times F \times G$.

Definition 51 Let I be a non-empty set. We say that a family of sets $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, is a partition of $I$, if and only if:
(i) $\quad \forall \lambda \in \Lambda, I_{\lambda} \neq \emptyset$
(ii) $\quad \forall \lambda, \lambda^{\prime} \in \Lambda, \lambda \neq \lambda^{\prime} \Rightarrow I_{\lambda} \cap I_{\lambda^{\prime}}=\emptyset$
(iii) $I=\cup_{\lambda \in \Lambda} I_{\lambda}$

ExERCISE 2. Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets indexed by $I$, and $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ be a partition of the set $I$.

1. For each $\lambda \in \Lambda$, recall the definition of $\Pi_{i \in I_{\lambda}} \Omega_{i}$.
2. Recall the definition of $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.
3. Define a natural bijection $\Phi: \Pi_{i \in I} \Omega_{i} \rightarrow \Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.
4. Define a natural bijection $\psi: \mathbf{R}^{p} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{p+n}$, for all $n, p \geq 1$.

Definition 52 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of sets, indexed by a nonempty set $I$. For all $i \in I$, let $\mathcal{E}_{i}$ be a set of subsets of $\Omega_{i}$. We define a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in I}$, as any subset $A$ of $\Pi_{i \in I} \Omega_{i}$, of the form $A=\Pi_{i \in I} A_{i}$ where $A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$ for all $i \in I$, and such that $A_{i}=\Omega_{i}$ except for a finite number of indices $i \in I$. Consequently, the set of all rectangles, denoted $\amalg_{i \in I} \mathcal{E}_{i}$, is defined as:
$\coprod_{i \in I} \mathcal{E}_{i} \triangleq\left\{\prod_{i \in I} A_{i}: A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}, A_{i} \neq \Omega_{i}\right.$ for finitely many $\left.i \in I\right\}$
ExERCISE 3. $\left(\Omega_{i}\right)_{i \in I}$ and $\left(\mathcal{E}_{i}\right)_{i \in I}$ being as above:

1. Show that if $I=\mathbf{N}_{n}$ and $\Omega_{i} \in \mathcal{E}_{i}$ for all $i=1, \ldots, n$, then $\mathcal{E}_{1} \amalg \ldots \amalg \mathcal{E}_{n}=\left\{A_{1} \times \ldots \times A_{n} \quad: \quad A_{i} \in \mathcal{E}_{i}, \forall i \in I\right\}$.
2. Let $A$ be a rectangle. Show that there exists a finite subset $J$ of $I$ such that: $A=\left\{\omega \in \Pi_{i \in I} \Omega_{i}: \omega(j) \in A_{j}, \forall j \in J\right\}$ for some $A_{j}$ 's such that $A_{j} \in \mathcal{E}_{j}$, for all $j \in J$.

Definition 53 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set $I$. We call measurable rectangle , any rectangle of the family $\left(\mathcal{F}_{i}\right)_{i \in I}$. The set of all measurable rectangles is given by ${ }^{2}$ :

$$
\coprod_{i \in I} \mathcal{F}_{i} \triangleq\left\{\prod_{i \in I} A_{i}: A_{i} \in \mathcal{F}_{i}, A_{i} \neq \Omega_{i} \text { for finitely many } i \in I\right\}
$$

Definition 54 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set $I$. We define the product $\sigma$-algebra of $\left(\mathcal{F}_{i}\right)_{i \in I}$, as the $\sigma$-algebra on $\Pi_{i \in I} \Omega_{i}$, denoted $\otimes_{i \in I} \mathcal{F}_{i}$, and generated by all measurable rectangles, i.e.

$$
\bigotimes_{i \in I} \mathcal{F}_{i} \triangleq \sigma\left(\coprod_{i \in I} \mathcal{F}_{i}\right)
$$

[^0]Exercise 4.

1. Suppose $I=\mathbf{N}_{n}$. Show that $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$ is generated by all sets of the form $A_{1} \times \ldots \times A_{n}$, where $A_{i} \in \mathcal{F}_{i}$ for all $i=1, \ldots, n$.
2. Show that $\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ is generated by sets of the form $A \times B \times C$ where $A, B, C \in \mathcal{B}(\mathbf{R})$.
3. Show that if $(\Omega, \mathcal{F})$ is a measurable space, $\mathcal{B}\left(\mathbf{R}^{+}\right) \otimes \mathcal{F}$ is the $\sigma$-algebra on $\mathbf{R}^{+} \times \Omega$ generated by sets of the form $B \times F$ where $B \in \mathcal{B}\left(\mathbf{R}^{+}\right)$and $F \in \mathcal{F}$.

ExERCISE 5 . Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of non-empty sets and $\mathcal{E}_{i}$ be a subset of the power set $\mathcal{P}\left(\Omega_{i}\right)$ for all $i \in I$.

1. Give a generator of the $\sigma$-algebra $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$ on $\Pi_{i \in I} \Omega_{i}$.
2. Show that:

$$
\sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right) \subseteq \bigotimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)
$$

3. Let $A$ be a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$. Show that if $A$ is not empty, then the representation $A=\Pi_{i \in I} A_{i}$ with $A_{i} \in \sigma\left(\mathcal{E}_{i}\right)$ is unique. Define $J_{A}=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$. Explain why $J_{A}$ is a well-defined finite subset of $I$.
4. If $A \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$, Show that if $A=\emptyset$, or $A \neq \emptyset$ and $J_{A}=\emptyset$, then $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.

Exercise 6. Everything being as before, Let $n \geq 0$. We assume that the following induction hypothesis has been proved:

$$
A \in \coprod_{i \in I} \sigma\left(\mathcal{E}_{i}\right), A \neq \emptyset, \operatorname{card} J_{A}=n \Rightarrow A \in \sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)
$$

We assume that $A$ is a non empty measurable rectangle of $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ with $\operatorname{card} J_{A}=n+1$. Let $J_{A}=\left\{i_{1}, \ldots, i_{n+1}\right\}$ be an extension of $J_{A}$.

Tutorial 6: Product Spaces
For all $B \subseteq \Omega_{i_{1}}$, we define:

$$
A^{B} \triangleq \prod_{i \in I} \bar{A}_{i}
$$

where each $\bar{A}_{i}$ is equal to $A_{i}$ except $\overline{A_{1}}=B$. We define the set:

$$
\Gamma \triangleq\left\{B \subseteq \Omega_{i_{1}}: A^{B} \in \sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)\right\}
$$

1. Show that $A^{\Omega_{i_{1}}} \neq \emptyset, \operatorname{card} J_{A^{\Omega_{i_{1}}}}=n$ and that $A^{\Omega_{i_{1}}} \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.
2. Show that $\Omega_{i_{1}} \in \Gamma$.
3. Show that for all $B \subseteq \Omega_{i_{1}}$, we have $A^{\Omega_{i_{1}} \backslash B}=A^{\Omega_{i_{1}}} \backslash A^{B}$.
4. Show that $B \in \Gamma \Rightarrow \Omega_{i_{1}} \backslash B \in \Gamma$.
5. Let $B_{n} \subseteq \Omega_{i_{1}}, n \geq 1$. Show that $A^{\cup B_{n}}=\cup_{n \geq 1} A^{B_{n}}$.
6. Show that $\Gamma$ is a $\sigma$-algebra on $\Omega_{i_{1}}$.
7. Let $B \in \mathcal{E}_{i_{1}}$, and for $i \in I$ define $\bar{B}_{i}=\Omega_{i}$ for all $i$ 's except $\bar{B}_{i_{1}}=B$. Show that $A^{B}=A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right)$.
8. Show that $\sigma\left(\mathcal{E}_{i_{1}}\right) \subseteq \Gamma$.
9. Show that $A=A^{A_{i_{1}}}$ and $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.
10. Show that $\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right) \subseteq \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.
11. Show that $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)=\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.

Theorem 26 Let $\left(\Omega_{i}\right)_{i \in I}$ be a family of non-empty sets indexed by a non-empty set $I$. For all $i \in I$, let $\mathcal{E}_{i}$ be a set of subsets of $\Omega_{i}$. Then, the product $\sigma$-algebra $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$ on the Cartesian product $\Pi_{i \in I} \Omega_{i}$ is generated by the rectangles of $\left(\mathcal{E}_{i}\right)_{i \in I}$, i.e. :

$$
\bigotimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)=\sigma\left(\coprod_{i \in I} \mathcal{E}_{i}\right)
$$

Exercise 7. Let $\mathcal{T}_{\mathbf{R}}$ denote the usual topology in $\mathbf{R}$. Let $n \geq 1$.

1. Show that $\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{T}_{\mathbf{R}}\right\}$.
2. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}\right)$.
3. Define $\left.\left.\left.\left.\mathcal{C}_{2}=\{ ] a_{1}, b_{1}\right] \times \ldots \times\right] a_{n}, b_{n}\right]: a_{i}, b_{i} \in \mathbf{R}\right\}$. Show that $\mathcal{C}_{2} \subseteq \mathcal{S} \amalg \ldots \amalg \mathcal{S}$, where $\left.\left.\mathcal{S}=\{ ] a, b\right]: a, b \in \mathbf{R}\right\}$, but that the inclusion is strict.
4. Show that $\mathcal{S} \amalg \ldots \amalg \mathcal{S} \subseteq \sigma\left(\mathcal{C}_{2}\right)$.
5. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{C}_{2}\right)$.

Exercise 8 . Let $\Omega$ and $\Omega^{\prime}$ be two non-empty sets. Let $A$ be a subset of $\Omega$ such that $\emptyset \neq A \neq \Omega$. Let $\mathcal{E}=\{A\} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{E}^{\prime}=\emptyset \subseteq \mathcal{P}\left(\Omega^{\prime}\right)$.

1. Show that $\sigma(\mathcal{E})=\left\{\emptyset, A, A^{c}, \Omega\right\}$.
2. Show that $\sigma\left(\mathcal{E}^{\prime}\right)=\left\{\emptyset, \Omega^{\prime}\right\}$.

Tutorial 6: Product Spaces
3. Define $\mathcal{C}=\left\{E \times F, E \in \mathcal{E}, F \in \mathcal{E}^{\prime}\right\}$ and show that $\mathcal{C}=\emptyset$.
4. Show that $\mathcal{E} \amalg \mathcal{E}^{\prime}=\left\{A \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$.
5. Show that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\left\{\emptyset, A \times \Omega^{\prime}, A^{c} \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$.
6. Conclude that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right) \neq \sigma(\mathcal{C})=\left\{\emptyset, \Omega \times \Omega^{\prime}\right\}$.

Exercise 9. Let $n \geq 1$ and $p \geq 1$ be two positive integers.

1. Define $\mathcal{F}=\underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{n}$, and $\mathcal{G}=\underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{p}$.

Explain why $\mathcal{F} \otimes \mathcal{G}$ can be viewed as a $\sigma$-algebra on $\mathbf{R}^{n+p}$.
2. Show that $\mathcal{F} \otimes \mathcal{G}$ is generated by sets of the form $A_{1} \times \ldots \times A_{n+p}$ where $A_{i} \in \mathcal{B}(\mathbf{R}), i=1, \ldots, n+p$.

Tutorial 6: Product Spaces
3. Show that:


Exercise 10. Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces. Let $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, be a partition of $I$. Let $\Omega=\Pi_{i \in I} \Omega_{i}$ and $\Omega^{\prime}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.

1. Define a natural bijection between $\mathcal{P}(\Omega)$ and $\mathcal{P}\left(\Omega^{\prime}\right)$.
2. Show that through such bijection, $A=\Pi_{i \in I} A_{i} \subseteq \Omega$, where $A_{i} \subseteq \Omega_{i}$, is identified with $A^{\prime}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right) \subseteq \Omega^{\prime}$.
3. Show that $\amalg_{i \in I} \mathcal{F}_{i}=\amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$.
4. Show that $\otimes_{i \in I} \mathcal{F}_{i}=\otimes_{\lambda \in \Lambda}\left(\otimes_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$.

Definition 55 Let $\Omega$ be set and $\mathcal{A}$ be a set of subsets of $\Omega$. We call topology generated by $\mathcal{A}$, the topology on $\Omega$, denoted $\mathcal{T}(\mathcal{A})$, equal to the intersection of all topologies on $\Omega$, which contain $\mathcal{A}$.

Exercise 11 . Let $\Omega$ be a set and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

1. Explain why $\mathcal{T}(\mathcal{A})$ is indeed a topology on $\Omega$.
2. Show that $\mathcal{T}(\mathcal{A})$ is the smallest topology $\mathcal{T}$ such that $\mathcal{A} \subseteq \mathcal{T}$.
3. Show that the metric topology on a metric space $(E, d)$ is generated by the open balls $\mathcal{A}=\{B(x, \epsilon): x \in E, \epsilon>0\}$.

Definition 56 Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of topological spaces, indexed by a non-empty set $I$. We define the product topology of $\left(\mathcal{T}_{i}\right)_{i \in I}$, as the topology on $\Pi_{i \in I} \Omega_{i}$, denoted $\odot_{i \in I} \mathcal{T}_{i}$, and generated by

Tutorial 6: Product Spaces
all rectangles of $\left(\mathcal{T}_{i}\right)_{i \in I}$, i.e.

$$
\bigodot_{i \in I} \mathcal{T}_{i} \triangleq \mathcal{T}\left(\coprod_{i \in I} \mathcal{T}_{i}\right)
$$

Exercise 12. Let $\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$ be a family of topological spaces.

1. Show that $U \in \odot_{i \in I} \mathcal{T}_{i}$, if and only if:

$$
\forall x \in U, \exists V \in \amalg_{i \in I} \mathcal{T}_{i}, x \in V \subseteq U
$$

2. Show that $\amalg_{i \in I} \mathcal{T}_{i} \subseteq \odot_{i \in I} \mathcal{T}_{i}$.
3. Show that $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right)=\sigma\left(\amalg_{i \in I} \mathcal{T}_{i}\right)$.
4. Show that $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right) \subseteq \mathcal{B}\left(\Pi_{i \in I} \Omega_{i}\right)$.

Exercise 13. Let $n \geq 1$ be a positive integer. For all $x, y \in \mathbf{R}^{n}$, let:

$$
(x, y) \triangleq \sum_{i=1}^{n} x_{i} y_{i}
$$

and we put $\|x\|=\sqrt{(x, x)}$.

1. Show that for all $t \in \mathbf{R},\|x+t y\|^{2}=\|x\|^{2}+t^{2}\|y\|^{2}+2 t(x, y)$.
2. From $\|x+t y\|^{2} \geq 0$ for all $t$, deduce that $|(x, y)| \leq\|x\| .\|y\|$.
3. Conclude that $\|x+y\| \leq\|x\|+\|y\|$.

ExERCISE 14. Let $\left(\Omega_{1}, \mathcal{T}_{1}\right), \ldots,\left(\Omega_{n}, \mathcal{T}_{n}\right), n \geq 1$, be metrizable topological spaces. Let $d_{1}, \ldots, d_{n}$ be metrics on $\Omega_{1}, \ldots, \Omega_{n}$, inducing the topologies $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ respectively. Let $\Omega=\Omega_{1} \times \ldots \times \Omega_{n}$ and $\mathcal{T}$ be
the product topology on $\Omega$. For all $x, y \in \Omega$, we define:

$$
d(x, y) \triangleq \sqrt{\sum_{i=1}^{n}\left(d_{i}\left(x_{i}, y_{i}\right)\right)^{2}}
$$

1. Show that $d: \Omega \times \Omega \rightarrow \mathbf{R}^{+}$is a metric on $\Omega$.
2. Show that $U \subseteq \Omega$ is open in $\Omega$, if and only if, for all $x \in U$ there are open sets $U_{1}, \ldots, U_{n}$ in $\Omega_{1}, \ldots, \Omega_{n}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{n} \subseteq U
$$

3. Let $U \in \mathcal{T}$ and $x \in U$. Show the existence of $\epsilon>0$ such that:

$$
\left(\forall i=1, \ldots, n d_{i}\left(x_{i}, y_{i}\right)<\epsilon\right) \Rightarrow y \in U
$$

4. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
5. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Show the existence of $\epsilon>0$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{n}, \epsilon\right) \subseteq U
$$

6. Show that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
7. Show that the product topological space $(\Omega, \mathcal{T})$ is metrizable.
8. For all $x, y \in \Omega$, define:

$$
\begin{aligned}
d^{\prime}(x, y) & \triangleq \sum_{i=1}^{n} d_{i}\left(x_{i}, y_{i}\right) \\
d^{\prime \prime}(x, y) & \triangleq \max _{i=1, \ldots, n} d_{i}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

Show that $d^{\prime}, d^{\prime \prime}$ are metrics on $\Omega$.
9. Show the existence of $\alpha^{\prime}, \beta^{\prime}, \alpha^{\prime \prime}$ and $\beta^{\prime \prime}>0$, such that we have $\alpha^{\prime} d^{\prime} \leq d \leq \beta^{\prime} d^{\prime}$ and $\alpha^{\prime \prime} d^{\prime \prime} \leq d \leq \beta^{\prime \prime} d^{\prime \prime}$.
10. Show that $d^{\prime}$ and $d^{\prime \prime}$ also induce the product topology on $\Omega$.

EXERCISE 15. Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of metrizable topological spaces. For all $n \geq 1$, let $d_{n}$ be a metric on $\Omega_{n}$ inducing the topology
$\mathcal{T}_{n}$. Let $\Omega=\Pi_{n=1}^{+\infty} \Omega_{n}$ be the Cartesian product and $\mathcal{T}$ be the product topology on $\Omega$. For all $x, y \in \Omega$, we define:

$$
d(x, y) \triangleq \sum_{n=1}^{+\infty} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)
$$

1. Show that for all $a, b \in \mathbf{R}^{+}$, we have $1 \wedge(a+b) \leq 1 \wedge a+1 \wedge b$.
2. Show that $d$ is a metric on $\Omega$.
3. Show that $U \subseteq \Omega$ is open in $\Omega$, if and only if, for all $x \in U$, there is an integer $N \geq 1$ and open sets $U_{1}, \ldots, U_{N}$ in $\Omega_{1}, \ldots, \Omega_{N}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

4. Show that $d(x, y)<1 / 2^{n} \Rightarrow d_{n}\left(x_{n}, y_{n}\right) \leq 2^{n} d(x, y)$.
5. Show that for all $U \in \mathcal{T}$ and $x \in U$, there exists $\epsilon>0$ such that $d(x, y)<\epsilon \Rightarrow y \in U$.
6. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
7. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Show the existence of $\epsilon>0$ and $N \geq 1$, such that:

$$
\sum_{n=1}^{N} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)<\epsilon \Rightarrow y \in U
$$

8. Show that for all $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$, there is $\epsilon>0$ and $N \geq 1$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{N}, \epsilon\right) \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

9. Show that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
10. Show that the product topological space $(\Omega, \mathcal{T})$ is metrizable.

Definition 57 Let $(\Omega, \mathcal{T})$ be a topological space. A subset $\mathcal{H}$ of $\mathcal{T}$ is called a countable base of $(\Omega, \mathcal{T})$, if and only if $\mathcal{H}$ is at most countable, and has the property:

$$
\forall U \in \mathcal{T}, \exists \mathcal{H}^{\prime} \subseteq \mathcal{H}, \quad U=\bigcup_{V \in \mathcal{H}^{\prime}} V
$$

Exercise 16.

1. Show that $\mathcal{H}=\{ ] r, q[: r, q \in \mathbf{Q}\}$ is a countable base of $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$.
2. Show that if $(\Omega, \mathcal{T})$ is a topological space with countable base, and $\Omega^{\prime} \subseteq \Omega$, then the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$ also has a countable base.
3. Show that $[-1,1]$ has a countable base.
4. Show that if $(\Omega, \mathcal{T})$ and $\left(S, \mathcal{T}_{S}\right)$ are homeomorphic, then $(\Omega, \mathcal{T})$ has a countable base if and only if $\left(S, \mathcal{T}_{S}\right)$ has a countable base.
5. Show that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ has a countable base.

Exercise 17. Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of topological spaces with countable base. For $n \geq 1$, Let $\left\{V_{n}^{k}: k \in I_{n}\right\}$ be a countable base of $\left(\Omega_{n}, \mathcal{T}_{n}\right)$ where $I_{n}$ is a finite or countable set. Let $\Omega=\Pi_{n=1}^{\infty} \Omega_{n}$ be the Cartesian product and $\mathcal{T}$ be the product topology on $\Omega$. For all $p \geq 1$, we define:

$$
\mathcal{H}^{p} \triangleq\left\{V_{1}^{k_{1}} \times \ldots \times V_{p}^{k_{p}} \times \prod_{n=p+1}^{+\infty} \Omega_{n}:\left(k_{1}, \ldots, k_{p}\right) \in I_{1} \times \ldots \times I_{p}\right\}
$$

and we put $\mathcal{H}=\cup_{p \geq 1} \mathcal{H}^{p}$.

1. Show that for all $p \geq 1, \mathcal{H}^{p} \subseteq \mathcal{T}$.
2. Show that $\mathcal{H} \subseteq \mathcal{T}$.
3. For all $p \geq 1$, show the existence of an injection $j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}^{p}$.
4. Show the existence of a bijection $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$.
5. For $p \geq 1$, show the existence of an bijection $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$.
6. Show that $\mathcal{H}^{p}$ is at most countable for all $p \geq 1$.
7. Show the existence of an injection $j: \mathcal{H} \rightarrow \mathbf{N}^{2}$.
8. Show that $\mathcal{H}$ is a finite or countable set of open sets in $\Omega$.
9. Let $U \in \mathcal{T}$ and $x \in U$. Show that there is $p \geq 1$ and $U_{1}, \ldots, U_{p}$ open sets in $\Omega_{1}, \ldots, \Omega_{p}$ such that:

$$
x \in U_{1} \times \ldots \times U_{p} \times \prod_{n=p+1}^{+\infty} \Omega_{n} \subseteq U
$$

10. Show the existence of some $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U$.
11. Show that $\mathcal{H}$ is a countable base of the topological space $(\Omega, \mathcal{T})$.
12. Show that $\otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right) \subseteq \mathcal{B}(\Omega)$.
13. Show that $\mathcal{H} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$.
14. Show that $\mathcal{B}(\Omega)=\otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$

Theorem 27 Let $\left(\Omega_{n}, \mathcal{T}_{n}\right)_{n \geq 1}$ be a sequence of topological spaces with countable base. Then, the product space $\left(\Pi_{n=1}^{+\infty} \Omega_{n}, \odot_{n=1}^{+\infty} \mathcal{T}_{n}\right)$ has a countable base and:

$$
\mathcal{B}\left(\prod_{n=1}^{+\infty} \Omega_{n}\right)=\bigotimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)
$$

Exercise 18.

1. Show that if $(\Omega, \mathcal{T})$ has a countable base and $n \geq 1$ :

$$
\mathcal{B}\left(\Omega^{n}\right)=\underbrace{\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)}_{n}
$$

2. Show that $\mathcal{B}\left(\overline{\mathbf{R}}^{n}\right)=\mathcal{B}(\overline{\mathbf{R}}) \otimes \ldots \otimes \mathcal{B}(\overline{\mathbf{R}})$.
3. Show that $\mathcal{B}(\mathbf{C})=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$.

Definition 58 We say that a metric space $(E, d)$ is separable, if and only if there exists a finite or countable dense subset of $E$, i.e. a finite or countable subset $A$ of $E$ such that $E=\bar{A}$, where $\bar{A}$ is the closure of $A$ in $E$.

Exercise 19. Let $(E, d)$ be a metric space.

1. Suppose that $(E, d)$ is separable. Let $\mathcal{H}=\left\{B\left(x_{n}, \frac{1}{p}\right): n, p \geq 1\right\}$, where $\left\{x_{n}: n \geq 1\right\}$ is a countable dense subset in $E$. Show that $\mathcal{H}$ is a countable base of the metric topological space $\left(E, \mathcal{I}_{E}^{d}\right)$.
2. Suppose conversely that $\left(E, \mathcal{T}_{E}^{d}\right)$ has a countable base $\mathcal{H}$. For all $V \in \mathcal{H}$ such that $V \neq \emptyset$, take $x_{V} \in V$. Show that the set $\left\{x_{V}: V \in \mathcal{H}, V \neq \emptyset\right\}$ is at most countable and dense in $E$.
3. For all $x, y, x^{\prime}, y^{\prime} \in E$, show that:

$$
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

4. Let $\mathcal{T}_{E \times E}$ be the product topology on $E \times E$. Show that the map $d:\left(E \times E, \mathcal{T}_{E \times E}\right) \rightarrow\left(\mathbf{R}^{+}, \mathcal{T}_{\mathbf{R}^{+}}\right)$is continuous.
5. Show that $d:(E \times E, \mathcal{B}(E \times E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable.
6. Show that $d:(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is measurable, whenever $(E, d)$ is a separable metric space.
7. Let $(\Omega, \mathcal{F})$ be a measurable space and $f, g:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ be measurable maps. Show that $\Phi:(\Omega, \mathcal{F}) \rightarrow E \times E$ defined by $\Phi(\omega)=(f(\omega), g(\omega))$ is measurable with respect to the product $\sigma$-algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$.
8. Show that if $(E, d)$ is separable, then $\Psi:(\Omega, \mathcal{F}) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ defined by $\Psi(\omega)=d(f(\omega), g(\omega))$ is measurable.
9. Show that if $(E, d)$ is separable then $\{f=g\} \in \mathcal{F}$.
10. Let $\left(E_{n}, d_{n}\right)_{n \geq 1}$ be a sequence of separable metric spaces. Show that the product space $\Pi_{n=1}^{+\infty} E_{n}$ is metrizable and separable.

Exercise 20. Prove the following theorem.
Theorem 28 Let $\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$ be a family of measurable spaces and $(\Omega, \mathcal{F})$ be a measurable space. For all $i \in I$, let $f_{i}: \Omega \rightarrow \Omega_{i}$ be a map, and define $f: \Omega \rightarrow \Pi_{i \in I} \Omega_{i}$ by $f(\omega)=\left(f_{i}(\omega)\right)_{i \in I}$. Then, the map:

$$
f:(\Omega, \mathcal{F}) \rightarrow\left(\prod_{i \in I} \Omega_{i}, \bigotimes_{i \in I} \mathcal{F}_{i}\right)
$$

is measurable, if and only if each $f_{i}:(\Omega, \mathcal{F}) \rightarrow\left(\Omega_{i}, \mathcal{F}_{i}\right)$ is measurable.

Exercise 21.

1. Let $\phi, \psi: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $\phi(x, y)=x+y$ and $\psi(x, y)=x . y$. Show that both $\phi$ and $\psi$ are continuous.
2. Show that $\phi, \psi:\left(\mathbf{R}^{2}, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ are measurable.
3. Let $(\Omega, \mathcal{F})$ be a measurable space, and $f, g:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be measurable maps. Using the previous results, show that $f+g$ and $f . g$ are measurable with respect to $\mathcal{F}$ and $\mathcal{B}(\mathbf{R})$.

## Solutions to Exercises

## Exercise 1.

1. If $\Omega_{i}=\Omega$ for all $i \in I$, then $\cup_{i \in I} \Omega_{i}=\Omega$. For any map $f: I \rightarrow \Omega$, the condition $f(i) \in \Omega_{i}$ for all $i \in I$, is automatically satisfied. Hence, $\Omega^{I}$ is the set of all maps $f: I \rightarrow \Omega$.
2. $\mathbf{R}^{\mathbf{R}^{+}}$is the set of all maps $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$. The set $\mathbf{R}^{\mathbf{N}}$ is that of all maps $f: \mathbf{N} \rightarrow \mathbf{R}$, or in other words, the set of all sequences $\left(u_{n}\right)_{n \geq 0}$ with values in $\mathbf{R}$. As for $[0,1]^{\mathbf{N}}$, it is the set of all sequences $\left(u_{n}\right)_{n \geq 0}$ with values in $[0,1]$. Finally, $\overline{\mathbf{R}}^{\mathbf{R}}$ etc...
3. Yes. Maps defined on $\mathbf{N}^{*}$ or sequences are the same thing.
4. For any set $E, E^{n}$ is the set of all maps $f: \mathbf{N}_{n} \rightarrow E$.
5. $E \times F \times G$ is the set of all maps $\omega: \mathbf{N}_{3} \rightarrow E \cup F \cup G$ such that $\omega_{1} \in E, \omega_{2} \in F$ and $\omega_{3} \in G$.

Exercise 1

## Exercise 2.

1. $\Pi_{i \in I_{\lambda}} \Omega_{i}$ is the set of all maps $f$ defined on $I_{\lambda}$, with $f(i) \in \Omega_{i}$ for all $i \in I_{\lambda}$.
2. $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$ is the set of all maps $x$ defined on $\Lambda$, such that $x(\lambda) \in \Pi_{i \in I_{\lambda}} \Omega_{i}$, for all $\lambda \in \Lambda$.
3. Given $\omega \in \Pi_{i \in I} \Omega_{i}$ and $\lambda \in \Lambda$, let $\omega_{\mid I_{\lambda}}$ be the restriction of $\omega$ to $I_{\lambda} \subseteq I$. Since $\omega(i) \in \Omega_{i}$ for all $i \in I$, in particular $\omega(i) \in \Omega_{i}$ for all $i \in I_{\lambda}$. Hence, $\omega_{\mid I_{\lambda}} \in \Pi_{i \in I_{\lambda}} \Omega_{i}$. This being true for all $\lambda \in \Lambda$, the map $\Phi(\omega)=\left(\omega_{\mid I_{\lambda}}\right)_{\lambda \in \Lambda}$ defined on $\Lambda$ by $\Phi(\omega)(\lambda)=\omega_{\mid I_{\lambda}}$, is an element of $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$. Hence, we have defined a map $\Phi: \Pi_{i \in I} \Omega_{i} \rightarrow \Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$. Let $y \in \Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$. Since $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ is a partition of $I$, for all $i \in I$, there exists a unique $\lambda \in \Lambda$ such that $i \in I_{\lambda}$. Define $\omega(i)=y(\lambda)(i)$. Then, $\omega(i) \in \Omega_{i}$ for all $i \in I$, i.e. $\omega \in \Pi_{i \in I} \Omega_{i}$. Moreover, by construction, $\Phi(\omega)(\lambda)=\omega_{\mid I_{\lambda}}=y(\lambda)$, for all $\lambda \in \Lambda$. We have found a map $\omega \in \Pi_{i \in I} \Omega_{i}$, such that $\Phi(\omega)=y$. So $\Phi$ is a surjective map.

Suppose that $\Phi(\omega)=\Phi\left(\omega^{\prime}\right)$ for some $\omega, \omega^{\prime} \in \Pi_{i \in I} \Omega_{i}$. Let $i \in I$, and $\lambda \in \Lambda$ be such that $i \in I_{\lambda}$. Then, we have:

$$
\omega(i)=\left(\omega_{\mid I_{\lambda}}\right)(i)=\Phi(\omega)(\lambda)(i)=\Phi\left(\omega^{\prime}\right)(\lambda)(i)=\omega^{\prime}(i)
$$

So $\omega=\omega^{\prime}$, and $\Phi$ is an injective map. We have found a natural bijection from $\Pi_{i \in I} \Omega_{i}$ to $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$.
Given a map $\omega \in \Pi_{i \in I} \Omega_{i}$, it is customary to regard $\omega$ as the family $\left(\omega_{i}\right)_{i \in I}$ where $\omega_{i}=\omega(i)$ for all $i \in I$. (A map defined on $I$ is nothing but a family indexed by $I$ ). Hence, the restriction $\omega_{\mid I_{\lambda}}$ is nothing but the family $\left(\omega_{i}\right)_{i \in I_{\lambda}}$, and the map $\Phi(\omega)$ can be written as:

$$
\Phi\left(\left(\omega_{i}\right)_{i \in I}\right)=\left(\left(\omega_{i}\right)_{i \in I_{\lambda}}\right)_{\lambda \in \Lambda}
$$

The mapping $\Phi$ looks like a pretty natural mapping, given the partition $\left(I_{\lambda}\right)_{\lambda \in \Lambda}$ of the set $I$.
4. $\mathbf{R}^{p} \times \mathbf{R}^{n}$ is the set of all maps $\omega: \mathbf{N}_{2} \rightarrow \mathbf{R}^{p} \cup \mathbf{R}^{n}$ such that
$\omega_{1} \in \mathbf{R}^{p}$ and $\omega_{2} \in \mathbf{R}^{n 3}$. Each $\omega_{1} \in \mathbf{R}^{p}$ is a map $\omega_{1}: \mathbf{N}_{p} \rightarrow \mathbf{R}$, and each $\omega_{2} \in \mathbf{R}^{n}$ is a map $\omega_{2}: \mathbf{N}_{n} \rightarrow \mathbf{R}$. Given $\omega \in \mathbf{R}^{p} \times \mathbf{R}^{n}$, define $\psi(\omega) \in \mathbf{R}^{p+n}$ as:

$$
\psi(\omega)(i)= \begin{cases}\omega_{1}(i) & \text { if } 1 \leq i \leq p \\ \omega_{2}(i-p) & \text { if } p+1 \leq i \leq p+n\end{cases}
$$

i.e. $\psi(\omega)=\left(\omega_{1}(1), \ldots, \omega_{1}(p), \omega_{2}(1), \ldots, \omega_{2}(n)\right)$. The mapping $\omega \rightarrow \psi(\omega)$ from $\mathbf{R}^{p} \times \mathbf{R}^{n}$ to $\mathbf{R}^{p+n}$ is a bijection, which may be regarded as natural...

Exercise 2

[^1]
## Exercise 3.

1. Let $A=A_{1} \times \ldots \times A_{n}$ be such that $A_{i} \in \mathcal{E}_{i}$ for all $i=1, \ldots, n$. Then $A$ is of the form $A=\Pi_{i \in \mathbf{N}_{n}} A_{i}$ with $A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$, and the condition $A_{i} \neq \Omega_{i}$ for finitely many $i \in \mathbf{N}_{n}$, is obviously satisfied. So $A$ is a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in \mathbf{N}_{n}}$, that is $A \in \mathcal{E}_{1} \amalg \ldots \amalg \mathcal{E}_{n}$. Conversely, Let $A=\Pi_{i \in \mathbf{N}_{n}} A_{i}$ be a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in \mathbf{N}_{n}}$. Then, each $A_{i}$ is an element of $\mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$. Since $\Omega_{i} \in \mathcal{E}_{i}$ for all $i \in \mathbf{N}_{n}$, each $A_{i}$ is in fact an element of $\mathcal{E}_{i}$. So $A$ is of the form $A=A_{1} \times \ldots \times A_{n}$, with $A_{i} \in \mathcal{E}_{i}$. We have proved that the set of rectangles of $\left(\mathcal{E}_{i}\right)_{i \in \mathbf{N}_{n}}$ is given by:

$$
\mathcal{E}_{1} \amalg \ldots \amalg \mathcal{E}_{n}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{E}_{i}, \forall i \in \mathbf{N}_{n}\right\}
$$

2. Let $A$ be a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in I}$. Then $A=\Pi_{i \in I} A_{i}$, where $A_{i} \in \mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I$. Let $J$ be the set $J=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$. Then $J$ is a finite subset of $I$. Moreover, for all $j \in J, A_{j} \neq \Omega_{j}$, yet $A_{j} \in \mathcal{E}_{j} \cup\left\{\Omega_{j}\right\}$. So $A_{j} \in \mathcal{E}_{j}$. Let $\omega \in A=\Pi_{i \in I} A_{i}$. Then $\omega$ is a map defined on $I$
such that $\omega(i) \in A_{i} \subseteq \Omega_{i}$ for all $i \in I$. In particular, $\omega \in \Pi_{i \in I} \Omega_{i}$, and $\omega(j) \in A_{j}$ for all $j \in J$. Conversely, suppose $\omega \in \Pi_{i \in I} \Omega_{i}$ is such that $\omega(j) \in A_{j}$ for all $j \in J$. Then $\omega$ is a map defined on $I$ such that $\omega(i) \in \Omega_{i}$ for all $i \in I$, and furthermore, $\omega(j) \in A_{j}$ for all $j \in J$. However, for all $i \in I \backslash J$, we have $A_{i}=\Omega_{i}$. It follows that $\omega$ is a map defined on $I$ such that $\omega(i) \in A_{i}$ for all $i \in I$. So $\omega \in \Pi_{i \in I} A_{i}=A$. We have proved that there exists a finite subset $J$ of $I$, and a family $\left(A_{j}\right)_{j \in J}$ with $A_{j} \in \mathcal{E}_{j}$, such that $A=\left\{\omega \in \Pi_{i \in I} \Omega_{i}: \omega(j) \in A_{j}, \forall j \in J\right\}$.

Exercise 3

## Exercise 4.

1. By definition, $\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$ is generated by the set of measurable rectangles $\mathcal{F}_{1} \amalg \ldots \amalg \mathcal{F}_{n}$. Since $\Omega_{i} \in \mathcal{F}_{i}$ for all $i \in \mathbf{N}_{n}$, and since $N_{n}$ is finite, these rectangles are of the form $A_{1} \times \ldots \times A_{n}$ where $A_{i} \in \mathcal{F}_{i}$, for all $i \in \mathbf{N}_{n}$.
2. $\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ is generated by the set of measurable rectangles $\mathcal{B}(\mathbf{R}) \amalg \mathcal{B}(\mathbf{R}) \amalg \mathcal{B}(\mathbf{R})$. These rectangles are of the form $A \times B \times C$, where $A, B, C \in \mathcal{B}(\mathbf{R})$.
3. Since $\mathbf{R}^{+} \in \mathcal{B}\left(\mathbf{R}^{+}\right)$and $\Omega \in \mathcal{F}$, the set of measurable rectangles $\mathcal{B}\left(\mathbf{R}^{+}\right) \amalg \mathcal{F}$ is the set of all $B \times F$, where $B \in \mathcal{B}\left(\mathbf{R}^{+}\right)$and $F \in \mathcal{F}$. Such sets generate the $\sigma$-algebra $\mathcal{B}\left(\mathbf{R}^{+}\right) \otimes \mathcal{F}$ on $\mathbf{R}^{+} \times \Omega$.

Exercise 4

## Exercise 5.

1. By definition, a generator of $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$ is the set of measurable rectangles of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$, i.e. $\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.
2. Let $A=\Pi_{i \in I} A_{i}$ be a rectangle in $\amalg_{i \in I} \mathcal{E}_{i}$. Then, each $A_{i}$ is an element of $\mathcal{E}_{i} \cup\left\{\Omega_{i}\right\}$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I$. In particular, $A$ is also a rectangle in $\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$. Hence, we have:

$$
\coprod_{i \in I} \mathcal{E}_{i} \subseteq \coprod_{i \in I} \sigma\left(\mathcal{E}_{i}\right) \subseteq \sigma\left(\coprod_{i \in I} \sigma\left(\mathcal{E}_{i}\right)\right) \triangleq \otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)
$$

and consequently, $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right) \subseteq \otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.
3. Let $A \neq \emptyset$ be a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$. Suppose that $A=\Pi_{i \in I} A_{i}=\Pi_{i \in I} B_{i}$ are two representations of $A$. Since $A$ is non-empty, there exists $f \in A$. The mapping $f$ defined on $I$, is such that $f(i) \in A_{i} \cap B_{i}$ for all $i \in I$. Let $j \in I$ be given. Suppose $x \in A_{j}$. Define $g$ on $I$, by $g(i)=f(i)$ if $i \neq j$, and $g(j)=x$. Then, $g(i) \in A_{i}$ for all $i \in I$. So $g \in \Pi_{i \in I} A_{i}=A=\Pi_{i \in I} B_{i}$,
and in particular, $x=g(j) \in B_{j}$. Hence, we see that $A_{j} \subseteq B_{j}$, and similarly $B_{j} \subseteq A_{j} . j \in I$ being arbitrary, we have proved that $A_{i}=B_{i}$ for all $i \in I$. The set $J_{A}=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$ is therefore well-defined, as the $A_{i}$ 's are uniquely determined. Furthermore, $A$ being a rectangle, the set $J_{A}$ is finite.
4. Let $A \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$. If $A=\emptyset$, then $A$ is an element of the $\sigma$-algebra $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. If $A \neq \emptyset$ but $J_{A}=\emptyset$, then $A_{i}=\Omega_{i}$ for all $i \in I$, and $A=\Pi_{i \in I} A_{i}=\Pi_{i \in I} \Omega_{i}$ is also an element of the $\sigma$-algebra $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.

Exercise 5

## Exercise 6.

1. By assumption, $A \neq \emptyset$. There exists a map $f$ defined on $I$, such that $f(i) \in A_{i}$, for all $i \in I$. Since $A_{i_{1}} \subseteq \Omega_{i_{1}}, f$ is also an element of $A^{\Omega_{i_{1}}}$. So $A^{\Omega_{i_{1}}} \neq \emptyset$. By definition, $J_{A^{\Omega_{i_{1}}}}=\left\{i \in I: \bar{A}_{i} \neq \Omega_{i}\right\}$, where each $\bar{A}_{i}$ is equal to $A_{i}$, except $\overline{A_{1}}=\Omega_{i_{1}}$. It follows that $J_{A^{\Omega_{i_{1}}}}=\left\{i \in I \backslash\left\{i_{1}\right\}: A_{i} \neq \Omega_{i}\right\}=J_{A} \backslash\left\{i_{1}\right\}$. Since by assumption, $i_{1} \in J_{A}$, and $\operatorname{card} J_{A}=n+1, \operatorname{card} J_{A^{\Omega_{i_{1}}}}=n$. Finally, $A$ being a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$, each $A_{i}$ is an element of $\sigma\left(\mathcal{E}_{i}\right) \cup\left\{\Omega_{i}\right\}=\sigma\left(\mathcal{E}_{i}\right)$. It follows that $\bar{A}_{i} \in \sigma\left(\mathcal{E}_{i}\right)$ for all $i \in I$. Since $\bar{A}_{i} \neq \Omega_{i}$ for finitely many $i \in I$, we conclude that $A^{\Omega_{i_{1}}}=\Pi_{i \in I} \bar{A}_{i} \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$.
2. Our induction hypothesis is that if $A$ is a non-empty rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ with $\operatorname{card} J_{A}=n$, then $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. Since from 1., $A^{\Omega_{i_{1}}}$ satisfies such properties, $A^{\Omega_{i_{1}}} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. It follows that $\Omega_{i_{1}} \in \Gamma$.
3. Let $B \subseteq \Omega_{i_{1}}$. Let $f \in A^{\Omega_{i_{1}} \backslash B}$. Then, $f$ is a map defined on
$I$, such that $f(i) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$, and $f\left(i_{1}\right) \in \Omega_{i_{1}} \backslash B$. In particular, $f \in A^{\Omega_{i_{1}}}$ and $f \notin A^{B}$. So $f \in A^{\Omega_{i_{1}}} \backslash A^{B}$, and $A^{\Omega_{i_{1}} \backslash B} \subseteq A^{\Omega_{i_{1}}} \backslash A^{B}$. Conversely, suppose $f \in A^{\Omega_{i_{1}}} \backslash A^{B}$. $f$ being an element of $A^{\Omega_{i_{1}}}, f(i) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$. Since $f \notin A^{B}, f\left(i_{1}\right)$ cannot be an element of $B$. It follows that $f\left(i_{1}\right) \in \Omega_{i_{1}} \backslash B$, and $f \in A^{\Omega_{i_{1}} \backslash B}$. We have proved that $A^{\Omega_{i_{1}} \backslash B}=A^{\Omega_{i_{1}}} \backslash A^{B}$.
4. Let $B \in \Gamma$. Then, $A^{B} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. All $\sigma$-algebras being closed under complementation, we have $\left(A^{B}\right)^{c} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. Moreover, from 2., $A^{\Omega_{i_{1}}} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. It follows that:

$$
A^{\Omega_{i_{1}} \backslash B}=A^{\Omega_{i_{1}}} \backslash A^{B}=A^{\Omega_{i_{1}}} \cap\left(A^{B}\right)^{c} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)
$$

We conclude that $\Omega_{i_{1}} \backslash B \in \Gamma$.
5. Let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of subsets of $\Omega_{i_{1}}$. If $f \in A^{\cup B_{n}}$, then $f$ is a map defined on $I$, such that $f(i) \in A_{i}$ for all $i \neq i_{1}$, and $f\left(i_{1}\right) \in \cup_{n \geq 1} B_{n}$. There exists $n \geq 1$ such that $f\left(i_{1}\right) \in B_{n}$, which implies that $f \in A^{B_{n}}$. So $f \in \cup_{n \geq 1} A^{B_{n}}$, and we see that
$A^{\cup B_{n}} \subseteq \cup_{n \geq 1} A^{B_{n}}$. Conversely, suppose that $f \in \cup_{n \geq 1} A^{B_{n}}$. There exists $n \geq 1$, such that $f \in A^{B_{n}}$. In particular, $f(\bar{i}) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$, and $f\left(i_{1}\right) \in B_{n} \subseteq \cup_{n \geq 1} B_{n}$. So $f \in A^{\cup B_{n}}$. We have proved that $A^{\cup B_{n}}=\cup_{n \geq 1} A^{B_{n}}$.
6. From 2., $\Omega_{i_{1}} \in \Gamma$. From 4., $\Gamma$ is closed under complementation. To show that $\Gamma$ is a $\sigma$-algebra on $\Omega_{i_{1}}$, it remains to show that $\Gamma$ is closed under countable union. Let $\left(B_{n}\right)_{n \geq 1}$ be a sequence of elements of $\Gamma$. Then, for all $n \geq 1, A^{B_{n}} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. It follows that:

$$
A^{\cup B_{n}}=\cup_{n=1}^{+\infty} A^{B_{n}} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)
$$

So $\cup_{n \geq 1} B_{n} \in \Gamma$, and $\Gamma$ is indeed closed under countable union. We have proved that $\Gamma$ is a $\sigma$-algebra on $\Omega_{i_{1}}$.
7. Let $B \in \mathcal{E}_{i_{1}}, \bar{B}_{i}=\Omega_{i}$ for all $i \neq i_{1}$, and $\overline{B_{i_{1}}}=B$. Let $f \in A^{B}$. Then, $f$ is a map defined on $I$, such that $f(i) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$, and $f\left(i_{1}\right) \in B$. In particular, $f \in A^{\Omega_{i_{1}}}$ and $f(i) \in \bar{B}_{i}$ for all $i \in I$, i.e. $f \in \Pi_{i \in I} \bar{B}_{i}$. Hence, $A^{B} \subseteq A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right)$.

Conversely, suppose that $f \in A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right)$. Then, $f(i) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$ and $f(i) \in \bar{B}_{i}$ for all $i \in I$. In particular, $f\left(i_{1}\right) \in \overline{B_{i_{1}}}=B$. It follows that $f \in A^{B}$. We have proved that $A^{B}=A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right)$.
8. Let $B \in \mathcal{E}_{i_{1}}$ and $\bar{B}_{i}=\Omega_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$, and $\overline{B_{i_{1}}}=B$. Then, $\Pi_{i \in I} \bar{B}_{i} \in \amalg_{i \in I} \mathcal{E}_{i}$, and in particular, $\Pi_{i \in I} \bar{B}_{i} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. From 2., $\Omega_{i_{1}} \in \Gamma$, i.e. $A^{\Omega_{i_{1}}}$ is also an element of $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. It follows from 7. that:

$$
A^{B}=A^{\Omega_{i_{1}}} \cap\left(\Pi_{i \in I} \bar{B}_{i}\right) \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)
$$

We conclude that $B \in \Gamma$. This being true for all $B \in \mathcal{E}_{i_{1}}$, we have $\mathcal{E}_{i_{1}} \subseteq \Gamma$. However, since $\Gamma$ is a $\sigma$-algebra on $\Omega_{i_{1}}$, we finally see that $\sigma\left(\mathcal{E}_{i_{1}}\right) \subseteq \Gamma$.
9. Let $f \in A=\Pi_{i \in I} A_{i}$. Then, $f(i) \in A_{i}$ for all $i \in I \backslash\left\{i_{1}\right\}$, and $f\left(i_{1}\right) \in A_{i_{1}}$. So $f \in A^{A_{i_{1}}}$. Conversely, if $f \in A^{A_{i_{1}}}$, then $f \in A$. So $A=A^{A_{i_{1}}}$. Since $A$ is a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$, $A_{i_{1}} \in \sigma\left(\mathcal{E}_{i_{1}}\right)$. From 8., $\sigma\left(\mathcal{E}_{i_{1}}\right) \subseteq \Gamma$. it follows that $A_{i_{1}} \in \Gamma$, and
consequently $A=A^{A_{i_{1}}} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. This proves our induction hypothesis for $\operatorname{card} J_{A}=n+1$.
10. Let $A \in \amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$. If $A=\emptyset$, then $A$ is an element of $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. Let $A \neq \emptyset$. If $\operatorname{card} J_{A}=0$, then $A=\Pi_{i \in I} \Omega_{i} \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. Using an induction argument on $\operatorname{card} J_{A}$, we have proved that for all $n \geq 0$ :

$$
\operatorname{card} J_{A}=n \Rightarrow A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)
$$

Since A is a rectangle of the family $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}, J_{A}$ is a finite set. It follows that $A \in \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. Finally, We conclude that $\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right) \subseteq \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$.
11. From 10., we have $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)=\sigma\left(\amalg_{i \in I} \sigma\left(\mathcal{E}_{i}\right)\right) \subseteq \sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. However, from exercise (5), $\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right) \subseteq \otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$. It follows that $\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)=\sigma\left(\amalg_{i \in I} \mathcal{E}_{i}\right)$. The purpose of this difficult exercise is to prove theorem (26). Congratulations !

Exercise 6

## Exercise 7.

1. Since $\mathbf{R} \in \mathcal{T}_{\mathbf{R}}$ and $\mathbf{N}_{n}$ is finite, from definition (52), the set of rectangles $\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}$ reduces to all sets of the form $\Pi_{i \in \mathbf{N}_{n}} A_{i}$, where $A_{i} \in \mathcal{T}_{\mathbf{R}}$ for all $i \in \mathbf{N}_{n}$. In other words:

$$
\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{T}_{\mathbf{R}}, \forall i \in \mathbf{N}_{n}\right\}
$$

2. By definition of the Borel $\sigma$-algebra, $\mathcal{B}(\mathbf{R})$ is generated by the topology $\mathcal{T}_{\mathbf{R}}$, i.e. $\mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{T}_{\mathbf{R}}\right)$. From theorem (26), we have:

$$
\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}\right)
$$

3. Let $\left.\left.\left.\left.\mathcal{C}_{2}=\{ ] a_{1}, b_{1}\right] \times \ldots \times\right] a_{n}, b_{n}\right]: a_{i}, b_{i} \in \mathbf{R}\right\}$, and let $\mathcal{S}$ be the semi-ring on $\mathbf{R}, \mathcal{S}=\{ ] a, b]: a, b \in \mathbf{R}\}$. Since $\mathbf{N}_{n}$ is finite, from definition (52), the set of rectangles $\mathcal{S} \amalg \ldots \amalg \mathcal{S}$ is made of all sets of the form $\Pi_{i \in \mathbf{N}_{n}} A_{i}$, where $A_{i} \in \mathcal{S} \cup\{\mathbf{R}\}$. Hence, each element of $\mathcal{C}_{2}$ is an element of $\mathcal{S} \amalg \ldots \amalg \mathcal{S}$, i.e. $\mathcal{C}_{2} \subseteq \mathcal{S} \amalg \ldots \amalg \mathcal{S}$. However, $\mathbf{R}^{n}$ is an element of $\mathcal{S} \amalg \ldots \amalg \mathcal{S}$, but do not belong to $\mathcal{C}_{2}$. So the inclusion $\mathcal{C}_{2} \subseteq \mathcal{S} \amalg \ldots \amalg \mathcal{S}$ is strict.
4. Let $A \in \mathcal{S} \amalg \ldots \amalg \mathcal{S}$. Then $A$ is of the form $A=A_{1} \times \ldots \times A_{n}$, where each $A_{i}$ is an element of $\mathcal{S}$, or $A_{i}=\mathbf{R}$. If all $A_{i}$ 's lie in $\mathcal{S}$, then $A \in \mathcal{C}_{2} \subseteq \sigma\left(\mathcal{C}_{2}\right)$. Let $J_{A}^{*}=\left\{k \in \mathbf{N}_{n}: A_{k}=\mathbf{R}\right\}$. We have just seen that if $J_{A}^{*}=\emptyset$, or equivalently if $\operatorname{card} J_{A}^{*}=0$, then $A \in \sigma\left(\mathcal{C}_{2}\right)$. Suppose we have proved the induction hypothesis, for $k=0, \ldots, n-1$ :

$$
A \in \mathcal{S} \amalg \ldots \amalg \mathcal{S}, \operatorname{card} J_{A}^{*}=k \Rightarrow A \in \sigma\left(\mathcal{C}_{2}\right)
$$

and let $A \in \mathcal{S} \amalg \ldots \amalg \mathcal{S}$ be such that $\operatorname{card} J_{A}^{*}=k+1$. Let $i_{1}$ be an arbitrary element of $J_{A}^{*}$. Then, $\left.\left.A_{i_{1}}=\mathbf{R}=\cup_{p=1}^{+\infty}\right]-p, p\right]$. Hence, $A$ can be written as:

$$
\begin{equation*}
\left.\left.A=A_{1} \times \ldots \times A_{n}=\bigcup_{p=1}^{+\infty} A_{1} \times \ldots \times\right]-p, p\right] \times \ldots \times A_{n} \tag{1}
\end{equation*}
$$

where $\left.\left.A_{1} \times \ldots \times\right]-p, p\right] \times \ldots \times A_{n}=B_{p}$ is a notation for $\Pi_{i \in \mathbf{N}_{n}} \bar{A}_{i}$ where $\bar{A}_{i}=A_{i}$ for all $i \neq i_{1}$, and $\left.\left.\overline{A_{i_{1}}}=\right]-p, p\right]$. Since for all $p \geq 1,]-p, p] \in \mathcal{S}, B_{p}$ is an element of $\mathcal{S} \amalg \ldots \amalg \mathcal{S}$, and more
importantly $\operatorname{card} J_{B_{p}}^{*}=k$. From our induction hypothesis, it follows that $B_{p} \in \sigma\left(\mathcal{C}_{2}\right)$. Hence, we see from equation (1) that $A \in \sigma\left(\mathcal{C}_{2}\right)$, and we have proved our induction hypothesis for $\operatorname{card} J_{A}^{*}=k+1$. We conclude that for all $A \in \mathcal{S} \amalg \ldots \amalg \mathcal{S}$, we have $A \in \sigma\left(\mathcal{C}_{2}\right)$, i.e. $\mathcal{S} \amalg \ldots \amalg \mathcal{S} \subseteq \sigma\left(\mathcal{C}_{2}\right)$.
5. From theorem $(6)^{4}$, we know that the semi-ring $\mathcal{S}$ generates the Borel $\sigma$-algebra $\mathcal{B}(\mathbf{R})$ on $\mathbf{R}$, i.e. $\mathcal{B}(\mathbf{R})=\sigma(\mathcal{S})$. Applying theorem (26), we have:

$$
\begin{equation*}
\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma(\mathcal{S} \amalg \ldots \amalg \mathcal{S}) \tag{2}
\end{equation*}
$$

However, from 3., $\mathcal{C}_{2} \subseteq \mathcal{S} \amalg \ldots \amalg \mathcal{S}$, hence $\sigma\left(\mathcal{C}_{2}\right) \subseteq \sigma(\mathcal{S} \amalg \ldots \amalg \mathcal{S})$. Moreover, from 4., $\mathcal{S} \amalg \ldots$. . $\amalg \mathcal{S} \subseteq \sigma\left(\mathcal{C}_{2}\right)$, and consequently, we have $\sigma(\mathcal{S} \amalg \ldots \amalg \mathcal{S}) \subseteq \sigma\left(\mathcal{C}_{2}\right)$. It follows that $\sigma(\mathcal{S} \amalg \ldots \amalg \mathcal{S})=\sigma\left(\mathcal{C}_{2}\right)$. Finally, from equation $(2), \mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\sigma\left(\mathcal{C}_{2}\right)$.

## Exercise 8.

1. Let $\Sigma=\sigma(\mathcal{E})$ be the $\sigma$-algebra generated by $\mathcal{E}=\{A\}$. Let $\mathcal{F}$ be the set of subsets of $\Omega$ defined by $\mathcal{F}=\left\{\emptyset, A, A^{c}, \Omega\right\}$. Note that $\Omega \in \mathcal{F}, \mathcal{F}$ is closed under complementation and countable union, so $\mathcal{F}$ is a $\sigma$-algebra on $\Omega$. Since $\mathcal{E} \subseteq \mathcal{F}$, we have $\Sigma=\sigma(\mathcal{E}) \subseteq \mathcal{F}$. However, since $\mathcal{E} \subseteq \sigma(\mathcal{E}), A \in \Sigma$. So $A^{c} \in \Sigma$. Furthermore, $\Omega \in \Sigma$ and $\emptyset \in \Sigma$. Finally, $\mathcal{F} \subseteq \Sigma$. We have proved that $\mathcal{F}=\Sigma$.
2. Since $\left\{\emptyset, \Omega^{\prime}\right\}$ is a $\sigma$-algebra on $\Omega^{\prime}$ with $\mathcal{E}^{\prime} \subseteq\left\{\emptyset, \Omega^{\prime}\right\}$, we have $\sigma\left(\mathcal{E}^{\prime}\right) \subseteq\left\{\emptyset, \Omega^{\prime}\right\}$. However, $\sigma\left(\mathcal{E}^{\prime}\right)$ being a $\sigma$-algebra on $\Omega^{\prime}$, we have $\Omega^{\prime} \in \sigma\left(\mathcal{E}^{\prime}\right)$ and $\emptyset \in \sigma\left(\mathcal{E}^{\prime}\right)$. Finally, $\sigma\left(\mathcal{E}^{\prime}\right)=\left\{\emptyset, \Omega^{\prime}\right\}$.
3. Since $\mathcal{E}^{\prime}=\emptyset, \mathcal{C}=\left\{E \times F: E \in \mathcal{E}, F \in \mathcal{E}^{\prime}\right\}=\emptyset$.
4. The rectangles in $\mathcal{E} \amalg \mathcal{E}^{\prime}$ are the sets of the form $A_{1} \times A_{2}$, where $A_{1} \in \mathcal{E} \cup\{\Omega\}$ and $A_{2} \in \mathcal{E}^{\prime} \cup\left\{\Omega^{\prime}\right\}$. Since $\mathcal{E}^{\prime}=\emptyset$, the only possible value for $A_{2}$ is $\Omega^{\prime}$. Since $\mathcal{E}=\{A\}, A_{1}$ can be equal to $A$ or $\Omega$. It follows that $\mathcal{E} \amalg \mathcal{E}^{\prime}=\left\{A \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$.
5. From theorem $(26), \sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right)$. Let $\mathcal{F}$ be defined by $\mathcal{F}=\left\{\emptyset, A \times \Omega^{\prime}, A^{c} \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$. Note that the complement of $A \times \Omega^{\prime}$ in $\Omega \times \Omega^{\prime}$ is $\left(A \times \Omega^{\prime}\right)^{c}=A^{c} \times \Omega^{\prime}$. So $\mathcal{F}$ is closed under complementation, and in fact, $\mathcal{F}$ is a $\sigma$-algebra on $\Omega \times \Omega^{\prime}$. However, from 4., $\mathcal{E} \amalg \mathcal{E}^{\prime}=\left\{A \times \Omega^{\prime}, \Omega \times \Omega^{\prime}\right\}$. So $\mathcal{E} \amalg \mathcal{E}^{\prime} \subseteq \mathcal{F}$, and consequently $\sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right) \subseteq \mathcal{F}$. Since all elements of $\mathcal{F}$ have to be in $\sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right)$, we also have $\mathcal{F} \subseteq \sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right)$. We have proved that $\mathcal{F}=\sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right)$. We conclude that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\mathcal{F}$.
6. Since $\mathcal{C}=\emptyset$, we have $\sigma(\mathcal{C})=\left\{\emptyset, \Omega \times \Omega^{\prime}\right\}$. It follows from 5 . that $\sigma(\mathcal{C}) \neq \sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)$. The purpose of this exercise is to emphasize an easy mistake to make, when applying theorem (26). This theorem states that $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\sigma\left(\mathcal{E} \amalg \mathcal{E}^{\prime}\right)$. It is very tempting to conclude that:

$$
\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\sigma\left(\left\{E \times F: E \in \mathcal{E}, F \in \mathcal{E}^{\prime}\right\}\right)
$$

But this is wrong! The reason being that the set of rectangles $\mathcal{E} \amalg \mathcal{E}^{\prime}$ is larger than the set of all $E \times F$, where $E \in \mathcal{E}$ and
$F \in \mathcal{E}^{\prime}$. The elements of $\mathcal{E} \amalg \mathcal{E}^{\prime}$ are indeed of the form $E \times F$, but with $E \in \mathcal{E} \cup\{\Omega\}$ and $F \in \mathcal{E}^{\prime} \cup\left\{\Omega^{\prime}\right\}$. (Do not forget the ' $\cup$ '). So $\sigma(\mathcal{E}) \otimes \sigma\left(\mathcal{E}^{\prime}\right)=\sigma\left(\left\{E \times F: E \in \mathcal{E} \cup\{\Omega\}, F \in \mathcal{E}^{\prime} \cup\left\{\Omega^{\prime}\right\}\right\}\right)$. You have been warned...

Exercise 8

## Exercise 9.

1. Strictly speaking, $\mathcal{F} \otimes \mathcal{G}$ is a $\sigma$-algebra on $\mathbf{R}^{n} \times \mathbf{R}^{p}$. However, $\mathbf{R}^{n} \times \mathbf{R}^{p}$ and $\mathbf{R}^{n+p}$ can be identified, through the bijection $\psi$ : $\mathbf{R}^{n} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{n+p}$, defined by $\psi(x, y)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{p}\right)$. Hence, $\mathcal{F} \otimes \mathcal{G}$ can be viewed as a $\sigma$-algebra on $\mathbf{R}^{n+p}$.
2. By definition, $\mathcal{F}=\sigma\left(\mathcal{C}_{1}\right)$, where $\mathcal{C}_{1}$ is the set of measurable rectangles $\mathcal{C}_{1}=\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{B}(\mathbf{R}), \forall i \in \mathbf{N}_{n}\right\}$. Similarly, if $\mathcal{C}_{2}=\left\{A_{n+1} \times \ldots \times A_{n+p}: A_{n+i} \in \mathcal{B}(\mathbf{R}), \forall i \in \mathbf{N}_{p}\right\}$, then $\mathcal{G}=\sigma\left(\mathcal{C}_{2}\right)$. From theorem (26), we have $\mathcal{F} \otimes \mathcal{G}=\sigma\left(\mathcal{C}_{1} \amalg \mathcal{C}_{2}\right)$. Furthermore, since $\mathbf{R}^{n} \in \mathcal{C}_{1}$ and $\mathbf{R}^{p} \in \mathcal{C}_{2}$, the set of rectangles $\mathcal{C}_{1} \amalg \mathcal{C}_{2}$ is given by $\mathcal{C}_{1} \amalg \mathcal{C}_{2}=\left\{A \times A^{\prime}: A \in \mathcal{C}_{1}, A^{\prime} \in \mathcal{C}_{2}\right\}$. If we identify sets of the form $\left(A_{1} \times \ldots \times A_{n}\right) \times\left(A_{n+1} \times \ldots \times A_{n+p}\right)$ with $A_{1} \times \ldots \times A_{n+p}$, then $\mathcal{C}_{1} \amalg \mathcal{C}_{2}$ can be written as:

$$
\mathcal{C}_{1} \amalg \mathcal{C}_{2}=\left\{A_{1} \times \ldots \times A_{n+p}: A_{i} \in \mathcal{B}(\mathbf{R}), \forall i \in \mathbf{N}_{n+p}\right\}
$$

We conclude that $\mathcal{F} \otimes \mathcal{G}$ is generated by the sets of the form $A_{1} \times \ldots \times A_{n+p}$, where $A_{i} \in \mathcal{B}(\mathbf{R})$ for all $i \in \mathbf{N}_{n+p}$.
3. Let $\mathcal{C}=\left\{A_{1} \times \ldots \times A_{n+p}: A_{i} \in \mathcal{B}(\mathbf{R}), \forall i \in \mathbf{N}_{n+p}\right\}$. From 2., $\mathcal{F} \otimes \mathcal{G}=\sigma(\mathcal{C})$. However, $\mathcal{C}$ is the set of measurable rectangles in $\mathbf{R}^{n+p}$. Consequently, $\sigma(\mathcal{C})=\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})(n+p$ terms $)$. We conclude that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})=\mathcal{F} \otimes \mathcal{G}$, i.e.


Exercise 9

## Exercise 10.

1. In exercise (2), we defined a natural bijection $\Phi: \Omega \rightarrow \Omega^{\prime}$, by:

$$
\Phi\left(\left(\omega_{i}\right)_{i \in I}\right) \triangleq\left(\left(\omega_{i}\right)_{i \in I_{\lambda}}\right)_{\lambda \in \Lambda}
$$

This allows us to define $\bar{\Phi}: \mathcal{P}(\Omega) \rightarrow \mathcal{P}\left(\Omega^{\prime}\right)$, by:

$$
\bar{\Phi}(A) \triangleq \Phi(A) \triangleq\{\Phi(\omega): \omega \in A\}
$$

for all $A \subseteq \Omega$. In other words, $\bar{\Phi}$ maps every subset $A$ of $\Omega$, with its direct image $\Phi(A)$ by the bijection $\Phi: \Omega \rightarrow \Omega^{\prime}$. Let $A^{\prime} \subseteq \Omega^{\prime}$. Since $\Phi$ is a bijection, we have $A^{\prime}=\Phi\left(\Phi^{-1}\left(A^{\prime}\right)\right)$, i.e. the direct image of the inverse image of $A^{\prime}$ by $\Phi$ is equal to $A^{\prime}$. So $A^{\prime}=\bar{\Phi}\left(\Phi^{-1}\left(A^{\prime}\right)\right)$, and $\bar{\Phi}$ is a surjective map. If $A, B \subseteq \Omega$ are such that $\bar{\Phi}(A)=\bar{\Phi}(B)$, taking the inverse images of both sides, we have $A=B$. So $\bar{\Phi}$ is an injective map. We have proved that $\bar{\Phi}$ is a bijection from $\mathcal{P}(\Omega)$ to $\mathcal{P}\left(\Omega^{\prime}\right)$. Informally, $\Phi$ is a bijection allowing us to identify an element of $\Pi_{i \in I} \Omega_{i}$ with an element of
$\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right)$. The bijection $\bar{\Phi}$ allows us to identify a subset of $\Pi_{i \in I} \Omega_{i}$ with a subset of $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} \Omega_{i}\right) \ldots$
2. Let $A$ be a subset of $\Omega$ of the form $A=\Pi_{i \in I} A_{i}$. Let $A^{\prime}$ be the corresponding set $A^{\prime}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right)$. Saying that $A$ and $A^{\prime}$ are identified through the bijection $\bar{\Phi}$, is just another way of saying that $A^{\prime}=\bar{\Phi}(A)$. Suppose $y \in \bar{\Phi}(A)$. There exists $x \in A$ such that $y=\Phi(x)$. For all $\lambda \in \Lambda$, we have $y(\lambda)=\Phi(x)(\lambda)=$ $x_{I_{\lambda}}$. Since $x \in A$, each $x_{\mid I_{\lambda}}$ is an element of $\Pi_{i \in I_{\lambda}} A_{i}$. So $y(\lambda) \in$ $\Pi_{i \in I_{\lambda}} A_{i}$ for all $\lambda \in \Lambda$. It follows that $y \in \Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right)=A^{\prime}$. So $\bar{\Phi}(A) \subseteq A^{\prime}$. Conversely, suppose $y \in A^{\prime} . y$ is a map defined on $\Lambda$, such that $y(\lambda) \in \Pi_{i \in I_{\lambda}} A_{i}$ for all $\lambda \in \Lambda$. Each $y(\lambda)$ is a map defined on $I_{\lambda}$, such that $y(\lambda)(i) \in A_{i}$ for all $i \in I_{\lambda}$. Let $x$ be the map defined on $I$ by $x(i)=y(\lambda)(i)$, where given $i \in I$, $\lambda$ is the unique element of $\Lambda$ such that $i \in I_{\lambda}$. Then, $x$ is such that $x(i) \in A_{i}$ for all $i \in I$, so $x \in \Pi_{i \in I} A_{i}=A$. Moreover, by construction, for all $\lambda \in \Lambda, x_{\mid I_{\lambda}}=y(\lambda)$. So $y(\lambda)=\Phi(x)(\lambda)$ for all $\lambda \in \Lambda$, i.e. $y=\Phi(x)$. We have found $x \in A$, such
that $y=\Phi(x)$. So $y \in \Phi(A)=\bar{\Phi}(A)$. We have proved that $A^{\prime} \subseteq \bar{\Phi}(A)$. Finally, $A^{\prime}=\bar{\Phi}(A)$. We have proved that the sets $\Pi_{i \in I} A_{i}$ and $\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right)$ are indeed identified through the bijection $\bar{\Phi}$.
3. Let $\Pi_{i \in I} A_{i} \in \amalg_{i \in I} \mathcal{F}_{i}$. Then, for all $i \in I, A_{i} \in \mathcal{F}_{i}$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I$. For each $\lambda \in \Lambda, \Pi_{i \in I_{\lambda}} A_{i}$ is therefore such that $A_{i} \in \mathcal{F}_{i}$ for all $i \in I_{\lambda}$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I_{\lambda}$. So $\Pi_{i \in I_{\lambda}} A_{i} \in \amalg_{i \in I_{\lambda}} \mathcal{F}_{i}$. It follows that $\Pi_{i \in I} A_{i}$ can be written as (through identification):

$$
\Pi_{i \in I} A_{i}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right)=\Pi_{\lambda \in \Lambda} B_{\lambda}
$$

where $B_{\lambda} \in \amalg_{i \in I_{\lambda}} \mathcal{F}_{i}$ for all $\lambda \in \Lambda$. Moreover, the set of all $\lambda \in \Lambda$ for which $B_{\lambda} \neq \Pi_{i \in I_{\lambda}} \Omega_{i}$, is necessarily finite. It follows that $\Pi_{i \in I} A_{i} \in \amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$. So $\amalg_{i \in I} \mathcal{F}_{i} \subseteq \amalg_{\lambda \in \lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$. Conversely, let $\Pi_{\lambda \in \Lambda} B_{\lambda} \in \amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$. For all $\lambda \in \Lambda$, we have $B_{\lambda} \in \amalg_{i \in I_{\lambda}} \mathcal{F}_{i}$, and $B_{\lambda} \neq \Pi_{i \in I_{\lambda}} \Omega_{i}$ for finitely many $\lambda \in \Lambda$. Hence, each $B_{\lambda}$ is of the form $\Pi_{i \in I_{\lambda}} A_{i}$, where $A_{i} \in \mathcal{F}_{i}$ for all
$i \in I_{\lambda}$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I_{\lambda}$. It follows that $\Pi_{\lambda \in \Lambda} B_{\lambda}$ can be written (with identification) as:

$$
\Pi_{\lambda \in \Lambda} B_{\lambda}=\Pi_{\lambda \in \Lambda}\left(\Pi_{i \in I_{\lambda}} A_{i}\right)=\Pi_{i \in I} A_{i}
$$

where $A_{i} \in \mathcal{F}_{i}$ for all $i \in I$, and $A_{i} \neq \Omega_{i}$ for finitely many $i \in I$. So $\Pi_{\lambda \in \Lambda} B_{\lambda} \in \amalg_{i \in I} \mathcal{F}_{i}$, and $\amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right) \subseteq \amalg_{i \in I} \mathcal{F}_{i}$. We have proved that $\amalg_{i \in I} \mathcal{F}_{i}=\amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$.
4. From definition (54), for all $\lambda \in \Lambda, \otimes_{i \in I_{\lambda}} \mathcal{F}_{i}=\sigma\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)$. Using theorem (26), $\otimes_{\lambda \in \Lambda}\left(\otimes_{i \in I_{\lambda}} \mathcal{F}_{i}\right)=\sigma\left(\amalg_{\lambda \in \Lambda}\left(\amalg_{i \in I_{\lambda}} \mathcal{F}_{i}\right)\right)$. Using 3., we conclude that $\otimes_{\lambda \in \Lambda}\left(\otimes_{i \in I_{\lambda}} \mathcal{F}_{i}\right)=\sigma\left(\amalg_{i \in I} \mathcal{F}_{i}\right)=\otimes_{i \in I} \mathcal{F}_{i}$.

Exercise 10

## Exercise 11.

1. Let $T(\mathcal{A})$ be the set of all topologies $\mathcal{T}$ on $\Omega$, which contain $\mathcal{A}$, i.e. such that $\mathcal{A} \subseteq \mathcal{T}$. Note that $T(\mathcal{A})$ is not the empty set, as the power set $\mathcal{P}(\Omega)$ is clearly a topology on $\Omega$ (called the discrete topology) which satisfies $\mathcal{A} \subseteq \mathcal{P}(\Omega)$. By definition (55), the topology $\mathcal{T}(\mathcal{A})$ generated by $\mathcal{A}$, is equal to $\cap_{\mathcal{T} \in T(\mathcal{A})} \mathcal{T}$. In order to show that $\mathcal{T}(\mathcal{A})$ is indeed a topology on $\Omega$, it is sufficient to prove that an arbitrary intersection of topologies on $\Omega$, is also a topology on $\Omega$. Let $\left(\mathcal{T}_{i}\right)_{i \in I}$ be an arbitrary family of topologies on $\Omega$, and let $\mathcal{T}=\cap_{i \in I} \mathcal{T}_{i}$. Since $\emptyset$ and $\Omega$ belong to $\mathcal{T}_{i}$ for all $i \in I, \emptyset$ and $\Omega$ are elements of $\mathcal{T}$. If $A, B \in \mathcal{T}$, then $A, B \in \mathcal{T}_{i}$ for all $i \in I$, and therefore $A \cap B \in \mathcal{T}_{i}$ for all $i \in I$. It follows that $A \cap B \in \mathcal{T}$, and $\mathcal{T}$ is closed under finite intersection. If $\left(A_{j}\right)_{j \in J}$ is an arbitrary family of elements of $\mathcal{T}$, then for all $i \in I,\left(A_{j}\right)_{j \in J}$ is an arbitrary family of elements of $\mathcal{T}_{i}$, and consequently $\cup_{j \in J} A_{j} \in \mathcal{T}_{i}$. This being true for all $i \in I$, $\cup_{j \in J} A_{j} \in \mathcal{T}$, and $\mathcal{T}$ is closed under arbitrary union. We have
proved that $\mathcal{T}$ is a topology on $\Omega$. An arbitrary intersection of topologies on $\Omega$, is a topology on $\Omega$. In particular, the topology $\mathcal{T}(\mathcal{A})$ is a topology on $\Omega$.
2. Given $T(\mathcal{A})=\{\mathcal{T}: \mathcal{T}$ topology on $\Omega, \mathcal{A} \subseteq \mathcal{T}\}$, the topology $\mathcal{T}(\mathcal{A})$ generated by $\mathcal{A}$ is given by $\mathcal{T}(\mathcal{A})=\cap_{\mathcal{T} \in T(\mathcal{A})} \mathcal{T}$. Hence, we have $\mathcal{A} \subseteq \mathcal{T}(\mathcal{A})$. Suppose $\mathcal{T}$ is another topology on $\Omega$, such that $\mathcal{A} \subseteq \mathcal{T}$. Then, $\mathcal{T} \in T(\mathcal{A})$. It follows that $\mathcal{T}(\mathcal{A}) \subseteq \mathcal{T}$. We have proved that $\mathcal{T}(\mathcal{A})$ is the smallest topology on $\Omega$, such that $\mathcal{A} \subseteq \mathcal{T}(\mathcal{A})$.
3. Let $(E, d)$ be a metric space, and $\mathcal{A}$ be the set of all open balls:

$$
\mathcal{A}=\{B(x, \epsilon): x \in E, \epsilon>0\}
$$

Let $\mathcal{T}_{E}^{d}$ be the metric topology on $E$. Since any open ball in $E$ is open with respect to the metric topology, i.e. belongs to $\mathcal{T}_{E}^{d}$, we have $\mathcal{A} \subseteq \mathcal{T}_{E}^{d}$ and therefore $\mathcal{T}(\mathcal{A}) \subseteq \mathcal{T}_{E}^{d}$. Conversely, let $U \in \mathcal{T}_{E}^{d}$. Define $\Gamma=\{B(x, \epsilon): x \in E, \epsilon>0, B(x, \epsilon) \subseteq U\}$, i.e. let $\Gamma$ be the set of all open balls in $E$ which are contained in $U$. Since
$U$ is open for the metric topology, from definition (30), for all $x \in U$, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq U$. In particular, there exists $B \in \Gamma$ such that $x \in B$. Hence, $U \subseteq \cup_{B \in \Gamma} B$. Conversely, for all $x \in \cup_{B \in \Gamma} B$, there exists $B \in \Gamma$ such that $x \in B$. But $B \subseteq U$. So $x \in U$. Hence, we see that $U=\cup_{B \in \Gamma} B$. However, $\Gamma$ is a subset of $\mathcal{A} \subseteq \mathcal{T}(\mathcal{A})$. It follows that $\cup_{B \in \Gamma} B$ is an element of $\mathcal{T}(\mathcal{A})$. We have proved that $U \in \mathcal{T}(\mathcal{A})$. Hence $\mathcal{T}_{E}^{d} \subseteq \mathcal{T}(\mathcal{A})$. Finally, $\mathcal{T}_{E}^{d}=\mathcal{T}(\mathcal{A})$, i.e. the metric topology on $E$ is generated by the set of all open balls in $E$.

Exercise 11

## Exercise 12.

1. Let $U$ be a subset of $\Pi_{i \in I} \Omega_{i}$ with the property:

$$
\begin{equation*}
\forall x \in U, \exists V \in \amalg_{i \in I} \mathcal{T}_{i} \quad: x \in V \subseteq U \tag{3}
\end{equation*}
$$

Define $\Gamma=\left\{V \in \amalg_{i \in I} \mathcal{T}_{i}: V \subseteq U\right\}$. Given $x \in U$, since property (3) holds, there exists $V \in \Gamma$ such that $x \in V$. So $U \subseteq \cup_{V \in \Gamma} V$. Conversely, if $x \in \cup_{V \in \Gamma} V$, there exists $V \in \Gamma$ such that $x \in V$. But $V \subseteq U$. So $x \in U$. Hence, we see that $U=\cup_{V \in \Gamma} V$. Since $\Gamma \subseteq \amalg_{i \in I} \mathcal{T}_{i} \subseteq \odot_{i \in I} \mathcal{T}_{i}$, each $V \in \Gamma$ is an element of the product topology $\odot_{i \in I} \mathcal{T}_{i}$. So $\cup_{V \in \Gamma} V$ is also an element of $\odot_{i \in I} \mathcal{T}_{i}$. We have proved that $U \in \odot_{i \in I} \mathcal{I}_{i}$, and therefore, any subset of $\Pi_{i \in I} \Omega_{i}$ with property (3), belongs to the product topology $\odot_{i \in I} \mathcal{T}_{i}$. Let $\mathcal{T}$ be the set of all $U$ subset of $\Pi_{i \in I} \Omega_{i}$ which satisfy property (3). We claim that in fact, $\mathcal{T}$ is a topology on $\Pi_{i \in I} \Omega_{i}$. Indeed, $\emptyset$ satisfies property (3) vacuously. So $\emptyset \in \mathcal{T}$. The set of all rectangles $\amalg_{i \in I} \mathcal{T}_{i}$ is a subset of $\mathcal{T}$. In particular, $\Pi_{i \in I} \Omega_{i} \in \mathcal{T}$. Suppose $A, B \in \mathcal{T}$. Let $x \in A \cap B$.

Since $A$ satisfies property (3), there exists $V \in \amalg_{i \in I} \mathcal{T}_{i}$ such that $x \in V \subseteq A$. Similarly, there exists $W \in \amalg_{i \in I} \mathcal{I}_{i}$ such that $x \in W \subseteq B$. It follows that $x \in V \cap W \subseteq A \cap B$. However, $V$ and $W$ being rectangles of $\left(\mathcal{T}_{i}\right)_{i \in I}$, they can be written as $V=\Pi_{i \in I} A_{i}$ and $W=\Pi_{i \in I} B_{i}$, where $A_{i}, B_{i} \in \mathcal{T}_{i} \cup\left\{\Omega_{i}\right\}=\mathcal{T}_{i}$ and $A_{i} \neq \Omega_{i}$ or $B_{i} \neq \Omega_{i}$ for finitely many $i \in I$. It follows that $V \cap W=\Pi_{i \in I}\left(A_{i} \cap B_{i}\right)$, where each $A_{i} \cap B_{i}$ lie in $\mathcal{T}_{i}$ (it is a topology), and $A_{i} \cap B_{i} \neq \Omega_{i}$ for finitely many $i \in I$. So $V \cap W$ is a rectangle of $\left(\mathcal{T}_{i}\right)_{i \in I}$, i.e. $V \cap W \in \amalg_{i \in I} \mathcal{T}_{i}$, and $x \in V \cap W \subseteq A \cap B$. We have proved that $A \cap B$ satisfies property (3), i.e. $A \cap B \in \mathcal{T}$. So $\mathcal{T}$ is closed under finite intersection. Finally, let $\left(A_{j}\right)_{j \in J}$ be a family of elements of $\mathcal{T}$. Let $x \in \cup_{j \in J} A_{j}$. There exists $j \in J$ such that $x \in A_{j}$. Since $A_{j} \in \mathcal{T}$, there exists $V \in \amalg_{i \in I} \mathcal{T}_{i}$ such that $x \in V \subseteq A_{j}$. In particular, $x \in V \subseteq \cup_{j \in J} A_{j}$. Hence, we see that $\cup_{j \in J} A_{j}$ satisfies property (3), i.e. $\cup_{j \in J} A_{j} \in \mathcal{T}$. So $\mathcal{T}$ is closed under arbitrary union. We have proved that $\mathcal{T}$ is a topology on $\Pi_{i \in I} \Omega_{i}$. Since $\amalg_{i \in I} \mathcal{T}_{i} \subseteq \mathcal{T}$, we conclude that $\odot_{i \in I} \mathcal{I}_{i}=\mathcal{T}\left(\amalg_{i \in I} \mathcal{T}_{i}\right) \subseteq \mathcal{T}$. It follows that any element of the
product topology satisfies property (3). We have proved that a subset $U$ of $\Pi_{i \in I} \Omega_{i}$ is an element of $\odot_{i \in I} \mathcal{T}_{i}$, if and only if it satisfies property (3).
2. $\amalg_{i \in I} \mathcal{T}_{i} \subseteq \mathcal{T}\left(\amalg_{i \in I} \mathcal{T}_{i}\right)=\odot_{i \in I} \mathcal{T}_{i}$.
3. From theorem (26), $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right)=\otimes_{i \in I} \sigma\left(\mathcal{T}_{i}\right)=\sigma\left(\amalg_{i \in I} \mathcal{T}_{i}\right)$.
4. From 2., we have $\sigma\left(\amalg_{i \in I} \mathcal{T}_{i}\right) \subseteq \sigma\left(\odot_{i \in I} \mathcal{T}_{i}\right)=\mathcal{B}\left(\Pi_{i \in I} \Omega_{i}\right)$. Using 3., we obtain $\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right) \subseteq \mathcal{B}\left(\Pi_{i \in I} \Omega_{i}\right)$.

Exercise 12

## Exercise 13.

1. The scalar product $(x, y)$ being semi-linear and commutative:

$$
\begin{aligned}
\|x+t y\|^{2} & =(x+t y, x+t y) \\
& =(x, x)+t(y, x)+t(x, y)+t^{2}(y, y) \\
& =\|x\|^{2}+t^{2}\|y\|^{2}+2 t(x, y)
\end{aligned}
$$

2. When $y \neq 0$, the polynomial $t \rightarrow p(t)=t^{2}\|y\|^{2}+2 t(x, y)+\|x\|^{2}$ has a minimum attained at $t=-(x, y) /\|y\|^{2}$. The value of this minimum is $-(x, y)^{2} /\|y\|^{2}+\|x\|^{2}$. Since $p(t)=\|x+t y\|^{2} \geq 0$ for all $t \in \mathbf{R}$, in particular, we have $-(x, y)^{2} /\|y\|^{2}+\|x\|^{2} \geq 0$, i.e. $|(x, y)| \leq\|x\| \cdot\|y\|$. This inequality still holds if $y=0$.
3. We have:

$$
\begin{aligned}
\|x+y\|^{2} & =\|x\|^{2}+2(x, y)+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2}
\end{aligned}
$$

Exercise 13

## Exercise 14.

1. Each metric $d_{i}$ has values in $\mathbf{R}^{+}$. So $d(x, y)<+\infty$ for all $x, y$, i.e. $d$ also has values in $\mathbf{R}^{+}$. It is clear that $d(x, y)=d(y, x)$ for all $x, y \in \Omega$. Suppose that $d(x, y)=0$. Then, for all $i \in \mathbf{N}_{n}$, we have $d_{i}\left(x_{i}, y_{i}\right)=0$ and consequently $x_{i}=y_{i}$. So $x=y$. Conversely, it is clear that $d(x, x)=0$. Let $x, y, z \in \Omega$. For all $i \in \mathbf{N}_{n}$, we have:

$$
d_{i}\left(x_{i}, y_{i}\right) \leq d_{i}\left(x_{i}, z_{i}\right)+d_{i}\left(z_{i}, y_{i}\right)
$$

and therefore:

$$
d(x, y) \leq \sqrt{\sum_{i=1}^{n}\left(d_{i}\left(x_{i}, z_{i}\right)+d_{i}\left(z_{i}, y_{i}\right)\right)^{2}}
$$

Using exercise (13), we conclude that:

$$
d(x, y) \leq \sqrt{\sum_{i=1}^{n}\left(d_{i}\left(x_{i}, z_{i}\right)\right)^{2}}+\sqrt{\sum_{i=1}^{n}\left(d_{i}\left(z_{i}, y_{i}\right)\right)^{2}}
$$

i.e. $d(x, y) \leq d(x, z)+d(z, y)$. It follows from definition $(28)^{5}$ that $d$ is indeed a metric on $\Omega$.
2. The set of rectangles $\amalg_{i \in \mathbf{N}_{n}} \mathcal{T}_{i}$ is given by:

$$
\amalg_{i \in \mathbf{N}_{n}} \mathcal{T}_{i}=\left\{U_{1} \times \ldots \times U_{n}: U_{i} \in \mathcal{T}_{i}, \forall i \in \mathbf{N}_{n}\right\}
$$

It follows from exercise (12) that $U \subseteq \Omega$ is open in $\Omega$, i.e. belongs to the product topology $\mathcal{T}$, if and only if for all $x \in U$, there exist $U_{1}, \ldots, U_{n}$ open in $\Omega_{1}, \ldots, \Omega_{n}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{n} \subseteq U
$$

3. Let $U \in \mathcal{T}$. From 2., for all $x \in U$, there exist $U_{1}, \ldots, U_{n}$ open in $\Omega_{1}, \ldots, \Omega_{n}$ respectively, such that $x \in U_{1} \times \ldots \times U_{n} \subseteq U$. By assumption, each topology $\mathcal{T}_{i}$ is induced by the metric $d_{i}$, i.e. $\mathcal{T}_{i}=\mathcal{T}_{\Omega_{i}}^{d_{i}}$. For all $i \in \mathbf{N}_{n}, x_{i} \in U_{i}$. Hence, there exists $\epsilon_{i}>0$, such that $B\left(x_{i}, \epsilon_{i}\right) \subseteq U_{i}$, where $B\left(x_{i}, \epsilon_{i}\right)$ denotes the open ball
in $\Omega_{i}$. Let $\epsilon=\min \left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. Suppose $y \in \Omega$ is such that $d_{i}\left(x_{i}, y_{i}\right)<\epsilon$, for all $i \in \mathbf{N}_{n}$. Then, $y_{i} \in B\left(x_{i}, \epsilon_{i}\right) \subseteq U_{i}$ for all $i \in \mathbf{N}_{n}$, and consequently $y \in U_{1} \times \ldots \times U_{n} \subseteq U$. We have found $\epsilon>0$ such that:

$$
\left(\forall i \in \mathbf{N}_{n}, d_{i}\left(x_{i}, y_{i}\right)<\epsilon\right) \Rightarrow y \in U
$$

4. Let $U \in \mathcal{T}$, and $x \in U$. Let $\epsilon>0$ be as in 3. Let $y \in B(x, \epsilon)$, where $B(x, \epsilon)$ denotes the open ball in $\Omega=\Omega_{1} \times \ldots \times \Omega_{n}$, with respect to the metric $d$. Then, $d(x, y)<\epsilon$. Since for all $i \in \mathbf{N}_{n}$, $d_{i}\left(x_{i}, y_{i}\right) \leq d(x, y)$, we have $d_{i}\left(x_{i}, y_{i}\right)<\epsilon$ for all $i \in \mathbf{N}_{n}$. From 3., we see that $y \in U$. So $B(x, \epsilon) \subseteq U$. For all $x \in U$, we have found $\epsilon>0$ such that $B(x, \epsilon) \subseteq U$. It follows that $U$ belongs to the metric topology $\mathcal{T}_{\Omega}^{d}$. We have proved that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
5. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. From definition $(30)^{6}$ of the metric topology, there exists $\epsilon^{\prime}>0$ such that $B\left(x, \epsilon^{\prime}\right) \subseteq U$. Define
$\epsilon=\epsilon^{\prime} / \sqrt{n}$, and let $y \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{n}, \epsilon\right)$. Then, for all $i \in \mathbf{N}_{n}, d_{i}\left(x_{i}, y_{i}\right)<\epsilon$. Hence, $d(x, y)<\sqrt{n \epsilon^{2}}=\sqrt{n} \epsilon=\epsilon^{\prime}$. So $y \in U$. We have found $\epsilon>0$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{n}, \epsilon\right) \subseteq U
$$

6. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Let $\epsilon>0$ be as in 5 . Then, we have $x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{n}, \epsilon\right) \subseteq U$. Each $B\left(x_{i}, \epsilon\right)$ being open in $\Omega_{i}$, we have found $U_{1}, \ldots, U_{n}$ open in $\Omega_{1}, \ldots, \Omega_{n}$ respectively, such that $x \in U_{1} \times \ldots \times U_{n} \subseteq U$. From 2., we conclude that $U \in \mathcal{T}$. So $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
7. From 4. and 6., we have $\mathcal{T}=\mathcal{T}_{\Omega}^{d}$. In other words, the product topology $\mathcal{T}=\mathcal{T}_{1} \odot \ldots \odot \mathcal{I}_{n}$ is equal to the metric topology $\mathcal{T}_{\Omega}^{d}$ on $\Omega$, induced by the metric $d$. In particular, the topological space $(\Omega, \mathcal{T})$ is metrizable.
8. Both $d^{\prime}$ and $d^{\prime \prime}$ have values in $\mathbf{R}^{+}$. For all $x, y \in \Omega$, we have $d^{\prime}(x, y)=d^{\prime}(y, x)$ and $d^{\prime \prime}(x, y)=d^{\prime \prime}(y, x)$. Moreover, it is clear
that $d^{\prime}(x, y)=0$ is equivalent to each $d_{i}\left(x_{i}, y_{i}\right)$ being equal to 0 , hence equivalent to $x_{i}=y_{i}$ for all $i$ 's, i.e. equivalent to $x=y$. Similarly, $d^{\prime \prime}(x, y)=0$ is equivalent to $x=y$. Given $x, y, z \in \Omega$, for all $i \in \mathbf{N}_{n}$, we have:

$$
d_{i}\left(x_{i}, y_{i}\right) \leq d_{i}\left(x_{i}, z_{i}\right)+d_{i}\left(z_{i}, y_{i}\right)
$$

It follows immediately that $d^{\prime}(x, y) \leq d^{\prime}(x, z)+d^{\prime}(z, y)$, and furthermore, for all $i=1, \ldots, n$ :

$$
d_{i}\left(x_{i}, y_{i}\right) \leq d^{\prime \prime}(x, z)+d^{\prime \prime}(z, y)
$$

From which we conclude that $d^{\prime \prime}(x, y) \leq d^{\prime \prime}(x, z)+d^{\prime \prime}(z, y)$. We have proved that $d^{\prime}$ and $d^{\prime \prime}$ are metrics on $\Omega$.
9. Let $x, y \in \Omega$. For all $i \in \mathbf{N}_{n}$, define $a_{i}=d_{i}\left(x_{i}, y_{i}\right)$. Let $a, b \in \mathbf{R}^{n}$ be given $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=(1, \ldots, 1)$. From exercise (13), we have $|(a, b)| \leq\|a\| .\|b\|$, and consequently:

$$
d^{\prime}(x, y) \leq \sqrt{n} d(x, y)
$$

From $\left(\sum_{i=1}^{n} a_{i}\right)^{2} \geq \sum_{i=1}^{n} a_{i}^{2}$, we obtain:

$$
d(x, y) \leq d^{\prime}(x, y)
$$

Hence, $\alpha^{\prime} d^{\prime} \leq d \leq \beta^{\prime} d^{\prime}$, where $\alpha^{\prime}=1 / \sqrt{n}$ and $\beta^{\prime}=1$.
From $\sum_{i=1}^{n} a_{i}^{2} \leq n\left(\max _{i} a_{i}\right)^{2}$, we obtain:

$$
d(x, y) \leq \sqrt{n} d^{\prime \prime}(x, y)
$$

From $\left(\max _{i} a_{i}\right)^{2} \leq \sum_{i=1}^{n} a_{i}^{2}$ we obtain:

$$
d^{\prime \prime}(x, y) \leq d(x, y)
$$

Hence, $\alpha^{\prime \prime} d^{\prime \prime} \leq d \leq \beta^{\prime \prime} d^{\prime \prime}$, where $\alpha^{\prime \prime}=1$ and $\beta^{\prime \prime}=\sqrt{n}$.
10. From 9., there exist $\beta^{\prime}>0$ such that $d \leq \beta^{\prime} d^{\prime}$. Let $U \in \mathcal{T}_{\Omega}^{d}$, and $x \in U$. There exists $\epsilon>0$ such that $B_{d}(x, \epsilon) \subseteq U$, where $B_{d}(x, \epsilon)$ denotes the open ball in $\Omega$, relative to the metric $d$. Suppose $y \in \Omega$ is such that $d^{\prime}(x, y)<\epsilon / \beta^{\prime}$. Then, we have $d(x, y) \leq \beta^{\prime} d^{\prime}(x, y)<\epsilon$, and it follows that $y \in U$. So $B_{d^{\prime}}\left(x, \epsilon / \beta^{\prime}\right) \subseteq U$. For all $x \in U$, we have found $\epsilon^{\prime}=\epsilon / \beta^{\prime}>0$
such that $B_{d^{\prime}}\left(x, \epsilon^{\prime}\right) \subseteq U$. It follows that $U \in \mathcal{T}_{\Omega}^{d^{\prime}}$. We have proved that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}_{\Omega}^{d^{\prime}}$. Using 9., from $d^{\prime} \leq\left(1 / \alpha^{\prime}\right) d$, we conclude similarly that $\mathcal{T}_{\Omega}^{d^{\prime}} \subseteq \mathcal{T}_{\Omega}^{d}$. Hence, $\mathcal{T}_{\Omega}^{d^{\prime}}=\mathcal{T}_{\Omega}^{d}$. Similarly, from $\alpha^{\prime \prime} d^{\prime \prime} \leq d \leq \beta^{\prime \prime} d^{\prime \prime}$, we have $\mathcal{T}_{\Omega}^{d^{\prime \prime}}=\mathcal{T}_{\Omega}^{d}$. We have proved that $\mathcal{T}_{\Omega}^{d^{\prime}}=\mathcal{T}_{\Omega}^{d}=\mathcal{T}_{\Omega}^{d^{\prime \prime}}$. Since $\mathcal{T}_{\Omega}^{d}=\mathcal{T}$ is the product topology on $\Omega$, we conclude that $d^{\prime}$ and $d^{\prime \prime}$ also induce the product topology $\mathcal{T}=\mathcal{T}_{1} \odot \ldots \odot \mathcal{T}_{n}$ on $\Omega$.

Exercise 14

## Exercise 15.

1. For all $a \in \mathbf{R}^{+}, 1 \wedge a=\min (1, a)$. Let $a, b \in \mathbf{R}^{+}$. Suppose $a+b \leq 1$. Then, both $a \leq 1$ and $b \leq 1$, and we have:

$$
1 \wedge(a+b)=a+b=1 \wedge a+1 \wedge b
$$

Suppose $a+b \geq 1$. If both $a \leq 1$ and $b \leq 1$, we have:

$$
1 \wedge(a+b)=1 \leq a+b=1 \wedge a+1 \wedge b
$$

if $a \geq 1$, we have:

$$
1 \wedge(a+b)=1=1 \wedge a \leq 1 \wedge a+1 \wedge b
$$

In any case, we see that:

$$
1 \wedge(a+b) \leq 1 \wedge a+1 \wedge b
$$

2. For all $x, y \in \Omega$, we have:

$$
d(x, y)=\sum_{n=1}^{+\infty} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right) \leq \sum_{n=1}^{+\infty} \frac{1}{2^{n}}<+\infty
$$

So $d$ has values in $\mathbf{R}^{+}$. It is clear that $d(x, y)=d(y, x)$. Moreover, $d(x, y)=0$ is equivalent to $d_{n}\left(x_{n}, y_{n}\right)=0$ for all $n \geq 1$, which is in turn equivalent to $x=y$. For all $x, y, z \in \Omega$, and $n \geq 1$, we have:

$$
d_{n}\left(x_{n}, y_{n}\right) \leq d_{n}\left(x_{n}, z_{n}\right)+d_{n}\left(z_{n}, y_{n}\right)
$$

and consequently, using 1. :

$$
1 \wedge d_{n}\left(x_{n}, y_{n}\right) \leq 1 \wedge d_{n}\left(x_{n}, z_{n}\right)+1 \wedge d_{n}\left(z_{n}, y_{n}\right)
$$

It follows that $d(x, y) \leq d(x, z)+d(z, y)$. We have proved that $d$ is a metric on $\Omega$.
3. Let $V=\Pi_{n=1}^{+\infty} U_{n}$ be a rectangle of the family $\left(\mathcal{T}_{n}\right)_{n \geq 1}$. The set $\left\{n \geq 1: U_{n} \neq \Omega_{n}\right\}$ being finite, it is either empty or has a maximal element $N \geq 1$. it follows that $V$ can be written as:

$$
\begin{equation*}
V=U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \tag{4}
\end{equation*}
$$

where $U_{1}, \ldots, U_{N}$ are open in $\Omega_{1}, \ldots, \Omega_{N}$ respectively. If the set $\left\{n \geq 1: U_{n} \neq \Omega_{n}\right\}$ is empty, then $V$ is also of the form (4), for any $N \geq 1$. Conversely, any set $V$ of the form (4) is a rectangle in $\amalg_{n=1}^{+\infty} \mathcal{I}_{n}$. From exercise (12), $U \in \mathcal{T}=\odot_{n=1}^{+\infty} \mathcal{T}_{n}$, if and only if, for all $x \in U$, there exists $V \in \amalg_{n=1}^{+\infty} \mathcal{T}_{n}$ such that $x \in V \subseteq U$. It follows that $U \subseteq \Omega$ is open in $\Omega$, i.e. belongs to the product topology $\mathcal{T}$, if and only if for all $x \in U$, there exists $N \geq 1$ and open sets $U_{1}, \ldots, U_{N}$ in $\Omega_{1}, \ldots, \Omega_{N}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

4. Suppose that $d(x, y)<1 / 2^{n}$, for some $n \geq 1$. Then, $d_{n}\left(x_{n}, y_{n}\right)$ has to be less than 1. Specifically:

$$
d(x, y) \geq \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)=\frac{1}{2^{n}} d_{n}\left(x_{n}, y_{n}\right)
$$

So $d(x, y)<1 / 2^{n} \Rightarrow d_{n}\left(x_{n}, y_{n}\right) \leq 2^{n} d(x, y)$
5. Let $U \in \mathcal{T}$ and $x \in U$. From 3., there exist $N \geq 1$ and $U_{1}, \ldots, U_{N}$ open in $\Omega_{1}, \ldots, \Omega_{N}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

Let $i \in\{1, \ldots, N\}$. Then $x_{i} \in U_{i} \in \mathcal{T}_{i}$. The topology $\mathcal{T}_{i}$ being the metric topology $\mathcal{T}_{\Omega_{i}}^{d_{i}}$, there exists $\epsilon_{i}>0$ such that we have $B\left(x_{i}, \epsilon_{i}\right) \subseteq U_{i}$. Let $\epsilon=\min \left(1 / 2^{N}, \epsilon_{1} / 2, \ldots, \epsilon_{N} / 2^{N}\right)$ and $y \in \Omega$ be such that $d(x, y)<\epsilon$. In particular, we have $d(x, y)<1 / 2^{i}$, for all $i=1, \ldots, N$. Hence, from 4., we see that $d_{i}\left(x_{i}, y_{i}\right) \leq$ $2^{i} d(x, y)<2^{i} \epsilon \leq \epsilon_{i}$. It follows that $y_{i} \in U_{i}$ for all $i=1, \ldots, N$ and consequently $y \in U_{1} \times \ldots \times U_{N} \times \Pi_{n=N+1}^{+\infty} \Omega_{n} \subseteq U$. We have found $\epsilon>0$ such that $d(x, y)<\epsilon \Rightarrow y \in U$.
6. From 5. for all $U \in \mathcal{T}$ and $x \in U$, there exists $\epsilon>0$ such that $B(x, \epsilon) \subseteq U$. It follows that $U \in \mathcal{T}_{\Omega}^{d}$. So $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^{d}$.
7. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. By definition (30) of the metric topol-
ogy, there exists $\epsilon^{\prime}>0$ such that $B\left(x, \epsilon^{\prime}\right) \subseteq U$. In other words, there exists $\epsilon^{\prime}>0$ such that for all $y \in \Omega$ :

$$
d(x, y)<\epsilon^{\prime} \Rightarrow y \in U
$$

Let $\epsilon=\epsilon^{\prime} / 2$ and $N \geq 1$ be such that:

$$
\sum_{n=N+1}^{+\infty} \frac{1}{2^{n}} \leq \epsilon
$$

Suppose $y \in \Omega$ is such that:

$$
\sum_{n=1}^{N} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)<\epsilon
$$

Then, we have:

$$
d(x, y)<\epsilon+\sum_{n=N+1}^{+\infty} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right) \leq 2 \epsilon=\epsilon^{\prime}
$$

It follows that $y \in U$. We have found $\epsilon>0$ and $N \geq 1$ such that:

$$
\sum_{n=1}^{N} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right)<\epsilon \Rightarrow y \in U
$$

8. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Let $\epsilon>0$ an $N \geq 1$ be as in 7 . Let $y \in \Omega$ be such that:

$$
y \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{N}, \epsilon\right) \times \prod_{n=N+1}^{+\infty} \Omega_{n}
$$

For all $n \in\{1, \ldots, N\}, d_{n}\left(x_{n}, y_{n}\right)<\epsilon$. Hence:

$$
\sum_{n=1}^{N} \frac{1}{2^{n}}\left(1 \wedge d_{n}\left(x_{n}, y_{n}\right)\right) \leq \epsilon \sum_{n=1}^{N} \frac{1}{2^{n}}<\epsilon
$$

From 7., we conclude that $y \in U$. We have found $\epsilon>0$ and $N \geq 1$ such that:

$$
x \in B\left(x_{1}, \epsilon\right) \times \ldots \times B\left(x_{N}, \epsilon\right) \times \Pi_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

9. Let $U \in \mathcal{T}_{\Omega}^{d}$ and $x \in U$. Let $N \geq 1$ and $\epsilon>0$ be as in 8 . Each open ball $B\left(x_{n}, \epsilon\right)$ for $n=1, \ldots, N$ being open in $\Omega_{n}$, we have found $U_{1}, \ldots, U_{N}$ open in $\Omega_{1}, \ldots, \Omega_{N}$ respectively, such that:

$$
x \in U_{1} \times \ldots \times U_{N} \times \prod_{n=N+1}^{+\infty} \Omega_{n} \subseteq U
$$

From 3., it follows that $U \in \mathcal{T}=\odot_{n=1}^{+\infty} \mathcal{T}_{n}$. We have proved that $\mathcal{T}_{\Omega}^{d} \subseteq \mathcal{T}$.
10. From 6. and 9., $\mathcal{T}_{\Omega}^{d}=\mathcal{T}$. In other words, the product topology $\mathcal{T}=\odot_{n=1}^{+\infty} \mathcal{I}_{n}$ is induced by the metric $d$ on $\Omega$. In particular, the topological space $(\Omega, \mathcal{T})$ is metrizable. The purpose of this exercise, is to show that a countable product of metrizable topological spaces, is itself a metrizable topological space.

Exercise 15

## Exercise 16.

1. $\mathcal{H}=\{ ] r, q[: r, q \in \mathbf{Q}\}$ is a countable subset of $\mathcal{T}_{\mathbf{R}}$. Let $U \in \mathcal{T}_{\mathbf{R}}$. Define $\mathcal{H}^{\prime}=\{V \in \mathcal{H}: V \subseteq U\}$. For all $x \in U$, there exists $\epsilon>0$ such that $] x-\epsilon, x+\epsilon[\subseteq U$. In fact, the set of rational numbers $\mathbf{Q}$ being dense in $\mathbf{R}$, there exist $r, q \in \mathbf{Q}$ such that $x \in] r, q[\subseteq U$. In other words, there exists $V \in \mathcal{H}^{\prime}$ such that $x \in V$. Hence, we see that $U \subseteq \cup_{V \in \mathcal{H}^{\prime}} V$. The reverse inclusion being clearly satisfied, we have $U=\cup_{V \in \mathcal{H}^{\prime}} V$, i.e. $U$ can be expressed as a union of elements of $\mathcal{H}$. This being true for all open sets $U \in \mathcal{T}_{\mathbf{R}}$, we have proved that $\mathcal{H}$ is a countable base of $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$.
2. Let $\mathcal{H}$ be a countable base of $(\Omega, \mathcal{T})$. Let $\mathcal{H}_{\mid \Omega^{\prime}}$ be the trace of $\mathcal{H}$ on $\Omega^{\prime}$, i.e. $\mathcal{H}_{\mid \Omega^{\prime}}=\left\{\Omega^{\prime} \cap V: V \in \mathcal{H}\right\}$. Since $\mathcal{H}$ is a countable or finite subset of the topology $\mathcal{T}, \mathcal{H}_{\mid \Omega^{\prime}}$ is a countable or finite subset of the induced topology $\mathcal{T}_{\mid \Omega^{\prime}}$. Let $U^{\prime} \in \mathcal{T}_{\mid \Omega^{\prime}}$ be an open subset in $\Omega^{\prime}$. Then $U^{\prime}$ is of the form $U^{\prime}=\Omega^{\prime} \cap U$ where $U \in \mathcal{T} . \mathcal{H}$ being a countable base of $(\Omega, \mathcal{T})$, there exists a family $\left(V_{i}\right)_{i \in I}$ of elements of $\mathcal{H}$ such that $U=\cup_{i \in I} V_{i}$. It follows that $\left(\Omega^{\prime} \cap V_{i}\right)_{i \in I}$
is a family of elements of $\mathcal{H}_{\mid \Omega^{\prime}}$ such that $U^{\prime}=\cup_{i \in I}\left(\Omega^{\prime} \cap V_{i}\right)$. We conclude that $\mathcal{H}_{\mid \Omega^{\prime}}$ is a countable base of the induced topological space $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$.
3. From 1., $\mathbf{R}$ has a countable base. It follows from 2. that the induced topological space $[-1,1]$ also has a countable base.
4. Let $h:(\Omega, \mathcal{T}) \rightarrow\left(S, \mathcal{T}_{S}\right)$ be a homeomorphism, i.e. a continuous bijection such that $h^{-1}$ is also continuous. Suppose $(\Omega, \mathcal{T})$ has a countable base $\mathcal{H}$. Define $h(\mathcal{H})=\{h(V): V \in \mathcal{H}\}$. Since $\mathcal{H}$ is a countable or finite subset of $\mathcal{T}, h^{-1}$ being continuous, $h(\mathcal{H})$ is a countable or finite subset of $\mathcal{T}_{S}$. (Note that each direct image $h(V)$ of V by $h$ can be viewed the inverse image $\left(h^{-1}\right)^{-1}(V)$ of $V$ by $\left.h^{-1}\right)$. Let $U^{\prime} \in \mathcal{T}_{S} . h$ being continuous, $h^{-1}\left(U^{\prime}\right) \in \mathcal{T} . \mathcal{H}$ being a countable base of $(\Omega, \mathcal{T})$, there exists a family $\left(V_{i}\right)_{i \in I}$ of elements of $\mathcal{H}$, such that $h^{-1}\left(U^{\prime}\right)=\cup_{i \in I} V_{i}$. However, $h\left(h^{-1}\left(U^{\prime}\right)\right)=U^{\prime}$, and moreover:

$$
h\left(\cup_{i \in I} V_{i}\right)=\left(h^{-1}\right)^{-1}\left(\cup_{i \in I} V_{i}\right)=\cup_{i \in I}\left(h^{-1}\right)^{-1}\left(V_{i}\right)
$$

So $U^{\prime}=\cup_{i \in I} h\left(V_{i}\right)$. We conclude that $U^{\prime}$ can be expressed as a union of elements of $h(\mathcal{H})$. So $h(\mathcal{H})$ is a countable base of $\left(S, \mathcal{T}_{S}\right)$. We have proved that if $(\Omega, \mathcal{T})$ has a countable base, then $\left(S, \mathcal{T}_{S}\right)$ also has a countable base. Using the same argument, switching the roles of $h$ and $h^{-1}$, we see that conversely, if ( $S, \mathcal{T}_{S}$ ) has a countable base, then so does $(\Omega, \mathcal{T})$. We have proved that given two homeomorphic topological spaces, one has a countable base, if and only if the other also has a countable base.
5. The topological spaces $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ and $\left([-1,1], \mathcal{T}_{[-1,1]}\right)$ being homeomorphic, we conclude from 3. and 4 . that $\left(\overline{\mathbf{R}}, \mathcal{T}_{\overline{\mathbf{R}}}\right)$ has a countable base.

Exercise 16

## Exercise 17.

1. Let $p \geq 1$ and $A \in \mathcal{H}^{p}$ of the form:

$$
A=V_{1}^{k_{1}} \times \ldots \times V_{p}^{k_{p}} \times \Pi_{n=p+1}^{+\infty} \Omega_{n}
$$

For all $n \geq 1$, the set $\left\{V_{n}^{k}: k \in I_{n}\right\}$ being a countable base of $\mathcal{T}_{n}$, it is a subset of $\mathcal{T}_{n}$. Hence, for all $i \in\{1, \ldots, p\}$, we have $V_{i}^{k_{i}} \in \mathcal{T}_{i}$. It follows that $A$ is a rectangle of the family $\left(\mathcal{T}_{n}\right)_{n \geq 1}$, i.e. $A \in \amalg_{n=1}^{+\infty} \mathcal{I}_{n}$. From definition (56), the product topology $\mathcal{T}$ on $\Pi_{n=1}^{+\infty} \Omega_{n}$ being generated by $\amalg_{n=1}^{+\infty} \mathcal{T}_{n}$, we have $\amalg_{n=1}^{+\infty} \mathcal{T}_{n} \subseteq \mathcal{T}$. In particular, $A \in \mathcal{T}$. We have proved that $\mathcal{H}^{p} \subseteq \mathcal{T}$.
2. Using 1., $\mathcal{H}=\cup_{p \geq 1} \mathcal{H}^{p} \subseteq \mathcal{T}$.
3. By assumption, for all $n \geq 1$, the index set $I_{n}$ is finite or countable. There exists an injective map $i_{n}: I_{n} \rightarrow \mathbf{N}$. Given $p \geq 1$, consider the map $j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}^{p}$, defined in the following way: for $A=V_{1}^{k_{1}} \times \ldots \times V_{p}^{k_{p}} \times \Pi_{n=p+1}^{+\infty} \Omega_{n} \in \mathcal{H}^{p}$, we put:

$$
j_{p}(A)=\left(i_{1}\left(k_{1}\right), \ldots, i_{p}\left(k_{p}\right)\right)
$$

Suppose $B=V_{1}^{k_{1}^{\prime}} \times \ldots \times V_{p}^{k_{p}^{\prime}} \times \Pi_{n=p+1}^{+\infty} \Omega_{n}$ is another element of $\mathcal{H}^{p}$ such that $j_{p}(A)=j_{p}(B)$. Then:

$$
\left(i_{1}\left(k_{1}\right), \ldots, i_{p}\left(k_{p}\right)\right)=\left(i_{1}\left(k_{1}^{\prime}\right), \ldots, i_{p}\left(k_{p}^{\prime}\right)\right)
$$

Hence, for all $m \in \mathbf{N}_{p}, i_{m}\left(k_{m}\right)=i_{m}\left(k_{m}^{\prime}\right)$, and $i_{m}$ being injective, we have $k_{m}=k_{m}^{\prime}$. So $A=B$. We have proved the existence of an injective map $j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}^{p}$.
4. The existence of a bijection $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ is a standard result, which we may have used in these tutorials before. Now is a good opportunity to give a formal proof of it. Informally, $\phi_{2}$ is defined as $\phi_{2}(0,0)=0, \phi_{2}(1,0)=1, \phi_{2}(0,1)=2, \phi_{2}(2,0)=3$, $\phi_{2}(1,1)=4, \phi_{2}(0,2)=5$, etc. . As you can see, going through each diagonal one after the other, we are able to count the elements of $\mathbf{N}^{2}$, thus defining the bijection $\phi_{2}$. Formally, we define the map $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ as follows:

$$
\forall(n, p) \in \mathbf{N}^{2}, \phi_{2}(n, p)=p+[0+1+\ldots+(n+p)]
$$

or equivalently, $\phi_{2}(n, p)=p+h(n+p)$ where:

$$
h(m)=0+1+\ldots+m
$$

Let $N \in \mathbf{N}$. Since $h(m) \uparrow+\infty$, the set $\{m \in \mathbf{N}: h(m) \leq N\}$ is finite and it is also non-empty. Hence, it has a maximal element $m$, and we have $h(m) \leq N<h(m+1)$. Let $p=N-h(m)$. Then $p \in \mathbf{N}$, and we have $0 \leq p<h(m+1)-h(m)=m+1$. So $p \leq m$. If we define $n=m-p$, then $n$ is also an element of $\mathbf{N}$. So $(n, p)$ is an element of $\mathbf{N}^{2}$, such that $m=n+p$, and $N=p+h(m)$. It follows that:

$$
\phi_{2}(n, p)=p+h(n+p)=p+h(m)=N
$$

We have proved that $\phi_{2}$ is a surjective map. Suppose ( $n, p$ ) and $\left(n^{\prime}, p^{\prime}\right)$ are elements of $\mathbf{N}^{2}$, with $\phi_{2}(n, p)=\phi_{2}\left(n^{\prime}, p^{\prime}\right)$. Since $\phi_{2}(n, p)=p+h(n+p)$, in particular $h(n+p) \leq \phi_{2}(n, p)$. However, $h(n+p+1)=p+h(n+p)+n+1>\phi_{2}(n, p)$. It follows that for all $(n, p) \in \mathbf{N}^{2}$, we have:

$$
\begin{equation*}
h(n+p) \leq \phi_{2}(n, p)<h(n+p+1) \tag{5}
\end{equation*}
$$

Since given $N \in \mathbf{N}$, any $m \in \mathbf{N}$ such that $h(m) \leq N<h(m+1)$ is unique, it follows from $\phi_{2}(n, p)=\phi_{2}\left(n^{\prime}, p^{\prime}\right)$ and equation (5) that $n+p=n^{\prime}+p^{\prime}$. Hence:

$$
p=\phi_{2}(n, p)-h(n+p)=\phi_{2}\left(n^{\prime}, p^{\prime}\right)-h\left(n^{\prime}+p^{\prime}\right)=p^{\prime}
$$

and finally $n=(n+p)-p=\left(n^{\prime}+p^{\prime}\right)-p^{\prime}=n^{\prime}$. We have proved that $\phi_{2}$ is an injective map. We conclude that $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ is a bijection
5. Let $p \geq 1$. The existence of a bijection $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$ is true for $p=1$ and $p=2$. Suppose the existence of $\phi_{p}$ has been proved, and let $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ be as in 4 . Let $\phi_{p+1}: \mathbf{N}^{p+1} \rightarrow \mathbf{N}$ be defined by:

$$
\phi_{p+1}\left(n_{1}, \ldots, n_{p+1}\right)=\phi_{2}\left[\phi_{p}\left(n_{1}, \ldots, n_{p}\right), n_{p+1}\right]
$$

for all $\left(n_{1}, \ldots, n_{p+1}\right) \in \mathbf{N}^{p+1}$. Let $N \in \mathbf{N}$. $\phi_{2}$ being a surjection, there exists $\left(n, n_{p+1}\right) \in \mathbf{N}^{2}$ with $\phi_{2}\left(n, n_{p+1}\right)=N$. From our induction hypothesis, $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$ is also a surjective map.

There exists $\left(n_{1}, \ldots, n_{p}\right) \in \mathbf{N}^{p}$, such that $\phi_{p}\left(n_{1}, \ldots, n_{p}\right)=n$. It follows that $\left(n_{1}, \ldots, n_{p+1}\right)$ is an element of $\mathbf{N}^{p+1}$ such that $\phi_{p+1}\left(n_{1}, \ldots, n_{p+1}\right)=N$. So $\phi_{p+1}$ is itself a surjective map. Suppose $\left(n_{1}, \ldots, n_{p+1}\right)$ and $\left(n_{1}^{\prime}, \ldots, n_{p+1}^{\prime}\right)$ are elements of $\mathbf{N}^{p+1}$ such that:

$$
\phi_{p+1}\left(n_{1}, \ldots, n_{p+1}\right)=\phi_{p+1}\left(n_{1}^{\prime}, \ldots, n_{p+1}^{\prime}\right)
$$

Then, $\phi_{2}$ being injective, $n_{p+1}=n_{p+1}^{\prime}$, and:

$$
\phi_{p}\left(n_{1}, \ldots, n_{p}\right)=\phi_{p}\left(n_{1}^{\prime}, \ldots, n_{p}^{\prime}\right)
$$

$\phi_{p}$ being itself injective, $\left(n_{1}, \ldots, n_{p}\right)=\left(n_{1}^{\prime}, \ldots, n_{p}^{\prime}\right)$, and we conclude that $\left(n_{1}, \ldots, n_{p+1}\right)=\left(n_{1}^{\prime}, \ldots, n_{p+1}^{\prime}\right)$. So $\phi_{p+1}$ is an injective map, and finally a bijection. This induction argument proves the existence of a bijection $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$, for all $p \geq 1$.
6. Let $p \geq 1$. From 3., there exists an injective map $j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}^{p}$. From 5., there exists a bijection $\phi_{p}: \mathbf{N}^{p} \rightarrow \mathbf{N}$. It follows that $\phi_{p} \circ j_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}$ is an injective map. This proves that $\mathcal{H}^{p}$ is finite or countable, i.e. $\mathcal{H}^{p}$ is at most countable.
7. From 6., for all $p \geq 1$, there exists an injection $\psi_{p}: \mathcal{H}^{p} \rightarrow \mathbf{N}$. Let $j: \mathcal{H} \rightarrow \mathbf{N}^{2}$ be defined by $j(A)=\left(p, \psi_{p}(A)\right)$, where $p \geq 1$ is chosen such that $A \in \mathcal{H}^{p}$, (there is at least one such $p$ for any $A \in \mathcal{H})$. Suppose $j(A)=j(B)$ for some $A, B \in \mathcal{H}$. Then, there exists $p \geq 1$ such that $A, B \in \mathcal{H}^{p}$ and $\psi_{p}(A)=\psi_{p}(B)$, and consequently $A=B$. So $j$ is an injection. We have proved the existence of an injective map $j: \mathcal{H} \rightarrow \mathbf{N}^{2}$.
8. Let $\phi_{2}: \mathbf{N}^{2} \rightarrow \mathbf{N}$ be a bijection. From 7., there exists an injection $j: \mathcal{H} \rightarrow \mathbf{N}^{2}$. It follows that $\phi_{2} \circ j: \mathcal{H} \rightarrow \mathbf{N}$ is an injection. This proves that $\mathcal{H}$ is finite or countable, i.e. it is at most countable. From $2 ., \mathcal{H} \subseteq \mathcal{T}$. Hence, all elements of $\mathcal{H}$ are open sets in $\Omega$, (with respect to the product topology). We conclude that $\mathcal{H}$ is a finite or countable set of open sets in $\Omega$.
9. From exercise (12), $U \in \mathcal{T}=\odot_{n=1}^{+\infty} \mathcal{T}_{n}$, if and only if for all $x \in U$, there exists $V \in \amalg_{n=1}^{+\infty} \mathcal{T}_{n}$ such that $x \in V \subseteq U$. Since all elements of $\amalg_{n=1}^{+\infty} \mathcal{T}_{n}$ can be written as $U_{1} \times \ldots \times U_{p} \times \Pi_{n=p+1}^{+\infty} \Omega_{n}$ for some $p \geq 1$ and $U_{1}, \ldots, U_{p}$ open in $\Omega_{1}, \ldots, \Omega_{p}$ respectively,
it follows in particular that if $U \in \mathcal{T}$ and $x \in U$, there exist $p \geq 1$ and $U_{1}, \ldots, U_{p}$ open in $\Omega_{1}, \ldots, \Omega_{p}$ such that:

$$
x \in U_{1} \times \ldots \times U_{p} \times \prod_{n=p+1}^{+\infty} \Omega_{n} \subseteq U
$$

10. Let $U \in \mathcal{T}$ and $x \in U$. Let $p \geq 1$ and $U_{1}, \ldots, U_{p}$ open $\Omega_{1}, \ldots, \Omega_{p}$ respectively, such that $x \in U_{1} \times \ldots \times U_{p} \times \Pi_{n=p+1}^{+\infty} \Omega_{n} \subseteq U$. By assumption, for all $n \geq 1$, the set $\left\{V_{n}^{k}: k \in I_{n}\right\}$ is a countable base of the topology $\mathcal{T}_{n}$. Hence, for all $n \in \mathbf{N}_{p}$, there exists a subset $I_{n}^{\prime}$ of $I_{n}$, such that $U_{n}=\cup_{k \in I_{n}^{\prime}} V_{n}^{k}$. In particular, since $x_{n} \in U_{n}$, there exists $k_{n} \in I_{n}^{\prime} \subseteq I_{n}$ such that $x_{n} \in V_{n}^{k_{n}} \subseteq U_{n}$. We have found $k_{1}, \ldots, k_{p}$ such that:

$$
x \in V_{1}^{k_{1}} \times \ldots \times V_{p}^{k_{p}} \times \prod_{n=p+1}^{+\infty} \Omega_{n} \triangleq V_{x} \subseteq U
$$

There exists $V_{x} \in \mathcal{H}^{p} \subseteq \mathcal{H}$ such that $x \in V_{x} \subseteq U$.
11. From 8., $\mathcal{H}$ is a finite or countable subset of the topology $\mathcal{T}$. From 10., for all $U \in \mathcal{T}, U$ can be written as $U=\cup_{x \in U} V_{x}$, where $V_{x} \in \mathcal{H}$ for all $x \in U$. In other words, any open set $U$ of $\mathcal{T}$ can be written as a union of elements of $\mathcal{H}$. It follows from definition (57) that $\mathcal{H}$ is a countable base of $(\Omega, \mathcal{T})$.
12. From theorem (26), since $\mathcal{B}\left(\Omega_{n}\right)=\sigma\left(\mathcal{T}_{n}\right)$ for all $n \geq 1$ :

$$
\otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)=\sigma\left(\amalg_{n=1}^{+\infty} \mathcal{T}_{n}\right) \subseteq \sigma(\mathcal{T})=\mathcal{B}(\Omega)
$$

13. Let $p \geq 1$ and $A \in \mathcal{H}^{p}$. Then $A$ is a rectangle of the family $\left(\mathcal{T}_{n}\right)_{n \geq 1}$. Hence $A \in \amalg_{n=1}^{+\infty} \mathcal{T}_{n} \subseteq \amalg_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right) \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$. So $\mathcal{H}^{p} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$. We conclude that:

$$
\mathcal{H}=\bigcup_{p \geq 1} \mathcal{H}^{p} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)
$$

14. Since $\mathcal{H}$ is a countable base of $(\Omega, \mathcal{T})$, any open set $U$ of $\mathcal{T}$ can be expressed as a union of elements of $\mathcal{H}$. Furthermore, $\mathcal{H}$ being at most countable, such union is at most countable. It follows
that any open set $U$ in $\mathcal{T}$ is an element of $\sigma(\mathcal{H})$, i.e. $\mathcal{T} \subseteq \sigma(\mathcal{H})$. From 13., we have $\mathcal{H} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$ and consequently, we have $\sigma(\mathcal{H}) \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$. Hence, we see that $\mathcal{T} \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$, and finally $\mathcal{B}(\Omega)=\sigma(\mathcal{T}) \subseteq \otimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)$. Using 12., we conclude that:

$$
\mathcal{B}(\Omega)=\bigotimes_{n=1}^{+\infty} \mathcal{B}\left(\Omega_{n}\right)
$$

The purpose of this exercise is to prove theorem (27).
Exercise 17

## Exercise 18.

1. Since $(\Omega, \mathcal{T})$ has a countable base, a finite version of theorem (27) would allow us to conclude immediately that:

$$
\mathcal{B}\left(\Omega^{n}\right)=\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)
$$

Since $\mathcal{B}(\Omega)=\sigma(\mathcal{T})$, from theorem (26), we have:

$$
\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)=\sigma(\mathcal{T} \amalg \ldots \amalg \mathcal{T}) \subseteq \sigma\left(\mathcal{T}_{\Omega^{n}}\right)=\mathcal{B}\left(\Omega^{n}\right)
$$

Let $U$ be open in $\Omega^{n}$, and $x \in U$. From exercise (12), there exist $V_{1}, \ldots, V_{n}$ open in $\Omega$, such that:

$$
x \in V_{1} \times \ldots \times V_{n} \subseteq U
$$

Since $\Omega$ has a countable base, say $\mathcal{H}$, each $V_{i}$ can be written as a union of elements of $\mathcal{H}$. In particular, there exist $W_{1}, \ldots, W_{n}$ in $\mathcal{H}$, such that:

$$
x \in W_{1} \times \ldots \times W_{n} \subseteq U
$$

Defining $A_{x}=W_{1} \times \ldots \times W_{n}$, we have $U=\cup_{x \in U} A_{x}$. Since $\mathcal{H}$ is a subset of $\mathcal{T}$, each $A_{x}$ is an element of $\mathcal{T} \amalg \ldots \amalg \mathcal{T} \subseteq \mathcal{T}_{\Omega^{n}}$. Although the set $U$ may not be countable, the set $I$ defined by $I=\left\{A_{x}: x \in U\right\}$ is at most countable, $\mathcal{H}$ being at most countable. So $U=\cup_{x \in U} A_{x}$ is in fact a countable (or finite) union of elements of $\mathcal{T} \amalg \ldots \amalg \mathcal{T}$. So $U \in \sigma(\mathcal{T} \amalg \ldots \amalg \mathcal{T})$. We have proved that:

$$
\mathcal{T}_{\Omega^{n}} \subseteq \sigma(\mathcal{T} \amalg \ldots \amalg \mathcal{T}) \subseteq \mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)
$$

We conclude that:

$$
B\left(\Omega^{n}\right)=\sigma\left(\mathcal{T}_{\Omega^{n}}\right) \subseteq \mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)
$$

We have proved that $\mathcal{B}\left(\Omega^{n}\right)=\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)$.
2. This is an immediate consequence of 1 . and exercise (16).
3. From 1., $\mathcal{B}\left(\mathbf{R}^{2}\right)=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$. $\mathbf{C}$ and $\mathbf{R}^{2}$ being identified, the usual topology on $\mathbf{C}$ is induced by the metric:

$$
d\left(z, z^{\prime}\right)=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}
$$

with obvious notations. From exercise (14), such metric induces the product topology on $\mathbf{R}^{2}$. It follows that the usual topology on $\mathbf{C}$ and the product topology on $\mathbf{R}^{2}$ coincide. So $\mathcal{T}_{\mathbf{C}}=\mathcal{T}_{\mathbf{R}^{2}}$, and finally $\mathcal{B}(\mathbf{C})=\mathcal{B}\left(\mathbf{R}^{2}\right)=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$.

Exercise 18

## Exercise 19.

1. $\mathcal{H}=\left\{B\left(x_{n}, 1 / p\right): n, p \geq 1\right\}$ is a finite or countable subset of $\mathcal{T}_{E}^{d}$. Let $U \in \mathcal{T}_{E}^{d}$ and $x \in U$. There exists $\epsilon>0$, such that $B(x, \epsilon) \subseteq U$. By assumption, the set $\left\{x_{n}: n \geq 1\right\}$ is dense in $E$. $p \geq 1$ being such that $1 / p \leq \epsilon / 2$, there exists $n \geq 1$ such that $x_{n} \in B(x, 1 / p)$. In particular, $x \in B\left(x_{n}, 1 / p\right)$. Moreover, for all $y \in B\left(x_{n}, 1 / p\right)$, we have:

$$
d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y\right)<\frac{2}{p} \leq \epsilon
$$

So $y \in B(x, \epsilon) \subseteq U$. Hence, we see that $x \in B\left(x_{n}, 1 / p\right) \subseteq U$. For all $x \in U$, we have found $V_{x} \in \mathcal{H}$ such that $x \in V_{x} \subseteq U$. It follows that $U=\cup_{x \in U} V_{x}$. So $U$ is a union of elements of $\mathcal{H}$. We have proved that $\mathcal{H}$ is a countable base of $\left(E, \mathcal{T}_{E}^{d}\right)$.
2. Let $A=\left\{x_{V}: V \in \mathcal{H}, V \neq \emptyset\right\}$. $\mathcal{H}$ being a countable base of $\left(E, \mathcal{T}_{E}^{d}\right)$, it is at most countable. There exists an injective map $j: \mathcal{H} \rightarrow \mathbf{N}$. Let $i: A \rightarrow \mathcal{H}$ be defined by $i\left(x_{V}\right)=V$. Then $i$ is
clearly an injection, and $j \circ i: A \rightarrow \mathbf{N}$ is therefore an injective map. So $A$ is a finite or countable subset of $E$. Let $x \in E$. Let $U \in \mathcal{T}_{E}^{d}$ such that $x \in U$. Since $U$ can be written as a union of elements of $\mathcal{H}$, there exists $V \in \mathcal{H}$, such that $x \in V \subseteq U$. In particular, $V \neq \emptyset$ and $x_{V}$ is well-defined, with $x_{V} \in V \subseteq U$. So $x_{V} \in A \cap U \neq \emptyset$. We have proved that for all $U \in \mathcal{T}_{E}^{d}$ such that $x \in U, U \cap A \neq \emptyset$. From definition (37) ${ }^{7}, x$ is an element of $\bar{A}$, the closure of $A$. We have proved that $E \subseteq \bar{A}$. So $E=\bar{A}$, and $A$ is dense in $E$. Finally, $A$ is at most countable and dense in $E$. So $(E, d)$ is a separable metric space. The purpose of 1 . and 2 . is to show that for metric spaces, being separable, or having a countable base, are equivalent.
3. Let $x, y, x^{\prime}, y^{\prime} \in E$. We have:

$$
d(x, y) \leq d\left(x, x^{\prime}\right)+d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, y\right)
$$

${ }^{7}$ Beware of external links!
and therefore:

$$
d(x, y)-d\left(x^{\prime}, y^{\prime}\right) \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

Similarly:

$$
d\left(x^{\prime}, y^{\prime}\right)-d(x, y) \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

It follows that:

$$
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

4. Let $\delta:(E \times E)^{2} \rightarrow \mathbf{R}^{+}$be the metric on $E \times E$ defined by:

$$
\delta\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right)
$$

From 3., we have:

$$
\begin{equation*}
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq \delta\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \tag{6}
\end{equation*}
$$

From exercise (14), the product topology $\mathcal{T}_{E \times E}$ on $E \times E$ is induced by the metric $\delta$. Using exercise (4) of Tutorial 4, we
conclude from equation (6) that $d:\left(E \times E, \mathcal{T}_{E \times E}\right) \rightarrow\left(\mathbf{R}^{+}, \mathcal{T}_{\mathbf{R}^{+}}\right)$ is a continuous map.
5. From exercise (13) of Tutorial 4, and the continuity of the map $d: E \times E \rightarrow \mathbf{R}^{+}$proved in 4., we conclude that:

$$
d:(E \times E, \mathcal{B}(E \times E)) \rightarrow\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right)\right)
$$

is a measurable map. It follows that:

$$
d:(E \times E, \mathcal{B}(E \times E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))
$$

is a also a measurable map.
6. If $(E, d)$ is a separable metric space, from 1 ., it has a countable base. From exercise (18), $\mathcal{B}(E \times E)=\mathcal{B}(E) \otimes \mathcal{B}(E)$. We conclude from 5. that $d:(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))$ is a measurable map.
7. By definition (54), the product $\sigma$-algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$ is generated by the set of measurable rectangles $\mathcal{B}(E) \amalg \mathcal{B}(E)$. From
theorem (14), in order to prove the measurability of:

$$
\Phi:(\Omega, \mathcal{F}) \rightarrow(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E))
$$

it is sufficient to prove that $\Phi^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}(E) \amalg \mathcal{B}(E)$. However, any measurable rectangle $B$ of $\mathcal{B}(E) \amalg \mathcal{B}(E)$ is of the form $B=A_{1} \times A_{2}$, where $A_{1}, A_{2} \in \mathcal{B}(E)$. It follows that:

$$
\Phi^{-1}(B)=f^{-1}\left(A_{1}\right) \cap g^{-1}\left(A_{2}\right) \in \mathcal{F}
$$

since by assumption, both $f, g:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{B}(E))$ are measurable maps. We have proved that $\Phi: \Omega \rightarrow E \times E$ is measurable with respect to $\mathcal{F}$ and $\mathcal{B}(E) \otimes \mathcal{B}(E)$.
8. Suppose $(E, d)$ is a separable metric space. From 6., the map:

$$
d:(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))
$$

is measurable. However, from 7., the map:

$$
\Phi:(\Omega, \mathcal{F}) \rightarrow(E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E))
$$

is also measurable. It follows that $\Psi=d(f, g)=d \circ \Phi$ is measurable with respect to $\mathcal{F}$ and $\mathcal{B}(\overline{\mathbf{R}})$.
9. From 8., when $(E, d)$ is separable, the map $\Psi=d(f, g)$ is measurable. Hence:

$$
\{f=g\}=\Psi^{-1}(\{0\}) \in \mathcal{F}
$$

10. Let $\left(E_{n}, d_{n}\right)_{n \geq 1}$ be a sequence of separable metric spaces. From exercise (15), the product topological space $\Pi_{n=1}^{+\infty} E_{n}$ is metrizable. From 1., each $E_{n}$ has a countable base. From theorem (27), $\Pi_{n=1}^{+\infty} E_{n}$ also has a countable base. Being metrizable, it follows from 2., that it is in fact separable. We have proved that $\Pi_{n=1}^{+\infty} E_{n}$ is metrizable and separable.

Exercise 19

Exercise 20. Suppose each $f_{i}:(\Omega, \mathcal{F}) \rightarrow\left(\Omega_{i}, \mathcal{F}_{i}\right)$ is measurable. From theorem (14), in order to prove the measurability of:

$$
f:(\Omega, \mathcal{F}) \rightarrow\left(\Pi_{i \in I} \Omega_{i}, \otimes_{i \in I} \mathcal{F}_{i}\right)
$$

It is sufficient to show that $f^{-1}(B) \in \mathcal{F}$, for all $B \in \amalg_{i \in I} \mathcal{F}_{i}$. Let $B=\Pi_{i \in I} A_{i}$ be a measurable rectangle of the family $\left(\mathcal{F}_{i}\right)_{i \in I}$. For all $i \in I, A_{i} \in \mathcal{F}_{i}$, and $J=\left\{i \in I: A_{i} \neq \Omega_{i}\right\}$ is a finite set. Hence:

$$
f^{-1}(B)=\bigcap_{i \in I}\left\{f_{i} \in A_{i}\right\}=\bigcap_{i \in J}\left\{f_{i} \in A_{i}\right\} \in \mathcal{F}
$$

since each $f_{i}$ is measurable. So $f$ is indeed measurable. Conversely, suppose $f=\left(f_{i}\right)_{i \in I}$ is measurable. Let $j \in I$ and $A_{j} \in \mathcal{F}_{j}$. We have:

$$
f_{j}^{-1}\left(A_{j}\right)=f^{-1}\left(A_{j} \times \Pi_{i \neq j} \Omega_{i}\right) \in \mathcal{F}
$$

since $B=A_{j} \times \Pi_{i \neq j} \Omega_{i}$ is a measurable rectangle, and lies in $\otimes_{i \in I} \mathcal{F}_{i}$. So $f_{j}:(\Omega, \mathcal{F}) \rightarrow\left(\Omega_{j}, \mathcal{F}_{j}\right)$ is a measurable map.

Exercise 20

## Exercise 21.

1. Let $(x, y)$ and $\left(x^{\prime}, y^{\prime}\right)$ be elements of $\mathbf{R}^{2}$. We have:

$$
\begin{equation*}
\left|\phi(x, y)-\phi\left(x^{\prime}, y^{\prime}\right)\right| \leq\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right| \tag{7}
\end{equation*}
$$

By definition (17), the usual topology on $\mathbf{R}$ is the metric topology induced by $d(x, y)=|x-y|$. From exercise (14), the product topology on $\mathbf{R}^{2}$ is induced by:

$$
\delta\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|
$$

It follows from equation (7), and exercise (4) of Tutorial 4 that:

$$
\phi:\left(\mathbf{R}^{2}, \mathcal{T}_{\mathbf{R}^{2}}\right) \rightarrow\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)
$$

is a continuous map.
Let $\left(x_{0}, y_{0}\right) \in \mathbf{R}^{2}$ and $\epsilon>0$. For all $(x, y) \in \mathbf{R}^{2}$, we have:

$$
\left|\psi(x, y)-\psi\left(x_{0}, y_{0}\right)\right| \leq|y| \cdot\left|x-x_{0}\right|+\left|x_{0}\right| \cdot\left|y-y_{0}\right|
$$

Suppose $\eta>0$ is such that:

$$
\left|x-x_{0}\right|+\left|y-y_{0}\right|<\eta \leq 1
$$

Then in particular, $|y| \leq 1+\left|y_{0}\right|$, and consequently:

$$
\left|\psi(x, y)-\psi\left(x_{0}, y_{0}\right)\right| \leq M .\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)
$$

where $M=\max \left(\left|x_{0}\right|, 1+\left|y_{0}\right|\right)$. Hence, we see that:

$$
\delta\left[(x, y),\left(x_{0}, y_{0}\right)\right]<\eta \Rightarrow\left|\psi(x, y)-\psi\left(x_{0}, y_{0}\right)\right|<\epsilon
$$

where $\eta$ has been chosen as $\eta=\min (\epsilon / M, 1)$. We conclude from exercise (4) of Tutorial 4 that $\psi:\left(\mathbf{R}^{2}, \mathcal{T}_{\mathbf{R}^{2}}\right) \rightarrow\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$ is a continuous map.
2. $\phi$ and $\psi$ being continuous, from exercise (13) of Tutorial 4:

$$
\phi, \psi:\left(\mathbf{R}^{2}, \mathcal{B}\left(\mathbf{R}^{2}\right)\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))
$$

are measurable maps. Since $\left(\mathbf{R}, \mathcal{T}_{\mathbf{R}}\right)$ has a countable base, from exercise (18), we have $\mathcal{B}\left(\mathbf{R}^{2}\right)=\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$. We conclude that:

$$
\phi, \psi:\left(\mathbf{R}^{2}, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})\right) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))
$$

are measurable maps.
3. Given $f, g:(\Omega, \mathcal{F}) \rightarrow(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ measurable, the fact that $f+g$ and $f . g$ are measurable was already proved in Tutorial 4. The purpose of this exercise is to emphasize a more direct proof. From theorem (28), the map:

$$
h=(f, g):(\Omega, \mathcal{F}) \rightarrow(\mathbf{R} \times \mathbf{R}, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}))
$$

is measurable, since both $f$ and $g$ are measurable. From 2:

$$
\phi, \psi:(\mathbf{R} \times \mathbf{R}, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})) \rightarrow(\overline{\mathbf{R}}, \mathcal{B}(\overline{\mathbf{R}}))
$$

are also measurable. It follows that $f+g=\phi \circ h$ and $f . g=\psi \circ h$ are measurable with respect to $\mathcal{F}$ and $\mathcal{B}(\overline{\mathbf{R}})$. Being real-valued, they are also measurable with respect to $\mathcal{F}$ and $\mathcal{B}(\mathbf{R})$.

Exercise 21


[^0]:    ${ }^{2}$ Note that $\Omega_{i} \in \mathcal{F}_{i}$ for all $i \in I$.

[^1]:    ${ }^{3}$ We view ordered pairs as maps defined on $\mathbf{N}_{2} \ldots$

