13. Regular Measure

In the following, K denotes R or C.

Definition 99 Let (Ω, \mathcal{F}) be a measurable space. We say that a map $s : \Omega \to \mathbf{C}$ is a **complex simple function** on (Ω, \mathcal{F}) , if and only if it is of the form:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C}$ and $A_i \in \mathcal{F}$ for all $i \in \mathbf{N}_n$. The set of all complex simple functions on (Ω, \mathcal{F}) is denoted $S_{\mathbf{C}}(\Omega, \mathcal{F})$. The set of all \mathbf{R} -valued complex simple functions in (Ω, \mathcal{F}) is denoted $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

Recall that a simple function on (Ω, \mathcal{F}) , as defined in (40), is just a non-negative element of $S_{\mathbf{R}}(\Omega, \mathcal{F})$.

EXERCISE 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty[$.

1. Suppose $s: \Omega \to \mathbf{C}$ is of the form

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C}$, $A_i \in \mathcal{F}$ and $\mu(A_i) < +\infty$ for all $i \in \mathbf{N}_n$. Show that $s \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$.

2. Show that any $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$ can be written as:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbf{C} \setminus \{0\}$, $A_i \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$.

3. Show that any $s \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$ is of the form:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbb{C}$, $A_i \in \mathcal{F}$ and $\mu(A_i) < +\infty$, for all $i \in \mathbb{N}_n$.

4. Show that $L^{\infty}_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F}) = S_{\mathbf{C}}(\Omega, \mathcal{F}).$

EXERCISE 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty[$. Let f be a non-negative element of $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$.

- 1. Show the existence of a sequence $(s_n)_{n\geq 1}$ of non-negative functions in $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $s_n \uparrow f$.
- 2. Show that:

$$\lim_{n \to +\infty} \int |s_n - f|^p d\mu = 0$$

- 3. Show that there exists $s \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $||f s||_p \le \epsilon$, for all $\epsilon > 0$.
- 4. Show that $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

EXERCISE 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let f be a non-negative element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. For all $n \geq 1$, we define:

$$s_n \stackrel{\triangle}{=} \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} 1_{\{k/2^n \le f < (k+1)/2^n\}} + n 1_{\{n \le f\}}$$

- 1. Show that for all $n \geq 1$, s_n is a simple function.
- 2. Show there exists $n_0 \geq 1$ and $N \in \mathcal{F}$ with $\mu(N) = 0$, such that:

$$\forall \omega \in N^c \ , \ 0 \le f(\omega) < n_0$$

3. Show that for all $n \geq n_0$ and $\omega \in \mathbb{N}^c$, we have:

$$0 \le f(\omega) - s_n(\omega) < \frac{1}{2^n}$$

4. Conclude that:

$$\lim_{n \to +\infty} \|f - s_n\|_{\infty} = 0$$

5. Show the following:

Theorem 67 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $p \in [1, +\infty]$. Then, $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$.

EXERCISE 4. Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. We define Σ as the set of all $B \in \mathcal{B}(\Omega)$ such that for all $\epsilon > 0$, there exist F closed and G open in Ω , with:

$$F \subseteq B \subseteq G$$
, $\mu(G \setminus F) \le \epsilon$

Given a metric d on (Ω, \mathcal{T}) inducing the topology \mathcal{T} , we define:

$$d(x, A) \stackrel{\triangle}{=} \inf\{d(x, y) : y \in A\}$$

for all $A \subseteq \Omega$ and $x \in \Omega$.

1. Show that $x \to d(x, A)$ from Ω to $\bar{\mathbf{R}}$ is continuous for all $A \subseteq \Omega$.

2. Show that if F is closed in Ω , $x \in F$ is equivalent to d(x, F) = 0.

EXERCISE 5. Further to exercise (4), we assume that F is a closed subset of Ω . For all $n \ge 1$, we define:

$$G_n \stackrel{\triangle}{=} \{x \in \Omega : d(x, F) < \frac{1}{n}\}$$

- 1. Show that G_n is open for all $n \geq 1$.
- 2. Show that $G_n \downarrow F$.
- 3. Show that $F \in \Sigma$.
- 4. Was it important to assume that μ is finite?
- 5. Show that $\Omega \in \Sigma$.
- 6. Show that if $B \in \Sigma$, then $B^c \in \Sigma$.

EXERCISE 6. Further to exercise (5), let $(B_n)_{n\geq 1}$ be a sequence in Σ . Define $B = \bigcup_{n=1}^{+\infty} B_n$ and let $\epsilon > 0$.

1. Show that for all n, there is F_n closed and G_n open in Ω , with:

$$F_n \subseteq B_n \subseteq G_n , \ \mu(G_n \setminus F_n) \le \frac{\epsilon}{2^n}$$

2. Show the existence of some $N \geq 1$ such that:

$$\mu\left(\left(\bigcup_{n=1}^{+\infty} F_n\right) \setminus \left(\bigcup_{n=1}^{N} F_n\right)\right) \le \epsilon$$

- 3. Define $G = \bigcup_{n=1}^{+\infty} G_n$ and $F = \bigcup_{n=1}^{N} F_n$. Show that F is closed, G is open and $F \subseteq B \subseteq G$.
- 4. Show that:

$$G \setminus F \subseteq G \setminus \left(\bigcup_{n=1}^{+\infty} F_n\right) \ \uplus \ \left(\bigcup_{n=1}^{+\infty} F_n\right) \setminus F$$

5. Show that:

$$G \setminus \left(\bigcup_{n=1}^{+\infty} F_n\right) \subseteq \bigcup_{n=1}^{+\infty} G_n \setminus F_n$$

- 6. Show that $\mu(G \setminus F) \leq 2\epsilon$.
- 7. Show that Σ is a σ -algebra on Ω , and conclude that $\Sigma = \mathcal{B}(\Omega)$.

Theorem 68 Let (Ω, \mathcal{T}) be a metrizable topological space, and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $B \in \mathcal{B}(\Omega)$ and $\epsilon > 0$, there exist F closed and G open in Ω such that:

$$F \subseteq B \subseteq G$$
, $\mu(G \setminus F) \le \epsilon$

Definition 100 Let (Ω, T) be a topological space. We denote $C^b_{\mathbf{K}}(\Omega)$ the \mathbf{K} -vector space of all **continuous**, **bounded** maps $\phi : \Omega \to \mathbf{K}$, where $\mathbf{K} = \mathbf{R}$ or $\mathbf{K} = \mathbf{C}$.

EXERCISE 7. Let (Ω, \mathcal{T}) be a metrizable topological space with some metric d. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$ and F be a closed subset of Ω . For all $n \geq 1$, we define $\phi_n : \Omega \to \mathbf{R}$ by:

$$\forall x \in \Omega , \ \phi_n(x) \stackrel{\triangle}{=} 1 - 1 \wedge (nd(x, F))$$

- 1. Show that for all $p \in [1, +\infty]$, we have $C_{\mathbf{K}}^b(\Omega) \subseteq L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$.
- 2. Show that for all $n \geq 1$, $\phi_n \in C^b_{\mathbf{R}}(\Omega)$.
- 3. Show that $\phi_n \to 1_F$.
- 4. Show that for all $p \in [1, +\infty[$, we have:

$$\lim_{n \to +\infty} \int |\phi_n - 1_F|^p d\mu = 0$$

5. Show that for all $p \in [1, +\infty[$ and $\epsilon > 0$, there exists $\phi \in C^b_{\mathbf{R}}(\Omega)$ such that $\|\phi - 1_F\|_p \le \epsilon$.

6. Let $\nu \in M^1(\Omega, \mathcal{B}(\Omega))$. Show that $C^b_{\mathbf{C}}(\Omega) \subseteq L^1_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \nu)$ and:

$$\nu(F) = \lim_{n \to +\infty} \int \phi_n d\nu$$

7. Prove the following:

Theorem 69 Let (Ω, \mathcal{T}) be a metrizable topological space and μ, ν be two complex measures on $(\Omega, \mathcal{B}(\Omega))$ such that:

$$\forall \phi \in C^b_{\mathbf{R}}(\Omega) \ , \ \int \phi d\mu = \int \phi d\nu$$

Then $\mu = \nu$.

EXERCISE 8. Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega))$ be a complex

simple function:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

where $n \geq 1$, $\alpha_i \in \mathbb{C}$, $A_i \in \mathcal{B}(\Omega)$ for all $i \in \mathbb{N}_n$. Let $p \in [1, +\infty[$.

1. Show that given $\epsilon > 0$, for all $i \in \mathbb{N}_n$ there is a closed subset F_i of Ω such that $F_i \subseteq A_i$ and $\mu(A_i \setminus F_i) \leq \epsilon$. Let:

$$s' \stackrel{\triangle}{=} \sum_{i=1}^{n} \alpha_i 1_{F_i}$$

2. Show that:

$$||s - s'||_p \le \left(\sum_{i=1}^n |\alpha_i|\right) \epsilon^{\frac{1}{p}}$$

3. Conclude that given $\epsilon > 0$, there exists $\phi \in C^b_{\mathbf{C}}(\Omega)$ such that:

$$\|\phi - s\|_p \le \epsilon$$

4. Prove the following:

Theorem 70 Let (Ω, \mathcal{T}) be a metrizable topological space and μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in [1, +\infty[$, $C_{\mathbf{K}}^b(\Omega)$ is dense in $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$.

Definition 101 A topological space (Ω, \mathcal{T}) is said to be σ -compact if and only if, there exists a sequence $(K_n)_{n\geq 1}$ of compact subsets of Ω such that $K_n \uparrow \Omega$.

EXERCISE 9. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space, with metric d. Let Ω' be open in Ω . For all $n \geq 1$, we define:

$$F_n \stackrel{\triangle}{=} \{ x \in \Omega : d(x, (\Omega')^c) \ge 1/n \}$$

Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

1. Show that for all $n \geq 1$, F_n is closed in Ω .

- 2. Show that $F_n \uparrow \Omega'$.
- 3. Show that $F_n \cap K_n \uparrow \Omega'$.
- 4. Show that $F_n \cap K_n$ is closed in K_n for all $n \geq 1$.
- 5. Show that $F_n \cap K_n$ is a compact subset of Ω' for all $n \geq 1$.
- 6. Prove the following:

Theorem 71 Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Then, for all Ω' open subsets of Ω , the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is itself metrizable and σ -compact.

Definition 102 Let (Ω, T) be a topological space and μ be a measure on $(\Omega, \mathcal{B}(\Omega))$. We say that μ is **locally finite**, if and only if, every $x \in \Omega$ has an open neighborhood of finite μ -measure, i.e.

$$\forall x \in \Omega , \exists U \in \mathcal{T} , x \in U , \mu(U) < +\infty$$

Definition 103 If μ is a measure on a Hausdorff topological space Ω : We say that μ is inner-regular, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$\mu(B) = \sup\{\mu(K) : K \subseteq B , K compact\}$$

We say that μ is **outer-regular**, if and only if, for all $B \in \mathcal{B}(\Omega)$:

$$\mu(B) = \inf\{\mu(G) : B \subseteq G , G \text{ open}\}\$$

We say that μ is regular if it is both inner and outer-regular.

EXERCISE 10. Let (Ω, \mathcal{T}) be a Hausdorff topological space, μ a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$, and K a compact subset of Ω .

- 1. Show the existence of open sets V_1, \ldots, V_n with $\mu(V_i) < +\infty$ for all $i \in \mathbf{N}_n$ and $K \subseteq V_1 \cup \ldots \cup V_n$, where $n \ge 1$.
- 2. Conclude that $\mu(K) < +\infty$.

EXERCISE 11. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(K_n)_{n\geq 1}$ be a

sequence of compact subsets of Ω such that $K_n \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$. We define $\alpha = \sup\{\mu(K) : K \subseteq B, K \text{ compact}\}.$

- 1. Show that given $\epsilon > 0$, there exists F closed in Ω such that $F \subseteq B$ and $\mu(B \setminus F) \le \epsilon$.
- 2. Show that $F \setminus (K_n \cap F) \downarrow \emptyset$.
- 3. Show that $K_n \cap F$ is closed in K_n .
- 4. Show that $K_n \cap F$ is compact.
- 5. Conclude that given $\epsilon > 0$, there exists K compact subset of Ω such that $K \subseteq F$ and $\mu(F \setminus K) \le \epsilon$.
- 6. Show that $\mu(B) \leq \mu(K) + 2\epsilon$.
- 7. Show that $\mu(B) \leq \alpha$ and conclude that μ is inner-regular.

EXERCISE 12. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(K_n)_{n>1}$ be

a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$. Let $B \in \mathcal{B}(\Omega)$, and $\alpha \in \mathbf{R}$ be such that $\alpha < \mu(B)$.

- 1. Show that $\mu(K_n \cap B) \uparrow \mu(B)$.
- 2. Show the existence of $K \subseteq \Omega$ compact, with $\alpha < \mu(K \cap B)$.
- 3. Let $\mu^K = \mu(K \cap \cdot)$. Show that μ^K is a finite measure, and conclude that $\mu^K(B) = \sup\{\mu^K(K^*): K^* \subseteq B, K^* \text{ compact}\}.$
- 4. Show the existence of a compact subset K^* of Ω , such that $K^* \subseteq B$ and $\alpha < \mu(K \cap K^*)$.
- 5. Show that K^* is closed in Ω .
- 6. Show that $K \cap K^*$ is closed in K.
- 7. Show that $K \cap K^*$ is compact.
- 8. Show that $\alpha < \sup\{\mu(K') : K' \subseteq B, K' \text{ compact}\}.$

- 9. Show that $\mu(B) \leq \sup \{ \mu(K') : K' \subseteq B, K' \text{ compact} \}.$
- 10. Conclude that μ is inner-regular.

EXERCISE 13. Let (Ω, \mathcal{T}) be a metrizable topological space.

- 1. Show that (Ω, \mathcal{T}) is separable if and only if it has a countable base.
- 2. Show that if (Ω, \mathcal{T}) is compact, for all $n \geq 1$, Ω can be covered by a finite number of open balls with radius 1/n.
- 3. Show that if (Ω, \mathcal{T}) is compact, then it is separable.

EXERCISE 14. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space with metric d. Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

- 1. For all $n \geq 1$, give a metric on K_n inducing the topology $\mathcal{T}_{|K_n}$.
- 2. Show that $(K_n, \mathcal{T}_{|K_n})$ is separable.
- 3. Let $(x_n^p)_{p\geq 1}$ be an at most countable sequence of $(K_n, \mathcal{T}_{|K_n})$, which is dense. Show that $(x_n^p)_{n,p\geq 1}$ is an at most countable dense family of (Ω, \mathcal{T}) , and conclude with the following:

Theorem 72 Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Then, (Ω, \mathcal{T}) is separable and has a countable base.

EXERCISE 15. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let \mathcal{H} be a countable base of (Ω, \mathcal{T}) . We define $\mathcal{H}' = \{V \in \mathcal{H} : \mu(V) < +\infty\}$.

1. Show that for all U open in Ω and $x \in U$, there is U_x open in Ω such that $x \in U_x \subseteq U$ and $\mu(U_x) < +\infty$.

- 2. Show the existence of $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U_x$.
- 3. Conclude that \mathcal{H}' is a countable base of (Ω, \mathcal{T}) .
- 4. Show the existence of a sequence $(V_n)_{n\geq 1}$ of open sets in Ω with:

$$\Omega = \bigcup_{n=1}^{+\infty} V_n \ , \ \mu(V_n) < +\infty \ , \ \forall n \ge 1$$

EXERCISE 16. Let (Ω, \mathcal{T}) be a metrizable and σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $(V_n)_{n\geq 1}$ a sequence of open subsets of Ω such that:

$$\Omega = \bigcup_{n=1}^{+\infty} V_n \ , \ \mu(V_n) < +\infty \ , \ \forall n \ge 1$$

Let $B \in \mathcal{B}(\Omega)$ and $\alpha = \inf\{\mu(G) : B \subseteq G, G \text{ open}\}.$

- 1. Given $\epsilon > 0$, show that there exists G_n open in Ω such that $B \subseteq G_n$ and $\mu^{V_n}(G_n \setminus B) \le \epsilon/2^n$, where $\mu^{V_n} = \mu(V_n \cap \cdot)$.
- 2. Let $G = \bigcup_{n=1}^{+\infty} (V_n \cap G_n)$. Show that G is open in Ω , and $B \subseteq G$.
- 3. Show that $G \setminus B = \bigcup_{n=1}^{+\infty} V_n \cap (G_n \setminus B)$.
- 4. Show that $\mu(G) \leq \mu(B) + \epsilon$.
- 5. Show that $\alpha \leq \mu(B)$.
- 6. Conclude that is μ outer-regular.
- 7. Show the following:

Theorem 73 Let μ be a locally finite measure on a metrizable and σ -compact topological space (Ω, \mathcal{T}) . Then, μ is regular, i.e.:

$$\mu(B) = \sup\{\mu(K): K \subseteq B, K \text{ compact}\}\$$

= $\inf\{\mu(G): B \subseteq G, G \text{ open}\}\$

for all $B \in \mathcal{B}(\Omega)$.

EXERCISE 17. Show the following:

Theorem 74 Let Ω be an open subset of \mathbb{R}^n , where $n \geq 1$. Any locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ is regular.

Definition 104 We call **strongly** σ -**compact** topological space, a topological space (Ω, \mathcal{T}) , for which there exists a sequence $(V_n)_{n\geq 1}$ of open sets with compact closure, such that $V_n \uparrow \Omega$.

Definition 105 We call **locally compact** topological space, a topological space (Ω, \mathcal{T}) , for which every $x \in \Omega$ has an open neighborhood with compact closure, i.e. such that:

$$\forall x \in \Omega , \exists U \in \mathcal{T} : x \in U , \bar{U} \text{ is compact}$$

EXERCISE 18. Let (Ω, \mathcal{T}) be a σ -compact and locally compact topological space. Let $(K_n)_{n\geq 1}$ be a sequence of compact subsets of Ω such that $K_n \uparrow \Omega$.

- 1. Show that for all $n \geq 1$, there are open sets $V_1^n, \ldots, V_{p_n}^n, p_n \geq 1$, such that $K_n \subseteq V_1^n \cup \ldots \cup V_{p_n}^n$ and $\bar{V}_1^n, \ldots, \bar{V}_{p_n}^n$ are compact subsets of Ω .
- 2. Define $W_n = V_1^n \cup \ldots \cup V_{p_n}^n$ and $V_n = \bigcup_{k=1}^n W_k$, for $n \ge 1$. Show that $(V_n)_{n \ge 1}$ is a sequence of open sets in Ω with $V_n \uparrow \Omega$.
- 3. Show that $\bar{W}_n = \bar{V}_1^n \cup \ldots \cup \bar{V}_{p_n}^n$ for all $n \geq 1$.
- 4. Show that \bar{W}_n is compact for all $n \geq 1$.
- 5. Show that \bar{V}_n is compact for all $n \geq 1$
- 6. Conclude with the following:

Theorem 75 A topological space (Ω, \mathcal{T}) is strongly σ -compact, if and only if it is σ -compact and locally compact.

EXERCISE 19. Let (Ω, \mathcal{T}) be a topological space and Ω' be a subset of Ω . Let $A \subseteq \Omega'$. We denote $\bar{A}^{\Omega'}$ the closure of A in the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$, and \bar{A} its closure in Ω .

- 1. Show that $A \subseteq \Omega' \cap \bar{A}$.
- 2. Show that $\Omega' \cap \bar{A}$ is closed in Ω' .
- 3. Show that $\bar{A}^{\Omega'} \subseteq \Omega' \cap \bar{A}$.
- 4. Let $x \in \Omega' \cap \bar{A}$. Show that if $x \in U' \in \mathcal{T}_{|\Omega'|}$, then $A \cap U' \neq \emptyset$.
- 5. Show that $\bar{A}^{\Omega'} = \Omega' \cap \bar{A}$.

EXERCISE 20. Let (Ω, d) be a metric space.

1. Show that for all $x \in \Omega$ and $\epsilon > 0$, we have:

$$\overline{B(x,\epsilon)}\subseteq \{y\in\Omega:\ d(x,y)\leq \epsilon\}$$

- 2. Take $\Omega = [0, 1/2] \cup \{1\}$. Show that B(0, 1) = [0, 1/2].
- 3. Show that [0, 1/2] is closed in Ω .
- 4. Show that $\overline{B(0,1)} = [0, 1/2]$.
- 5. Conclude that $\overline{B(0,1)} \neq \{y \in \Omega : |y| \le 1\} = \Omega$.

EXERCISE 21. Let (Ω, d) be a locally compact metric space. Let Ω' be an open subset of Ω . Let $x \in \Omega'$.

- 1. Show there exists U open with compact closure, such that $x \in U$.
- 2. Show the existence of $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U \cap \Omega'$.
- 3. Show that $\overline{B(x,\epsilon/2)} \subseteq \overline{U}$.
- 4. Show that $\overline{B(x,\epsilon/2)}$ is closed in \overline{U} .
- 5. Show that $\overline{B(x,\epsilon/2)}$ is a compact subset of Ω .

- 6. Show that $\overline{B(x,\epsilon/2)} \subseteq \Omega'$.
- 7. Let $U' = B(x, \epsilon/2) \cap \Omega' = B(x, \epsilon/2)$. Show $x \in U' \in \mathcal{T}_{|\Omega'}$, and:

$$\bar{U}'^{\Omega'} = \overline{B(x, \epsilon/2)}$$

- 8. Show that the induced topological space Ω' is locally compact.
- 9. Prove the following:

Theorem 76 Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space. Then, for all Ω' open subsets of Ω , the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is itself metrizable and strongly σ -compact.

Definition 106 Let (Ω, \mathcal{T}) be a topological space, and $\phi : \Omega \to \mathbf{C}$ be a map. We call **support** of ϕ , the closure of the set $\{\phi \neq 0\}$, i.e.:

$$supp(\phi) \stackrel{\triangle}{=} \overline{\{\omega \in \Omega : \phi(\omega) \neq 0\}}$$

Definition 107 Let (Ω, \mathcal{T}) be a topological space. We denote $C_{\mathbf{K}}^{c}(\Omega)$ the K-vector space of all **continuous** map with **compact support** $\phi: \Omega \to \mathbf{K}$, where $\mathbf{K} = \mathbf{R}$ or $\mathbf{K} = \mathbf{C}$.

EXERCISE 22. Let (Ω, \mathcal{T}) be a topological space.

- 1. Show that $0 \in C^c_{\mathbf{K}}(\Omega)$.
- 2. Show that $C^c_{\mathbf{K}}(\Omega)$ is indeed a **K**-vector space.
- 3. Show that $C^c_{\mathbf{K}}(\Omega) \subseteq C^b_{\mathbf{K}}(\Omega)$.

EXERCISE 23. let (Ω, d) be a locally compact metric space. let K be a compact subset of Ω , and G be open in Ω , with $K \subseteq G$.

1. Show the existence of open sets V_1, \ldots, V_n such that:

$$K \subseteq V_1 \cup \ldots \cup V_n$$

and $\bar{V}_1, \ldots, \bar{V}_n$ are compact subsets of Ω .

- 2. Show that $V = (V_1 \cup \ldots \cup V_n) \cap G$ is open in Ω , and $K \subseteq V \subseteq G$.
- 3. Show that $\bar{V} \subseteq \bar{V}_1 \cup \ldots \cup \bar{V}_n$.
- 4. Show that \bar{V} is compact.
- 5. We assume $K \neq \emptyset$ and $V \neq \Omega$, and we define $\phi : \Omega \to \mathbf{R}$ by:

$$\forall x \in \Omega \ , \ \phi(x) \stackrel{\triangle}{=} \frac{d(x, V^c)}{d(x, V^c) + d(x, K)}$$

Show that ϕ is well-defined and continuous.

- 6. Show that $\{\phi \neq 0\} = V$.
- 7. Show that $\phi \in C^c_{\mathbf{R}}(\Omega)$.
- 8. Show that $1_K \leq \phi \leq 1_G$.
- 9. Show that if $K = \emptyset$, there is $\phi \in C_{\mathbf{R}}^c(\Omega)$ with $1_K \leq \phi \leq 1_G$.
- 10. Show that if $V = \Omega$ then Ω is compact.

11. Show that if $V = \Omega$, there $\phi \in C_{\mathbf{R}}^{c}(\Omega)$ with $1_{K} \leq \phi \leq 1_{G}$.

Theorem 77 Let (Ω, \mathcal{T}) be a metrizable and locally compact topological space. Let K be a compact subset of Ω , and G be an open subset of Ω such that $K \subseteq G$. Then, there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$, real-valued continuous map with compact support, such that:

$$1_K \le \phi \le 1_G$$

EXERCISE 24. Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Let $B \in \mathcal{B}(\Omega)$ be such that $\mu(B) < +\infty$. Let $p \in [1, +\infty[$.

- 1. Show that $C_{\mathbf{K}}^{c}(\Omega) \subseteq L_{\mathbf{K}}^{p}(\Omega, \mathcal{B}(\Omega), \mu)$.
- 2. Let $\epsilon > 0$. Show the existence of K compact and G open, with:

$$K \subseteq B \subseteq G$$
, $\mu(G \setminus K) \le \epsilon$

- 3. Where did you use the fact that $\mu(B) < +\infty$?
- 4. Show the existence of $\phi \in C_{\mathbf{R}}^c(\Omega)$ with $1_K \leq \phi \leq 1_G$.
- 5. Show that:

$$\int |\phi - 1_B|^p d\mu \le \mu(G \setminus K)$$

6. Conclude that for all $\epsilon > 0$, there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$ such that:

$$\|\phi - 1_B\|_p \le \epsilon$$

- 7. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega)) \cap L^{p}_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \mu)$. Show that for all $\epsilon > 0$, there exists $\phi \in C^{c}_{\mathbf{C}}(\Omega)$ such that $\|\phi s\|_{p} \leq \epsilon$.
- 8. Prove the following:

Theorem 78 Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space¹. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$. Then, for all $p \in [1, +\infty[$, the space $C^c_{\mathbf{K}}(\Omega)$ of \mathbf{K} -valued, continuous maps with compact support, is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

Exercise 25. Prove the following:

Theorem 79 Let Ω be an open subset of \mathbf{R}^n , where $n \geq 1$. Then, for any locally finite measure μ on $(\Omega, \mathcal{B}(\Omega))$ and $p \in [1, +\infty[$, $C^c_{\mathbf{K}}(\Omega)$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

i.e. a metrizable topological space for which there exists a sequence $(V_n)_{n\geq 1}$ of open sets with compact closure, such that $V_n \uparrow \Omega$.

Solutions to Exercises

Exercise 1.

1. From definition (99), s is clearly an element of $S_{\mathbf{C}}(\Omega, \mathcal{F})$. Furthermore, for all $i \in \mathbf{N}_n$, 1_{A_i} is measurable, and:

$$\int |1_{A_i}|^p d\mu = \int 1_{A_i} d\mu = \mu(A_i) < +\infty$$

So $1_{A_i} \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. s being a linear combination of the 1_{A_i} 's is also an element of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$. We have proved that s is an element of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$.

2. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$. From definition (99), s is of the form:

$$s = \sum_{j=1}^{m} \beta_j 1_{B_j} \tag{1}$$

where $m \geq 1$, $\beta_j \in \mathbb{C}$, and $B_j \in \mathcal{F}$ for all $j \in \mathbb{N}_m$. If s = 0, it can be written as $s = 1 \times 1_{\emptyset}$ and there is nothing further to

prove. We assume that $s \neq 0$. The map $\theta : \{0,1\}^m \to \mathbb{C}$ given by $\theta(\epsilon_1,\ldots,\epsilon_m) = \sum_{j=1}^m \beta_j \epsilon_j$ being defined on a finite set, has a finite range. Since $s(\Omega)$ is a subset of $\theta(\{0,1\}^m)$, $s(\Omega)$ is also a finite set. Having assumed that $s \neq 0$, the set $s(\Omega) \setminus \{0\}$ is therefore non-empty and finite. Let $n \geq 1$ be its cardinal, and $\alpha : \mathbb{N}_n \to s(\Omega) \setminus \{0\}$ be an arbitrary bijection. For all $\omega \in \Omega$, we have:

$$s(\omega) = \sum_{i=1}^{n} \alpha(i) \mathbb{1}_{\{s = \alpha(i)\}}$$
 (2)

Since $B_j \in \mathcal{F}$ for all j's, s is a measurable map. If we define $A_i = \{s = \alpha(i)\}$ for $i \in \mathbf{N}_n$, we have $A_i \in \mathcal{F}$. Furthermore, it is clear that $A_i \cap A_j = \emptyset$ for $i \neq j$. We conclude from (2) that s can be written as:

$$s = \sum_{i=1}^{n} \alpha(i) 1_{A_i}$$

where $n \geq 1$, $\alpha(i) \in \mathbf{C} \setminus \{0\}$, $A_i \in \mathcal{F}$, and $A_i \cap A_j = \emptyset$ for $i \neq j$.

3. Let $s \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{C}}(\Omega, \mathcal{F})$. From 2. s can be expressed as:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i} \tag{3}$$

where $n \geq 1$, $\alpha_i \neq 0$, $A_i \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$ for $i \neq j$. Let $A = A_1 \uplus ... \uplus A_n$. Then $s(\omega) = 0$ for all $\omega \in A^c$ and furthermore $1_A = 1_{A_1} + ... + 1_{A_n}$. Hence:

$$\int |s|^p d\mu = \sum_{i=1}^n \int |s|^p 1_{A_i} d\mu = \sum_{i=1}^n |\alpha_i|^p \mu(A_i) < +\infty$$

Since $\alpha_i \neq 0$, it follows that $\mu(A_i) < +\infty$ for all $i \in \mathbf{N}_n$. We have been able to express s as (3), where $n \geq 1$, $\alpha_i \in \mathbf{C}$ (in fact $\alpha_i \in \mathbf{C}^*$), $A_i \in \mathcal{F}$ and $\mu(A_i) < +\infty$ for all $i \in \mathbf{N}_n$. This is a converse of 1.

4. Let $s \in S_{\mathbf{C}}(\Omega, \mathcal{F})$. Then s is bounded and measurable.

Exercise 1

Exercise 2.

1. f being non-negative and measurable, from theorem (18) there exists a sequence $(s_n)_{n\geq 1}$ of simple functions on (Ω, \mathcal{F}) such that $s_n \uparrow f$. In particular, each s_n is a non-negative element of $S_{\mathbf{R}}(\Omega, \mathcal{F})$. Furthermore, $s_n \leq f$ for all $n \geq 1$ and having assumed that $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, we have:

$$\int s_n^p d\mu \le \int f^p d\mu < +\infty$$

We conclude that $(s_n)_{n\geq 1}$ is a sequence of non-negative elements of $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $s_n \uparrow f$.

2. Since $s_n \to f$, we have $|s_n - f|^p \to 0$ as $n \to +\infty$. Furthermore:

$$|s_n - f|^p \le (s_n + f)^p \le 2^p f^p \in L^1_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$$

From the dominated convergence theorem (23), we obtain:

$$\lim_{n \to +\infty} \int |s_n - f|^p d\mu = 0$$

3. Given $\epsilon > 0$, from 2. there exists $N \geq 1$ such that:

$$n \ge N \implies \int |s_n - f|^p d\mu \le \epsilon^p$$

In particular, taking $s = s_N$, we have found s belonging to the set $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{R}}(\Omega, \mathcal{F})$ such that $||f - s||_p \leq \epsilon$.

4. Let $A_{\mathbf{K}} = L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$. We claim that $A_{\mathbf{K}}$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$, i.e. that $\bar{A}_{\mathbf{K}} = L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ where $\bar{A}_{\mathbf{K}}$ is the closure of $A_{\mathbf{K}}$ in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. Recall from definition (75) that for any open set U in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ and $f \in U$, there exists $\epsilon > 0$ such that $B(f,\epsilon) \subseteq U$. Hence, all we need to prove is that given $f \in L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ and $\epsilon > 0$, there exists $s \in A_{\mathbf{K}}$ such that $||f-s||_p \leq \epsilon$. Indeed, if such property is proved, then for any $f \in L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$ and U open containing f, we have $A_{\mathbf{K}} \cap U \neq \emptyset$ and consequently $f \in A_{\mathbf{K}}$. So $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \subseteq A_{\mathbf{K}}$. Now, if $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$ and $\epsilon > 0$, the existence of $s \in A_{\mathbf{R}}$ such that $||f-s||_p \leq \epsilon$ has already been proved when f is non-negative. Suppose $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Then $f = f^+ - f^-$ where each f^+, f^- is a non-negative element of $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. There exists $s^+, s^- \in A_{\mathbf{R}}$ such that $\|f^+ - s^+\|_p \le \epsilon/2$ and $\|f^- - s^-\|_p \le \epsilon/2$. Taking $s = s^+ - s^-$, we have found $s \in A_{\mathbf{R}}$ such that:

$$||f - s||_p \le ||f^+ - s^+||_p + ||f^- - s^-||_p \le \epsilon$$

and the property is proved for $f \in L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. If f is an element of $L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$, then $f = f_1 + if_2$ where each f_1, f_2 lies in $L^p_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. There exists $s_1, s_2 \in A_{\mathbf{R}}$ such that $||f_1 - s_1||_p \le \epsilon/2$ and $||f_2 - s_2||_p \le \epsilon/2$. Taking $s = s_1 + is_2$, we have found $s \in A_{\mathbf{C}}$ such that:

$$||f - s||_p \le ||f_1 - s_1||_p + ||f_2 - s_2||_p \le \epsilon$$

and the property is proved for $f \in L^p_{\mathbf{C}}(\Omega, \mathcal{F}, \mu)$.

Exercise 2

Exercise 3.

1. Given $n \geq 1$, s_n is of the form:

$$s_n = \sum_{i=1}^p \alpha_i 1_{A_i}$$

where $p \geq 1$, $\alpha_i \in \mathbf{R}^+$ and $A_i \in \mathcal{F}$ for all $i \in \mathbf{N}_p$. From definition (40), it is therefore a simple function on (Ω, \mathcal{F}) (or indeed a complex simple function on (Ω, \mathcal{F}) with values in \mathbf{R}^+).

2. Since f is an element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, we have:

$$||f||_{\infty} \stackrel{\triangle}{=} \inf\{M \in \mathbf{R}^+ : |f| \le M \ \mu\text{-a.s.}\} < +\infty$$

It is therefore possible to find an integer $n_0 \geq 1$ such that $||f||_{\infty} < n_0$. Since $||f||_{\infty}$ is the greatest lower bound all M's such that $|f| \leq M \mu$ -a.s., n_0 cannot be such lower bound. Hence, there exists $M_0 \in \mathbf{R}^+$ such that $|f| \leq M_0 \mu$ -a.s. and $M_0 < n_0$.

Thus, there exists $N \in \mathcal{F}$ with $\mu(N) = 0$, and:

$$\forall \omega \in N^c \ , \ |f(\omega)| \le M_0 < n_0$$

In particular, since f is a non-negative element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$:

$$\forall \omega \in N^c \ , \ 0 \le f(\omega) < n_0$$

3. Let $n \ge n_0$ and $\omega \in N^c$. From 2. we have $0 \le f(\omega) < n_0$ and consequently $s_n(\omega) = k/2^n$, where k is the unique integer of $\{0, \ldots, n2^n - 1\}$ such that $f(\omega) \in [k/2^n, (k+1)/2^n]$. So:

$$0 \le f(\omega) - s_n(\omega) < \frac{1}{2^n} \tag{4}$$

4. From 3. we have $N \in \mathcal{F}$ with $\mu(N) = 0$ such that for all $\omega \in N^c$, inequality (4) holds for all $n \geq n_0$. So $|f - s_n| < 1/2^n \ \mu$ -a.s. for all $n \geq n_0$. Since $||f - s_n||_{\infty}$ is a lower bound of all M's such that $|f - s_n| \leq M \ \mu$ -a.s., we conclude that $||f - s_n||_{\infty} \leq 1/2^n$

for all $n \geq n_0$, and in particular:

$$\lim_{n \to +\infty} \|f - s_n\|_{\infty} = 0 \tag{5}$$

5. Let $p \in [1, +\infty]$ be given and $A_{\mathbf{K}} = L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu) \cap S_{\mathbf{K}}(\Omega, \mathcal{F})$. If $p \in [1, +\infty[$, we have already proved in exercise (2) that $A_{\mathbf{K}}$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{F}, \mu)$. We assume that $p = +\infty$ and we claim likewise that $A_{\mathbf{K}}$ is dense in $L_{\mathbf{K}}^{\infty}(\Omega, \mathcal{F}, \mu)$ (note that $A_{\mathbf{K}}$ and $S_{\mathbf{K}}(\Omega,\mathcal{F})$ coincide when $p=+\infty$). Given $f\in L_{\mathbf{K}}^{\infty}(\Omega,\mathcal{F},\mu)$ and $\epsilon > 0$, we need to show the existence of $s \in A_{\mathbf{K}}$ such that $||f-s||_{\infty} \leq \epsilon$. When $\mathbf{K} = \mathbf{R}$ and f is a non-negative element of $L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, then such existence is guaranteed by (5), (keeping in mind that simple functions on (Ω, \mathcal{F}) are elements of $S_{\mathbf{R}}(\Omega, \mathcal{F}) = A_{\mathbf{R}}$). If $f \in L_{\mathbf{R}}^{\infty}(\Omega, \mathcal{F}, \mu)$, then $f = f^+ - f^$ where each f^+, f^- is a non-negative element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. There exists s^+, s^- in $A_{\mathbf{R}}$ such that $||f^+ - s^+||_{\infty} < \epsilon/2$ and $||f^- - s^-||_{\infty} \le \epsilon/2$. Taking $s = s^+ - s^-$ we obtain $s \in A_{\mathbf{R}}$ and $||f-s||_{\infty} \leq \epsilon$. This completes the proof of theorem (67) when

 $\mathbf{K} = \mathbf{R}$. If $f \in L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$, then $f = f_1 + i f_2$ where each f_1, f_2 is an element of $L^{\infty}_{\mathbf{R}}(\Omega, \mathcal{F}, \mu)$. Approximating f_1 and f_2 by elements s_1, s_2 of $A_{\mathbf{R}}$, we obtain likewise an element $s = s_1 + i s_2$ of $A_{\mathbf{C}}$ with $||f - s||_{\infty} \leq \epsilon$. This proves theorem (67).

Exercise 4.

1. Let $A \subseteq \Omega$. If $A = \emptyset$, then $d(x,A) = +\infty$ for all $x \in \Omega$. In particular, the map $x \to d(x,A)$ is a continuous map. If $A \neq \emptyset$ and $y \in A$, then $d(x,A) \leq d(x,y)$. In particular $d(x,A) < +\infty$ for all $x \in \Omega$. Furthermore, for all $x, x' \in \Omega$ and $y \in A$:

$$d(x,A) \le d(x,y) \le d(x,x') + d(x',y)$$

Consequently, d(x, A) - d(x, x') is a lower bound of all d(x', y), as y ranges through A. d(x', A) being the greatest of such lower bounds, we have:

$$d(x, A) \le d(x, x') + d(x', A)$$

Interchanging the roles of x and x' we obtain:

$$d(x', A) \le d(x, x') + d(x, A)$$

from which we see that:

$$\forall x, x' \in \Omega , |d(x, A) - d(x', A)| \le d(x, x')$$
 (6)

We conclude from (6) that $x \to d(x, A)$ is continuous.

2. Let F be a closed subset of Ω . If $x \in F$, $d(x,F) \leq d(x,x) = 0$ and consequently d(x,F) = 0. Conversely, suppose d(x,F) = 0. We shall show that $x \notin F$ is impossible. Indeed, if $x \in F^c$, since F^c is open, there exists $\epsilon > 0$ such that $B(x,\epsilon) \subseteq F^c$. However, d(x,F) = 0 implies in particular that $d(x,F) < \epsilon$. Since d(x,F) is the greatest of all lower bounds of d(x,y), as y range through F, ϵ cannot be such a lower bound. Hence, there exists $y \in F$ such that $d(x,y) < \epsilon$. So $y \in B(x,\epsilon) \cap F \neq \emptyset$ which is a contradiction. We have proved that $x \in F$ is equivalent to d(x,F) = 0, whenever F is a closed subset of Ω . This exercise is in fact a repetition of exercise (22) of Tutorial 4.

Exercise 5.

- 1. $G_n = \{x \in \Omega : d(x, F) < 1/n\}$ can be written as $\Phi_F^{-1}([-\infty, 1/n[)])$ where Φ_F is the map defined on Ω by $\Phi_F(x) = d(x, F)$. Having proved in exercise (4) that Φ_F is continuous, and since $[-\infty, 1/n[]]$ is open in $\bar{\mathbf{R}}$, we conclude that G_n is an open subset of Ω .
- 2. It is clear that $G_{n+1} \subseteq G_n$ and $F \subseteq \bigcap_{n \geq 1} G_n$. Suppose that $x \in \bigcap_{n \geq 1} G_n$. Then d(x, F) < 1/n for all $n \geq 1$ and consequently d(x, F) = 0. From exercise (4), F being a closed subset of Ω , it follows that $x \in F$. This shows that $\bigcap_{n \geq 1} G_n \subseteq F$ and finally $\bigcap_{n \geq 1} G_n = F$. So $G_n \downarrow F$.
- 3. Since μ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$, from theorem (8) and $G_n \downarrow F$ we obtain $\mu(G_n) \to \mu(F)$ as $n \to +\infty$. Furthermore, since $F \subseteq G_n$ for all $n \ge 1$, we have:

$$\mu(G_n \setminus F) = \mu(G_n \setminus F) + \mu(F) - \mu(F) = \mu(G_n) - \mu(F)$$

It follows that $\mu(G_n \setminus F) \to 0$ as $n \to +\infty$. Given $\epsilon > 0$, there

exists N > 1, such that:

$$n \ge N \implies \mu(G_n \setminus F) \le \epsilon$$

In particular, taking F' = F and $G' = G_N$, F' and G' are respectively closed and open subsets of Ω , with $F' \subseteq F \subseteq G'$ and $\mu(G' \setminus F') \leq \epsilon$. This shows that $F \in \Sigma$. We have proved that any closed subset F of Ω is an element of Σ .

- 4. The application of theorem (8) requires some finiteness property.
- 5. Ω is a closed subset of Ω . So $\Omega \in \Sigma$.
- 6. Let $B \in \Sigma$. For all $\epsilon > 0$, there exist F and G respectively closed and open subsets of Ω , such that $F \subseteq B \subseteq G$ and $\mu(G \setminus F) \le \epsilon$. Since $F^c \setminus G^c = F^c \cap G = G \setminus F$, it follows that $G^c \subseteq B^c \subseteq F^c$ and $\mu(F^c \setminus G^c) \le \epsilon$. This shows that $B^c \in \Sigma$, since G^c and G^c are respectively closed and open subsets of G^c . We have proved that $G^c \subseteq G^c$ and G^c are complementation.

Exercise 6.

- 1. Let $n \geq 1$. By assumption B_n is an element of Σ . For all $\epsilon' > 0$, and in particular for $\epsilon' = \epsilon/2^n$, there exist F_n and G_n respectively closed and open subsets of Ω , with $F_n \subseteq B_n \subseteq G_n$ and $\mu(G_n \setminus F_n) \leq \epsilon'$.
- 2. Let $H_n = \bigcup_{k=1}^n F_k$ and $H = \bigcup_{k \ge 1} F_k$. Then $H_n \uparrow H$, and consequently from theorem (7), $\mu(H_n) \to \mu(H)$ as $n \to +\infty$. μ being a finite measure, we obtain:

$$\lim_{n \to +\infty} \mu(H \setminus H_n) = \lim_{n \to +\infty} \mu(H) - \mu(H_n) = 0$$

In particular, there exists $N \geq 1$ such that $\mu(H \setminus H_N) \leq \epsilon$, or equivalently:

$$\mu\left(\left(\cup_{n=1}^{+\infty}F_n\right)\setminus\left(\cup_{n=1}^{N}F_n\right)\right)\leq\epsilon\tag{7}$$

3. Let $G = \bigcup_{n\geq 1} G_n$ and $F = \bigcup_{n=1}^N F_n$. G being a union of open subsets of Ω , is itself an open subset of Ω . F being a finite

union of closed subsets of Ω , is itself a closed subset of Ω . Since $F_n \subseteq B_n \subseteq G_n$ for all $n \ge 1$ and $B = \bigcup_{n \ge 1} B_n$, it is clear that $F \subseteq B \subseteq G$.

- 4. Let $H = \bigcup_{n \geq 1} F_n$. The sets $G \setminus H$ and $H \setminus F$ are clearly disjoint. Furthermore if $x \in G \setminus F = G \cap F^c$, then either $x \in H$ or $x \notin H$. If $x \in H$ then $x \in H \setminus F$. If $x \notin H$ then $x \in G \setminus H$. In any case, $x \in G \setminus H \uplus H \setminus F$. This shows that $G \setminus F \subseteq G \setminus H \uplus H \setminus F$.
- 5. Let $H = \bigcup_{n \geq 1} F_n$ and $x \in G \setminus H$. Since $x \in G$, there exists $n \geq 1$ such that $x \in G_n$. But $x \in H^c = \bigcap_{k \geq 1} F_k^c$. So in particular $x \in F_n^c$ and consequently $x \in G_n \setminus F_n$. This shows that $G \setminus H \subseteq \bigcup_{n \geq 1} G_n \setminus F_n$.
- 6. Applying 4. and 5. with $H = \bigcup_{n>1} F_n$, we have:

$$G \setminus F \subseteq (\cup_{n>1} G_n \setminus F_n) \uplus H \setminus F$$

It follows that:

$$\mu(G \setminus F) \le \sum_{n=1}^{+\infty} \mu(G_n \setminus F_n) + \mu(H \setminus F)$$

Having chosen F_n and G_n such that $\mu(G_n \setminus F_n) \leq \epsilon/2^n$ and having defined F from 2. such that $\mu(H \setminus F) \leq \epsilon$, we conclude that $\mu(G \setminus F) \leq 2\epsilon$.

7. Given a sequence $(B_n)_{n\geq 1}$ in Σ and $B=\cup_{n\geq 1}B_n$, given an arbitrary $\epsilon>0$, we have shown the existence of F and G respectively closed and open subsets of Ω , such that $F\subseteq B\subseteq G$ (see 3.) and $\mu(G\setminus F)\leq 2\epsilon$ (see 6.). It follows that $B\in \Sigma$. This shows that Σ is closed under countable union. Since $\Omega\in \Sigma$ and Σ is closed under complementation (see exercise (5)), Σ is therefore a σ -algebra on Ω . Furthermore, still from exercise (5), Σ contains every closed subset of Σ . Being closed under complementation, it also contains every open subset of Σ . In other words, the topology Σ is a subset of Σ , i.e. Σ is Σ . The Σ -algebra Σ

being the smallest σ -algebra on Ω containing T (containing in the inclusion sense), the fact that Σ is a σ -algebra on Ω implies that $\mathcal{B}(\Omega) = \sigma(T) \subseteq \Sigma$. Σ being a subset of the Borel σ -algebra $\mathcal{B}(\Omega)$, we conclude that $\Sigma = \mathcal{B}(\Omega)$. Hence, for all $B \in \mathcal{B}(\Omega)$ and $\epsilon > 0$, there exist F and G respectively closed and open subsets of Ω , such that $F \subseteq B \subseteq G$ and $\mu(G \setminus F) \le \epsilon$. This proves theorem (68).

Exercise 7.

1. Let $p \in [1, +\infty]$ and $f \in C^b_{\mathbf{K}}(\Omega)$. Since f is continuous, f is Borel measurable. Furthermore, since f is bounded, there exists $M \in \mathbf{R}^+$ such that $|f| \leq M$. This implies that $||f||_{\infty} \leq M$ and in particular $||f||_{\infty} < +\infty$. So $f \in L^\infty_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$. Moreover, if $p \in [1, +\infty[$, μ being a finite measure on $(\Omega, \mathcal{B}(\Omega))$:

$$\int |f|^p d\mu \le M^p \mu(\Omega) < +\infty$$

so $f \in L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$, and finally $C^b_{\mathbf{K}}(\Omega) \subseteq L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

- 2. Let $n \geq 1$ and ϕ_n be defined by $\phi_n(x) = 1 1 \wedge (nd(x, F))$. From exercise (4), the map $x \to d(x, F)$ is continuous. So ϕ_n is also continuous, and furthermore it is clear that $|\phi_n(x)| \leq 1$ for all $x \in \Omega$. So $\phi_n \in C^b_{\mathbf{R}}(\Omega)$.
- 3. Let $x \in \Omega$. If $x \in F$, then d(x, F) = 0 and $\phi_n(x) = 1$ for all $n \ge 1$. In particular, $\phi_n(x) \to 1_F(x)$ as $n \to +\infty$. If $x \notin F$,

then from exercise (4), F being a closed subset of Ω , we have d(x,F) > 0. It follows that:

$$\lim_{n \to +\infty} \phi_n(x) = 1 - \lim_{n \to +\infty} 1 \wedge (nd(x, F)) = 0$$

In particular, $\phi_n(x) \to 1_F(x)$ as $n \to +\infty$. So $\phi_n \to 1_F$.

4. Let $p \in [1, +\infty[$. From 3. we have $\phi_n \to 1_F$ and consequently $|\phi_n - 1_F|^p \to 0$ as $n \to +\infty$. Furthermore, for all $n \ge 1$:

$$|\phi_n - 1_F|^p \le (|\phi_n| + |1_F|)^p \le 2^p$$

 μ being a finite measure on $(\Omega, \mathcal{B}(\Omega))$, from the dominated convergence theorem (23) we conclude that:

$$\lim_{n \to +\infty} \int |\phi_n - 1_F|^p d\mu = 0$$

5. Let $p \in [1, +\infty[$ and $\epsilon > 0$. From 4. there is $N \ge 1$ such that:

$$n \ge N \implies \int |\phi_n - 1_F|^p d\mu \le \epsilon^p$$

In particular, taking $\phi = \phi_N$, $\phi \in C^b_{\mathbf{R}}(\Omega)$ and $\|\phi - 1_F\|_p \le \epsilon$.

6. Let ν be a complex measure on $(\Omega, \mathcal{B}(\Omega))$. From theorem (57), the total variation $|\nu|$ of ν is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. It follows that $C^b_{\mathbf{C}}(\Omega) \subseteq L^1_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), |\nu|) = L^1_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \nu)$. Let $h \in L^1_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), |\nu|)$ be such that |h| = 1 and $\nu = \int hd|\nu|$. Then:

$$\left| \int \phi_n d\nu - \nu(F) \right| = \left| \int \phi_n d\nu - \int 1_F d\nu \right|$$

$$= \left| \int (\phi_n - 1_F) h d|\nu| \right|$$

$$\leq \int |\phi_n - 1_F| d|\nu|$$

where the second equality stems from definition (97), and the last inequality from theorem (24). We conclude from 4. applied

to $\mu = |\nu|$ and p = 1, that:

$$\nu(F) = \lim_{n \to +\infty} \int \phi_n d\nu$$

7. Let (Ω, \mathcal{T}) be a metrizable topological space, and μ, ν be two complex measures on $(\Omega, \mathcal{B}(\Omega))$. We assume that:

$$\forall \phi \in C_{\mathbf{R}}^b(\Omega) \ , \ \int \phi d\mu = \int \phi d\nu$$
 (8)

and we claim that $\mu = \nu$. We define:

$$\mathcal{D} = \{ E \in \mathcal{B}(\Omega) : \mu(E) = \nu(E) \}$$

Let F be a closed subset of Ω . From 6. and (8) we have:

$$\mu(F) = \lim_{n \to +\infty} \int \phi_n d\mu = \lim_{n \to +\infty} \int \phi_n d\nu = \nu(F)$$

So $F \in \mathcal{D}$. Hence, any closed subset of Ω is an element of \mathcal{D} . In

particular, $\Omega \in \mathcal{D}$. Furthermore, if $A, B \in \mathcal{D}$ with $A \subseteq B$, then:

$$\mu(B \setminus A) = \mu(B) - \mu(A) = \nu(B) - \nu(A) = \nu(B \setminus A)$$

So $B \setminus A \in \mathcal{D}$. Finally, if $(E_n)_{n \geq 1}$ is a sequence of elements of \mathcal{D} with $E_n \uparrow E$, then using exercise (13) of Tutorial 12 we have:

$$\mu(E) = \lim_{n \to +\infty} \mu(E_n) = \lim_{n \to +\infty} \nu(E_n) = \nu(E)$$

So $E \in \mathcal{D}$, and we have proved that \mathcal{D} is a Dynkin system on Ω . In particular, \mathcal{D} is closed under complementation, and since it contains every closed subset of Ω , it also contains every open subset of Ω . So $\mathcal{T} \subseteq \mathcal{D}$ and finally, since \mathcal{T} is closed under finite intersection, from the Dynkin system theorem (1) we conclude that $\mathcal{B}(\Omega) = \sigma(\mathcal{T}) \subseteq \mathcal{D}$. It follows that $\mathcal{B}(\Omega) = \mathcal{D}$ and consequently $\mu = \nu$, which completes the proof of theorem (69).

Exercise 8.

- 1. Let $\epsilon > 0$ and $i \in \mathbf{N}_n$. Since $A_i \in \mathcal{B}(\Omega)$, μ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$ and (Ω, \mathcal{T}) is metrizable, from theorem (68) there exist F_i , G_i respectively closed and open subsets of Ω , such that $F_i \subseteq A_i \subseteq G_i$ and $\mu(G_i \setminus F_i) \leq \epsilon$. In particular, $A_i \setminus F_i \subseteq G_i \setminus F_i$ and we have $\mu(A_i \setminus F_i) \leq \epsilon$.
- 2. From $s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$ and $s' = \sum_{i=1}^{n} \alpha_i 1_{F_i}$ we obtain:

$$||s - s'||_{p} = \left\| \sum_{i=1}^{n} \alpha_{i} (1_{A_{i}} - 1_{F_{i}}) \right\|_{p}$$

$$\leq \sum_{i=1}^{n} |\alpha_{i}| \cdot ||1_{A_{i}} - 1_{F_{i}}||_{p}$$

$$= \sum_{i=1}^{n} |\alpha_{i}| \left(\int |1_{A_{i}} - 1_{F_{i}}|^{p} d\mu \right)^{\frac{1}{p}}$$

$$= \sum_{i=1}^{n} |\alpha_{i}| \left(\int 1_{A_{i} \setminus F_{i}} d\mu \right)^{\frac{1}{p}}$$

$$= \sum_{i=1}^{n} |\alpha_{i}| \mu(A_{i} \setminus F_{i})^{\frac{1}{p}}$$

$$\leq \left(\sum_{i=1}^{n} |\alpha_{i}| \right) \epsilon^{\frac{1}{p}}$$

3. Let $\epsilon > 0$. Choosing $\epsilon' > 0$ sufficiently small such that:

$$\left(\sum_{i=1}^{n} \|\alpha_i\|\right) \epsilon'^{1/p} \le \epsilon/2$$

and applying 2. to ϵ' , there exist closed subsets F_1, \ldots, F_n of Ω , such that $||s - s'||_p \le \epsilon/2$, where s' is defined as:

$$s' = \sum_{i=1}^{n} \alpha_i 1_{F_i}$$

Furthermore for all $i \in \mathbf{N}_n$, from 5. of exercise (7) there exists $\phi_i \in C^b_{\mathbf{R}}(\Omega)$ such that $|\alpha_i| \cdot ||\phi_i - 1_{F_i}||_p \le \epsilon/2n$. We Define:

$$\phi = \sum_{i=1}^{n} \alpha_i \phi_i$$

Then $\phi \in C^b_{\mathbf{C}}(\Omega)$ (in fact $\phi \in C^b_{\mathbf{R}}(\Omega)$ if $\alpha_i \in \mathbf{R}$ for all i's), and:

$$\|\phi - s'\|_p = \left\| \sum_{i=1}^n \alpha_i (\phi_i - 1_{F_i}) \right\|_p$$

$$\leq \sum_{i=1}^n |\alpha_i| \cdot \|\phi_i - 1_{F_i}\|_p$$

$$\leq \epsilon/2$$

Finally, we obtain $\|\phi - s\|_p \le \|\phi - s'\|_p + \|s - s'\|_p \le \epsilon$.

4. Suppose (Ω, \mathcal{T}) is a metrizable topological space, and μ is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. For all $p \in [1, +\infty[$, we clearly

have $C_{\mathbf{K}}^b(\Omega) \subseteq L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$ and we claim that $C_{\mathbf{K}}^b(\Omega)$ is in fact dense in $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$. Given $f \in L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon > 0$, we have to prove the existence of $\phi \in C_{\mathbf{K}}^b(\Omega)$ such that $\|f - \phi\|_p \leq \epsilon$. From theorem (67), the set $S_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega))$ (which is a subset of $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$ since μ is finite) is dense in $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$. There exists $s \in S_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega))$ such that $\|f - s\|_p \leq \epsilon/2$. Applying 3. to the **K**-valued simple function s, there exists $\phi \in C_{\mathbf{K}}^b(\Omega)$ (ϕ can indeed be chosen **R**-valued if $\mathbf{K} = \mathbf{R}$), such that $\|\phi - s\|_p \leq \epsilon/2$. It follows that:

$$||f - \phi||_p \le ||f - s||_p + ||\phi - s||_p \le \epsilon$$

which completes the proof of theorem (70).

Exercise 9.

- 1. $F_n = \phi^{-1}([1/n, +\infty])$ where ϕ is the continuous map defined by $\phi(x) = d(x, \Omega'^c)$. Since $[1/n, +\infty]$ is a closed subset of $\bar{\mathbf{R}}$, we conclude that F_n is a closed subset of Ω .
- 2. For all $n \geq 1$ it is clear that $F_n \subseteq F_{n+1}$. Let $x \in \Omega'$. Since Ω' is an open subset of Ω , Ω'^c is a closed subset of Ω and $x \notin \Omega'^c$. It follows from exercise (4) that $d(x, \Omega'^c) > 0$. Hence, there exists $n \geq 1$ such that $d(x, \Omega'^c) \geq 1/n$. So $x \in F_n$ and we have proved that $\Omega' \subseteq \bigcup_{n \geq 1} F_n$. To prove the reverse inclusion, suppose $x \in F_n$ for a some $n \geq 1$. Then in particular $d(x, \Omega'^c) > 0$ and x cannot be an element of Ω'^c . So $x \in \Omega'$. This shows that $F_n \subseteq \Omega'$ for all $n \geq 1$, and we have proved that $F_n \uparrow \Omega'$.
- 3. Since $F_n \subseteq F_{n+1}$ and $K_n \subseteq K_{n+1}$, $F_n \cap K_n \subseteq F_{n+1} \cap K_{n+1}$. Furthermore, it is clear that $\bigcup_{n\geq 1} F_n \cap K_n \subseteq \Omega'$ since $F_n \subseteq \Omega'$ for all $n\geq 1$. Finally if $x\in \Omega'$, since $F_n\uparrow \Omega'$ there exists $p\geq 1$ such that $x\in F_p$. Since $K_n\uparrow \Omega$ there exists $q\geq 1$ such

that $x \in K_q$. Taking $n = \max(p, q)$, we have $x \in F_n \cap K_n$. So $\Omega' \subseteq \bigcup_{n>1} F_n \cap K_n$ and we have proved that $F_n \cap K_n \uparrow \Omega'$.

- 4. Let $n \geq 1$. Since F_n is closed in Ω , F_n^c is open in Ω . By the very definition of the induced topology on K_n , $K_n \setminus F_n = K_n \cap F_n^c$ is an open subset of K_n . We conclude that $F_n \cap K_n$ is a closed subset of K_n .
- 5. By assumption, each K_n is a compact subset of Ω . Equivalently, the induced topological space $(K_n, \mathcal{T}_{|K_n})$ is compact. Having proved that $F_n \cap K_n$ is a closed subset of K_n , from exercise (2) of Tutorial 8, $F_n \cap K_n$ is a compact subset of K_n , or equivalently a compact subset of Ω' .
- 6. We have found a sequence $(F_n \cap K_n)_{n\geq 1}$ of compact subsets of Ω' , such that $F_n \cap K_n \uparrow \Omega'$. This shows that the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is σ -compact. From theorem (12), it is also metrizable, which completes the proof of theorem (71).

Exercise 10.

1. Let $x \in K$. Since μ is locally finite, there exists U_x open subset of Ω , such that $x \in U_x$ and $\mu(U_x) < +\infty$. It is clear that $K \subseteq \cup_{x \in K} U_x$, and K being a compact subset of Ω , there exists a finite subset $\{x_1, \ldots, x_n\}$ of K such that $K \subseteq U_{x_1} \cup \ldots \cup U_{x_n}$. Taking $V_i = U_{x_i}$, we have found V_1, \ldots, V_n open subsets of Ω , such that $\mu(V_i) < +\infty$ for all $i \in \mathbf{N}_n$ and:

$$K \subseteq V_1 \cup \ldots \cup V_n \tag{9}$$

Note that if n = 0, $K = \emptyset$ and it is always possible to assume n = 1 by taking $V_1 = \emptyset$ (not a very important comment).

2. From (9) and exercise (13) of Tutorial 5, we obtain:

$$\mu(K) \le \mu(V_1 \cup \ldots \cup V_n) \le \sum_{i=1}^n \mu(V_i) < +\infty$$

Exercise 11.

- 1. Let $\epsilon > 0$. Since (Ω, \mathcal{T}) is metrizable and μ is a finite measure, from theorem (68) there exist F, G respectively closed and open subsets of Ω , such that $F \subseteq B \subseteq G$ and $\mu(G \setminus F) \leq \epsilon$. In particular, there exists F closed with $F \subseteq B$ and $\mu(B \setminus F) \leq \epsilon$.
- 2. Since $K_n \subseteq K_{n+1}$, $F \setminus (K_{n+1} \cap F) \subseteq F \setminus (K_n \cap F)$ for all $n \ge 1$. Moreover, we have:

$$\bigcap_{n=1}^{+\infty} F \setminus (K_n \cap F) = \bigcap_{n=1}^{+\infty} F \cap (K_n^c \cup F^c) = F \cap \left(\bigcup_{n=1}^{+\infty} K_n\right)^c = \emptyset$$

It follows that $F \setminus (K_n \cap F) \downarrow \emptyset$.

- 3. F being a closed subset of Ω , $K_n \cap F$ is closed with respect to the induced topology on K_n . In other words, $K_n \cap F$ is a closed subset of K_n .
- 4. Since K_n is compact, and $K_n \cap F$ is closed in K_n , from exercise (2) of Tutorial 8, $K_n \cap F$ is itself compact.

- 5. Since $F \setminus (K_n \cap F) \downarrow \emptyset$ and μ is a finite measure, from theorem (8) we have $\mu(F \setminus (K_n \cap F)) \to 0$ as $n \to +\infty$. In particular, there exists $n \geq 1$ such that $\mu(F \setminus (K_n \cap F)) \leq \epsilon$. Taking $K = K_n \cap F$, from 4. K is a compact subset of K_n , or equivalently a compact subset of Ω . Hence, we have found a compact subset K of Ω , such that $K \subseteq F$ and $\mu(F \setminus K) \leq \epsilon$.
- 6. Since $\mu(B \setminus F) \leq \epsilon$ and $\mu(F \setminus K) \leq \epsilon$, we have:

$$\begin{array}{rcl} \mu(B) & = & \mu(B \setminus F) + \mu(F) \\ & = & \mu(B \setminus F) + \mu(F \setminus K) + \mu(K) \\ & \leq & \mu(K) + 2\epsilon \end{array}$$

7. We have proved in 6. that for all $B \in \mathcal{B}(\Omega)$, there exists K compact with $K \subseteq B$ and $\mu(B) \le \mu(K) + 2\epsilon$. α being an upper bound of all $\mu(K)$, as K ranges through all compacts subsets with $K \subseteq B$, we have $\mu(K) \le \alpha$. So $\mu(B) \le \alpha + 2\epsilon$. This being true for all $\epsilon > 0$, it follows that $\mu(B) \le \alpha$. Moreover, for all K compact with $K \subseteq B$, we have $\mu(K) \le \mu(B)$. So $\mu(B)$ is an

upper bound of all $\mu(K)$, as K ranges through compacts with $K \subseteq B$. α being the smallest of such upper bounds, we have $\alpha \le \mu(B)$ and finally:

$$\mu(B) = \alpha = \sup{\{\mu(K) : K \subseteq B, K \text{ compact}\}}$$

This being true for all $B \in \mathcal{B}(\Omega)$, from definition (103), μ is inner-regular. We have proved that any finite measure on a metrizable, σ -compact topological space is inner-regular.

Exercise 12.

- 1. Since $K_n \uparrow \Omega$, we have $K_n \cap B \uparrow B$. From theorem (7), it follows that $\mu(K_n \cap B) \uparrow \mu(B)$.
- 2. Since $\alpha < \mu(B)$ and $\mu(K_n \cap B) \to \mu(B)$, there exists $n \geq 1$ such that $\alpha < \mu(K_n \cap B)$. Taking $K = K_n$, we have found K compact subset of Ω such that $\alpha < \mu(K \cap B)$.
- 3. From exercise (10), μ being a locally finite measure and K being compact, we have $\mu(K) < +\infty$. Hence, for all $A \in \mathcal{B}(\Omega)$:

$$\mu^K(A) = \mu(K \cap A) \le \mu(K) < +\infty$$

So μ^K is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Since (Ω, \mathcal{T}) is metrizable and σ -compact, from exercise (11) it follows that μ^K is inner-regular. In particular:

$$\mu^K(B) = \sup\{\mu^K(K^*) : K^* \subseteq B , K^* \text{ compact}\}\$$

- 4. It appears from 3. that $\mu^K(B)$ is the smallest upper bound of all $\mu^K(K^*)$, as K^* ranges through compacts with $K^* \subseteq B$. Since $\alpha < \mu^K(B)$, α cannot be such an upper bound. Hence, there exists K^* compact with $K^* \subseteq B$, such that $\alpha < \mu(K \cap K^*)$.
- 5. (Ω, \mathcal{T}) being metrizable, it is a Hausdorff topological space. K^* being a compact subset of Ω , we conclude from theorem (35) that K^* is a closed subset of Ω .
- 6. Having proved that K^* is a closed subset of Ω , $K \cap K^*$ is closed relative to the induced topology on K. In other words, $K \cap K^*$ is a closed subset of K.
- 7. $K \cap K^*$ being a closed subset of K, and K being compact, from exercise (2) of Tutorial 8 we conclude that $K \cap K^*$ is itself compact.
- 8. We have shown that $\alpha < \mu(K \cap K^*)$ and that $K \cap K^*$ is a compact subset of Ω . Since $K^* \subseteq B$, we have $K \cap K^* \subseteq B$ and

we conclude that:

$$\alpha < \mu(K \cap K^*) \le \sup\{\mu(K') : K' \subseteq B , K' \text{ compact}\} \quad (10)$$

9. For all $\alpha \in \mathbf{R}$ with $\alpha < \mu(B)$, inequality (10) holds. Hence:

$$\mu(B) \le \sup \{ \mu(K') : K' \subseteq B , K' \text{ compact} \}$$

10. Is is clear that:

$$\sup\{\mu(K'): K' \subseteq B , K' \text{ compact}\} \le \mu(B)$$

We conclude that:

$$\mu(B) = \sup\{\mu(K') : K' \subseteq B \ , \ K' \text{ compact}\}$$

This being true for all $B \in \mathcal{B}(\Omega)$, from definition (103), μ is inner-regular. We have proved that any locally finite measure on a metrizable and σ -compact topological space, is inner-regular.

Exercise 13.

1. Let (Ω, \mathcal{T}) be a metrizable topological space. Suppose (Ω, \mathcal{T}) is separable. From definition (58), there exists a sequence $(x_n)_{n\geq 1}$ of elements of Ω , which are dense in Ω . The set of open balls:

$$\mathcal{H} = \{B(x_n, 1/p) : n \ge 1, p \ge 1\}$$

is easily seen to be a countable base of (Ω, \mathcal{T}) . Indeed, it is a subset of the topology \mathcal{T} which is at most countable, and for any open set U and any $x \in U$, on can easily find $n \geq 1$ and $p \geq 1$ such that:

$$x \in B(x_n, 1/p) \subseteq U$$

So U is a union of elements of \mathcal{H} . We have proved that if (Ω, \mathcal{T}) is separable, then it has a countable base. Conversely, suppose (Ω, \mathcal{T}) has a countable base, say \mathcal{H} . For all $V \in \mathcal{H}$, $V \neq \emptyset$, let x_V be an arbitrary element of V. Then, the set:

$$A = \{x_V : V \in \mathcal{H}, V \neq \emptyset\}$$

is at most countable, and is easily seen to be dense in Ω . Indeed, for all $x \in \Omega$ and $\epsilon > 0$, the open ball $B(x,\epsilon)$ being a union of elements of \mathcal{H} (see definition (57) of a countable base), we have $x \in V \subseteq B(x,\epsilon)$ for some $V \in \mathcal{H}, V \neq \emptyset$. In particular, we have found $x_V \in A$, such that $d(x,x_V) < \epsilon$. This shows that (Ω,\mathcal{T}) is separable, and we have proved the equivalence between the separability of (Ω,\mathcal{T}) , and the fact that it has a countable base. This equivalence was already proved in slightly more detail, as part of exercise (19) of Tutorial 6.

2. We assume that (Ω, \mathcal{T}) is not only metrizable, but also compact. Let $n \geq 1$. Then $(B(x, 1/n))_{x \in \Omega}$ is a family of open sets whose union is equal to Ω itself. In other words, it is an open covering of Ω . Since (Ω, \mathcal{T}) is compact, this open covering has a finite sub-covering. In other words, there exists an integer $p \geq 1$ and x_1, \ldots, x_p in Ω , such that:

$$\Omega = B(x_1, 1/n) \cup \ldots \cup B(x_p, 1/n)$$

We have proved that Ω can be covered by a finite number of open balls with radius 1/n.

3. We assume that (Ω, \mathcal{T}) is not only metrizable but also compact. From 2. given n > 1, Ω can be covered by a finite number, say $p_n \geq 1$, of open balls with radius 1/n. Let $x_{1,n}, \ldots, x_{p_n,n}$ be the centers of such open balls. Then, the set $A = \{x_{k,n} : n \geq$ 1, $k = 1, ..., p_n$ is at most countable, and we claim that it is dense in Ω . Let $x \in \Omega$. We have to show that $x \in \overline{A}$, i.e. that given U open containing x, we have $U \cap A \neq \emptyset$. (Ω, \mathcal{T}) being metrizable, it is sufficient to show that given $\epsilon > 0$, $B(x, \epsilon) \cap A \neq 0$ \emptyset . Let $n \geq 1$ be such that $1/n \leq \epsilon$. Since x belongs to an open ball $B(x_{k,n}, 1/n)$ for some $k = 1, \ldots, p_n$, in particular we have $d(x, x_{k,n}) < \epsilon$. This shows that $B(x, \epsilon) \cap A \neq \emptyset$ and we have proved that A is dense in Ω . This shows that (Ω, \mathcal{T}) is separable. The purpose of this exercise is to show that a metrizable compact topological space is also separable.

Exercise 14.

- 1. From theorem (12), the induced metric $d_{|K_n|}$ induces the induced topology $\mathcal{T}_{|K_n|}$ on K_n .
- 2. By assumption, each K_n is a compact subset of Ω . In other words, the topological space $(K_n, \mathcal{T}_{|K_n})$ is compact. However from 1. it is also metrizable. It follows from exercise (13) that $(K_n, \mathcal{T}_{|K_n})$ is separable.
- 3. Let $A = \{x_n^p : n \geq 1, p \geq 1\}$. Then A is an at most countable set, and we claim that A is dense in Ω . Since (Ω, \mathcal{T}) is metrizable, given $x \in \Omega$ and $\epsilon > 0$, it is sufficient to show that $A \cap B(x, \epsilon) \neq \emptyset$. Since $\Omega = \bigcup_{n \geq 1} K_n$, there is $n \geq 1$ such that $x \in K_n$. By assumption, the sequence $(x_n^p)_{p \geq 1}$ is dense in K_n . Hence, there exists $p \geq 1$ such that $d_{|K_n}(x, x_n^p) < \epsilon$. Equivalently, we have $d(x, x_n^p) < \epsilon$. It follows that $A \cap B(x, \epsilon) \neq \emptyset$ and we have proved that A is dense in A. This shows that $A \cap B(x, \tau)$ is separable. The purpose of this exercise is to prove that a

metrizable and σ -compact topological space, is also separable. This is the objective of theorem (72).

Exercise 15.

- 1. Let U be open in Ω and $x \in U$. The measure μ being locally finite, there exists some open set W_x such that $x \in W_x$ and $\mu(W_x) < +\infty$. Defining $U_x = U \cap W_x$, U_x is an open set in Ω such that $x \in U_x \subseteq U$ and $\mu(U_x) < +\infty$.
- 2. Since U_x is open, and \mathcal{H} is a countable base of (Ω, \mathcal{T}) , U_x can be expressed as a union of elements of \mathcal{H} . In particular, since $x \in U_x$, there exists some $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U_x$.
- 3. \mathcal{H}' being a subset of \mathcal{H} , and \mathcal{H} being a countable base of (Ω, \mathcal{T}) , \mathcal{H}' is an at most countable set of open sets in Ω . Furthermore, given U open in Ω and $x \in U$, it follows from 1. and 2. that there exists $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U$ and $\mu(V_x) < +\infty$. In other words, there exists $V_x \in \mathcal{H}'$ such that $x \in V_x \subseteq U$. Consequently, U can be expressed as $U = \bigcup_{x \in U} V_x$ and we have proved that any open set in Ω can be written as a union of elements of \mathcal{H}' . This shows that \mathcal{H}' is a countable base of (Ω, \mathcal{T}) .

4. Since Ω is an open set in Ω , and \mathcal{H}' is a countable base of (Ω, \mathcal{T}) , Ω can be written as a union of elements of \mathcal{H}' . In other words, there exists a subset $\mathcal{G} \subseteq \mathcal{H}'$ such that $\Omega = \cup_{V \in \mathcal{G}} V$. \mathcal{H}' being at most countable, \mathcal{G} is itself at most countable. There exists a map $\phi: \mathbf{N}^* \to \mathcal{G}$ which is surjective. So $\Omega = \cup_{n \geq 1} \phi(n)$, and defining $V_n = \phi(n)$ we obtain $\Omega = \cup_{n \geq 1} V_n$ where each V_n is an element of $\mathcal{G} \subseteq \mathcal{H}'$. In particular, each V_n is an open set in Ω with $\mu(V_n) < +\infty$.

Exercise 16.

- 1. Let $\mu^{V_n} = \mu(V_n \cap \cdot)$. Since $\mu(V_n) < +\infty$, μ^{V_n} is a finite measure on $(\Omega, \mathcal{B}(\Omega))$. Furthermore, (Ω, \mathcal{T}) is a metrizable topological space. Applying theorem (68), since $B \in \mathcal{B}(\Omega)$, there exist F_n closed and G_n open such that $F_n \subseteq B \subseteq G_n$ and $\mu^{V_n}(G_n \setminus F_n) \le \epsilon/2^n$. In particular, since $G_n \setminus B \subseteq G_n \setminus F_n$, there exists G_n open such that $B \subseteq G_n$ and $\mu^{V_n}(G_n \setminus B) \le \epsilon/2^n$.
- 2. Let $G = \bigcup_{n \geq 1} V_n \cap G_n$. Each V_n and G_n is an open set in Ω . So G is a union of open sets in Ω . It follows that G is an open set in Ω . Furthermore, since $\Omega = \bigcup_{n \geq 1} V_n$ and $B \subseteq G_n$ for all $n \geq 1$, we have:

$$B = \bigcup_{n=1}^{+\infty} V_n \cap B \subseteq \bigcup_{n=1}^{+\infty} V_n \cap G_n = G$$

3. We have:

$$G \setminus B = G \cap B^c = \bigcup_{n=1}^{+\infty} V_n \cap G_n \cap B^c = \bigcup_{n=1}^{+\infty} V_n \cap (G_n \setminus B)$$

4. From 3. and 1. we obtain:

$$\mu(G \setminus B) \le \sum_{n=1}^{+\infty} \mu(V_n \cap (G_n \setminus B)) = \sum_{n=1}^{+\infty} \mu^{V_n}(G_n \setminus B) \le \epsilon$$

Since $B \subseteq G$, we have $\mu(G) = \mu(B) + \mu(G \setminus B)$ and consequently $\mu(G) < \mu(B) + \epsilon$.

- 5. Since G is open and $B \subseteq G$, we have $\alpha \leq \mu(G)$. Using 4. it follows that $\alpha \leq \mu(B) + \epsilon$. This being true for all $\epsilon > 0$, we conclude that $\alpha \leq \mu(B)$.
- 6. For all G open with $B \subseteq G$, we have $\mu(B) \leq \mu(G)$. It follows that $\mu(B)$ is a lower bound of all $\mu(G)$'s where G is open with $B \subseteq G$. α being the greatest of such lower bounds, we have

 $\mu(B) \leq \alpha$. However, from 5. we have $\alpha \leq \mu(B)$. It follows that $\alpha = \mu(B)$. We have proved that for all $B \in \mathcal{B}(\Omega)$:

$$\mu(B) = \inf\{\mu(G): B \subseteq G, G \text{ open}\}\$$

This shows that μ is outer-regular.

7. In this exercise, we proved that a locally finite measure on a metrizable and σ -compact topological space is outer-regular. However, in exercise (12), we proved that it is also inner-regular. It follows that a locally finite measure on a metrizable and σ -compact topological space is regular. This proves theorem (73).

Exercise 17. Let Ω be an open subset of \mathbf{R}^n , and μ be a locally finite measure in $(\Omega, \mathcal{B}(\Omega))$. \mathbf{R}^n is a metrizable topological space, and furthermore from theorem (48) any closed and bounded subset of \mathbf{R}^n is compact. In particular, $K_p = [-p, p]^n$ is a compact subset of \mathbf{R}^n for all $p \geq 1$. So \mathbf{R}^n is both metrizable and σ -compact. From theorem (71) it follows that the induced topological space $(\Omega, (\mathcal{T}_{\mathbf{R}^n})_{|\Omega})$ is also metrizable and σ -compact. Applying theorem (73), we conclude that μ being locally finite, is a regular measure. We have proved that any locally finite measure on an open subset of \mathbf{R}^n is regular. This is the objective of theorem (74).

Exercise 18.

1. Since (Ω, \mathcal{T}) is locally compact, for all $x \in \Omega$, there exists W_x open in Ω such that $x \in W_x$ and \overline{W}_x is compact. Let $n \geq 1$. K_n is a compact subset of Ω . Furthermore, $(K_n \cap W_x)_{x \in K_n}$ is an open covering of K_n , from which therefore we can extract a finite sub-covering. There exists an integer $p_n \geq 1$ and $x_1^n, \ldots, x_{p_n}^n$ elements of K_n , such that:

$$K_n = (K_n \cap W_{x_1^n}) \cup \ldots \cup (K_n \cap W_{x_{n_n}^n})$$

Setting $V_k^n = W_{x_k^n}$ for $k = 1, \ldots, p_n$, we have found $V_1^n, \ldots, V_{p_n}^n$ open subsets of Ω such that $K_n \subseteq V_1^n \cup \ldots \cup V_{p_n}^n$ and $\bar{V}_1^n, \ldots, \bar{V}_{p_n}^n$ are compact subsets of Ω .

2. Let $W_n = V_1^n \cup \ldots \cup V_{p_n}^n$ and $V_n = \bigcup_{k=1}^n W_k$ for $n \ge 1$. Since $V_1^n, \ldots, V_{p_n}^n$ are open, each W_n is open, and consequently each V_n is open. So $(V_n)_{n\ge 1}$ is a sequence of open sets in Ω , and it is clear that $V_n \subseteq V_{n+1}$ for all $n \ge 1$. Let $x \in \Omega$. Since $K_n \uparrow \Omega$, in particular $\Omega = \bigcup_{n>1} K_n$ and there exists $n \ge 1$ such that

- $x \in K_n$. From 1. we have $K_n \subseteq W_n$, and since $W_n \subseteq V_n$, it follows that $x \in V_n$. This shows that $\Omega = \bigcup_{n \ge 1} V_n$ and we have proved that $(V_n)_{n \ge 1}$ is a sequence of open sets such that $V_n \uparrow \Omega$.
- 3. In order to show that $\bar{W}_n = \bar{V}_1^n \cup \ldots \cup \bar{V}_{p_n}^n$ it is sufficient to prove that for all A, B subsets of Ω , we have $\overline{A \cup B} = \bar{A} \cup \bar{B}$. Recall from exercise (21) of Tutorial 4 that the closure in Ω of any set A, is the smallest closed set containing A (in the sense of inclusion). In particular, we have $A \subseteq \bar{A}$ and $B \subseteq \bar{B}$ and consequently $A \cup B \subseteq \bar{A} \cup \bar{B}$. However, $\bar{A} \cup \bar{B}$ being closed, this implies that $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$. Furthermore since $A \subseteq A \cup B \subseteq \overline{A \cup B}$ and $\overline{A \cup B}$ is closed, we have $\overline{A} \subseteq \overline{A \cup B}$ and likewise $\overline{B} \subseteq \overline{A \cup B}$. It follows that $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$ and we have proved the equality $\overline{A \cup B} = \bar{A} \cup \bar{B}$.
- 4. Since $\bar{W}_n = \bar{V}_1^n \cup \ldots \cup \bar{V}_{p_n}^n$ and each \bar{V}_k^n is a compact subset of Ω , in order to prove that \bar{W}_n is compact, it is sufficient to show that if A and B are compact subsets of Ω , then $A \cup B$ is also a compact subset of Ω . For that purpose we shall use

the characterization of compact subsets proved in exercise (2) of Tutorial 8. Let $(U_i)_{i\in I}$ be a family of open sets in Ω such that $A\cup B\subseteq \cup_{i\in I}U_i$. Then in particular $A\subseteq \cup_{i\in I}U_i$ and A being a compact subset of Ω , there exists I_1 finite subset of I such that $A\subseteq \cup_{i\in I_1}U_i$. Similarly, there exists I_2 finite subset of I such that $B\subseteq \cup_{i\in I_2}U_i$, It follows that $A\cup B\subseteq \cup_{i\in I_1\cup I_2}U_i$ and $I_1\cup I_2$ being finite, we conclude that $A\cup B$ is a compact subset of Ω .

- 5. Let $n \geq 1$. From 2. we have $V_n = \bigcup_{k=1}^n W_k$. Using a similar argument as in 3. we see that $\bar{V}_n = \bigcup_{k=1}^n \bar{W}_k$. Using a similar argument as in 4., each \bar{W}_k being compact by virtue of 4. itself, we conclude that \bar{V}_n is itself compact.
- 6. Let (Ω, \mathcal{T}) be a topological space. If (Ω, \mathcal{T}) is σ -compact and locally compact, we have been able to construct a sequence $(V_n)_{n\geq 1}$ of open sets in Ω , such that $V_n \uparrow \Omega$ and \bar{V}_n is compact for all $n\geq 1$. So (Ω, \mathcal{T}) is strongly σ -compact. Conversely, suppose that (Ω, \mathcal{T}) is strongly σ -compact, and let $(V_n)_{n\geq 1}$ be

a sequence of open sets in Ω , such that $V_n \uparrow \Omega$ and each \bar{V}_n is compact. Then $\bar{V}_n \uparrow \Omega$ and Ω is therefore σ -compact. Furthermore, for all $x \in \Omega$, there exists $n \geq 1$ such that $x \in V_n$. Since V_n is open and \bar{V}_n is compact, this shows that Ω is locally compact. This completes the proof of theorem (75).

Exercise 19.

- 1. Since $A \subseteq \Omega'$ and $A \subseteq \bar{A}$, we have $A \subseteq \Omega' \cap \bar{A}$.
- 2. The complement of $\Omega' \cap \bar{A}$ in Ω' is:

$$\Omega' \setminus (\Omega' \cap \bar{A}) = \Omega' \cap (\Omega'^c \cup \bar{A}^c) = \Omega' \cap \bar{A}^c$$

Since \bar{A} is closed in Ω , \bar{A}^c is open in Ω and consequently by definition of the induced topology, $\Omega' \cap \bar{A}^c$ is open in Ω' . It follows that $\Omega' \cap \bar{A}$ is closed in Ω' . Note more generally that if F is closed in Ω , then $\Omega' \cap F$ is closed in Ω' .

- 3. The closure $\bar{A}^{\Omega'}$ of A in Ω' being the smallest closed subset of Ω' containing A, we conclude from $A \subseteq \Omega' \cap \bar{A}$ and $\Omega' \cap \bar{A}$ closed in Ω' , that $\bar{A}^{\Omega'} \subseteq \Omega' \cap \bar{A}$.
- 4. Let $x \in \Omega' \cap \bar{A}$. Suppose $U' \in \mathcal{T}_{|\Omega'}$ and $x \in U'$. There exists $U \in \mathcal{T}$ such that $U' = U \cap \Omega'$. From $x \in U'$, we have $x \in U$ and since $x \in \bar{A}$, we obtain that $A \cap U \neq \emptyset$. However by assumption,

A is a subset of Ω' . Hence:

$$A\cap U'=A\cap (U\cap \Omega')=(A\cap \Omega')\cap U=A\cap U\neq\emptyset$$

So we have proved that $A \cap U' \neq \emptyset$.

5. It follows from 4. that $\Omega' \cap \bar{A} \subseteq \bar{A}^{\Omega'}$. However from 3. we have $\bar{A}^{\Omega'} \subseteq \Omega' \cap \bar{A}$. We conclude that $\bar{A}^{\Omega'} = \Omega' \cap \bar{A}$.

Exercise 20.

1. Let $x \in \Omega$ and $\epsilon > 0$. Let $y \in \overline{B(x,\epsilon)}$. For all U open in Ω such that $y \in U$, we have $U \cap B(x,\epsilon) \neq \emptyset$. In particular, for all $\eta > 0$, we have $B(y,\eta) \cap B(x,\epsilon) \neq \emptyset$. Let $z \in \Omega$ be such that $d(y,z) < \eta$ and $d(x,z) < \epsilon$. From the triangle inequality:

$$d(x,y) \le d(x,z) + d(y,z) < \epsilon + \eta$$

This being true for all $\eta > 0$, it follows that $d(x, y) \leq \epsilon$. We have proved that:

$$\overline{B(x,\epsilon)} \subseteq \{ y \in \Omega : d(x,y) \le \epsilon \}$$

2. Let $\Omega = [0, 1/2] \cup \{1\}$ together with its usual metric. Then, the open ball B(0,1) is given by:

$$B(0,1) = \{x \in \Omega : |x| < 1\} = [0,1/2[$$

3. The complement of [0, 1/2[in Ω is $\{1\}$, which can be written as $]1/2, 2[\cap\Omega]$ and is therefore open in Ω , since]1/2, 2[is open in

- **R**. It follows that [0, 1/2] is closed in Ω .
- 4. From 2. we have B(0,1) = [0,1/2[and from 3. [0,1/2[is a closed subset of Ω , and is therefore equal to its closure. Hence:

$$\overline{B(0,1)} = \overline{[0,1/2[} = [0,1/2[$$

5. Since $\Omega=\{y\in\Omega\ :\ |y|\leq 1\}$ and $[0,1/2[\neq\Omega,$ we conclude that:

$$\overline{B(0,1)} \neq \{ y \in \Omega : |y| \le 1 \}$$

The purpose of this exercise is to provide a counter-example to the belief that the inclusion proved in 1.:

$$\overline{B(x,\epsilon)} \subseteq \{ y \in \Omega : d(x,y) \le \epsilon \}$$

can be shown to be an equality.

Exercise 21.

- 1. Ω being locally compact, there exists U open with compact closure such that $x \in U$.
- 2. Since $x \in \Omega'$ and $x \in U$, we have $x \in U \cap \Omega'$. Furthermore, both U and Ω' being open in Ω , $U \cap \Omega'$ is open in Ω . The topology on Ω being metric, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subseteq U \cap \Omega'$.
- 3. From $B(x, \epsilon/2) \subseteq B(x, \epsilon) \subseteq U \cap \Omega' \subseteq U$ we conclude that $B(x, \epsilon/2) \subseteq \bar{U}$.
- 4. From 3. we have $\overline{B(x,\epsilon/2)} = \overline{B(x,\epsilon/2)} \cap \overline{U}$ and $\overline{B(x,\epsilon/2)}$ being closed in Ω , we conclude that it is also closed in \overline{U} .
- 5. Since \bar{U} is compact and $\overline{B(x,\epsilon/2)}$ is a closed subset of \bar{U} , it follows from exercise (2) of Tutorial 8 that $\overline{B(x,\epsilon/2)}$ is a compact subset of \bar{U} , and consequently also a compact subset of Ω .

- 6. Let $y \in \overline{B(x,\epsilon/2)}$. From 1. of exercise (20), $d(x,y) \le \epsilon/2$ and in particular $d(x,y) < \epsilon$. From 2. we have $B(x,\epsilon) \subseteq \Omega'$ and consequently $y \in \Omega'$. This shows that $\overline{B(x,\epsilon/2)} \subseteq \Omega'$.
- 7. Let $U' = B(x, \epsilon/2) \cap \Omega' = B(x, \epsilon/2)$. It is clear that $x \in U'$ and furthermore $B(x, \epsilon/2)$ being open in Ω , U' is open in Ω' , i.e. $U' \in \mathcal{T}_{|\Omega'|}$. Using 6. and exercise (19), we obtain:

$$\bar{U}'^{\Omega'} = \bar{U}' \cap \Omega' = \overline{B(x, \epsilon/2)} \cap \Omega' = \overline{B(x, \epsilon/2)}$$

In particular $\bar{U}^{\prime\Omega^{\prime}}$ is compact, as can be seen from 5.

- 8. Given $x \in \Omega'$, we have found U' open in Ω' such that $x \in U'$ and $\bar{U}'^{\Omega'}$ is compact. This shows that $(\Omega', \mathcal{T}_{|\Omega'})$ is locally compact.
- 9. Let (Ω, \mathcal{T}) be a metrizable and strongly σ -compact topological space. Let Ω' be an open subset of Ω . From theorem (75), (Ω, \mathcal{T}) is metrizable, σ -compact and locally compact. Since Ω' is open, it follows from theorem (71) that the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ is itself metrizable and σ -compact. Fur-

thermore, we have proved in this exercise that $(\Omega', \mathcal{T}_{|\Omega'})$ is also locally compact. So $(\Omega', \mathcal{T}_{|\Omega'})$ is metrizable, σ -compact and locally compact. Using theorem (75) once more, we conclude that $(\Omega', \mathcal{T}_{|\Omega'})$ is metrizable and strongly σ -compact. This completes the proof of theorem (76).

Exercise 22.

- 1. The constant map $\phi: x \to 0$ is continuous. Indeed for any U open in \mathbf{K} , $\phi^{-1}(U)$ is either equal to \emptyset or to Ω itself. In any case $\phi^{-1}(U)$ is an open subset of Ω . Furthermore, $\operatorname{supp}(\phi) = \emptyset$ and is therefore compact (see exercise (2) of Tutorial 8). This shows that $\phi \in C^c_{\mathbf{K}}(\Omega)$.
- 2. $C_{\mathbf{K}}^c(\Omega)$ being a non-empty subset of the set of all maps $\phi: \Omega \to \mathbf{K}$, to show that $C_{\mathbf{K}}^c(\Omega)$ is a **K**-vector space, it is sufficient to show that given $\phi, \psi \in C_{\mathbf{K}}^c(\Omega)$ and $\lambda \in \mathbf{K}$, the map $\phi + \lambda \psi$ is also an element of $C_{\mathbf{K}}^c(\Omega)$. To show that $\phi + \lambda \psi$ is continuous, one may proceed as follows: define $\Phi: \mathbf{K}^2 \to \mathbf{K}$ by $\Phi(x, y) = x + \lambda y$, and $\Psi: \Omega \to \mathbf{K}^2$ by $\Psi(\omega) = (\phi(\omega), \psi(\omega))$. Then $\phi + \lambda \psi = \Phi \circ \Psi$ and Φ being continuous, it is sufficient to show that Ψ is itself a continuous map. However, the continuity of Ψ follows from the fact that each coordinate mapping ϕ and ψ is continuous. Indeed if $U \times V$ is an open rectangle in \mathbf{K}^2 , then $\Psi^{-1}(U \times V) = \phi^{-1}(U) \cap \psi^{-1}(V)$ and is therefore open in Ω . Any open set W

in \mathbf{K}^2 being a union of open rectangles, it is clear that $\Psi^{-1}(W)$ is open in Ω . So much for the continuity of $\phi + \lambda \psi$. From the inclusion:

$$\{\phi + \lambda \psi \neq 0\} \subseteq \{\phi \neq 0\} \cup \{\psi \neq 0\}$$

and the fact that given A, B subsets of Ω , $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (see the proof of 3. in exercise (18)), we obtain:

$$\operatorname{supp}(\phi + \lambda \psi) \subseteq \operatorname{supp}(\phi) \cup \operatorname{supp}(\psi)$$

Since ϕ and ψ lie in $C_{\mathbf{K}}^{c}(\Omega)$, both $\operatorname{supp}(\phi)$ and $\operatorname{supp}(\psi)$ are compact and consequently $A = \operatorname{supp}(\phi) \cup \operatorname{supp}(\psi)$ is itself compact (see the proof of 4. in exercise (18)). Furthermore, $\operatorname{supp}(\phi + \lambda \psi)$ being closed in Ω while being a subset of A, it is also closed in A. From exercise (2) of Tutorial 8, $\operatorname{supp}(\phi + \lambda \psi)$ is therefore compact. We have proved that $\phi + \lambda \psi \in C_{\mathbf{K}}^{c}(\Omega)$.

3. Let $\phi \in C^c_{\mathbf{K}}(\Omega)$. If $\phi = 0$ then $\phi \in C^b_{\mathbf{K}}(\Omega)$. We assume that $\phi \neq 0$. Let $A = \operatorname{supp}(\phi)$. Then $|\phi|_{|A}$ is a continuous map defined on the non-empty compact topological space $(A, \mathcal{T}_{|A})$.

From theorem (37), $|\phi|_{|A}$ attains its maximum, i.e. there exists $x_M \in A$ such that:

$$|\phi(x_M)| = \sup_{x \in A} |\phi(x)|$$

Since $\phi(x) = 0$ for all $x \in A^c$, we have:

$$|\phi(x_M)| = \sup_{x \in \Omega} |\phi(x)|$$

which shows in particular that $\sup_{x\in\Omega} |\phi(x)| < +\infty$. So $\phi \in C^b_{\mathbf{K}}(\Omega)$ and we have proved that $C^c_{\mathbf{K}}(\Omega) \subseteq C^b_{\mathbf{K}}(\Omega)$.

Exercise 23.

1. Since Ω is locally compact, for all $x \in \Omega$ there exists an open set W_x such that $x \in W_x$ and \bar{W}_x is compact. From $K \subseteq \bigcup_{x \in K} W_x$ and the fact that K is a compact subset of Ω , we deduce the existence of $n \geq 1$ and $x_1, \ldots, x_n \in K$ such that $K \subseteq \bigcup_{k=1}^n W_{x_k}$. Setting $V_k = W_{x_k}$ for all $k = 1, \ldots, n$, we have found open sets V_1, \ldots, V_n such that:

$$K \subseteq V_1 \cup \ldots \cup V_n \tag{11}$$

and each \bar{V}_k is compact.

2. An arbitrary union of open sets is open. A finite intersection of open sets is open. Since V_1, \ldots, V_n and G are open, the set $V = (V_1 \cup \ldots \cup V_n) \cap G$ is an open set in Ω . By assumption, $K \subseteq G$ and it therefore follows from (11) that $K \subseteq V$. The fact that $V \subseteq G$ is clear. We have proved that V is open and $K \subseteq V \subseteq G$.

3. Given A, B subsets of Ω , $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (see proof of 3. in exercise (18)). From $V \subseteq V_1 \cup \ldots \cup V_n$ we obtain:

$$\bar{V} \subseteq \overline{V_1 \cup \ldots \cup V_n} = \bar{V}_1 \cup \ldots \cup \bar{V}_n$$

- 4. If A, B are compact subsets of Ω , $A \cup B$ is a compact subset of Ω (see proof of 4. in exercise (18)). It follows that $K' = \bar{V}_1 \cup \ldots \cup \bar{V}_n$ is a compact subset of Ω . Furthermore from 3. \bar{V} is a subset of K'. Being closed in Ω , \bar{V} is also closed in K' (it can be written as $\bar{V} = F \cap K'$ where F is closed in Ω , take $F = \bar{V}$). Using exercise (2) of Tutorial 8, it follows that \bar{V} is compact.
- 5. Given A subset of Ω , d(x, A) is well defined for all $x \in \Omega$ as:

$$d(x, A) = \inf\{d(x, y) : y \in A\}$$

where it is understood that $\inf \emptyset = +\infty$. Since $K \neq \emptyset$ and $V \neq \Omega$, d(x, K) and $d(x, V^c)$ are well-defined real numbers for all $x \in \Omega$. Furthermore, for all A closed in Ω , d(x, A) = 0 is equivalent to $x \in A$ (see exercise (22) of Tutorial 4). V being open in

- $\Omega,\ V^c$ is a closed subset of $\Omega.$ So $d(x,V^c)=0$ is equivalent to $x\in V^c$. K being a compact subset of Ω and Ω being a Hausdorff topological space (it is metric), K is a closed subset of Ω (see theorem (35)). So d(x,K)=0 is equivalent to $x\in K$. It follows that $d(x,V^c)+d(x,K)=0$ is equivalent to $x\in K\cap V^c$, which can never happen since $K\subseteq V$. We have proved that for all $x\in \Omega,\ \phi(x)$ is a well-defined real number. So $\phi:\Omega\to \mathbf{R}$ is well-defined. For all A subsets of Ω , the map $x\to d(x,A)$ is continuous (see exercise (22) of Tutorial 4). We conclude that ϕ is also continuous.
- 6. $\phi(x) \neq 0$ is equivalent to $d(x, V^c) \neq 0$ which is itself equivalent to $x \notin V^c$ (since V^c is closed), i.e. $x \in V$. We have proved that $\{\phi \neq 0\} = V$.
- 7. From 7. $\{\phi \neq 0\} = V$ and consequently $\operatorname{supp}(\phi) = \bar{V}$. Having proved in 4. that \bar{V} is compact, it follows that ϕ has compact support. So $\phi: \Omega \to \mathbf{R}$ is continuous with compact support, i.e. $\phi \in C^{\mathbf{c}}_{\mathbf{R}}(\Omega)$.

- 8. To show that $1_K \leq \phi$ it is sufficient to show that $x \in K$ implies $1 \leq \phi(x)$. However, K being closed in Ω , $x \in K$ is equivalent to d(x,K)=0. In particular, $x \in K$ implies that $\phi(x)=1$. It is clear that $\phi(x) \leq 1$ for all $x \in \Omega$. To show that $\phi \leq 1_G$, it is sufficient to show that $x \notin G$ implies $\phi(x)=0$. But $V \subseteq G$ and consequently $x \notin G$ implies $x \notin V$, i.e. $x \in V^c$. And V^c being closed, $x \in V^c$ is equivalent to $d(x,V^c)=0$. In particular, we see that $x \notin G$ implies $\phi(x)=0$. So $1_K \leq \phi \leq 1_G$.
- 9. Suppose $K = \emptyset$. With $\phi = 0$, $\phi \in C_{\mathbf{R}}^c(\Omega)$ and $1_K \leq \phi \leq 1_G$.
- 10. Suppose $V = \Omega$. Then $\bar{V} = \bar{\Omega} = \Omega$. \bar{V} being compact (see 4.), it follows that Ω is compact.
- 11. Suppose $V = \Omega$. Since $V \subseteq G$, we have $G = \Omega$, i.e. $1_G = 1$. Take $\phi = 1$. Then ϕ is continuous and supp $(\phi) = \Omega$ is compact (see 10.). So $\phi \in C^c_{\mathbf{R}}(\Omega)$ and $1_K \leq \phi \leq 1_G$. This proves theorem (77).

Exercise 24.

1. Let $\phi \in C^c_{\mathbf{K}}(\Omega)$. Then ϕ is continuous and from exercise (13) of Tutorial 4, the map $\phi: (\Omega, \mathcal{B}(\Omega)) \to (\mathbf{K}, \mathcal{B}(\mathbf{K}))$ is therefore measurable. Furthermore from exercise (22), $C^c_{\mathbf{K}}(\Omega) \subseteq C^b_{\mathbf{K}}(\Omega)$. So ϕ is also bounded. There exists $m \in \mathbf{R}^+$ such that $|\phi| \leq m$. Let $A = \operatorname{supp}(\phi)$. Then A is a compact subset of Ω , and from exercise (10), μ being locally finite, $\mu(A) < +\infty$. Since $\{\phi \neq 0\} \subseteq A$, we have $A^c \subseteq \{\phi = 0\}$ and consequently $\phi = \phi 1_A$. Hence:

$$\int |\phi|^p d\mu = \int 1_A |\phi|^p d\mu \le m^p \mu(A) < +\infty$$

So $\phi \in L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$ and finally $C^c_{\mathbf{K}}(\Omega) \subseteq L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$.

2. Let $\epsilon > 0$. Since (Ω, \mathcal{T}) is metrizable and strongly σ -compact, in particular from theorem (75), it is metrizable and σ -compact. Since μ is a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$, from theorem (73) μ is regular. Having assumed that $\mu(B) < +\infty$, we

have $\mu(B) < \mu(B) + \epsilon/2$. From the outer-regularity of μ , $\mu(B)$ is the greatest lower-bound of all $\mu(G)$'s where G is open with $B \subseteq G$. So $\mu(B) + \epsilon/2$ cannot be such lower-bound. There exists G open with $B \subseteq G$ such that:

$$\mu(G) < \mu(B) + \frac{\epsilon}{2} \tag{12}$$

Likewise, $\mu(B) - \epsilon/2 < \mu(B)$ and from the inner-regularity of μ , $\mu(B)$ is the lowest upper-bound of all $\mu(K)$'s where K is compact with $K \subseteq B$. So $\mu(B) - \epsilon/2$ cannot be such upper-bound, and consequently, there exists K compact with $K \subseteq B$ such that:

$$\mu(B) - \frac{\epsilon}{2} < \mu(K) \tag{13}$$

Hence, we have found K compact and G open with $K \subseteq B \subseteq G$, and furthermore from (12) and (13) we have:

$$\mu(G) < \mu(B) + \frac{\epsilon}{2} < \mu(K) + \epsilon$$

and consequently:

$$\mu(K) + \mu(G \setminus K) = \mu(G) < \mu(K) + \epsilon$$

K being compact and μ locally finite, from exercise (10) we have $\mu(K) < +\infty$, and we conclude that $\mu(G \setminus K) < \epsilon$. In particular $\mu(G \setminus K) \le \epsilon$.

- 3. The fact that $\mu(B) < +\infty$ was used when writing the inequalities $\mu(B) < \mu(B) + \epsilon/2$ and $\mu(B) \epsilon/2 < \mu(B)$. Without this assumption, these inequalities would not be strict, and the argument developed in 2. would fail.
- 4. Since (Ω, \mathcal{T}) is metrizable and strongly σ -compact, in particular from theorem (75), it is metrizable and locally compact. K being compact and G open with $K \subseteq G$, from theorem (77), there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$ such that $1_K \le \phi \le 1_G$.
- 5. Since $1_K \le \phi \le 1_G$, in particular $0 \le \phi \le 1$ and consequently we have $|\phi 1_B|^p \le 1$. Suppose $x \notin G$. Then $1_G(x) = 0$ and

therefore $\phi(x)=0$. Since $B\subseteq G$, we also have $1_B(x)=0$ and consequently $|\phi(x)-1_B(x)|^p=0$. Suppose $x\in K$. Then $1_K(x)=1$ and therefore $\phi(x)=1$. Since $K\subseteq B$ we also have $1_B(x)=1$ and consequently $|\phi(x)-1_B(x)|^p=0$. We have proved that $x\not\in G\setminus K$ implies that $|\phi(x)-1_B(x)|^p=0$. It follows that $|\phi-1_B|^p\le 1_{G\setminus K}$ and finally:

$$\int |\phi - 1_B|^p d\mu \le \int 1_{G \setminus K} d\mu = \mu(G \setminus K)$$

6. Let $\epsilon > 0$. Applying 2. to ϵ^p instead of ϵ itself, we can find K and G such that $\mu(G \setminus K) \leq \epsilon^p$. From 4. and 5. there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$ such that:

$$\int |\phi - 1_B|^p d\mu \le \mu(G \setminus K) \le \epsilon^p$$

from which we conclude that $\|\phi - 1_B\|_p \le \epsilon$.

7. Let $s \in \mathcal{S}_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega)) \cap L^p_{\mathbf{C}}(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon > 0$. From 3. of exercise (1) there exists an integer $n \geq 1$, together with

 $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ and $A_1, \ldots, A_n \in \mathcal{B}(\Omega)$ such that:

$$s = \sum_{i=1}^{n} \alpha_i 1_{A_i}$$

and $\mu(A_i) < +\infty$ for all $i \in \mathbf{N}_n$. Without loss of generality, we may assume that $\alpha_i \neq 0$ for all i's (if s = 0 then $s \in C^c_{\mathbf{C}}(\Omega)$ and finding $\phi \in C^c_{\mathbf{C}}(\Omega)$ such that $\|\phi - s\|_p \leq \epsilon$ is trivial). Applying 6. to $B = A_i$ (recall that $A_i \in \mathcal{B}(\Omega)$ and $\mu(A_i) < +\infty$) and $\epsilon/n|\alpha_i|$ instead of ϵ , there exists $\phi \in C^c_{\mathbf{R}}(\Omega)$ such that $\|\phi_i - 1_{A_i}\|_p \leq \epsilon/n|\alpha_i|$. Since $C^c_{\mathbf{C}}(\Omega)$ is a vector space, the map $\phi = \sum_{i=1}^n \alpha_i \phi_i$ is an element of $C^c_{\mathbf{C}}(\Omega)$ and we have:

$$\|\phi - s\|_p = \left\| \sum_{i=1}^n \alpha_i \phi_i - \sum_{i=1}^n \alpha_i 1_{A_i} \right\|_p$$

$$\leq \sum_{i=1}^n |\alpha_i| \cdot \|\phi_i - 1_{A_i}\|_p$$

$$\leq \sum_{i=1}^{n} |\alpha_i| \cdot \left(\frac{\epsilon}{n|\alpha_i|}\right) \\
= \epsilon$$

We have found $\phi \in C^c_{\mathbf{C}}(\Omega)$ such that $\|\phi - s\|_p \leq \epsilon$. Note that if $s \in \mathcal{S}_{\mathbf{R}}(\Omega, \mathcal{B}(\Omega))$ then $\alpha_i \in \mathbf{R}$ for all $i \in \mathbf{N}_n$, and $\phi = \sum_{i=1}^n \alpha_i \phi_i$ is in fact an element of $C^c_{\mathbf{R}}(\Omega)$.

8. To show that $C_{\mathbf{K}}^c(\Omega)$ is dense in $L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$, it is sufficient to show that given $f \in L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$ and $\epsilon > 0$, there exists $\phi \in C_{\mathbf{K}}^c(\Omega)$ such that $\|f - \phi\|_p \leq \epsilon$. However, from theorem (67) there exists $s \in \mathcal{S}_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega)) \cap L_{\mathbf{K}}^p(\Omega, \mathcal{B}(\Omega), \mu)$ such that $\|f - s\|_p \leq \epsilon/2$. Applying 7. to s and $\epsilon/2$ instead of ϵ , there exists $\phi \in C_{\mathbf{K}}^c(\Omega)$ such that $\|\phi - s\|_p \leq \epsilon/2$. It follows that we have found $\phi \in C_{\mathbf{K}}^c(\Omega)$ such that $\|f - \phi\|_p \leq \|f - s\|_p + \|\phi - s\|_p \leq \epsilon$. This completes the proof of theorem (78).

Exercise 25. Let Ω be an open subset of \mathbf{R}^n where $n \geq 1$. Let μ be a locally finite measure on $(\Omega, \mathcal{B}(\Omega))$ and $p \in [1, +\infty[$. For $k \geq 1$, $V_k =]-k, k[^n$ is an open subset of \mathbf{R}^n with compact closure, and $V_k \uparrow \mathbf{R}^n$. From definition (104), \mathbf{R}^n is strongly σ -compact. Furthermore, it is metrizable. It follows from theorem (76) that Ω being an open subset of \mathbf{R}^n , is also metrizable and strongly σ -compact. Applying theorem (78), we conclude that $C^c_{\mathbf{K}}(\Omega)$ is dense in $L^p_{\mathbf{K}}(\Omega, \mathcal{B}(\Omega), \mu)$. This completes the proof of theorem (79).