Probability Tutorials: Notations

1. Tutorial 1

\triangleq : equality which is true by definition, hence always true.
Ω : an arbitrary set.
$\mathcal{P}(\Omega)$: the power set of Ω, i.e. the set of all subsets of Ω.
\mathcal{D} : a set of subsets of Ω, also a Dynkin system on Ω.
\mathcal{F} : a set of subsets of Ω, also a σ-algebra on Ω.
$\Omega \in \mathcal{D}: \Omega$ is an element of the set \mathcal{D}.
$A, B:$ arbitrary subsets of Ω.
$\left(A_{n}\right)_{n \geq 1}$: a sequence of subsets of Ω.
$A \subseteq B: \mathrm{A}$ is a subset of B , i.e. $x \in A \Rightarrow x \in B$.
$B \backslash A$: set difference defined by $B \backslash A=\{x \in B: x \notin A\}$.
$\cup_{n=1}^{+\infty} A_{n}$: union of all $A_{n} ' s, \cup_{n=1}^{+\infty} A_{n}=\left\{x: \exists n \geq 1, x \in A_{n}\right\}$.
A^{c} : the complement of A in $\Omega, A^{c}=\{x \in \Omega: x \notin A\}$.
$A \cup B:$ union of A and $B, A \cup B=\{x: x \in A$ or $x \in B\}$.
$A \cap B$: intersection of A and $B, A \cap B=\{x: x \in A$ and $x \in B\}$.
$\left(\mathcal{D}_{i}\right)_{i \in I}$: a family of Dynkin systems on Ω, indexed by a set I.
$\cap_{i \in I} \mathcal{D}_{i}$: intersection of all \mathcal{D}_{i} 's, $\cap_{i \in I} \mathcal{D}_{i}=\left\{A: \forall i \in I, A \in \mathcal{D}_{i}\right\}$.
$\left(\mathcal{F}_{i}\right)_{i \in I}$: a family of σ-algebras on Ω, indexed by a set I.
$\cap_{i \in I} \mathcal{F}_{i}$: intersection of all $\mathcal{F}_{i}{ }^{\prime} \mathrm{s}, \cap_{i \in I} \mathcal{F}_{i}=\left\{A: \forall i \in I, A \in \mathcal{F}_{i}\right\}$.
\mathcal{A} : a set of subsets of Ω, a subset of $\mathcal{P}(\Omega)$.
$D(\mathcal{A})$: the set of all Dynkin systems on Ω, containing \mathcal{A}.
$\mathcal{D}(\mathcal{A})$: the Dynkin system on Ω, generated by \mathcal{A}.
$\sigma(\mathcal{A})$: the σ-algebra on Ω, generated by \mathcal{A}.
\mathcal{C} : a set of subsets of Ω, also a π-system on Ω.

2. Tutorial 2

Ω : an arbitrary set.
$\mathcal{P}(\Omega)$: the power set of Ω, i.e. the set of all subsets of Ω.
$\emptyset:$ the empty set, i.e. the only set with no elements.
$B \backslash A$: set difference defined by $B \backslash A=\{x \in B: x \notin A\}$.
\uplus : union of pairwise disjoint sets.
\mathcal{R} : a set of subsets of Ω, also a ring on Ω.
$\left(\mathcal{R}_{i}\right)_{i \in I}$: a family of rings on Ω, indexed by a set I.
\mathcal{A} : a set of subsets of Ω, a subset of $\mathcal{P}(\Omega)$.
$R(\mathcal{A})$: the set of all rings on Ω, containing \mathcal{A}.
$\mathcal{R}(\mathcal{A})$: the ring on Ω, generated by \mathcal{A}.
μ : a measure defined on a set of subsets of Ω.
$[0,+\infty]$: the set $\mathbf{R}^{+} \cup\{+\infty\}$.
$\mathcal{R}(\mathcal{S})$: the ring on Ω, generated by the semi-ring \mathcal{S}.
$\bar{\mu}, \bar{\mu}^{\prime}$: measures defined on the $\operatorname{ring} \mathcal{R}(\mathcal{S})$.
$\bar{\mu}_{\mid \mathcal{S}}, \bar{\mu}_{\mid \mathcal{S}}^{\prime}$: the restrictions of $\bar{\mu}$ and $\bar{\mu}^{\prime}$ to the smaller domain \mathcal{S}.
μ^{*} : an outer-measure on Ω.
$\Sigma\left(\mu^{*}\right), \Sigma$: the σ-algebra on Ω, associated with μ^{*}.
A, B, T : arbitrary subsets of Ω.
A^{c} : the complement of A in $\Omega, A^{c}=\{x \in \Omega: x \notin A\}$.
$\mu_{\mid \Sigma}^{*}$: the restriction of μ^{*} to the smaller domain Σ.
$\sigma(\mathcal{R}), \sigma(\mathcal{R}(\mathcal{S})), \sigma(\mathcal{S}): \sigma$-algebras on Ω, generated by $\mathcal{R}, \mathcal{R}(\mathcal{S}), \mathcal{S}$.
μ^{\prime} : a measure defined on $\sigma(\mathcal{R})$, or $\sigma(\mathcal{S})$.
$\mu_{\mid \mathcal{R}}^{\prime}, \mu_{\mid \mathcal{S}}^{\prime}$: the restrictions of μ^{\prime} to the smaller domains \mathcal{R} and \mathcal{S}.

3. Tutorial 3

Ω : an arbitrary set.
$\mathcal{P}(\Omega)$: the power set of Ω, i.e. the set of all subsets of Ω.
\mathcal{A} : a set of subsets of Ω.
μ : a finitely additive map on \mathcal{A} or a measure on \mathcal{F}.
\uplus : a union of pairwise disjoint sets.
A, A_{i}, A_{n} : arbitrary substets of Ω.
$a \vee b$: the largest of a and $b, a \vee b=\max (a, b)$.
$a \wedge b$: the smallest of a and $b, a \wedge b=\min (a, b)$.
\mathcal{S} : the semi-ring $\mathcal{S}=\{] a, b], a, b \in \mathbf{R}\}$, or a semi-ring on Ω.
$\mathcal{R}(\mathcal{S})$: the ring generated by \mathcal{S}.
$\bar{\mu}$: a finitely additive map defined on $\mathcal{R}(\mathcal{S})$.
F : a right-continuous and non-decreasing map defined on \mathbf{R} or \mathbf{R}^{+}.
\mathcal{T} : a topology on Ω.
(Ω, \mathcal{T}) : a topological space.
$\mathcal{B}(\Omega)$: the Borel σ-algebra on (Ω, \mathcal{T}).
\mathbf{R} : the real line $\mathbf{R}=]-\infty,+\infty[$.
\mathbf{R}^{+}: the subset of $\mathbf{R}, \mathbf{R}^{+}=[0,+\infty[$.
$\mathcal{T}_{\mathbf{R}}$: the usual topology on \mathbf{R}.
$\mathcal{B}(\mathbf{R})$: the Borel σ-algebra on \mathbf{R}.
$\mathcal{B}\left(\mathbf{R}^{+}\right)$: the Borel σ-algebra on \mathbf{R}^{+}.
Q : the set of all rational numbers.
$\sigma(\mathcal{S})$: the σ-algebra generated by \mathcal{S}.
$\mathcal{F}:$ a σ-algebra on Ω.
(Ω, \mathcal{F}) : a measurable space.
$(\Omega, \mathcal{F}, \mu)$: a measure space.
$A_{n} \uparrow A$: for all $n \geq 1, A_{n} \subseteq A_{n+1}$ and $A=\cup_{n=1}^{+\infty} A_{n}$.
$A_{n} \downarrow A$: for all $n \geq 1, A_{n+1} \subseteq A_{n}$ and $A=\cap_{n=1}^{+\infty} A_{n}$.
\mathcal{D}_{n} : a Dynkin system on \mathbf{R} or \mathbf{R}^{+}.
μ_{1}, μ_{2} : measures defined on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}\left(\mathbf{R}^{+}\right)$.
$d F$: the Stieltjes measure on $\mathcal{B}(\mathbf{R})$ or $\mathcal{B}\left(\mathbf{R}^{+}\right)$associated with F.
$d x$: the Lebesgue measure on $\mathcal{B}(\mathbf{R})$.
$F\left(x_{0}-\right)$: the left limit of F at $x=x_{0}$.
Ω^{\prime} : a subset of Ω.
$\mathcal{A}_{\mid \Omega^{\prime}}$: the trace of \mathcal{A} on $\Omega^{\prime}, \mathcal{A}_{\mid \Omega^{\prime}}=\left\{A \cap \Omega^{\prime}: A \in \mathcal{A}\right\}$.
$\mathcal{T}_{\mid \Omega^{\prime}}$: the toplogy on Ω^{\prime}, induced by the topology \mathcal{T} on Ω.
$\sigma(\mathcal{A})$: the σ-algebra on Ω generated by \mathcal{A}.
$\sigma\left(\mathcal{A}_{\mid \Omega^{\prime}}\right)$: the σ-algebra on Ω^{\prime} generated by $\mathcal{A}_{\mid \Omega^{\prime}}$.
$\sigma(\mathcal{A})_{\mid \Omega^{\prime}}$: the trace of $\sigma(\mathcal{A})$ on Ω^{\prime}.
$\mathcal{B}(\Omega)_{\mid \Omega^{\prime}}$: the trace of $\mathcal{B}(\Omega)$ on Ω^{\prime}.
$\mathcal{B}\left(\Omega^{\prime}\right)$: the Borel σ-algebra on $\left(\Omega^{\prime}, \mathcal{T}_{\mid \Omega^{\prime}}\right)$.
$\mathcal{F}_{\mid \Omega^{\prime}}$: the trace of \mathcal{F} on Ω^{\prime}.
$\mu_{\mid \Omega^{\prime}}$: the restriction of μ to $\mathcal{F}_{\mid \Omega^{\prime}}$, when $\Omega^{\prime} \in \mathcal{F}$.

4. Tutorial 4

$f: A \rightarrow B:$ a map defined on A with values in B.
$f\left(A^{\prime}\right)$: direct image of A^{\prime} by $f, f\left(A^{\prime}\right)=\left\{f(x): x \in A^{\prime}\right\}$.
$f^{-1}\left(B^{\prime}\right)$: inverse image of B^{\prime} by $f, f^{-1}\left(B^{\prime}\right)=\left\{x \in A: f(x) \in B^{\prime}\right\}$.
$\left\{f \in B^{\prime}\right\}$: same as $f^{-1}\left(B^{\prime}\right)$.
$(\Omega, \mathcal{T}),\left(S, \mathcal{T}_{S}\right)$: topological spaces.
$(E, d),(F, \delta)$: metric spaces.
$B(x, \epsilon)$: the open ball on $E, B(x, \epsilon)=\{y \in E: d(x, y)<\epsilon\}$.
\mathcal{T}_{E}^{d} : the metric topology on E, associated with the metric d.
$d_{\mid F}:$ restriction of the metric d to $F \times F$, when $F \subseteq E$.
$\mathcal{T}_{F},\left(\mathcal{T}_{E}^{d}\right)_{\mid F}$: the topology on F, induced by the metric topology \mathcal{T}_{E}^{d}.
$\mathcal{T}_{F}^{\prime}, \mathcal{T}_{F}^{d_{\mid F}}$: the metric topology on F, associated with the metric $d_{\mid F}$.
$\overline{\mathbf{R}}$: the extended real line, $\overline{\mathbf{R}}=\mathbf{R} \cup\{-\infty,+\infty\}=[-\infty .+\infty]$.
$\mathcal{T}_{\overline{\mathbf{R}}}$: the usual topology on $\overline{\mathbf{R}}$.
$\mathcal{T}_{\mathbf{R}}$: the usual topology on \mathbf{R}.
$\left(\mathcal{T}_{\overline{\mathbf{R}}}\right)_{\mathbf{R}}$: the topology on \mathbf{R}, induced by the usual topology on $\overline{\mathbf{R}}$.
$\mathcal{B}(\mathbf{R})$: the Borel σ-algebra on \mathbf{R}.
$\mathcal{B}(\overline{\mathbf{R}})$: the Borel σ-algebra on $\overline{\mathbf{R}}$.
$\mathcal{B}(\overline{\mathbf{R}})_{\mid \mathbf{R}}$: the trace of $\mathcal{B}(\overline{\mathbf{R}})$ on \mathbf{R}.
$\mathcal{T}_{\mathbf{R}}^{d}$: the metric topology on $\overline{\mathbf{R}}$ associated with the metric d.
$(\Omega, \mathcal{F}),(S, \Sigma),\left(S_{1}, \Sigma_{1}\right)$: measurable spaces.
$\Sigma^{\prime}, \Sigma_{\mid S^{\prime}}$: the trace of Σ on S^{\prime}.
$g \circ f$: the composition of g and f, defined by $g \circ f(x)=g(f(x))$.
\mathcal{A} : a set of subsets of S.
$\sigma(\mathcal{A})$: the σ-algebra on S generated by \mathcal{A}.
$\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}$: set of subsets of $\overline{\mathbf{R}}$.
$\{f \leq c\}$: the inverse image of $[-\infty, c]$ by f.
$\{f<c\}$: the inverse image of $[-\infty, c[$ by f.
$\{c \leq f\}$: the inverse image of $[c,+\infty]$ by f.
$\{c<f\}$: the inverse image of $] c,+\infty]$ by f.
$\inf _{n \geq 1} v_{n}$: the greatest lower-bound of $\left\{v_{n}: n \geq 1\right\}$.
$\sup _{n \geq 1} v_{n}$: the smallest upper-bound of $\left\{v_{n}: n \geq 1\right\}$.
$\liminf v_{n}$: the lower limit of $\left(v_{n}\right)_{n \geq 1}$ as $n \rightarrow+\infty$.
$\limsup v_{n}$: the upper limit of $\left(v_{n}\right)_{n \geq 1}$ as $n \rightarrow+\infty$.
$\lim v_{n}$: the limit of $\left(v_{n}\right)_{n \geq 1}$ as $n \rightarrow+\infty$.
f^{+}: the positive part of $f, f^{+}=\max (f, 0)$.
f^{-}: the negative part of $f, f^{-}=\max (-f, 0)$.
\bar{A} : the closure of A in (Ω, \mathcal{T}).
$d(x, A):$ the distance from x to $A, d(x, A)=\inf \{d(x, y): y \in A\}$. $\lim f_{n}$: simple limit of $\left(f_{n}\right)_{n \geq 1}$, defined by $\left(\lim f_{n}\right)(\omega)=\lim f_{n}(\omega)$.
C : the set of complex numbers.
$\operatorname{Re}(f)$: the real part of f.
$\operatorname{Im}(f)$: the imaginary part of f.

5. Tutorial 5

$(\Omega, \mathcal{F}, \mu)$: an arbitrary measure space.
1_{A} : the characteristic function of $A \subseteq \Omega$.
\uplus : a union of pairwise disjoint sets.
$I^{\mu}(s)$: the integral w.r. to μ of the simple function s on (Ω, \mathcal{F}).
$\int f d \mu$: the Lebesgue integral of f with respect to μ.
$v_{n} \uparrow v$: for all $n \geq 1, v_{n} \leq v_{n+1}$ and $v=\sup _{n \geq 1} v_{n}$.
$f_{n} \uparrow f$: for all $\omega \in \Omega, f_{n}(\omega) \uparrow f(\omega)$.
$A_{n} \uparrow A$: for all $n \geq 1, A_{n} \subseteq A_{n+1}$ and $A=\cup_{n=1}^{+\infty} A_{n}$.
$\mathcal{P}(\omega), \mu$-a.s. : the property \mathcal{P} holds μ-almost surely.
$\mathcal{F}_{\mid A}$: the trace of \mathcal{F} on $A \subseteq \Omega$.
$\mu_{\mid A}$: the restriction of μ to $\mathcal{F}_{\mid A}$, when $A \in \mathcal{F}$.
$f_{\mid A}$: the restriction of f to A.
μ^{A} : the measure defined on \mathcal{F} by $\mu^{A}(E)=\mu(A \cap E)$.
$\int_{A} f d \mu$: the partial Lebesgue integral of f over A with respect to μ.
$L_{\mathbf{R}}^{1}(\Omega, \mathcal{F}, \mu)$: set of \mathbf{R}-valued, measurable maps with $\int|f| d \mu<+\infty$.
$L_{\mathbf{C}}^{1}(\Omega, \mathcal{F}, \mu)$: set of \mathbf{C}-valued, measurable maps with $\int|f| d \mu<+\infty$.

6. Tutorial 6

I : an arbitrary non-empty set.
$\left(\Omega_{i}\right)_{i \in I}$: a familiy of sets indexed by I.
$\prod_{i \in I} \Omega_{i}$: the cartesian product of the family $\left(\Omega_{i}\right)_{i \in I}$.
Ω^{I} : the cartesian product when $\Omega_{i}=\Omega$, for all $i \in I$.
$\prod_{n=1}^{+\infty} \Omega_{n}$: the cartesian product when $I=\mathbf{N}^{*}$.
$\Omega_{1} \times \ldots \times \Omega_{n}$: the cartesian product when $I=\mathbf{N}_{n}$.
\mathbf{N} : the set $\mathbf{N}=\{0,1,2, \ldots\}$.
\mathbf{N}^{*} : the set $\mathbf{N}^{*}=\{1,2,3, \ldots\}$.
\mathbf{N}_{n} : the set $\mathbf{N}_{n}=\{1,2, \ldots, n\}$.
$\left(I_{\lambda}\right)_{\lambda \in \Lambda}:$ a partition of the set I.
$\left(\mathcal{E}_{i}\right)_{i \in I}$: a family, where each \mathcal{E}_{i} is a set of subsets of Ω_{i}.
$\prod_{i \in I} A_{i}$: a rectangle of the family $\left(\mathcal{E}_{i}\right)_{i \in I}$.
$\coprod_{i \in I} \mathcal{E}_{i}$: the set of all rectangles of the family $\left(\mathcal{E}_{i}\right)_{i \in I}$.
$\mathcal{E}_{1} \amalg \ldots \amalg \mathcal{E}_{n}$: the set of all rectangles when $I=\mathbf{N}_{n}$.
$\left(\Omega_{i}, \mathcal{F}_{i}\right)_{i \in I}$: a family of measurable spaces indexed by I.
$\coprod_{i \in I} \mathcal{F}_{i}$: the set of measurable rectangles, the rectangles of $\left(\mathcal{F}_{i}\right)_{i \in I}$.
$\otimes_{i \in I} \mathcal{F}_{i}$: the product σ-algebra of $\left(\mathcal{F}_{i}\right)_{i \in I}$ on $\Pi_{i \in I} \Omega_{i}$.
$\sigma\left(\coprod_{i \in I} \mathcal{F}_{i}\right)$: the σ-algebra generated by the measurable rectangles.
$\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$: the product σ-algebra when $I=\mathbf{N}_{n}$.
$\sigma\left(\mathcal{E}_{i}\right)$: the σ-algebra on Ω_{i}, generated by \mathcal{E}_{i}.
$\otimes_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$: the product σ-algebra of $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$ on $\Pi_{i \in I} \Omega_{i}$.
$\coprod_{i \in I} \sigma\left(\mathcal{E}_{i}\right)$: the set of measurable rectangles of $\left(\sigma\left(\mathcal{E}_{i}\right)\right)_{i \in I}$.
\mathcal{T}_{R} : the usual toplogy on \mathbf{R}.
$\mathcal{T}_{\mathbf{R}} \amalg \ldots \amalg \mathcal{T}_{\mathbf{R}}$: set of rectangles when $I=\mathbf{N}_{n}$ and $\mathcal{E}_{i}=\mathcal{T}_{\mathbf{R}}$.
\mathcal{A} : a set of subsets of Ω.
$\mathcal{T}(\mathcal{A})$: the topology on Ω, generated by \mathcal{A}.
$\left(\Omega_{i}, \mathcal{T}_{i}\right)_{i \in I}$: a family of topological spaces indexed by I.
$\coprod_{i \in I} \mathcal{T}_{i}$: the set of rectangles of $\left(\mathcal{T}_{i}\right)_{i \in I}$.
$\odot_{i \in I} \mathcal{T}_{i}$: the product topology of $\left(\mathcal{T}_{i}\right)_{i \in I}$ on $\Pi_{i \in I} \Omega_{i}$.
$\mathcal{B}\left(\Omega_{i}\right)$: the Borel σ-algebra on $\left(\Omega_{i}, \mathcal{T}_{i}\right)$.
$\otimes_{i \in I} \mathcal{B}\left(\Omega_{i}\right)$: product σ-algebra of $\left(\mathcal{B}\left(\Omega_{i}\right)\right)_{i \in I}$ on $\Pi_{i \in I} \Omega_{i}$.
\mathcal{H} : a countable base of (Ω, \mathcal{T}).
$\mathcal{B}\left(\Pi_{i \in I} \Omega_{i}\right)$: the Borel σ-algebra for the product topology.

7. Tutorial 7

$E^{\omega_{1}}: \omega_{1}$-section of a subset E of $\Omega_{1} \times \Omega_{2}$.
$\mathcal{F}_{1} \amalg \mathcal{F}_{2}$: set of measurable rectangles of \mathcal{F}_{1} and \mathcal{F}_{2}.
$\mathcal{F}_{1} \otimes \mathcal{F}_{2}$: product σ-algebra of \mathcal{F}_{1} and \mathcal{F}_{2}.
$\mathcal{B}(E)$: Borel σ-algebra on a metric space (E, d).
$\Omega_{n} \uparrow \Omega$: for all $n \geq 1, \Omega_{n} \subseteq \Omega_{n+1}$ and $\Omega=\cup_{n=1}^{+\infty} \Omega_{n}$.
$\mu_{1} \otimes \ldots \otimes \mu_{n}$: product of σ-finite measures.
$d x^{n}$: the Lebesgue measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
\mathbf{N}_{n} : the set $\{1, \ldots, n\}$.
$\sigma:$ a permutation, i.e. a bijection $\sigma: \mathbf{N}_{n} \rightarrow \mathbf{N}_{n}$.
$f_{p} \uparrow f:$ For all $p \geq 1, f_{p} \leq f_{p+1}$ and $f=\lim f_{p}$.
$\int_{\Omega_{2}} f(\omega, x) d \mu_{2}(x)$: the integral of $f(\omega, \bullet)$ w.r. to $\mu_{2}, \omega \in \Omega_{1}$.

8. Tutorial 8

$\lim _{x \downarrow \downarrow x_{0}} \phi(x)$: the limit of $\phi(x)$ as $x \rightarrow x_{0}$ with $x_{0}<x$. $\mathcal{T}_{\mid K}$: the induced topology on K.
$\delta(A):$ the diameter of a set A.
$\inf _{x \in \Omega} f(x)$: the infimum of $f(\Omega)$.
$\sup _{x \in \Omega} f(x)$: the supremum of $f(\Omega)$.
$f^{\prime}(c)$: the derivative of f evaluated at c.
$f^{(k)}(a)$: the $k^{\text {th }}$ derivative of f evaluated at a.
C^{n} : [of class] for all $k \leq n, f^{(k)}$ exists and is continuous.
(Ω, \mathcal{F}, P) : a probability space.
(S, Σ) : a measurable space.
$E[X]$: the expectation of the random variable X.
$\phi \circ X$: the composition $\phi \circ X(\omega)=\phi(X(\omega))$.

9. Tutorial 9

$(\Omega, \mathcal{F}, \mu)$: a measure space.
$L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$: set of \mathbf{R}-valued measurable maps f, with $\|f\|_{p}<+\infty$.
$L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$: set of \mathbf{C}-valued measurable maps f, with $\|f\|_{p}<+\infty$.
$\|f\|_{p}: p$-norm of f. For $p \in\left[1,+\infty\left[,\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}\right.\right.$.
$\|f\|_{\infty}: \infty$-norm of $f .\|f\|_{\infty}=\inf \left\{M \in \mathbf{R}^{+}:|f| \leq M, \mu\right.$-a.s. $\}$.
$B(f, \epsilon)$: the open ball in $L_{\mathbf{R}}^{p}(\Omega, \mathcal{F}, \mu)$ or $L_{\mathbf{C}}^{p}(\Omega, \mathcal{F}, \mu)$.
$x_{n} \xrightarrow{\mathcal{T}} x:\left(x_{n}\right)_{n \geq 1}$ converges to x, with respect to the topology \mathcal{T}.
$f_{n} \xrightarrow{L^{p}} f:\left(f_{n}\right)_{n \geq 1}$ converges to f in $L^{p} .\left\|f_{n}-f\right\|_{p} \rightarrow 0$.
$f_{n} \rightarrow f:\left(f_{n}\right)_{n \geq 1}$ converges to f, simply: $f_{n}(x) \rightarrow f(x)$ for all x.
$f_{n} \rightarrow f, \mu$-a.s. : $f_{n}(x) \rightarrow f(x)$ for μ-almost all x.
$\left(f_{n_{k}}\right)_{k \geq 1}$: a sub-sequence of $\left(f_{n}\right)_{n \geq 1}$.

10. Tutorial 10

\mathbf{K} : the field \mathbf{R} or \mathbf{C}.
\mathbf{N}^{*} : the set of positive integers, $\mathbf{N}^{*}=\{1,2,3, \ldots\}$.
$\mathcal{T}_{\mathbf{R}^{n}}$: usual topology on \mathbf{R}^{n}.
$\mathcal{T}_{\overline{\mathbf{R}}}$: usual topology on $\overline{\mathbf{R}}$.
$x_{n} \xrightarrow{\mathcal{T}} x:$ convergence with respect to a topology \mathcal{T}.
$d_{\mathbf{C}^{n}}$: usual metric on \mathbf{C}^{n}.
$d_{\mathbf{R}^{n}}$: usual metric on \mathbf{R}^{n}.
$\delta(A):$ diameter of $A, \delta(A)=\sup \{d(x, y): x, y \in A\}$.
\bar{F} : closure of the set F.
\bar{z} : complex conjugate of z. If $z=a+i b, \bar{z}=a-i b$.
$\langle\cdot, \cdot\rangle$: an inner-product on a \mathbf{K}-vector space.
$\|\cdot\|:$ the norm induced by an inner product, $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$.
$\mathcal{T}_{\langle\cdot, \cdot\rangle}$: norm topology induced by an inner-product.
\mathcal{G}^{\perp} : orthogonal of a set \mathcal{G} w.r. to some inner-product.
$[f]: \mu$-almost sure equivalence class of f in $L_{\mathbf{K}}^{2}(\Omega, \mathcal{F}, \mu)$.

11. Tutorial 11

\mathbf{N}^{*} : the set of positive integers $\mathbf{N}^{*}=\{1,2,3, \ldots\}$.
\mathbf{Z} : the set of integers $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
(Ω, \mathcal{F}) : a measurable space.
$\sigma:$ a bijection between \mathbf{N}^{*} and itself.
$\uplus_{n \geq 1}$: a countable union of pairwise disjoint sets.
$d x$: the Lebesgue measure on $\left(\mathbf{R}^{n}, \mathcal{B}\left(\mathbf{R}^{n}\right)\right)$.
$M^{1}(\Omega, \mathcal{F})$: set of complex measures on (Ω, \mathcal{F}).
$|z|:$ modulus of complex number z.
$|\mu(E)|$: modulus of complex number $\mu(E)$.
$|\mu|$: total variation of complex measure μ.
$|\mu|(E):|\mu|$-measure of the measurable set E.
μ^{+}: positive part of signed measure $\mu, \mu^{+}=(|\mu|+\mu) / 2$.
μ^{-}: negative part of signed measure $\mu, \mu^{-}=(|\mu|-\mu) / 2$.

12. Tutorial 12

(Ω, \mathcal{F}) : a measurable space.
$\nu \ll \mu$: the measure ν is absolutely continuous w.r. to μ.
$\lim \sup _{n \geq 1} E_{n}$: the set $\cap_{n \geq 1} \cup_{k \geq n} E_{k}$, also denoted $\left\{E_{n}\right.$: i.o. $\}$.
$M^{1}(\Omega, \mathcal{F})$: set of complex measures on (Ω, \mathcal{F}).
$|\nu|$: total variation of complex measure ν.
$E_{n} \uparrow E: E_{n} \subseteq E_{n+1}$ for all $n \geq 1$, and $E=\cup_{n \geq 1} E_{n}$.
u^{+}: positive part of function $u, u^{+}=u \vee 0=\max (u, 0)$.
μ^{+}: positive part of signed measure $\mu, \mu^{+}=(|\mu|+\mu) / 2$.
$\mathcal{F}_{\mid A}$: trace of σ-algebra \mathcal{F} on $A, \mathcal{F}_{\mid A}=\{A \cap E: E \in \mathcal{F}\}$.
$\mu_{\mid A}$: restriction of μ to $\mathcal{F}_{\mid A}$.
μ^{A} : the complex measure $\mu(A \cap \cdot)$ on (Ω, \mathcal{F}).
$\left|\mu^{A}\right|$: total variation of the complex measure μ^{A} on (Ω, \mathcal{F}).
$\left|\mu_{\mid A}\right|$: total variation of the complex measure $\mu_{\mid A}$ on $\left(A, \mathcal{F}_{\mid A}\right)$.
$|\mu|^{A}$: the measure $|\mu|(A \cap \cdot)$.
$|\mu|_{\mid A}:$ restriction of $|\mu|$ to $\mathcal{F}_{\mid A}$.
$f_{\mid A}$: restriction of the map f to A.
$\int f_{\mid A} d \mu_{\mid A}$: integral of $f_{\mid A}$ on the measure space $\left(A, \mathcal{F}_{\mid A}, \mu_{\mid A}\right)$.
$\mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{n}$: product of the σ-algebras $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$.
$\|\mu\|:$ total mass of total variation of $\mu,\|\mu\|=|\mu|(\Omega)$.

13. Tutorial 13

\mathbf{K} : the field \mathbf{R} or \mathbf{C}.
$S_{\mathbf{K}}(\Omega, \mathcal{F})$: set of \mathbf{K}-valued complex simple functions on (Ω, \mathcal{F}).
$C_{\mathbf{K}}^{b}(\Omega)$: set of \mathbf{K}-valued continuous and bounded maps on Ω.
$M^{1}(\Omega, \mathcal{B}(\Omega))$: set of complex Borel measures on Ω.
$d(x, A):$ distance from x to $A, d(x, A)=\inf \{d(x, y): y \in A\}$.
\bar{A} : closure of the set A.
$\bar{A}^{\Omega^{\prime}}$: closure of the set A, relative to the induced topology on Ω^{\prime}. $B(x, \epsilon)$: open ball with center x and radius ϵ in a metric space. $\operatorname{supp}(\phi)$: support of ϕ, closure of $\{\phi \neq 0\}$.
$C_{\mathbf{K}}^{c}(\Omega)$: set of \mathbf{K}-valued continuous maps with compact support.

14. Tutorial 14

$|b|:$ total variation map of $b: \mathbf{R}^{+} \rightarrow \mathbf{C}$.
$|b(t)|$: modulus of complex number $b(t)$.
$|b|(t)$: total variation of b evaluated at $t \in \mathbf{R}^{+}$.
$|f(t)|$: modulus of complex number $f(t)$.
$\mathcal{B}\left(\mathbf{R}^{+}\right), \mathcal{B}(\mathbf{C})$: Borel σ-algebras on \mathbf{R}^{+}and \mathbf{C}.
$d s$: Lebesgue measure on $\left(\mathbf{R}^{+}, \mathcal{B}\left(\mathbf{R}^{+}\right)\right.$).
$|b|^{+}$: positive variation of b.
$|b|^{-}$: negative variation of b.
$d b$: complex Stieltjes measure associated with b.
b^{T} : stopped map defined by $b^{T}(t)=b(t \wedge T)$.
$C_{C}^{c}\left(\mathbf{R}^{+}\right)$: \mathbf{C}-valued continuous maps on \mathbf{R}^{+}with compact support. $C_{\mathbf{C}}^{b}\left(\mathbf{R}^{+}\right)$: \mathbf{C}-valued continuous maps on \mathbf{R}^{+}which are bounded. $b(t-)$: left-limit of b at t.
$\Delta b(t):$ jump of b at $t, \Delta b(t)=b(t)-b(t-)$.

15. Tutorial 15

$d|b|$: Stieltjes measure on \mathbf{R}^{+}associated with total variation $|b|$. $L_{\mathbf{C}}^{1}(b): \mathbf{C}$-valued, measurable maps f with $\int_{\mathbf{R}^{+}}|f| d|b|<+\infty$. $L_{\mathbf{C}}^{1, l o c}(b)$: measurable maps with $\int_{0}^{t}|f| d|b|<+\infty$ for all $t \in \mathbf{R}^{+}$.
$\int_{0}^{t} \ldots$: partial Lebesgue integral on interval $[0, t]$.
$|d b|$: total variation of complex Stieltjes measure $d b$. $t_{n} \downarrow \downarrow t: t<t_{n+1} \leq t_{n}$ for all $n \geq 1$, and $t=\inf _{n \geq 1} t_{n}$. $d a$: Stieltjes measure on \mathbf{R}^{+}associated with a. $f . a$: the map defined by $(f . a)(t)=\int_{0}^{t} f d a$. $d(f . a)$: Stieltjes measure on \mathbf{R}^{+}associated with $f . a$.
a^{T} : stopped map defined by $a^{T}=a(t \wedge T)$.
$d(f . a)^{T}$: Stieltjes measure on \mathbf{R}^{+}associated with $(f . a)^{T}$.
$\left|d(f . a)^{T}\right|$: total variation of measure $d(f . a)^{T}$.
$\Delta a(t)$: jump of a at $t, \Delta a(t)=a(t)-a(t-)$.
$d|b| \ll d a: d|b|$ is absolutely continuous w.r. to $d a$.

16. Tutorial 16

$\mathcal{B}(\Omega)$: Borel σ-algebra on Ω.
$L_{\mathbf{R}}^{1}(\Omega, \mathcal{B}(\Omega), \mu)$: real valued Borel measurable f 's with $\int|f| d \mu<$ $+\infty$.
$\mathcal{T}_{\mid A}$: induced topology on $A, \mathcal{T}_{\mid A}=\{A \cap V: V \in \mathcal{T}\}$.
$\mathcal{T}_{\mathbf{R}}$: usual topology on \mathbf{R}.
$|\mu|$: total variation of complex measure μ.
$M \mu$: maximal function of complex measure μ.
$B(x, \epsilon)$: open ball with center x and radius ϵ.
\mathbf{N}_{p} : the set $\{1, \ldots, p\}$.
$\|\mu\|:$ total mass of total variation, $\|\mu\|=|\mu|\left(\mathbf{R}^{n}\right)$.
$M f$: maximal function of f.
$d x(B(x, \epsilon))$: Lebesgue measure of open ball $B(x, \epsilon)$ in \mathbf{R}^{n}.

17. Tutorial 17

\mathbf{K} : the field \mathbf{R} or \mathbf{C}.
$\mathcal{M}_{n}(\mathbf{K})$: set of $n \times n$ matrices with \mathbf{K}-valued entries.
e_{1}, \ldots, e_{n} : canonical basis of \mathbf{K}^{n}.
$\mu^{X}, X(\mu)$: law, distribution of X under μ, image measure of μ by X.
$X^{-1}(B),\{X \in B\}$: inverse image of B by X.
$Y \circ X:$ composition of X and $Y,(Y \circ X)(\omega)=Y(X(\omega))$.
τ_{a} : translation mapping of vector a in \mathbf{R}^{n}.
\uplus : union of pairwise disjoint sets.
$\mathcal{B}\left(\mathbf{R}^{n}\right)$: Borel σ-algebra on \mathbf{R}^{n}.
$\sigma(\mathcal{C}): \sigma$-algebra on \mathbf{R}^{n} generated by \mathcal{C}.
$d x$: Lebesgue measure on \mathbf{R}^{n}.
$\operatorname{det} \Sigma$: determinant of matrix Σ.
$\operatorname{dim} V$: dimension of liear subspace V of \mathbf{R}^{n}.

18. Tutorial 18

\mathbf{K} : the field \mathbf{R} or \mathbf{C}.
$N,\|\cdot\|:$ norm on a K-vector space.
$E, F: \mathbf{K}$-normed spaces.
$\mathcal{L}_{K}(E, F)$: set of continuous linear maps $l: E \rightarrow F$.
$d \phi(a)$: differential of ϕ at a.
$d \phi$: differential mapping of ϕ.
$\frac{\partial \phi}{\partial x_{i}}(a): i$-th partial derivative of ϕ at a.
$l_{\mid U}:$ restriction of l to U.
$J(\phi)(a)$: jacobian of ϕ at a, determinant of $d \phi(a)$.
$\mathcal{B}\left(\mathbf{R}^{n}\right)$: Borel σ-algebra on \mathbf{R}^{n}.
$d x_{\mid \Omega}$: Lebesgue measure on $\Omega \in \mathcal{B}\left(\mathbf{R}^{n}\right)$, restriction of $d x$ to $\mathcal{B}(\Omega)$.
$B(a, \epsilon)$: open ball with center a and radius ϵ.
$\phi\left(d x_{\mid \Omega}\right)$: image measure of $d x_{\mid \Omega}$ by $\phi, \phi\left(d x_{\mid \Omega}\right)(B)=d x_{\mid \Omega}\left(\phi^{-1}(B)\right)$.
$\int|J(\psi)| d x_{\mid \Omega^{\prime}}$: measure on Ω^{\prime} with density $|J(\psi)|$ w.r. to $d x_{\mid \Omega^{\prime}}$.

19. Tutorial 19

$C^{1}(\mathbf{R}, \mathbf{R})$: real, continuously differentiable maps on \mathbf{R}.
$\mu_{1} \star \ldots \star \mu_{p}$: the convolution of μ_{1}, \ldots, μ_{p}.
$\mu \star \nu$: the convolution of μ and ν.
$\mu \otimes \nu$: the product measure of μ and ν.
$B-x$: the set $\left\{y \in \mathbf{R}^{n}: y+x \in B\right\}$.
δ_{a} : dirac probability measure on \mathbf{R}^{n}, centered in $a \in \mathbf{R}^{n}$.
τ_{a} : translation mapping on $\mathbf{R}^{n}, \tau_{a}(x)=a+x$.
$\mathcal{B}\left(\mathbf{R}^{n}\right) \otimes \mathcal{B}\left(\mathbf{R}^{n}\right)$: product of Borel σ-algebras on $\mathbf{R}^{n} \times \mathbf{R}^{n}$.
$\mathcal{F} \mu$: Fourier transform of complex measure μ.
$C_{\mathbf{R}}^{b}(\Omega)$: set of real functions on Ω, which are continuous and bounded.
$\mu_{k} \rightarrow \mu$, narrowly : for all $f \in C_{\mathbf{R}}^{b}(\Omega), \int f d \mu_{k} \rightarrow \int f d \mu$.
ϕ_{X} : characteristic function of \mathbf{R}^{n}-valued random variable X.
$|\alpha|:$ for $\alpha \in \mathbf{N}^{n},|\alpha|=\alpha_{1}+\ldots+\alpha_{n}$.
$x^{\alpha}:$ for $\alpha \in \mathbf{N}^{n}$ and $x \in \mathbf{R}^{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$.
$\partial^{\alpha} f$: the $|\alpha|$-th order partial derivative of $f, \partial^{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}$.
$x^{\alpha} \mu: x^{\alpha} \mu=\int x^{\alpha} d \mu$, measure with density x^{α} w.r. to μ.

20. Tutorial 20

$\mathcal{M}_{n}(\mathbf{R})$: set of $n \times n$ matrices with real entries.
M^{t} : transposed matrix of M.
M^{-1} : inverse matrix of non-singular matrix M.
$\langle u, M u\rangle$: inner-product in \mathbf{R}^{n} of u and $M u$.
Σ : a symmetric and non-negative $n \times n$ real matrix.
$\phi(\mu)$: image measure of μ by $\phi, \phi(\mu)(B)=\mu\left(\phi^{-1}(B)\right)$.
$\mathcal{F} P(u)$: Fourier transform of probability P, evaluated at u.
$N_{n}(m, \Sigma)$: Gaussian measure on \mathbf{R}^{n} with mean m and covariance Σ.
$N_{1}(0,1)$: reduced Gaussian measure on \mathbf{R}.
$x^{\alpha}:$ for $\alpha \in \mathbf{N}^{n}$ and $x \in \mathbf{R}^{n}, x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$.
$\operatorname{cov}(X, Y)$: covariance between square-integrable variables X and Y.
$\operatorname{var}(X)$: variance of square-integrable random variable X.
δ_{0}, δ_{1} : dirac probability measures on \mathbf{R}, centered in 0 and 1 .
$\operatorname{det} \Sigma$: determinant of matrix Σ.
$d x$: Lebesgue measure on \mathbf{R}^{n}.

