Tutorial 13: Regular Measure 1

13. Regular Measure
In the following, K denotes R or C.

Definition 99 Let (Q, F) be a measurable space. We say that a map
s:Q — C is a complex simple function on (2, F), if and only if

it is of the form:
n
s = Z ol a,
i=1

where n > 1, a; € C and A; € F for all i € N,,. The set of all
complex simple functions on (Q,F) is denoted Sc(Q, F). The set of
all R-valued complex simple functions in (2, F) is denoted Sr(€2, F).

Recall that a simple function on (€2, F), as defined in (40), is just a
non-negative element of Sgr (€2, F).

EXERCISE 1. Let (Q, F, 1) be a measure space and p € [1, +0o0[.
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1. Suppose s : Q — C is of the form

n
s = E aila,
i=1

where n > 1, o; € C, A; € F and p(A4;) < +oo for all i € N,,.
Show that s € L% (Q, F, ) N Sc(Q, F).

2. Show that any s € Sc(€2, F) can be written as:

s:ZailAi
i=1
where n > 1, o; € C\ {0}, A; € Fand A, NA; =0 for i # j.
3. Show that any s € L% (Q, F, n) N Sc(2, F) is of the form:

s = Zai]‘Ai
i=1
where n > 1, a; € C, A; € F and p(4;) < 400, for all i € N,,.
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4. Show that LE (2, F, u) N Sc(Q2, F) = Sc(2, F).

EXERCISE 2. Let (2, F, u) be a measure space and p € [1,4+o00[. Let
f be a non-negative element of L% (2, F, p).

1. Show the existence of a sequence (s,)n>1 of non-negative func-
tions in L (2, F, pn) N Sr (2, F) such that s,, T f.

2. Show that:
lim /\sn — fPdp =0

n—-+oo

3. Show that there exists s € Lk (Q,F,p) N Sr(Q, F) such that
Ilf —sll, <e forall e > 0.

4. Show that Ly (Q, F, u) N Sk (Q, F) is dense in LE (2, F, p).
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EXERCISE 3. Let (Q,F,u) be a measure space. Let f be a non-

negative element of L¥ (2, F, 1). For all n > 1, we define:
A n2™—1 2
Sn = Z 271{k/2"§4f<(k+1)/2n} +nlp<py
k=0

1. Show that for all n > 1, s,, is a simple function.
2. Show there exists ng > 1 and N € F with pu(N) = 0, such that:
Vw e N¢, 0 < f(w) <ng

3. Show that for all n > ng and w € N€¢, we have:

0< f(w) = sule) < 57

4. Conclude that:

nl{r_{}m If = snllc =0
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5. Show the following:

Theorem 67 Let (Q,F,u) be a measure space and p € [1,+0o0].
Then, Ly (Q,F, p) NSk (Q,F) is dense in Ly (Q, F, p).

EXERCISE 4. Let (2,7) be a metrizable topological space, and p be
a finite measure on (2, B(€2)). We define ¥ as the set of all B € B(2)
such that for all € > 0, there exist F' closed and G open in 2, with:

FCBCG, u(G\F)<e
Given a metric d on (€, 7) inducing the topology 7, we define:
d(z, A) = mf{d(:c y): y e A}
forall AC Q and z € Q.

1. Show that & — d(x, A) from €2 to R is continuous for all A C Q.
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2. Show that if F'is closed in Q, = € F'is equivalent to d(z, F) = 0.

EXERCISE 5. Further to exercise (4), we assume that F is a closed
subset of Q. For all n > 1, we define:

Gn é{xEQ: d(z, F) < %}
Show that G, is open for all n > 1.
Show that G,, | F.
Show that F' € X.

Was it important to assume that p is finite?

Show that 2 € 2.

. Show that if B € 3, then B¢ € X.
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EXERCISE 6. Further to exercise (5), let (B,,)n>1 be a sequence in X.
Define B = U B, and let € > 0.

1. Show that for all n, there is F}, closed and G,, open in ), with:
€

Fn © Bn © Gu s G\ Fn) < o

2. Show the existence of some N > 1 such that:

+oo N
n=1 n=1
3. Define G = U2 G,, and F = UN_, F,,. Show that F is closed,
GlsopenanngBgG
4. Show that:
—+o0 “+oo
G\FCG\ (U Fn> W (U Fn> \ F
n=1 n=1
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5. Show that:
o0 +oo
G\ (U F> clJGa\F,
n=1 n=1
6. Show that u(G'\ F') < 2e.

7. Show that ¥ is a o-algebra on 0, and conclude that ¥ = B(1Q).

Theorem 68 Let (2,7) be a metrizable topological space, and p be
a finite measure on (Q,B(Q)). Then, for all B € B(Q) and ¢ > 0,
there exist F' closed and G open in Q) such that:

FCBCG, u(G\F)<e
Definition 100 Let (Q2,7) be a topological space. We denote Cg(€2)

the K-vector space of all continuous, bounded maps ¢ : Q@ — K,
where K =R or K = C.
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EXERCISE 7. Let (£2,7) be a metrizable topological space with some
metric d. Let p be a finite measure on (2, B(£2)) and F be a closed
subset of Q. For all n > 1, we define ¢, : 2 — R by:

Ve, ¢n(z) 21— 1A (nd(z, F))
1. Show that for all p € [1, +o0], we have C% (Q) C L (2, B(Q), u).
2. Show that for all n > 1, ¢,, € C% (D).
3. Show that ¢,, — 1p.

4. Show that for all p € [1, 4o00[, we have:

n—-+oo

lim /|¢n —1p|Pdu =0

5. Show that for all p € [1,+oc[ and € > 0, there exists ¢ € C ()
such that ||¢ — 1r||, <e.
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6. Let v € M'(Q,B(2)). Show that C4(Q) C L&(Q, B(2),v) and:

= 1 nd
F)= i [ onds

7. Prove the following;:

Theorem 69 Let (2,7) be a metrizable topological space and p,v
be two complex measures on (Q, B(Q)) such that:

Vo e Ch@), [odu= [ oav
Then p = v.

EXERCISE 8. Let (£2,7) be a metrizable topological space and p be
a finite measure on (2,B(Q2)). Let s € Sc(2,B(2)) be a complex
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simple function:
s = Z aila,
i=1
where n > 1, o; € C, 4; € B(Q) for all i € N,,. Let p € [1,40o0].

1. Show that given € > 0, for all « € N,, there is a closed subset F;
of 2 such that F; C A; and u(A; \ F;) <e. Let:

n
s 2 Zailpi
i=1
2. Show that:
n
1
s — 'l < (Z%) o
i=1

3. Conclude that given e > 0, there exists ¢ € C4(Q) such that:

¢ —sllp, <e
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4. Prove the following:

Theorem 70 Let (Q,7) be a metrizable topological space and 1 be
a finite measure on (Q,B(Q)). Then, for all p € [1,+oc[, Ck () is
dense in LY (Q, B(Q2), p).

Definition 101 A topological space (2, T) is said to be o-compact
if and only if, there exists a sequence (Kp)n>1 of compact subsets of
Q such that K, 7 Q.

EXERCISE 9. Let (Q,7) be a metrizable and o-compact topological
space, with metric d. Let €’ be open in Q. For all n > 1, we define:
F,2{zeQ: d (Q)°) >1/n}

Let (Kp)n>1 be a sequence of compact subsets of {2 such that K, T €.

1. Show that for all n > 1, F,, is closed in €.
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2.

3
4

d.
6.

Show that Fj, T Q.

. Show that F, N K,, T €.

. Show that F,, N K, is closed in K,, for all n > 1.

Show that F,, N K,, is a compact subset of Q' for all n > 1.

Prove the following:

Theorem 71 Let (Q,7) be a metrizable and o-compact topological
space. Then, for all ' open subsets of 2, the induced topological space
Q. Tjqy) is itself metrizable and o-compact.

Definition 102 Let (Q,7) be a topological space and 11 be a measure
on (Q,B(Q)). We say that v is locally finite, if and only if, every
x € Q has an open neighborhood of finite p-measure, i.e.

VeeQ,30eT,zeclU, plU) <+
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Definition 103 If i1 is a measure on a Hausdorff topological space ):
We say that p is inner-regular, if and only if, for all B € B(Q):

w(B) =sup{u(K): K C B, K compact}
We say that 1 is outer-regular, if and only if, for all B € B(Q):
w(B) =inf{u(G): BC G, G open}
We say that p is regular if it is both inner and outer-regular.
ExERCISE 10. Let (2, 7) be a Hausdorff topological space, p a locally
finite measure on (2, 8(f2)), and K a compact subset of .

1. Show the existence of open sets Vi, ..., V, with u(V;) < 400 for
allie N, and K C Vi U...UV,, where n > 1.

2. Conclude that pu(K) < +oo.

EXERCISE 11. Let (£2,7) be a metrizable and o-compact topological
space. Let p be a finite measure on (€2, 5(f2)). Let (K,)n>1 be a
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sequence of compact subsets of 2 such that K,, T Q. Let B € B(Q).
We define oo = sup{u(K): K C B, K compact}.

1.

B el S

Show that given € > 0, there exists F' closed in ) such that
FCBand u(B\F) <e.

Show that F'\ (K, N F) | 0.
Show that K,, N F' is closed in K,,.
Show that K,, N F is compact.

Conclude that given € > 0, there exists K compact subset of
such that K C F and u(F \ K) <e.

Show that u(B) < u(K) + 2e.

Show that u(B) < « and conclude that p is inner-regular.

EXERCISE 12. Let (£2,7) be a metrizable and o-compact topological
space. Let p be a locally finite measure on (2, B(€2)). Let (K,,)n>1 be
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a sequence of compact subsets of Q such that K,, T Q. Let B € B(Q),
and « € R be such that o < u(B).

1.
2.

° N>

Show that u(K, N B) T u(B).

Show the existence of K C  compact, with a < u(K N B).

. Let p® = p(K N -). Show that p is a finite measure, and

conclude that p (B) = sup{p® (K*): K* C B, K* compact}.

. Show the existence of a compact subset K* of €2, such that

K*C Band a < pu(KNK*).
Show that K™ is closed in €.
Show that K N K* is closed in K.
Show that K N K* is compact.

Show that o < sup{u(K’): K'C B, K’ compact}.
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9. Show that u(B) < sup{u(K'): K'C B, K’ compact}.

10. Conclude that u is inner-regular.

EXERCISE 13. Let (£2,7) be a metrizable topological space.

1. Show that (€,7) is separable if and only if it has a countable
base.

2. Show that if (Q,7) is compact, for all n > 1, Q can be covered
by a finite number of open balls with radius 1/n.

3. Show that if (Q,7) is compact, then it is separable.

EXERCISE 14. Let (©,7) be a metrizable and o-compact topological
space with metric d. Let (K,,),>1 be a sequence of compact subsets
of  such that K,, T Q.
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1. For all n > 1, give a metric on K, inducing the topology 7|, .
2. Show that (K,,7|k,) is separable.

3. Let (21),>1 be an at most countable sequence of (K, 7|, ),
which is dense. Show that (zF), ,>1 is an at most countable
dense family of (Q2,7), and conclude with the following:

Theorem 72 Let (Q,7) be a metrizable and o-compact topological
space. Then, (2,7T) is separable and has a countable base.

EXERCISE 15. Let (©,7) be a metrizable and o-compact topological
space. Let u be a locally finite measure on (2, B(2)). Let H be a
countable base of (,7). We define H' ={V e H: pu(V) < +oo}.

1. Show that for all U open in 2 and x € U, there is U, open in
Q such that z € U, C U and p(U,) < +o0.
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2. Show the existence of V,, € ‘H such that x € V, C U,.
3. Conclude that H’ is a countable base of (2, 7).
4. Show the existence of a sequence (V},),>1 of open sets in 2 with:

“+oo
Q= Vu, p(Vn) <400, ¥n>1

n=1

EXERCISE 16. Let (£2,7) be a metrizable and o-compact topological
space. Let p be a locally finite measure on (€2, B(€2)). Let (V,,)n>1 a
sequence of open subsets of €2 such that:

+oo
Q= Vu, u(Va) <+oo, ¥n>1

n=1

Let B € B(R?) and o = inf{u(G) : BC G, G open}.
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1. Given € > 0, show that there exists G, open in ) such that
B C G, and ¥ (G, \ B) < ¢/2", where u"» = u(V,, N -).

Let G = U2 (V,,NGy,). Show that G is open in 2, and B C G.
Show that G\ B = U/>V,, N (G, \ B).

Show that u(G) < u(B) + €.

Show that o < u(B).

Conclude that is 1 outer-regular.

R A T o

Show the following:

Theorem 73 Let o be a locally finite measure on a metrizable and
o-compact topological space (2, T). Then, u is regular, i.e.:

w(B) = sup{u(K): KC B, K compact}
= inf{u(G): BC G, G open}
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for all B € B().

EXERCISE 17. Show the following:

Theorem 74 Let Q be an open subset of R™, where n > 1. Any
locally finite measure on (2, B(Q)) is regular.

Definition 104 We call strongly o-compact topological space, a
topological space (2, 7T), for which there exists a sequence (Vy)n>1 of
open sets with compact closure, such that V,, T €.

Definition 105 We call locally compact topological space, a topo-
logical space (2, T), for which every x € Q has an open neighborhood
with compact closure, i.e. such that:

VeeQ,WeT: zcU, Uis compact
EXERCISE 18. Let (£2,7) be a o-compact and locally compact topo-

logical space. Let (K,),>1 be a sequence of compact subsets of €
such that K, T €.
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1.

Show that for all n > 1, there are open sets V{",..., V' p, > 1,
such that K, C V" U...UV and | 2L Vp’; are compact

subsets of €.

. Define W, = Vi"U... .UV and V,, = Up_, Wy, for n > 1. Show

that (V,,)n>1 is a sequence of open sets in Q with V,, T Q.

. Show that W, = V" U...UV;" for all n > 1.
. Show that W, is compact for all n > 1.
. Show that Vj, is compact for all n > 1

. Conclude with the following;:

Theorem 75 A topological space (2,T) is strongly o-compact, if
and only if it is o-compact and locally compact.
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EXERCISE 19. Let (2, 7) be a topological space and Q' be a subset
of Q. Let A C Q. We denote AF the closure of A in the induced
topological space (€', 7j¢), and A its closure in €.

1.
2.
3.

Show that A C Q' N A.
Show that Q' N A is closed in €.
Show that A% C Q' N A.

. Let z € Q' N A. Show that if z € U' € Tj, then ANU’ # 0.

. Show that AY = Q' N A.

ExERCISE 20. Let (€2, d) be a metric space.

1.

Show that for all z € Q and € > 0, we have:

B(z,e) C{y e Q: d(z,y) <e€}
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[\

. Take 2 = [0,1/2[U{1}. Show that B(0,1) = [0,1/2].

3. Show that [0,1/2[ is closed in Q.
4. Show that B(0,1) =[0,1/2].

ot

. Conclude that B(0,1) #{y € Q: |y <1} =

EXERCISE 21. Let (£2,d) be a locally compact metric space. Let €’
be an open subset of . Let x € €',

1. Show there exists U open with compact closure, such that x € U.
2. Show the existence of € > 0 such that B(z,¢) C U N’

3. Show that B(z,¢/2) C U.

4. Show that B(z,€/2) is closed in U.

5. Show that B(x,€/2) is a compact subset of Q.
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6. Show that B(x,e/2) C Q.

7. Let U’ = B(xz,¢/2) N QY = B(x,¢/2). Show x € U’ € Tjoy, and:
0" = Blx,¢/2)

8. Show that the induced topological space €’ is locally compact.

9. Prove the following:

Theorem 76 Let (2,7) be a metrizable and strongly o-compact
topological space. Then, for all Q' open subsets of Q, the induced
topological space (£, Tiov) is itself metrizable and strongly o-compact.

Definition 106 Let (2,7) be a topological space, and ¢ : Q@ — C be
a map. We call support of ¢, the closure of the set {¢ # 0}, i.e.:

supp(¢) 2 {we: ¢w)#0}
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Definition 107 Let (2, T) be a topological space. We denote Cg (£2)
the K-vector space of all continuous map with compact support
¢:Q— K, where K=R or K=C.
EXERCISE 22. Let (£2,7) be a topological space.

1. Show that 0 € Ci(£2).

2. Show that Cg(€) is indeed a K-vector space.

3. Show that Cg(Q) C CL (D).

EXERCISE 23. let (€2, d) be a locally compact metric space. let K be
a compact subset of 2, and G be open in Q, with K C G.

1. Show the existence of open sets Vi,...,V, such that:
KCWviu...UuV,

and Vi, ...,V, are compact subsets of Q.
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- w

© ® N>

10.

Show that V' = (V4 U...UV,,)NGisopenin Q, and K CV C G.
Show that VC V, U...UV,,.
Show that V is compact.

We assume K # () and V # Q, and we define ¢ : Q — R by:
d(z,V°)
d(z,Ve) 4+ d(z, K)

Show that ¢ is well-defined and continuous.

VxEQ,gb(x)é

Show that {¢ # 0} = V.

Show that ¢ € C{(Q).

Show that 1x < ¢ < 1g.

Show that if K = (), there is ¢ € C(Q) with 1x < ¢ < 1.

Show that if V' = Q then ) is compact.
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11. Show that if V = Q, there ¢ € C{ () with 1x < ¢ < 1¢.

Theorem 77 Let (Q,7) be a metrizable and locally compact topolog-
ical space. Let K be a compact subset of 2, and G be an open subset
of  such that K C G. Then, there exists ¢ € C§ (), real-valued
continuous map with compact support, such that:

Ig <9< 1g

EXERCISE 24. Let (2,7) be a metrizable and strongly o-compact
topological space. Let p be a locally finite measure on (€2, 5(2)). Let
B € B(Q) be such that u(B) < +o0. Let p € [1,400].

1. Show that Cg () C Ly (Q, B(Q), u).
2. Let € > 0. Show the existence of K compact and G open, with:

KCBCG, u(G\K)<e
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3. Where did you use the fact that u(B) < 400?
4. Show the existence of ¢ € C{(Q) with 1x < ¢ < 1g.
5. Show that:
[16=18dn < w6\ K)
6. Conclude that for all € > 0, there exists ¢ € Cg (£2) such that:
l¢—1pllp <€

7. Let s € Sc(Q, B(2)) N LE (2, B(2), ). Show that for all € > 0,
there exists ¢ € C&(€2) such that ||¢ — s||, <e.

8. Prove the following:
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Theorem 78 Let (2,7) be a metrizable and strongly o-compact
topological space'. Let u be a locally finite measure on (2, B(Q)).
Then, for all p € [1,+00], the space Cg () of K-valued, continuous

maps with compact support, is dense in Ly (Q, B(Q2), u).

EXERCISE 25. Prove the following:

Theorem 79 Let Q be an open subset of R™, where n > 1. Then,
for any locally finite measure p on (Q,B(2)) and p € [1,4+o00[, C5(2)
is dense in Ly (2, B(Q), ).

1i.e. a metrizable topological space for which there exists a sequence (Vi )n>1

of open sets with compact closure, such that Vj, T Q.
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Solutions to Exercises
Exercise 1.

1. From definition (99), s is clearly an element of Sc(€2, F). Fur-
thermore, for all i € N,,, 14, is measurable, and:

[P = [ Ladn =) < +oo
So 14, € LL(Q, F, ). s being a linear combination of the 14,’s

is also an element of L (2, F, ). We have proved that s is an
element of L (Q, F, u) N Sc(Q, F).

2. Let s € Sc(€2, F). From definition (99), s is of the form:
S = Z 53‘133. (1)
j=1

where m > 1, 3; € C, and B; € F for all j € N,,,. If s =0,
it can be written as s = 1 x 1y and there is nothing further to
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prove. We assume that s # 0. The map 6 : {0,1}"™ — C given
by 0(e1,. .-, €m) = E;"zl Bj€; being defined on a finite set, has
a finite range. Since s(Q2) is a subset of 0({0,1}™), s(£2) is also
a finite set. Having assumed that s # 0, the set s(Q2) \ {0} is
therefore non-empty and finite. Let n > 1 be its cardinal, and
a: N, — s()\ {0} be an arbitrary bijection. For all w € ,

we have:
n

s(w) =Y i)l {s—a@) (2)
i=1
Since B; € F for all j’s, s is a measurable map. If we define
A; ={s = a(i)} for i € N,,, we have 4; € F. Furthermore, it
is clear that A; N Aj; = () for ¢ # j. We conclude from (2) that
s can be written as:

S =

3

where n > 1, a(i) € C\ {0}, A; € F, and A; N A; =0 for i # j.

Oz(i)lAi
1

n
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3. Let s € LL(Q, F,u) N Sc(Q, F). From 2. s can be expressed as:

s ol ®)
i=1

where n > 1, a; # 0, A; € F and A; N A; = 0 for i # j. Let
A=A149.. . WA,. Then s(w) = 0 for allw € A° and furthermore
14 = 1A1 +"'+1An' Hence:

J1sPau=3" [l adi =Y josPu(s) < +o0
=1 =1

Since «; # 0, it follows that pu(A;) < 4oo for all i € N,,. We
have been able to express s as (3), where n > 1, a; € C (in fact
a; € C*), A; € F and u(A;) < +oo for all ¢ € N,,. This is a
converse of 1.

4. Let s € Sc(2, F). Then s is bounded and measurable.

Exercise 1
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Exercise 2.

1. f being non-negative and measurable, from theorem (18) there
exists a sequence (sy)n>1 of simple functions on (£2,F) such
that s, T f. In particular, each s, is a non-negative element
of Sr(Q,F). Furthermore, s, < f for all n > 1 and having
assumed that f € L (Q, F, ), we have:

/sflduﬁ/fpd,u<+oo

We conclude that (s,,),>1 is a sequence of non-negative elements
of L%(Qafy /~‘L) N SR(Q,f) such that s, T f

2. Since s, — f, we have |s, — f|P — 0 as n — +o00. Furthermore:
[ = fI7 < (sn+ F)? < 2°f7 € Lp (2 F, 1)

From the dominated convergence theorem (23), we obtain:
li n— fIPdu=0
Hm / |0 — f|Pdp
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3. Given € > 0, from 2. there exists N > 1 such that:
n>N = /\sn—f\Pdugep

In particular, taking s = sy, we have found s belonging to the
set L% (Q, F, p) N Sr(Q, F) such that ||f — s|, <e.

4. Let Ax = LY (Q, F, n) N Sk (2, F). We claim that Ak is dense
in LY (Q, F, p), ie. that Ax = LE(Q,F, u) where Ak is the
closure of Ak in LY (9, F, ). Recall from definition (75) that
for any open set U in L (Q, F, ) and f € U, there exists € > 0
such that B(f,e) € U. Hence, all we need to prove is that
given f € LY (Q, F,p) and € > 0, there exists s € Ak such that
|| f — sllp < e. Indeed, if such property is proved, then for any
fe Ly (Q,F, ) and U open containing f, we have Ak NU # 0
and consequently f € Ak. So Ly (Q,F,u) C Ak. Now, if
f e LR{(Q,F,pu) and € > 0, the existence of s € Ag such that
|| f — s|lp < € has already been proved when f is non-negative.
Suppose f € LE(Q,F,u). Then f = f* — f~ where each
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f*, f is a non-negative element of L% (2, F, ). There exists

st,s7 € Ag such that || fT—sT|, <e/2and ||f~—s7|, < e€/2.

Taking s = sT — s~, we have found s € AR such that:
If=slp <IfF =8l +IIf7 =57l <e

and the property is proved for f € L% (Q,F,p). If fis an
element of L (2, F, u), then f = f14if, where each fi, fs lies in
L% (Q, F, p). There exists s1, s2 € Ag such that || fi—s1]|, < ¢/2
and || fo—sal|p, < €/2. Taking s = s1+is2, we have found s € Ac
such that:

If = sllp < |Ifr —s1llp+ I fa = s2llp < e

and the property is proved for f € L&(Q, F, ).

Exercise 2
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Exercise 3.

1. Givenn > 1, s, is of the form:

p
Sp = E a;la,
1=1

where p > 1, oy € R and A; € F for all i € N,,. From
definition (40), it is therefore a simple function on (2, F) (or
indeed a complex simple function on (2, F) with values in RT).

2. Since f is an element of LY (€2, F, ), we have:

I flloo £ inf{M € RT : |f| < M pras.} < +o00

It is therefore possible to find an integer ng > 1 such that
IIfllc < mo. Since || f|loo is the greatest lower bound all M’s
such that |f| < M p-a.s., ng cannot be such lower bound. Hence,
there exists My € RT such that |f] < My p-a.s. and My < no.

www.probability.net


http://www.probability.net

Solutions to Exercises 38

Thus, there exists N € F with p(N) = 0, and:
Yw e N¢ R \f(w)\ < My < ng
In particular, since f is a non-negative element of L¥ (2, F, p):
Vw e N¢, 0 < f(w) < ng
3. Let n > ng and w € N¢. From 2. we have 0 < f(w) < ng and

consequently s,(w) = k/2", where k is the unique integer of
{0,...,n2" — 1} such that f(w) € [k/2", (k +1)/2"]. So:

1
0< f() ~ a(®) < 5 @
4. From 3. we have N € F with u(N) = 0 such that for all w € N€,
inequality (4) holds for all n > ng. So |f —s,| < 1/2™ p-a.s. for

all n > ng. Since || f — sn|loo is a lower bound of all M’s such
that |f — sp| < M p-a.s., we conclude that ||f — s,|le0 < 1/2"
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for all n > ng, and in particular:

li — Snlloo =
dim ]~ sl =0 )

5. Let p € [1,+00] be given and Ax = LY (Q, F, u) N Sk (Q, F). If
p € [1,+00], we have already proved in exercise (2) that Ak is
dense in Ly (Q, F, ). We assume that p = +oo and we claim
likewise that Ak is dense in Lg (€2, F,u) (note that Ax and
Sk (), F) coincide when p = +00). Given f € Lg(Q,F,pn)
and € > 0, we need to show the existence of s € Ak such that
|lf — slloc < e. When K = R and f is a non-negative ele-
ment of Ly (2, F, ), then such existence is guaranteed by (5),
(keeping in mind that simple functions on (2, F) are elements
of SR(VF) = Ar). If f € LE(Q, F,pn), then f = f+— f~
where each fT, f~ is a non-negative element of L (Q,F, p).
There exists sT,s~ in Ag such that [|fT — s7|w < €/2 and
|f~ — s |loo < €/2. Taking s = s — s~ we obtain s € Ag and
|l — s|]lco < €. This completes the proof of theorem (67) when
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K=R.If f e LE(Q,F, ), then f = f1 +ifs where each fi, fo
is an element of LY (2, F, ). Approximating fi and fo by ele-
ments s1, so of Ar, we obtain likewise an element s = s + s
of Ac with ||f — s|]|ec < €. This proves theorem (67).

Exercise 3
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Exercise 4.

1. Let A C Q. If A =10, then d(z,A) = oo for all z € Q. In
particular, the map z — d(x, A) is a continuous map. If A # ()
and y € A, then d(z, A) < d(x,y). In particular d(z, A) < +o0
for all z € Q. Furthermore, for all z,2’ € Q and y € A:

d(z,A) < d(z,y) < d(z,2") + d(2',y)

Consequently, d(x, A) — d(z,z") is a lower bound of all d(2’,y),
as y ranges through A. d(z’, A) being the greatest of such lower
bounds, we have:

d(z,A) < d(z,z’) +d(z', A)
Interchanging the roles of x and 2’ we obtain:

d(z',A) < d(z,2') + d(z, A)
from which we see that:

Ve, € Q, |z, A) - d(@!, 4)] < d(z, ") (6)
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We conclude from (6) that x — d(z, A) is continuous.

2. Let F be a closed subset of Q. If z € F, d(z, F) < d(z,z) =0
and consequently d(z, F') = 0. Conversely, suppose d(z, F') = 0.
We shall show that x ¢ F' is impossible. Indeed, if z € F°¢,
since F° is open, there exists € > 0 such that B(z,e) C F°.
However, d(z, F) = 0 implies in particular that d(z, F) < e.
Since d(z, F') is the greatest of all lower bounds of d(z,y), as y
range through F', ¢ cannot be such a lower bound. Hence, there
exists y € F such that d(x,y) < e. Soy € B(x,e)NF # () which
is a contradiction. We have proved that x € F is equivalent to
d(z,F') = 0, whenever F is a closed subset of ). This exercise
is in fact a repetition of exercise (22) of Tutorial 4.

Exercise 4
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Exercise 5.

1. Gy = {z € Q:d(x,F)<1/n} can be written as &' ([~o0, 1/n[)
where @ is the map defined on Q by ®r(z) = d(z, F). Having
proved in exercise (4) that ®p is continuous, and since [—o0, 1/n]
is open in R, we conclude that G,, is an open subset of Q.

2. It is clear that Gp,41 C Gy and F' C Ny,>1Gy. Suppose that
2z € Np>1Gyp. Thend(x, F) < 1/nforalln > 1 and consequently
d(z, F') = 0. From exercise (4), F' being a closed subset of €2, it
follows that = € F. This shows that N,>1G, C F and finally
Mn>1Gn =F. So G, | F.

3. Since p is a finite measure on (2, B(Q)), from theorem (8) and
G, | F we obtain u(G,) — u(F) as n — +oo. Furthermore,
since F' C G, for all n > 1, we have:

WG\ F) = p(Gn \ F) + p(F) — p(F) = p(Gn) — p(F)
It follows that u(G, \ F) — 0 as n — +o0. Given € > 0, there
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exists N > 1, such that:
n>N = p(Gp\F)<e

In particular, taking F/ = F and G’ = Gy, F’ and G’ are
respectively closed and open subsets of Q, with F¥ C F C G’
and (G’ \ F') < e. This shows that F' € ¥. We have proved
that any closed subset F' of 2 is an element of X.

4. The application of theorem (8) requires some finiteness property.
5. Q is a closed subset of 2. So Q2 € X.

6. Let B € X. For all € > 0, there exist F' and G respectively closed
and open subsets of Q, such that F C B C G and u(G\ F) < e.
Since F°\ G = F°NG = G\ F, it follows that G¢ C B® C F*°
and p(F°\ G¢) < e. This shows that B¢ € ¥, since G and F'*°
are respectively closed and open subsets of (2. We have proved
that X is closed under complementation.

Exercise 5
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Exercise 6.

1. Let n > 1. By assumption B, is an element of 3. For all
€ > 0, and in particular for ¢ = ¢/2", there exist F,, and G,
respectively closed and open subsets of 2, with F,, C B,, C G,
and p(G, \ F,) <¢€.

2. Let H,, = U}_F} and H = Up>1F. Then H,, T H, and conse-

quently from theorem (7), u(H,) — p(H) as n — 4o00. p being
a finite measure, we obtain:

lim p(H\Hn)= lim p(H) - pu(He) =0

In particular, there exists N > 1 such that u(H \ Hy) < ¢, or
equivalently:

p (U F) \ (Uil F)) < e (7)

3. Let G = U,>1G,, and F = UY_ | F,,. G being a union of open
subsets of €2, is itself an open subset of Q. F' being a finite
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union of closed subsets of €2, is itself a closed subset of 2. Since
F, C B, CG,foralln>1and B = U,>1B,, it is clear that
FCBCQG.

4. Let H = U,>1F,. The sets G\ H and H \ F' are clearly disjoint.
Furthermore if x € G\ F = GNF*, then either x € H or z ¢ H.
Ifxe Hthenx € H\F. If © ¢ H then € G\ H. In any case,
x € G\ HWH\ F. This shows that G\ FC G\ HWH\ F.

5. Let H = Up>1F, and z € G\ H. Since x € G, there exists
n > 1 such that € G,. But x € H° = N> F¢. So in
particular z € F¢ and consequently x € G, \ F,,. This shows
that G\ H C Up>1G,, \ Fo.

6. Applying 4. and 5. with H = Up,>1F},, we have:

G\Fg(UnZlGn\Fn)H'JH\F
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It follows that:
+00
WG\ F) <3 (G \ )+ u(H \ F)
n=1
Having chosen F,, and G,, such that u(G, \ F,) < €/2" and
having defined F' from 2. such that u(H \ F') < ¢, we conclude
that u(G \ F) < 2e.

7. Given a sequence (By,)p>1 in ¥ and B = U, >1 By, given an arbi-
trary € > 0, we have shown the existence of F' and G respectively
closed and open subsets of 2, such that ¥ C B C G (see 3.)
and u(G\ F) < 2e (see 6.). It follows that B € 3. This shows
that ¥ is closed under countable union. Since 2 € ¥ and X is
closed under complementation (see exercise (5)), X is therefore a
o-algebra on Q. Furthermore, still from exercise (5), ¥ contains
every closed subset of €. Being closed under complementation,
it also contains every open subset of ). In other words, the
topology T is a subset of ¥, i.e. T C X. The o-algebra o(7)

www.probability.net


http://www.probability.net

Solutions to Exercises 48

being the smallest o-algebra on € containing 7 (containing in
the inclusion sense), the fact that X is a o-algebra on € implies
that B(Q) = o(7) C X. X being a subset of the Borel o-algebra
B(€), we conclude that 3 = B(Q2). Hence, for all B € B(Q2) and
€ > 0, there exist F' and G respectively closed and open subsets
of Q, such that F € B C G and pu(G \ F) < e. This proves
theorem (68).

Exercise 6
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Exercise 7.

1. Let p € [1,400] and f € Ok (). Since f is continuous, f is
Borel measurable. Furthermore, since f is bounded, there exists
M € R such that |f| < M. This implies that || f|jcc < M and
in particular ||f|lcc < +00. So f € LE(Q, B(), 1). Moreover,
if p € [1,+00[, p being a finite measure on (2, B(£)):

/\fl”du < MPp(2) < +o0

so f € Ly (Q,B(), u), and finally C5 () C L (2, B(Q), p).

2. Let n > 1 and ¢,, be defined by ¢,(x) = 1 — 1 A (nd(z, F)).
From exercise (4), the map « — d(z, F') is continuous. So ¢, is
also continuous, and furthermore it is clear that |¢, ()] <1 for
all z € Q. So ¢, € CR(Q).

3. Let x € Q. If x € F, then d(z,F) = 0 and ¢, (x) = 1 for all
n > 1. In particular, ¢, (x) — 1p(x) asn — 4oo. If z € F,
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then from exercise (4), F' being a closed subset of €2, we have
d(xz, F) > 0. It follows that:

lirf Pn(x)=1— lirJrrl 1A (nd(z, F)) =0
In particular, ¢, (z) — 1p(x) as n — +00. So ¢, — 1p.

4. Let p € [1,400[. From 3. we have ¢, — 1p and consequently
|¢pr, — 1p|[P — 0 as n — +oo. Furthermore, for all n > 1:

[¢n = 1p|” < (I¢n] + [1p[)P < 27

1 being a finite measure on (£2, B(€2)), from the dominated con-
vergence theorem (23) we conclude that:

nﬂrfoo/ |pn, — 1p[Pdp = 0

5. Let p € [1,+oo[ and € > 0. From 4. there is N > 1 such that:

n>N = /|¢n—1p|pd,u§ep
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In particular, taking ¢ = ¢n, ¢ € C%(Q) and [|¢p — 1¢|, < e.

6. Let v be a complex measure on (€2, B(2)). From theorem (57),
the total variation |v| of v is a finite measure on (Q, B(2)). It
follows that C&(Q) C L& (2, B(Q), |v]) = LE(Q,B(Q),v). Let
h € LE(Q,B(Q),|v|) be such that |h| = 1 and v = [ hd|v|.

Then:
‘/qﬁndy—/lpdu

\ [0 1eman]

‘/%@-ﬂﬂ’

< / 6 — Leldly]

where the second equality stems from definition (97), and the
last inequality from theorem (24). We conclude from 4. applied
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to u = |v| and p = 1, that:

=t [ ouas

7. Let (2,7) be a metrizable topological space, and p,v be two
complex measures on (€2, B(£2)). We assume that:

Vo e Ch@), [ odu= [oav (8)
and we claim that y = v. We define:
D—{EcBQ) : u(F) - u(E)}
Let F be a closed subset of 2. From 6. and (8) we have:

= lim /¢ndu— hm /¢ndu =y

n—-—+oo

So F' € D. Hence, any closed subset of €2 is an element of D. In
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particular, Q € D. Furthermore, if A, B € D with A C B, then:
u(B\ A) = u(B) — u(4) = v(B) — v(A) = u(B \ A)

So B\ A € D. Finally, if (E,),>1 is a sequence of elements of
D with E,, T E, then using exercise (13) of Tutorial 12 we have:

WE) = lim p(E) = lim v(En)=v(E)

So E € D, and we have proved that D is a Dynkin system on
Q. In particular, D is closed under complementation, and since
it contains every closed subset of €2, it also contains every open
subset of 2. So 7 C D and finally, since 7 is closed under
finite intersection, from the Dynkin system theorem (1) we con-
clude that B(Q) = ¢(7) C D. It follows that B(2) = D and
consequently p = v, which completes the proof of theorem (69).

Exercise 7
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Exercise 8.

1. Let € > 0 and ¢ € N,,. Since A; € B(Q2), i is a finite measure
on (£, B(Q)) and (2, 7) is metrizable, from theorem (68) there
exist F;, G; respectively closed and open subsets of €2, such that
Fl‘ g A1 g G1 and ,u(Gl\Fi) S €. In particular, Al\Fl g Gl\Fl
and we have u(A; \ F;) <e.

2. From s =" a;1a, and ' =" | a;1p, we obtain:

n
ls=s'll, = D ailla, —1r)
=1 P
n
< > el 14 = el
i=1

n 1
= ) ol ( 14~ Wdu)
=1
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n P
= ) ol (/ 1Ai\Fidﬂ>
i=1

I~

3. Let € > 0. Choosing ¢’ > 0 sufficiently small such that:

(Z ail> < ef2
i=1

and applying 2. to €, there exist closed subsets F1, ..., F, of ,
such that ||s — §||, <€/2, where s’ is defined as:

n
S/: E O[ilp,i
i=1
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Furthermore for all i € N,,, from 5. of exercise (7) there exists
¢i € C%(Q) such that |y - || — 11|, < €/2n. We Define:

=) i
i=1

Then ¢ € CL(Q) (in fact ¢ € CR(Q?) if oy € R for all i’s), and:

lo = s'll, = Zaz ¢ — 1F,)
P
< Z ol - lge = el
i=1
< €/2

Finally, we obtain [[¢ — s, < [[¢ — s'[l, +[[s — 5[, <€

4. Suppose (Q,7) is a metrizable topological space, and u is a
finite measure on (€, B(2)). For all p € [1,+oc0[, we clearly
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have C%(Q) C LII’{(Q,B(Q), 1) and we claim that Cg () is in
fact dense in LY (Q,B(Q), ). Given f € Ly (Q,B(Q), ) and
e > 0, we have to prove the existence of qS € C%(Q) such
that Hf ¢llp < e. From theorem (67), the set Sk (€2, B(£2))
(which is a subset of Ly (Q, B(), i) since p is finite) is dense
in Ly (Q,B(Q), ). There exists s € Sk(Q,B()) such that
Ilf —sll, < ¢e/2. Applying 3. to the K-valued simple function
s, there exists ¢ € O () (¢ can indeed be chosen R-valued if
K = R), such that ||¢ — s||, < ¢/2. It follows that:

1f = ollp <I1f = sllp+ 16 —sllp <€
which completes the proof of theorem (70).

Exercise 8
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Exercise 9.

1. F, = ¢ '([1/n,+00]) where ¢ is the continuous map defined by
é(x) = d(x, Q). Since [1/n,+oq] is a closed subset of R, we
conclude that F), is a closed subset of €.

2. For all n > 1 it is clear that F,, C F,, ;1. Let 2 € . Since ' is
an open subset of Q, Q' is a closed subset of Q and = & Q°. It
follows from exercise (4) that d(x,Q'°) > 0. Hence, there exists
n > 1 such that d(z,Q"°) > 1/n. So z € F,, and we have proved
that Q' C U,>1F,. To prove the reverse inclusion, suppose
x € F, for a some n > 1. Then in particular d(x, ) > 0 and
x cannot be an element of Q'°. So x# € Q'. This shows that
F, C ) for all n > 1, and we have proved that F}, T €.

3. Since F,, C F41 and K,, C Ky41, F, N K, € Frop1 N Kpg.
Furthermore, it is clear that U,>1F,, N K, C QY since F,, C
for all n > 1. Finally if z € €, since F,, T € there exists
p > 1 such that x € F,. Since K, T € there exists ¢ > 1 such
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that € K,. Taking n = max(p, q), we have v € F,, N K,,. So
Q' CUp>1F, N K, and we have proved that F,, N K,, T Q.

4. Let n > 1. Since F,, is closed in 2, F¢ is open in 2. By the very
definition of the induced topology on K, K, \ F, = K, N E¢
is an open subset of K,,. We conclude that F,, N K, is a closed
subset of K.

5. By assumption, each K, is a compact subset of ). Equivalently,
the induced topological space (Kn,7|x,) is compact. Having
proved that F,, N K, is a closed subset of K,,, from exercise (2)
of Tutorial 8, F,, N K, is a compact subset of K, or equivalently
a compact subset of Q.

6. We have found a sequence (F,, N K,),>1 of compact subsets
of €, such that F,, N K, T €. This shows that the induced
topological space (€', Tj) is o-compact. From theorem (12), it
is also metrizable, which completes the proof of theorem (71).

Exercise 9
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Exercise 10.

1. Let x € K. Since p is locally finite, there exists U, open subset
of Q, such that z € U, and u(U,) < +oo. It is clear that
K C UgerU,, and K being a compact subset of €2, there exists
a finite subset {x1,...,2z,} of K such that K C U,, U...UU,, .
Taking V; = U,,, we have found Vi,...,V,, open subsets of ,
such that pu(V;) < 400 for all i € N,, and:

KCWViu...uV, 9)

Note that if n = 0, K = ) and it is always possible to assume
n =1 by taking V4 = () (not a very important comment).

2. From (9) and exercise (13) of Tutorial 5, we obtain:
p(K) <p(Viu...UV,) <3 u(Vi) < 400
i=1
Exercise 10
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Exercise 11.

1. Let € > 0. Since (€2, 7) is metrizable and p is a finite measure,
from theorem (68) there exist F, G respectively closed and open
subsets of €, such that F € B C G and u(G\ F) < e. In
particular, there exists F' closed with FF C B and u(B\ F) <e.

2. Since K,, C K41, F\ (K,41NF) C F\(K,NF) for all n > 1.

Moreover, we have:

+o0 +oo +o0 ¢
(N F\(K.nF)= () Fn(K;UF°) =Fn (U Kn> =0

n=1 n=1

It follows that F'\ (K, NF) | 0.

3. F being a closed subset of Q, K,, N F' is closed with respect to
the induced topology on K,,. In other words, K,, N F is a closed
subset of K.

n=1

4. Since K, is compact, and K, N F is closed in K,,, from exer-
cise (2) of Tutorial 8, K,, N F is itself compact.
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5. Since F\(K,NF) | § and p is a finite measure, from theorem (8)
we have u(F \ (K, NF)) — 0 as n — 4o00. In particular, there
exists n > 1 such that u(F\ (K,NF)) < e. Taking K = K,,NF,
from 4. K is a compact subset of K,,, or equivalently a compact
subset of 2. Hence, we have found a compact subset K of 2,
such that K C F and u(F \ K) <e.

6. Since u(B\ F) < e and pu(F \ K) < ¢, we have:
w(B) = p(B\F)+ u(F)
— B\ F)+ u(F\ K) + p(K)
(K + 2

IN

7. We have proved in 6. that for all B € B(f), there exists K
compact with K C B and u(B) < u(K)+ 2e. a being an upper
bound of all u(K), as K ranges through all compacts subsets
with K C B, we have u(K) < a. So u(B) < a+ 2¢e. This being
true for all e > 0, it follows that u(B) < a. Moreover, for all
K compact with K C B, we have u(K) < u(B). So u(B) is an

www.probability.net


http://www.probability.net

Solutions to Exercises 63

upper bound of all u(K), as K ranges through compacts with
K C B. « being the smallest of such upper bounds, we have
a < u(B) and finally:

u(B) =a =sup{u(K): K C B, K compact}

This being true for all B € B(), from definition (103), p is
inner-regular. We have proved that any finite measure on a
metrizable, o-compact topological space is inner-regular.

Exercise 11
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Exercise 12.

1. Since K, T Q, we have K,NB T B. From theorem (7), it follows
that u(K, N B) T u(B).

2. Since o < p(B) and p(K, N B) — wu(B), there exists n > 1
such that o < p(K, N B). Taking K = K,,, we have found K
compact subset of  such that o < p(K N B).

3. From exercise (10), p being a locally finite measure and K being
compact, we have p(K) < 4+o0o0. Hence, for all A € B(Q):

pf(A) = u(K N A) < p(K) < +oo

So pf is a finite measure on (2, B(€2)). Since (Q,7) is metriz-
able and o-compact, from exercise (11) it follows that p is
inner-regular. In particular:

p(B) = sup{p(K*): K* C B, K* compact}
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4.

It appears from 3. that u* (B) is the smallest upper bound of all
uX(K*), as K* ranges through compacts with K* C B. Since
a < p®(B), a cannot be such an upper bound. Hence, there
exists K* compact with K* C B, such that o < p(K N K*).

. (Q,7T) being metrizable, it is a Hausdorff topological space. K*

being a compact subset of €, we conclude from theorem (35)
that K* is a closed subset of (2.

. Having proved that K* is a closed subset of 2, K N K* is closed

relative to the induced topology on K. In other words, K N K*
is a closed subset of K.

K N K* being a closed subset of K, and K being compact,
from exercise (2) of Tutorial 8 we conclude that K N K* is itself
compact.

. We have shown that o < pu(K N K*) and that K N K* is a

compact subset of 2. Since K* C B, we have K N K* C B and
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we conclude that:
a<u(KNK*) <sup{u(K'): K' C B, K’ compact} (10)
9. For all a € R with o < pu(B), inequality (10) holds. Hence:
wu(B) < sup{u(K'): K' C B, K’ compact}
10. Is is clear that:
sup{u(K’) : K' C B, K’ compact} < u(B)
We conclude that:
wu(B) = sup{u(K’'): K' C B, K’ compact}

This being true for all B € B(2), from definition (103), p is
inner-regular. We have proved that any locally finite measure on
a metrizable and o-compact topological space, is inner-regular.

Exercise 12
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Exercise 13.

1. Let (©2,7) be a metrizable topological space. Suppose (2,7) is
separable. From definition (58), there exists a sequence (z,)n>1
of elements of ), which are dense in 2. The set of open balls:

H={B(zn,1/p) : n>1, p=>1}

is easily seen to be a countable base of (©,7). Indeed, it is a
subset of the topology 7 which is at most countable, and for
any open set U and any x € U, on can easily find n > 1 and
p > 1 such that:
z € B(zp,1/p) CU

So U is a union of elements of H. We have proved that if (2, 7)
is separable, then it has a countable base. Conversely, suppose
(©,7) has a countable base, say H. For all V. € H, V £ ), let
xy be an arbitrary element of V. Then, the set:

A={zy : VeH, V#0}
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is at most countable, and is easily seen to be dense in 2. Indeed,
for all x € Q and € > 0, the open ball B(z,¢) being a union of
elements of H (see definition (57) of a countable base), we have
z €V C B(z,¢) for some V € H, V # (. In particular, we have
found zy € A, such that d(z,xy) < e. This shows that (Q2,7)
is separable, and we have proved the equivalence between the
separability of (£2,7), and the fact that it has a countable base.
This equivalence was already proved in slightly more detail, as
part of exercise (19) of Tutorial 6.

2. We assume that (2, 7) is not only metrizable, but also compact.
Let n > 1. Then (B(z,1/n)).ecq is a family of open sets whose
union is equal to  itself. In other words, it is an open covering
of Q. Since (2,7) is compact, this open covering has a finite
sub-covering. In other words, there exists an integer p > 1 and
Z1,...,%p in 2, such that:

Q= B(z1,1/n)U...UB(zp,1/n)
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We have proved that 2 can be covered by a finite number of
open balls with radius 1/n.

3. We assume that (€2,7) is not only metrizable but also compact.
From 2. given n > 1, © can be covered by a finite number, say
pn > 1, of open balls with radius 1/n. Let %1 4,...,%p, n be
the centers of such open balls. Then, the set A = {x,, : n >
1, k=1,...,p,} is at most countable, and we claim that it is
dense in Q. Let z € Q. We have to show that x € A, i.e. that
given U open containing z, we have U N A # 0. (Q,7) being
metrizable, it is sufficient to show that given e > 0, B(x,e)NA #
(. Let n > 1 be such that 1/n < e. Since x belongs to an
open ball B(zy,,1/n) for some k& = 1,...,p,, in particular
we have d(z,xy,,) < e. This shows that B(z,e) N A # () and
we have proved that A is dense in 2. This shows that (£2,7)
is separable. The purpose of this exercise is to show that a
metrizable compact topological space is also separable.

Exercise 13
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Exercise 14.

1. From theorem (12), the induced metric d|x, induces the induced
topology 7k, on K.

2. By assumption, each K, is a compact subset of 2. In other
words, the topological space (K,,7|k,) is compact. However
from 1. it is also metrizable. It follows from exercise (13) that
(Kn, 1|k, ) is separable.

3. Let A={2P : n>1, p>1}. Then A is an at most count-
able set, and we claim that A is dense in . Since (Q,7) is
metrizable, given x € Q and € > 0, it is sufficient to show that
AN B(z,€e) # 0. Since Q = U,>1 K, there is n > 1 such that
x € K,,. By assumption, the sequence (z%),>1 is dense in K.
Hence, there exists p > 1 such that d|g,(z,2%) < e. Equiva-
lently, we have d(x, z2) < e. It follows that AN B(xz,€) # () and
we have proved that A is dense in 2. This shows that (£2,7)
is separable. The purpose of this exercise is to prove that a
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metrizable and o-compact topological space, is also separable.
This is the objective of theorem (72).

Exercise 14
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Exercise 15.

1. Let U be open in 2 and = € U. The measure pu being locally
finite, there exists some open set W, such that x € W, and
w(W,) < +oo. Defining U, = U NW,, U, is an open set in
such that x € U, C U and u(U,) < +oo.

2. Since U, is open, and H is a countable base of (2,7), U, can
be expressed as a union of elements of H. In particular, since
x € U,, there exists some V, € ‘H such that z € V, C U,.

3. H’ being a subset of H, and H being a countable base of (2, 7),
‘H' is an at most countable set of open sets in . Furthermore,
given U open in © and = € U, it follows from 1. and 2. that
there exists V, € H such that x € V,, C U and pu(V,) < +oc.
In other words, there exists V, € H’ such that x € V, C U.
Consequently, U can be expressed as U = U,y V, and we have
proved that any open set in 2 can be written as a union of
elements of H’. This shows that H’ is a countable base of (2, 7).
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4. Since Q is an open set in Q, and H' is a countable base of (2, 7),
Q can be written as a union of elements of H’. In other words,
there exists a subset G C H’ such that Q = UyegV. H' being
at most countable, G is itself at most countable. There exists
a map ¢ : N* — G which is surjective. So Q = Up,>1¢(n), and
defining V,, = ¢(n) we obtain Q = U,>1V,, where each V,, is an
element of G C ‘H’'. In particular, each V,, is an open set in
with u(Vy,) < +o0.

Exercise 15
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Exercise 16.

1. Let p¥» = p(V,,N-). Since u(V,) < +o0, u" is a finite measure
on (2,B(2)). Furthermore, (2,7) is a metrizable topological
space. Applying theorem (68), since B € B(Q), there exist F,
closed and G, open such that F,, C B C G,, and p"" (G, \ F},) <
€/2™. In particular, since G,, \ B C G, \ F,, there exists G,
open such that B C G,, and (G, \ B) < ¢/2".

2. Let G = Up>1Vy, NGy, Each V,, and G, is an open set in Q.
So G is a union of open sets in €. It follows that G is an open
set in €2. Furthermore, since 2 = U,>1V,, and B C G, for all
n > 1, we have:

“+o00 “+o00
B=|JV.nBC|JVanG, =G
n=1 n=1
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3. We have:
+oo +oo
G\B=GnB = |JV.nG,nB°=[JV,N(Gn\B)
n=1 n=1

4. From 3. and 1. we obtain:
+oo —+oo
w(G\B) <> u(Van(Gu\B))=> u""(Gn\B) <e
n=1 n=1
Since B C G, we have u(G) = u(B)+ p(G\ B) and consequently
w(G) < u(B) +e.

5. Since G is open and B C G, we have o« < p(G). Using 4. it
follows that o < u(B) + €. This being true for all € > 0, we
conclude that a < u(B).

6. For all G open with B C G, we have u(B) < u(G). It follows
that p(B) is a lower bound of all u(G)’s where G is open with
B C G. « being the greatest of such lower bounds, we have
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1(B) < o. However, from 5. we have a < p(B). It follows that
a = p(B). We have proved that for all B € B(Q):
w(B) =inf{u(G): BC G, G open}

This shows that p is outer-regular.

7. In this exercise, we proved that a locally finite measure on a
metrizable and o-compact topological space is outer-regular.
However, in exercise (12), we proved that it is also inner-regular.
It follows that a locally finite measure on a metrizable and o-
compact topological space is regular. This proves theorem (73).

Exercise 16
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Exercise 17. Let  be an open subset of R"™, and u be a locally
finite measure in (2, B(£2)). R™ is a metrizable topological space, and
furthermore from theorem (48) any closed and bounded subset of R™
is compact. In particular, K, = [—p,p]™ is a compact subset of R"
for all p > 1. So R"™ is both metrizable and o-compact. From theo-
rem (71) it follows that the induced topological space (£2, (Tr»)|q) is
also metrizable and o-compact. Applying theorem (73), we conclude
that p being locally finite, is a regular measure. We have proved that
any locally finite measure on an open subset of R" is regular. This is
the objective of theorem (74).

Exercise 17
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Exercise 18.

1. Since (2,7) is locally compact, for all = € Q, there exists W,
open in Q such that + € W, and W, is compact. Let n > 1. K,
is a compact subset of Q. Furthermore, (K, N W,).ck, is an
open covering of K,,, from which therefore we can extract a finite
sub-covering. There exists an integer p, > 1 and zf,... 2y
elements of K, such that:

Ky = (Kn NWep) U U (Kn N Wen )

Setting V" = Wyn for k =1,...,pp, we have found V",..., V"
open subsets of  such that K, C V{"U...UV," and Vi, .. .,Vp’;

are compact subsets of 2.

2. Let W), = V" U...UV! and V,, = Up_, Wy for n > 1. Since
Vit ..., VI are open, each W), is open, and consequently each
V,, is open. So (V,,)n>1 is a sequence of open sets in €, and it
is clear that V,, C V,,4; for all n > 1. Let x € 2. Since K,, T ,

in particular Q = U,>1K, and there exists n > 1 such that
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z € K,. From 1. we have K,, C W,,, and since W,, C V,,, it
follows that = € V,,. This shows that Q = U,,>1V,, and we have
proved that (V,)n>1 is a sequence of open sets such that V,, T Q.

3. In order to show that W, = V;"U.. .UV it is sufficient to prove
that for all A, B subsets of 2, we have AU B = AU B. Recall
from exercise (21) of Tutorial 4 that the closure in 2 of any set A,
is the smallest closed set containing A (in the sense of inclusion).
In particular, we have A C A and B C B and consequently
AUB C AU B. However, AU B being closed, this implies that
AUB C AU B. Furthermore since A C AUB C AUB and
AU B is closed, we have A C AU B and likewise B C AU B.
It follows that AU B C AU B and we have proved the equality
AUB=AUB.

4. Since W,, = V" U... UV and each V" is a compact subset
of Q, in order to prove that W, is compact, it is sufficient to

show that if A and B are compact subsets of €2, then AU B
is also a compact subset of €). For that purpose we shall use
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the characterization of compact subsets proved in exercise (2)
of Tutorial 8. Let (U;);cr be a family of open sets in € such
that AU B C U;e;U;. Then in particular A C U;e;U; and A
being a compact subset of €2, there exists I; finite subset of I
such that A C U;er, U;. Similarly, there exists I finite subset
of I such that B C U,er,U;, It follows that AU B C Ujer,ur, Ui
and I; U Is being finite, we conclude that A U B is a compact
subset of (2.

5. Let n > 1. From 2. we have V;, = Uy_;W. Using a similar
argument as in 3. we see that V,, = Up_;Wj. Using a similar
argument as in 4., each W}, being compact by virtue of 4. itself,

we conclude that V,, is itself compact.

6. Let (2,7) be a topological space. If (2,7) is o-compact and
locally compact, we have been able to construct a sequence
(Vi)n>1 of open sets in €2, such that V;, T Q and V,, is com-
pact for all n > 1. So (2, 7) is strongly o-compact. Conversely,
suppose that (Q,7) is strongly o-compact, and let (V,),>1 be
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a sequence of open sets in €, such that V,, T Q and each V,
is compact. Then V,, T Q and Q is therefore o-compact. Fur-
thermore, for all z € €, there exists n > 1 such that z € V.
Since Vj, is open and V,, is compact, this shows that € is locally
compact. This completes the proof of theorem (75).

Exercise 18
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Exercise 19.
1. Since A C € and A C A, we have A C Q' N A.

2. The complement of ' N A in ) is:
A\ (O NA) =0 NQUA) =" nA°
Since A is closed in Q, A° is open in and consequently by
definition of the induced topology, €' N A° is open in . It

follows that €' N A is closed in €. Note more generally that if
F is closed in , then Q' N F is closed in €.

3. The closure A2 of A in ¢ being the smallest closed subset of
Q' containing A, we conclude from A € Q'NA and ©'N A closed
in O, that A2 C Q' n A.

4. Let z € Q' N A. Suppose U’ € Ty and z € U’. There exists
U € T such that U' = UNQ'. From z € U’, we have z € U and
since x € A, we obtain that ANU # (). However by assumption,
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A is a subset of . Hence:
ANU' =ANUNQ)=ANQY)NU=ANU #0
So we have proved that ANU’ # (.

5. It follows from 4. that Q' N A C Afl/. However from 3. we have
AY C Q' n A. We conclude that AY = Q' N A.

Exercise 19
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Exercise 20.

1. Let z € Q and € > 0. Let y € B(z,¢). For all U open in Q
such that y € U, we have U N B(x,¢) # (). In particular, for all
n > 0, we have B(y,n) N B(z,¢) # 0. Let z € Q be such that
d(y,z) < nand d(z,z) < e. From the triangle inequality:

d(z,y) < d(z,z)+d(y,z) <e+n

This being true for all n > 0, it follows that d(z,y) < e. We
have proved that:

B(z,e) C{y e : d(z,y) <€}

2. Let Q = [0,1/2[U{1} together with its usual metric. Then, the
open ball B(0,1) is given by:

BO0,1)={zeQ : |z| <1} =[0,1/2]

3. The complement of [0,1/2[in Q is {1}, which can be written as
11/2,2[N$2 and is therefore open in €, since |1/2,2[ is open in
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R. It follows that [0,1/2[is closed in .

4. From 2. we have B(0,1) = [0,1/2[ and from 3. [0,1/2[ is a closed
subset of €2, and is therefore equal to its closure. Hence:

B(0,1) =[0,1/2[=10,1/2]

5. Since Q ={y € Q : |y| <1} and [0, 1/2[# 2, we conclude that:

B(0,1) #{yeQ : [yl <1}

The purpose of this exercise is to provide a counter-example to
the belief that the inclusion proved in 1.:

B(z,e) C{y € : d(z,y) <€}
can be shown to be an equality.

Exercise 20

www.probability.net


http://www.probability.net

Solutions to Exercises 86

Exercise 21.

1. Q being locally compact, there exists U open with compact clo-
sure such that x € U.

2. Since z € ' and x € U, we have z € UNSY. Furthermore, both
U and ' being open in 2, U N is open in 2. The topology on
) being metric, there exists ¢ > 0 such that B(z,¢) CU N

3. From B(z,¢/2) € B(z,e) € UNQ C U we conclude that
Blz,e/2) C U.

4. From 3. we have B(z,€/2) = B(z,¢e/2) N U and B(z,€/2) being

closed in €2, we conclude that it is also closed in U.

5. Since U is compact and B(z,¢€/2) is a closed subset of U, it
follows from exercise (2) of Tutorial 8 that B(z,€/2) is a compact
subset of U, and consequently also a compact subset of (2.
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6. Let y € B(x,€¢/2). From 1. of exercise (20), d(z,y) < €/2 and
in particular d(x,y) < e. From 2. we have B(r,¢) C Q' and
consequently y € . This shows that B(xz,¢/2) C Q.

7. Let U’ = B(z,¢/2) N Q' = B(x,¢/2). It is clear that x € U’
and furthermore B(z,€e/2) being open in Q, U’ is open in ',
i.e. U" € Tjq/. Using 6. and exercise (19), we obtain:

U =0'nQ = B(x,e/2) NQ = B(x, ¢/2)
In particular U s compact, as can be seen from 5.

8. Given z € ', we have found U’ open in Q' such that = € U’ and
U’ is compact. This shows that (€', 7jq/) is locally compact.

9. Let (©2,7) be a metrizable and strongly o-compact topological
space. Let € be an open subset of Q. From theorem (75),
(2, 7) is metrizable, o-compact and locally compact. Since Q'
is open, it follows from theorem (71) that the induced topo-
logical space (£, 7o) is itself metrizable and o-compact. Fur-
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thermore, we have proved in this exercise that (£, Tiov) is also
locally compact. So (€ , 7| is metrizable, o-compact and lo-
cally compact. Using theorem (75) once more, we conclude that
(Y, 7o) is metrizable and strongly o-compact. This completes
the proof of theorem (76).

Exercise 21
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Exercise 22.

1. The constant map ¢ : x — 0 is continuous. Indeed for any U
open in K, ¢~ (U) is either equal to ) or to € itself. In any
case ¢~ 1(U) is an open subset of Q. Furthermore, supp(¢) = 0
and is therefore compact (see exercise (2) of Tutorial 8). This
shows that ¢ € Cg(Q).

2. C%(9) being a non-empty subset of the set of all maps ¢ : d —
K, to show that Cg () is a K-vector space, it is sufficient to
show that given ¢, ¢ € Cg () and A € K, the map ¢+ Ay is also
an element of Cg (©2). To show that ¢ + A\ is continuous, one
may proceed as follows: define ® : K2 — K by ®(x,y) = 2+ \y,
and ¥ : Q — K? by ¥U(w) = (¢(w),?(w)). Then ¢+ \p = ®o ¥
and @ being continuous, it is sufficient to show that ¥ is itself
a continuous map. However, the continuity of ¥ follows from
the fact that each coordinate mapping ¢ and 1 is continuous.
Indeed if U x V is an open rectangle in K2, then U=1(U x V) =
¢~ (U)Ny~1(V) and is therefore open in . Any open set W
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in K? being a union of open rectangles, it is clear that ¥ —1(W)
is open in . So much for the continuity of ¢ + Ay). From the
inclusion:

{o+Mp#0} C{o#0}U{y#0}
and the fact that given A, B subsets of Q, AUB = AU B (see
the proof of 3. in exercise (18)), we obtain:

supp(¢ + ) C supp(¢) Usupp(v)

Since ¢ and 9 lie in Cg (£2), both supp(¢) and supp(¢) are com-
pact and consequently A = supp(¢) Usupp(¢) is itself compact
(see the proof of 4. in exercise (18)). Furthermore, supp(¢+ At))
being closed in 2 while being a subset of A, it is also closed in
A. From exercise (2) of Tutorial 8, supp(¢ + M) is therefore
compact. We have proved that ¢ + Ay € Cg ().

3. Let ¢ € O (). If ¢ = 0 then ¢ € C%(Q). We assume that
¢ # 0. Let A = supp(¢). Then |¢]|4 is a continuous map
defined on the non-empty compact topological space (A,7|4).
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From theorem (37), [¢[ 4 attains its maximum, i.e. there exists
xm € A such that:

|¢(zar)| = sup [¢(z)]

z€A

Since ¢(z) = 0 for all z € A°, we have:

|¢(xar)| = sup [$(x)]

€

which shows in particular that sup,cq |¢(z)| < +o00. So ¢ €
C%(Q) and we have proved that Cg(Q) C CE ().

Exercise 22
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Exercise 23.

1. Since € is locally compact, for all x € Q2 there exists an open set
W, such that z € W, and W, is compact. From K C UgecxgWa
and the fact that K is a compact subset of 2, we deduce the
existence of n > 1 and xy, ..., 2, € K such that K C U}!_;W,,.
Setting Vi, = W, for all k =1,...,n, we have found open sets
Vi,...,V, such that:

KCWVU...UV, (11)

and each Vj, is compact.

2. An arbitrary union of open sets is open. A finite intersection
of open sets is open. Since Vi,...,V,, and G are open, the set
V=>MWU...UV,) NG is an open set in 2. By assumption,
K C G and it therefore follows from (11) that K C V. The
fact that V' C G is clear. We have proved that V' is open and
KCV CAG.
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3. Given A, B subsets of Q, AUB = AU B (see proof of 3. in
exercise (18)). From V C V3 U...UV,, we obtain:

VcVviu...uV, =V U...uV,

4. If A, B are compact subsets of {2, AU B is a compact subset of {2
(see proof of 4. in exercise (18)). It follows that K’ = V;U. ..UV,
is a compact subset of Q. Furthermore from 3. V is a subset of
K'. Being closed in €, V is also closed in K’ (it can be written
as V. = F N K’ where F is closed in Q, take F' = V). Using
exercise (2) of Tutorial 8, it follows that V is compact.

5. Given A subset of Q, d(z, A) is well defined for all z €  as:
d(z, A) = inf{d(x,y) : ye A}

where it is understood that inf ) = +oco. Since K # () and V #
Q, d(z, K) and d(x, V°) are well-defined real numbers for all z €
Q. Furthermore, for all A closed in €2, d(z, A) = 0 is equivalent
to x € A (see exercise (22) of Tutorial 4). V being open in
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Q, V¢ is a closed subset of Q. So d(x,V°) = 0 is equivalent to
x € V¢ K being a compact subset of 2 and €2 being a Hausdorff
topological space (it is metric), K is a closed subset of Q (see
theorem (35)). So d(x, K) = 0 is equivalent to 2 € K. It follows
that d(z, V) 4+ d(x, K) = 0 is equivalent to x € K N'V¢, which
can never happen since K C V. We have proved that for all
x € Q, ¢(x) is a well-defined real number. So ¢ :  — R is
well-defined. For all A subsets of Q, the map = — d(z,A) is
continuous (see exercise (22) of Tutorial 4). We conclude that
¢ is also continuous.

6. ¢(x) # 0 is equivalent to d(x, V¢) # 0 which is itself equivalent
to x & V¢ (since V¢ is closed), i.e. € V. We have proved that
{60} =V.

7. From 7. {¢ # 0} = V and consequently supp(¢) = V. Having
proved in 4. that V is compact, it follows that ¢ has compact
support. So ¢ : 2 — R is continuous with compact support, i.e.

¢ € Cr (D).
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8.

11.

To show that 1x < ¢ it is sufficient to show that x € K implies
1 < ¢(x). However, K being closed in Q, z € K is equivalent
to d(x, K) = 0. In particular, € K implies that ¢(z) = 1. Tt
is clear that ¢(z) <1 for all z € 2. To show that ¢ < 1¢, it is
sufficient to show that = € G implies ¢(z) = 0. But V C G and
consequently x ¢ G implies z € V', i.e. x € V¢. And V¢ being
closed, x € V¢ is equivalent to d(z,V¢) = 0. In particular, we
see that = ¢ G implies ¢(z) =0. So 1x < ¢ < 1g.

. Suppose K = 0. With ¢ =0, ¢ € C{(Q2) and 1x < ¢ < 1¢.
10.

Suppose V = Q. Then V = Q = Q. V being compact (see 4.),
it follows that  is compact.

Suppose V' = Q. Since V C G, we have G = , i.e. 1g = 1.
Take ¢ = 1. Then ¢ is continuous and supp(¢) = Q) is compact
(see 10.). So ¢ € C{(Q) and 1x < ¢ < 1lg. This proves
theorem (77).

Exercise 23

www.probability.net


http://www.probability.net

Solutions to Exercises 96

Exercise 24.

1. Let ¢ € Cg(£2). Then ¢ is continuous and from exercise (13)
of Tutorial 4, the map ¢ : (2,B(Q2)) — (K,B(K)) is therefore
measurable. Furthermore from exercise (22), Cg (2) C Ck(Q).
So ¢ is also bounded. There exists m € RT such that |¢| < m.
Let A = supp(¢). Then A is a compact subset of 2, and from
exercise (10), u being locally finite, u(A) < +oco. Since {¢ #
0} C A, we have A° C {¢ = 0} and consequently ¢ = ¢14.
Hence:

J16mdn= [ 1atoPau < mruca) < +o0
S0 & € L (2, B(), 1) and finally C&(9) C L (€, B(Q), 1),

2. Let € > 0. Since (Q,7) is metrizable and strongly o-compact,
in particular from theorem (75), it is metrizable and o-compact.
Since p is a locally finite measure on (£, B(f2)), from theo-
rem (73) p is regular. Having assumed that p(B) < +o0, we
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have u(B) < p(B) + ¢/2. From the outer-regularity of yu, p(B)
is the greatest lower-bound of all u(G)’s where G is open with
B C G. So u(B) + €/2 cannot be such lower-bound. There
exists G open with B C G such that:

w(G) < p(B) + 5 (12)

Likewise, p(B) — €/2 < u(B) and from the inner-regularity of
w, w(B) is the lowest upper-bound of all u(K)’s where K is
compact with K C B. So u(B) — €/2 cannot be such upper-
bound, and consequently, there exists K compact with K C B
such that:

u(B) — 5 < p(K) (13)

Hence, we have found K compact and G open with K C B C G,
and furthermore from (12) and (13) we have:

H(G) < p(B) + 5 < p(K) +e
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and consequently:
WE) + (G K) = p(G) < p(K) + e

K being compact and p locally finite, from exercise (10) we have
1(K) < 400, and we conclude that u(G \ K) < e. In particular
w(G\K) <e

3. The fact that u(B) < 400 was used when writing the inequal-
ities p(B) < w(B) + €/2 and p(B) — €/2 < p(B). Without
this assumption, these inequalities would not be strict, and the
argument developed in 2. would fail.

4. Since (2, 7) is metrizable and strongly o-compact, in particular
from theorem (75), it is metrizable and locally compact. K
being compact and G open with K C G, from theorem (77),
there exists ¢ € C{(€) such that 1x < ¢ < 1g.

5. Since 1g < ¢ < 1¢, in particular 0 < ¢ < 1 and consequently
we have |¢p — 15|P < 1. Suppose = ¢ G. Then 1g(x) = 0 and
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therefore ¢(x) = 0. Since B C G, we also have 1p(z) = 0
and consequently |¢(z) — 1p(z)[P = 0. Suppose z € K. Then
1k (xz) = 1 and therefore ¢(x) = 1. Since K C B we also have
1g(z) = 1 and consequently |p(z) — 1p(x)[P = 0. We have
proved that * ¢ G\ K implies that |¢(x) — 1g(x)? = 0. It
follows that |¢ — 15[P < 1g\ k and finally:

[16=18Pdn < [ 16ydn = @\ K)

6. Let € > 0. Applying 2. to €P instead of € itself, we can find K
and G such that u(G\ K) < €. From 4. and 5. there exists
¢ € C& () such that:

[16=1aPdn <G\ k) <
from which we conclude that ||¢ — 15|, <e.

7. Let s € Sc(Q,B(Q) N LEL(Q,B(Q), 1) and € > 0. From 3.
of exercise (1) there exists an integer n > 1, together with
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a1,...,an, € Cand Ay,..., 4, € B(Q) such that:

n
s = E ol a,
i=1

and p(A;) < 400 for all i € N,,. Without loss of generality, we
may assume that «; # 0 for all ¢’s (if s = 0 then s € C&(2) and
finding ¢ € C&(Q) such that ||¢—sl|, < e is trivial). Applying 6.
to B = A; (recall that A; € B(Q) and p(A;) < +00) and €/n|oy]
instead of €, there exists ¢ € Cg{(€) such that ||¢; — 14,], <
€/n|a;|. Since C& () is a vector space, the map ¢ = > """ | ;s
is an element of C'&(£2) and we have:

n n

E ;i — E a;l g,
i=1 i=1
n

< Z |lvi| - || s — 14,

i=1

6 — sllp

P

A

P
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[N\
M:
—
3
S ™M
~_

%
= €

We have found ¢ € C&(Q2) such that ||¢ — s||, < e. Note that if
s € Sr(Q,B(2)) then o; € Rforalli € N,,,and ¢ = > """ | ;s
is in fact an element of C§ ().

8. To show that Cg(Q) is dense in L (2, B(Q2), ), it is sufficient
to show that given f € LY (Q,B(Q), ) and e > 0, there exists
¢ € Cg () such that || f —¢||, < e. However, from theorem (67)
there exists s € Sk (2, B(R2)) N Ly (2, B(Q), p) such that ||f —
sllp < €/2. Applying 7. to s and €/2 instead of €, there exists
¢ € Ci () such that ||¢ — s||, < €/2. It follows that we have
found 6 € g (©) such that || — il < I1f — slly+ 16— sll, < e.
This completes the proof of theorem (78).

Exercise 24
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Exercise 25. Let  be an open subset of R™ where n > 1. Let p
be a locally finite measure on (2, B(Q2)) and p € [1,+oo[. For k > 1,
Vi =] —k, k[™ is an open subset of R™ with compact closure, and Vj, 1
R"™. From definition (104), R™ is strongly o-compact. Furthermore,
it is metrizable. It follows from theorem (76) that € being an open
subset of R, is also metrizable and strongly o-compact. Applying
theorem (78), we conclude that Cg () is dense in Ly (Q, B(), i).
This completes the proof of theorem (79).

Exercise 25
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