6. Product Spaces

In the following, I is a non-empty set.

Definition 50 Let $(\Omega_i)_{i\in I}$ be a family of sets, indexed by a nonempty set I. We call **Cartesian product** of the family $(\Omega_i)_{i\in I}$ the set, denoted $\Pi_{i\in I}\Omega_i$, and defined by:

$$\prod_{i \in I} \Omega_i \stackrel{\triangle}{=} \{ \omega : I \to \cup_{i \in I} \Omega_i , \ \omega(i) \in \Omega_i , \ \forall i \in I \}$$

In other words, $\Pi_{i\in I}\Omega_i$ is the set of all maps ω defined on I, with values in $\cup_{i\in I}\Omega_i$, such that $\omega(i)\in\Omega_i$ for all $i\in I$.

Theorem 25 (Axiom of choice) Let $(\Omega_i)_{i\in I}$ be a family of sets, indexed by a non-empty set I. Then, $\Pi_{i\in I}\Omega_i$ is non-empty, if and only if Ω_i is non-empty for all $i\in I^1$.

 $^{^{1}}$ When I is finite, this theorem is traditionally derived from other axioms.

Exercise 1.

- 1. Let Ω be a set and suppose that $\Omega_i = \Omega, \forall i \in I$. We use the notation Ω^I instead of $\Pi_{i \in I}\Omega_i$. Show that Ω^I is the set of all maps $\omega : I \to \Omega$.
- 2. What are the sets $\mathbf{R}^{\mathbf{R}^+}$, $\mathbf{R}^{\mathbf{N}}$, $[0,1]^{\mathbf{N}}$, $\bar{\mathbf{R}}^{\mathbf{R}}$?
- 3. Suppose $I = \mathbf{N}^*$. We sometimes use the notation $\Pi_{n=1}^{+\infty} \Omega_n$ instead of $\Pi_{n \in \mathbf{N}^*} \Omega_n$. Let \mathcal{S} be the set of all sequences $(x_n)_{n \geq 1}$ such that $x_n \in \Omega_n$ for all $n \geq 1$. Is \mathcal{S} the same thing as the product $\Pi_{n=1}^{+\infty} \Omega_n$?
- 4. Suppose $I = \mathbf{N}_n = \{1, \dots, n\}, n \geq 1$. We use the notation $\Omega_1 \times \dots \times \Omega_n$ instead of $\Pi_{i \in \{1, \dots, n\}} \Omega_i$. For $\omega \in \Omega_1 \times \dots \times \Omega_n$, it is customary to write $(\omega_1, \dots, \omega_n)$ instead of ω , where we have $\omega_i = \omega(i)$. What is your guess for the definition of sets such as $\mathbf{R}^n, \bar{\mathbf{R}}^n, \mathbf{Q}^n, \mathbf{C}^n$.
- 5. Let E, F, G be three sets. Define $E \times F \times G$.

Definition 51 Let I be a non-empty set. We say that a family of sets $(I_{\lambda})_{{\lambda}\in\Lambda}$, where $\Lambda\neq\emptyset$, is a **partition** of I, if and only if:

(i)
$$\forall \lambda \in \Lambda , I_{\lambda} \neq \emptyset$$

(ii)
$$\forall \lambda, \lambda' \in \Lambda , \lambda \neq \lambda' \Rightarrow I_{\lambda} \cap I_{\lambda'} = \emptyset$$

$$(iii) I = \cup_{\lambda \in \Lambda} I_{\lambda}$$

EXERCISE 2. Let $(\Omega_i)_{i\in I}$ be a family of sets indexed by I, and $(I_{\lambda})_{\lambda\in\Lambda}$ be a partition of the set I.

- 1. For each $\lambda \in \Lambda$, recall the definition of $\Pi_{i \in I_{\lambda}} \Omega_i$.
- 2. Recall the definition of $\Pi_{\lambda \in \Lambda}(\Pi_{i \in I_{\lambda}}\Omega_{i})$.
- 3. Define a natural bijection $\Phi: \Pi_{i \in I}\Omega_i \to \Pi_{\lambda \in \Lambda}(\Pi_{i \in I_{\lambda}}\Omega_i)$.
- 4. Define a natural bijection $\psi : \mathbf{R}^p \times \mathbf{R}^n \to \mathbf{R}^{p+n}$, for all $n, p \ge 1$.

Definition 52 Let $(\Omega_i)_{i\in I}$ be a family of sets, indexed by a nonempty set I. For all $i\in I$, let \mathcal{E}_i be a set of subsets of Ω_i . We define a **rectangle** of the family $(\mathcal{E}_i)_{i\in I}$, as any subset A of $\Pi_{i\in I}\Omega_i$, of the form $A=\Pi_{i\in I}A_i$ where $A_i\in\mathcal{E}_i\cup\{\Omega_i\}$ for all $i\in I$, and such that $A_i=\Omega_i$ except for a finite number of indices $i\in I$. Consequently, the set of all rectangles, denoted $\Pi_{i\in I}\mathcal{E}_i$, is defined as:

$$\coprod_{i \in I} \mathcal{E}_i \stackrel{\triangle}{=} \left\{ \prod_{i \in I} A_i : A_i \in \mathcal{E}_i \cup \{\Omega_i\} , \ A_i \neq \Omega_i \text{ for finitely many } i \in I \right\}$$

EXERCISE 3. $(\Omega_i)_{i\in I}$ and $(\mathcal{E}_i)_{i\in I}$ being as above:

- 1. Show that if $I = \mathbf{N}_n$ and $\Omega_i \in \mathcal{E}_i$ for all i = 1, ..., n, then $\mathcal{E}_1 \coprod ... \coprod \mathcal{E}_n = \{A_1 \times ... \times A_n : A_i \in \mathcal{E}_i, \forall i \in I\}.$
- 2. Let A be a rectangle. Show that there exists a finite subset J of I such that: $A = \{\omega \in \Pi_{i \in I} \Omega_i : \omega(j) \in A_j, \forall j \in J\}$ for some A_j 's such that $A_j \in \mathcal{E}_j$, for all $j \in J$.

Definition 53 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We call **measurable rectangle**, any rectangle of the family $(\mathcal{F}_i)_{i \in I}$. The set of all measurable rectangles is given by 2 :

$$\prod_{i \in I} \mathcal{F}_i \stackrel{\triangle}{=} \left\{ \prod_{i \in I} A_i : A_i \in \mathcal{F}_i , A_i \neq \Omega_i \text{ for finitely many } i \in I \right\}$$

Definition 54 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces, indexed by a non-empty set I. We define the **product** σ -algebra of $(\mathcal{F}_i)_{i \in I}$, as the σ -algebra on $\Pi_{i \in I}\Omega_i$, denoted $\otimes_{i \in I}\mathcal{F}_i$, and generated by all measurable rectangles, i.e.

$$\bigotimes_{i \in I} \mathcal{F}_i \stackrel{\triangle}{=} \sigma \left(\coprod_{i \in I} \mathcal{F}_i \right)$$

²Note that $\Omega_i \in \mathcal{F}_i$ for all $i \in I$.

Exercise 4.

- 1. Suppose $I = \mathbf{N}_n$. Show that $\mathcal{F}_1 \otimes \ldots \otimes \mathcal{F}_n$ is generated by all sets of the form $A_1 \times \ldots \times A_n$, where $A_i \in \mathcal{F}_i$ for all $i = 1, \ldots, n$.
- 2. Show that $\mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$ is generated by sets of the form $A \times B \times C$ where $A, B, C \in \mathcal{B}(\mathbf{R})$.
- 3. Show that if (Ω, \mathcal{F}) is a measurable space, $\mathcal{B}(\mathbf{R}^+) \otimes \mathcal{F}$ is the σ -algebra on $\mathbf{R}^+ \times \Omega$ generated by sets of the form $B \times F$ where $B \in \mathcal{B}(\mathbf{R}^+)$ and $F \in \mathcal{F}$.

EXERCISE 5. Let $(\Omega_i)_{i\in I}$ be a family of non-empty sets and \mathcal{E}_i be a subset of the power set $\mathcal{P}(\Omega_i)$ for all $i\in I$.

- 1. Give a generator of the σ -algebra $\otimes_{i \in I} \sigma(\mathcal{E}_i)$ on $\Pi_{i \in I} \Omega_i$.
- 2. Show that:

$$\sigma\left(\coprod_{i\in I}\mathcal{E}_i\right)\subseteq\bigotimes_{i\in I}\sigma(\mathcal{E}_i)$$

- 3. Let A be a rectangle of the family $(\sigma(\mathcal{E}_i))_{i\in I}$. Show that if A is not empty, then the representation $A = \prod_{i\in I} A_i$ with $A_i \in \sigma(\mathcal{E}_i)$ is unique. Define $J_A = \{i \in I : A_i \neq \Omega_i\}$. Explain why J_A is a well-defined finite subset of I.
- 4. If $A \in \coprod_{i \in I} \sigma(\mathcal{E}_i)$, Show that if $A = \emptyset$, or $A \neq \emptyset$ and $J_A = \emptyset$, then $A \in \sigma(\coprod_{i \in I} \mathcal{E}_i)$.

EXERCISE 6. Everything being as before, Let $n \ge 0$. We assume that the following induction hypothesis has been proved:

$$A \in \coprod_{i \in I} \sigma(\mathcal{E}_i), A \neq \emptyset, \operatorname{card} J_A = n \Rightarrow A \in \sigma\left(\coprod_{i \in I} \mathcal{E}_i\right)$$

We assume that A is a non empty measurable rectangle of $(\sigma(\mathcal{E}_i))_{i\in I}$ with $\operatorname{card} J_A = n+1$. Let $J_A = \{i_1, \ldots, i_{n+1}\}$ be an extension of J_A .

For all $B \subseteq \Omega_{i_1}$, we define:

$$A^B \stackrel{\triangle}{=} \prod_{i \in I} \bar{A}_i$$

where each \bar{A}_i is equal to A_i except $\bar{A}_{i_1} = B$. We define the set:

$$\Gamma \stackrel{\triangle}{=} \left\{ B \subseteq \Omega_{i_1} \ : \ A^B \in \sigma \left(\coprod_{i \in I} \mathcal{E}_i \right) \right\}$$

- 1. Show that $A^{\Omega_{i_1}} \neq \emptyset$, $\operatorname{card} J_{A^{\Omega_{i_1}}} = n$ and that $A^{\Omega_{i_1}} \in \coprod_{i \in I} \sigma(\mathcal{E}_i)$.
- 2. Show that $\Omega_{i_1} \in \Gamma$.
- 3. Show that for all $B \subseteq \Omega_{i_1}$, we have $A^{\Omega_{i_1} \setminus B} = A^{\Omega_{i_1}} \setminus A^B$.
- 4. Show that $B \in \Gamma \Rightarrow \Omega_{i_1} \setminus B \in \Gamma$.
- 5. Let $B_n \subseteq \Omega_{i_1}$, $n \ge 1$. Show that $A^{\cup B_n} = \bigcup_{n \ge 1} A^{B_n}$.
- 6. Show that Γ is a σ -algebra on Ω_{i_1} .

- 7. Let $B \in \mathcal{E}_{i_1}$, and for $i \in I$ define $\bar{B}_i = \Omega_i$ for all *i*'s except $\bar{B}_{i_1} = B$. Show that $A^B = A^{\Omega_{i_1}} \cap (\prod_{i \in I} \bar{B}_i)$.
- 8. Show that $\sigma(\mathcal{E}_{i_1}) \subseteq \Gamma$.
- 9. Show that $A = A^{A_{i_1}}$ and $A \in \sigma(\coprod_{i \in I} \mathcal{E}_i)$.
- 10. Show that $\coprod_{i\in I} \sigma(\mathcal{E}_i) \subseteq \sigma(\coprod_{i\in I} \mathcal{E}_i)$.
- 11. Show that $\sigma(\coprod_{i\in I} \mathcal{E}_i) = \bigotimes_{i\in I} \sigma(\mathcal{E}_i)$.

Theorem 26 Let $(\Omega_i)_{i\in I}$ be a family of non-empty sets indexed by a non-empty set I. For all $i \in I$, let \mathcal{E}_i be a set of subsets of Ω_i . Then, the product σ -algebra $\otimes_{i\in I}\sigma(\mathcal{E}_i)$ on the Cartesian product $\Pi_{i\in I}\Omega_i$ is generated by the rectangles of $(\mathcal{E}_i)_{i\in I}$, i.e. :

$$\bigotimes_{i \in I} \sigma(\mathcal{E}_i) = \sigma\left(\coprod_{i \in I} \mathcal{E}_i\right)$$

EXERCISE 7. Let $\mathcal{T}_{\mathbf{R}}$ denote the usual topology in \mathbf{R} . Let $n \geq 1$.

- 1. Show that $\mathcal{T}_{\mathbf{R}} \coprod \ldots \coprod \mathcal{T}_{\mathbf{R}} = \{A_1 \times \ldots \times A_n : A_i \in \mathcal{T}_{\mathbf{R}}\}.$
- 2. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R}) = \sigma(\mathcal{T}_{\mathbf{R}} \coprod \ldots \coprod \mathcal{T}_{\mathbf{R}})$.
- 3. Define $C_2 = \{ [a_1, b_1] \times ... \times]a_n, b_n] : a_i, b_i \in \mathbf{R} \}$. Show that $C_2 \subseteq \mathcal{S} \coprod ... \coprod \mathcal{S}$, where $\mathcal{S} = \{ [a, b] : a, b \in \mathbf{R} \}$, but that the inclusion is strict.
- 4. Show that $S \coprod \ldots \coprod S \subseteq \sigma(C_2)$.
- 5. Show that $\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R}) = \sigma(\mathcal{C}_2)$.

EXERCISE 8. Let Ω and Ω' be two non-empty sets. Let A be a subset of Ω such that $\emptyset \neq A \neq \Omega$. Let $\mathcal{E} = \{A\} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{E}' = \emptyset \subseteq \mathcal{P}(\Omega')$.

- 1. Show that $\sigma(\mathcal{E}) = \{\emptyset, A, A^c, \Omega\}.$
- 2. Show that $\sigma(\mathcal{E}') = \{\emptyset, \Omega'\}.$

- 3. Define $\mathcal{C} = \{E \times F, E \in \mathcal{E}, F \in \mathcal{E}'\}$ and show that $\mathcal{C} = \emptyset$.
- 4. Show that $\mathcal{E} \coprod \mathcal{E}' = \{A \times \Omega', \Omega \times \Omega'\}.$
- 5. Show that $\sigma(\mathcal{E}) \otimes \sigma(\mathcal{E}') = \{\emptyset, A \times \Omega', A^c \times \Omega', \Omega \times \Omega'\}.$
- 6. Conclude that $\sigma(\mathcal{E}) \otimes \sigma(\mathcal{E}') \neq \sigma(\mathcal{C}) = \{\emptyset, \Omega \times \Omega'\}.$

EXERCISE 9. Let $n \ge 1$ and $p \ge 1$ be two positive integers.

- 1. Define $\mathcal{F} = \underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{n}$, and $\mathcal{G} = \underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{p}$. Explain why $\mathcal{F} \otimes \mathcal{G}$ can be viewed as a σ -algebra on \mathbf{R}^{n+p} .
- 2. Show that $\mathcal{F} \otimes \mathcal{G}$ is generated by sets of the form $A_1 \times \ldots \times A_{n+p}$ where $A_i \in \mathcal{B}(\mathbf{R}), i = 1, \ldots, n+p$.

3. Show that:

$$\underbrace{\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R})}_{n+p} = \underbrace{(\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R}))}_{n} \otimes \underbrace{(\mathcal{B}(\mathbf{R}) \otimes \ldots \otimes \mathcal{B}(\mathbf{R}))}_{p}$$

EXERCISE 10. Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces. Let $(I_{\lambda})_{\lambda \in \Lambda}$, where $\Lambda \neq \emptyset$, be a partition of I. Let $\Omega = \Pi_{i \in I} \Omega_i$ and $\Omega' = \Pi_{\lambda \in \Lambda}(\Pi_{i \in I} \Omega_i)$.

- 1. Define a natural bijection between $\mathcal{P}(\Omega)$ and $\mathcal{P}(\Omega')$.
- 2. Show that through such bijection, $A = \prod_{i \in I} A_i \subseteq \Omega$, where $A_i \subseteq \Omega_i$, is identified with $A' = \prod_{\lambda \in \Lambda} (\prod_{i \in I_{\lambda}} A_i) \subseteq \Omega'$.
- 3. Show that $\coprod_{i\in I} \mathcal{F}_i = \coprod_{\lambda\in\Lambda} (\coprod_{i\in I_\lambda} \mathcal{F}_i)$.
- 4. Show that $\bigotimes_{i \in I} \mathcal{F}_i = \bigotimes_{\lambda \in \Lambda} (\bigotimes_{i \in I_{\lambda}} \mathcal{F}_i)$.

Definition 55 Let Ω be set and A be a set of subsets of Ω . We call **topology generated** by A, the topology on Ω , denoted $\mathcal{T}(A)$, equal to the intersection of all topologies on Ω , which contain A.

EXERCISE 11. Let Ω be a set and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

- 1. Explain why $\mathcal{T}(\mathcal{A})$ is indeed a topology on Ω .
- 2. Show that $\mathcal{T}(\mathcal{A})$ is the smallest topology \mathcal{T} such that $\mathcal{A} \subseteq \mathcal{T}$.
- 3. Show that the metric topology on a metric space (E, d) is generated by the open balls $\mathcal{A} = \{B(x, \epsilon) : x \in E, \epsilon > 0\}.$

Definition 56 Let $(\Omega_i, \mathcal{T}_i)_{i \in I}$ be a family of topological spaces, indexed by a non-empty set I. We define the **product topology** of $(\mathcal{T}_i)_{i \in I}$, as the topology on $\Pi_{i \in I}\Omega_i$, denoted $\bigcirc_{i \in I}\mathcal{T}_i$, and generated by

all rectangles of $(\mathcal{T}_i)_{i \in I}$, i.e.

$$igodots_{i \in I} \mathcal{T}_i \stackrel{ riangle}{=} \mathcal{T} \left(\coprod_{i \in I} \mathcal{T}_i
ight)$$

EXERCISE 12. Let $(\Omega_i, \mathcal{T}_i)_{i \in I}$ be a family of topological spaces.

1. Show that $U \in \bigcirc_{i \in I} \mathcal{T}_i$, if and only if:

$$\forall x \in U , \exists V \in \coprod_{i \in I} \mathcal{T}_i , x \in V \subseteq U$$

- 2. Show that $\coprod_{i \in I} \mathcal{T}_i \subseteq \bigcirc_{i \in I} \mathcal{T}_i$.
- 3. Show that $\bigotimes_{i\in I}\mathcal{B}(\Omega_i) = \sigma(\coprod_{i\in I}\mathcal{T}_i)$.
- 4. Show that $\bigotimes_{i\in I}\mathcal{B}(\Omega_i)\subseteq\mathcal{B}(\Pi_{i\in I}\Omega_i)$.

EXERCISE 13. Let $n \ge 1$ be a positive integer. For all $x, y \in \mathbf{R}^n$, let:

$$(x,y) \stackrel{\triangle}{=} \sum_{i=1}^{n} x_i y_i$$

and we put $||x|| = \sqrt{(x,x)}$.

- 1. Show that for all $t \in \mathbf{R}$, $||x + ty||^2 = ||x||^2 + t^2 ||y||^2 + 2t(x, y)$.
- 2. From $||x + ty||^2 \ge 0$ for all t, deduce that $|(x, y)| \le ||x|| \cdot ||y||$.
- 3. Conclude that $||x + y|| \le ||x|| + ||y||$.

EXERCISE 14. Let $(\Omega_1, \mathcal{T}_1), \ldots, (\Omega_n, \mathcal{T}_n), n \geq 1$, be metrizable topological spaces. Let d_1, \ldots, d_n be metrics on $\Omega_1, \ldots, \Omega_n$, inducing the topologies $\mathcal{T}_1, \ldots, \mathcal{T}_n$ respectively. Let $\Omega = \Omega_1 \times \ldots \times \Omega_n$ and \mathcal{T} be

the product topology on Ω . For all $x, y \in \Omega$, we define:

$$d(x,y) \stackrel{\triangle}{=} \sqrt{\sum_{i=1}^{n} (d_i(x_i,y_i))^2}$$

- 1. Show that $d: \Omega \times \Omega \to \mathbf{R}^+$ is a metric on Ω .
- 2. Show that $U \subseteq \Omega$ is open in Ω , if and only if, for all $x \in U$ there are open sets U_1, \ldots, U_n in $\Omega_1, \ldots, \Omega_n$ respectively, such that:

$$x \in U_1 \times \ldots \times U_n \subseteq U$$

3. Let $U \in \mathcal{T}$ and $x \in U$. Show the existence of $\epsilon > 0$ such that:

$$(\forall i = 1, \dots, n \ d_i(x_i, y_i) < \epsilon) \Rightarrow y \in U$$

- 4. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^d$.
- 5. Let $U \in \mathcal{T}_{\Omega}^d$ and $x \in U$. Show the existence of $\epsilon > 0$ such that:

$$x \in B(x_1, \epsilon) \times \ldots \times B(x_n, \epsilon) \subseteq U$$

- 6. Show that $\mathcal{T}_{\Omega}^d \subseteq \mathcal{T}$.
- 7. Show that the product topological space (Ω, \mathcal{T}) is metrizable.
- 8. For all $x, y \in \Omega$, define:

$$d'(x,y) \stackrel{\triangle}{=} \sum_{i=1}^{n} d_i(x_i, y_i)$$
$$d''(x,y) \stackrel{\triangle}{=} \max_{i=1,\dots,n} d_i(x_i, y_i)$$

Show that d', d'' are metrics on Ω .

- 9. Show the existence of α' , β' , α'' and $\beta'' > 0$, such that we have $\alpha' d' \le d \le \beta' d'$ and $\alpha'' d'' \le d \le \beta'' d''$.
- 10. Show that d' and d'' also induce the product topology on Ω .

EXERCISE 15. Let $(\Omega_n, \mathcal{T}_n)_{n\geq 1}$ be a sequence of metrizable topological spaces. For all $n\geq 1$, let d_n be a metric on Ω_n inducing the topology

 \mathcal{T}_n . Let $\Omega = \prod_{n=1}^{+\infty} \Omega_n$ be the Cartesian product and \mathcal{T} be the product topology on Ω . For all $x, y \in \Omega$, we define:

$$d(x,y) \stackrel{\triangle}{=} \sum_{n=1}^{+\infty} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n))$$

- 1. Show that for all $a, b \in \mathbb{R}^+$, we have $1 \wedge (a+b) \leq 1 \wedge a + 1 \wedge b$.
- 2. Show that d is a metric on Ω .
- 3. Show that $U \subseteq \Omega$ is open in Ω , if and only if, for all $x \in U$, there is an integer $N \geq 1$ and open sets U_1, \ldots, U_N in $\Omega_1, \ldots, \Omega_N$ respectively, such that:

$$x \in U_1 \times \ldots \times U_N \times \prod_{n=N+1}^{+\infty} \Omega_n \subseteq U$$

4. Show that $d(x,y) < 1/2^n \implies d_n(x_n,y_n) \le 2^n d(x,y)$.

- 5. Show that for all $U \in \mathcal{T}$ and $x \in U$, there exists $\epsilon > 0$ such that $d(x,y) < \epsilon \implies y \in U$.
- 6. Show that $\mathcal{T} \subseteq \mathcal{T}_{\Omega}^d$.
- 7. Let $U \in \mathcal{T}_{\Omega}^d$ and $x \in U$. Show the existence of $\epsilon > 0$ and $N \ge 1$, such that:

$$\sum_{n=1}^{N} \frac{1}{2^n} (1 \wedge d_n(x_n, y_n)) < \epsilon \implies y \in U$$

8. Show that for all $U \in \mathcal{T}_{\Omega}^d$ and $x \in U$, there is $\epsilon > 0$ and $N \ge 1$ such that:

$$x \in B(x_1, \epsilon) \times \ldots \times B(x_N, \epsilon) \times \prod^{+\infty} \Omega_n \subseteq U$$

- 9. Show that $\mathcal{T}_{\Omega}^d \subseteq \mathcal{T}$.
- 10. Show that the product topological space (Ω, \mathcal{T}) is metrizable.

Definition 57 Let (Ω, \mathcal{T}) be a topological space. A subset \mathcal{H} of \mathcal{T} is called a **countable base** of (Ω, \mathcal{T}) , if and only if \mathcal{H} is at most countable, and has the property:

$$\forall U \in \mathcal{T} , \exists \mathcal{H}' \subseteq \mathcal{H} , U = \bigcup_{V \in \mathcal{H}'} V$$

Exercise 16.

- 1. Show that $\mathcal{H} = \{ [r, q[: r, q \in \mathbf{Q}] \} \}$ is a countable base of $(\mathbf{R}, \mathcal{T}_{\mathbf{R}})$.
- 2. Show that if (Ω, \mathcal{T}) is a topological space with countable base, and $\Omega' \subseteq \Omega$, then the induced topological space $(\Omega', \mathcal{T}_{|\Omega'})$ also has a countable base.
- 3. Show that [-1, 1] has a countable base.
- 4. Show that if (Ω, \mathcal{T}) and (S, \mathcal{T}_S) are homeomorphic, then (Ω, \mathcal{T}) has a countable base if and only if (S, \mathcal{T}_S) has a countable base.

5. Show that $(\bar{\mathbf{R}}, \mathcal{T}_{\bar{\mathbf{R}}})$ has a countable base.

EXERCISE 17. Let $(\Omega_n, \mathcal{T}_n)_{n\geq 1}$ be a sequence of topological spaces with countable base. For $n\geq 1$, Let $\{V_n^k: k\in I_n\}$ be a countable base of $(\Omega_n, \mathcal{T}_n)$ where I_n is a finite or countable set. Let $\Omega=\Pi_{n=1}^\infty\Omega_n$ be the Cartesian product and \mathcal{T} be the product topology on Ω . For all $p\geq 1$, we define:

$$\mathcal{H}^p \stackrel{\triangle}{=} \left\{ V_1^{k_1} \times \ldots \times V_p^{k_p} \times \prod_{n=p+1}^{+\infty} \Omega_n : (k_1, \ldots, k_p) \in I_1 \times \ldots \times I_p \right\}$$

and we put $\mathcal{H} = \bigcup_{p \geq 1} \mathcal{H}^p$.

- 1. Show that for all $p \geq 1$, $\mathcal{H}^p \subseteq \mathcal{T}$.
- 2. Show that $\mathcal{H} \subseteq \mathcal{T}$.
- 3. For all $p \geq 1$, show the existence of an injection $j_p : \mathcal{H}^p \to \mathbf{N}^p$.

- 4. Show the existence of a bijection $\phi_2: \mathbf{N}^2 \to \mathbf{N}$.
- 5. For $p \geq 1$, show the existence of an bijection $\phi_p : \mathbf{N}^p \to \mathbf{N}$.
- 6. Show that \mathcal{H}^p is at most countable for all $p \geq 1$.
- 7. Show the existence of an injection $j: \mathcal{H} \to \mathbf{N}^2$.
- 8. Show that \mathcal{H} is a finite or countable set of open sets in Ω .
- 9. Let $U \in \mathcal{T}$ and $x \in U$. Show that there is $p \geq 1$ and U_1, \ldots, U_p open sets in $\Omega_1, \ldots, \Omega_p$ such that:

$$x \in U_1 \times \ldots \times U_p \times \prod_{n=p+1}^{+\infty} \Omega_n \subseteq U$$

- 10. Show the existence of some $V_x \in \mathcal{H}$ such that $x \in V_x \subseteq U$.
- 11. Show that \mathcal{H} is a countable base of the topological space (Ω, \mathcal{T}) .
- 12. Show that $\bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n) \subseteq \mathcal{B}(\Omega)$.

- 13. Show that $\mathcal{H} \subseteq \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)$.
- 14. Show that $\mathcal{B}(\Omega) = \bigotimes_{n=1}^{+\infty} \mathcal{B}(\Omega_n)$

Theorem 27 Let $(\Omega_n, \mathcal{T}_n)_{n\geq 1}$ be a sequence of topological spaces with countable base. Then, the product space $(\Pi_{n=1}^{+\infty}\Omega_n, \odot_{n=1}^{+\infty}\mathcal{T}_n)$ has a countable base and:

$$\mathcal{B}\left(\prod_{n=1}^{+\infty}\Omega_n\right) = \bigotimes_{n=1}^{+\infty}\mathcal{B}(\Omega_n)$$

Exercise 18.

1. Show that if (Ω, \mathcal{T}) has a countable base and $n \geq 1$:

$$\mathcal{B}(\Omega^n) = \underbrace{\mathcal{B}(\Omega) \otimes \ldots \otimes \mathcal{B}(\Omega)}_{n}$$

- 2. Show that $\mathcal{B}(\bar{\mathbf{R}}^n) = \mathcal{B}(\bar{\mathbf{R}}) \otimes \ldots \otimes \mathcal{B}(\bar{\mathbf{R}})$.
- 3. Show that $\mathcal{B}(\mathbf{C}) = \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})$.

Definition 58 We say that a metric space (E,d) is **separable**, if and only if there exists a finite or countable dense subset of E, i.e. a finite or countable subset A of E such that $E = \bar{A}$, where \bar{A} is the closure of A in E.

EXERCISE 19. Let (E, d) be a metric space.

- 1. Suppose that (E,d) is separable. Let $\mathcal{H} = \{B(x_n, \frac{1}{p}) : n, p \geq 1\}$, where $\{x_n : n \geq 1\}$ is a countable dense subset in E. Show that \mathcal{H} is a countable base of the metric topological space (E, \mathcal{T}_E^d) .
- 2. Suppose conversely that (E, \mathcal{T}_E^d) has a countable base \mathcal{H} . For all $V \in \mathcal{H}$ such that $V \neq \emptyset$, take $x_V \in V$. Show that the set $\{x_V : V \in \mathcal{H}, V \neq \emptyset\}$ is at most countable and dense in E.

3. For all $x, y, x', y' \in E$, show that:

$$|d(x,y) - d(x',y')| \le d(x,x') + d(y,y')$$

- 4. Let $\mathcal{T}_{E\times E}$ be the product topology on $E\times E$. Show that the map $d:(E\times E,\mathcal{T}_{E\times E})\to (\mathbf{R}^+,\mathcal{T}_{\mathbf{R}^+})$ is continuous.
- 5. Show that $d: (E \times E, \mathcal{B}(E \times E)) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable.
- 6. Show that $d: (E \times E, \mathcal{B}(E) \otimes \mathcal{B}(E)) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ is measurable, whenever (E, d) is a separable metric space.
- 7. Let (Ω, \mathcal{F}) be a measurable space and $f, g: (\Omega, \mathcal{F}) \to (E, \mathcal{B}(E))$ be measurable maps. Show that $\Phi: (\Omega, \mathcal{F}) \to E \times E$ defined by $\Phi(\omega) = (f(\omega), g(\omega))$ is measurable with respect to the product σ -algebra $\mathcal{B}(E) \otimes \mathcal{B}(E)$.
- 8. Show that if (E, d) is separable, then $\Psi : (\Omega, \mathcal{F}) \to (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ defined by $\Psi(\omega) = d(f(\omega), g(\omega))$ is measurable.
- 9. Show that if (E, d) is separable then $\{f = g\} \in \mathcal{F}$.

10. Let $(E_n, d_n)_{n\geq 1}$ be a sequence of separable metric spaces. Show that the product space $\prod_{n=1}^{+\infty} E_n$ is metrizable and separable.

Exercise 20. Prove the following theorem.

Theorem 28 Let $(\Omega_i, \mathcal{F}_i)_{i \in I}$ be a family of measurable spaces and (Ω, \mathcal{F}) be a measurable space. For all $i \in I$, let $f_i : \Omega \to \Omega_i$ be a map, and define $f : \Omega \to \Pi_{i \in I}\Omega_i$ by $f(\omega) = (f_i(\omega))_{i \in I}$. Then, the map:

$$f: (\Omega, \mathcal{F}) \to \left(\prod_{i \in I} \Omega_i, \bigotimes_{i \in I} \mathcal{F}_i\right)$$

is measurable, if and only if each $f_i:(\Omega,\mathcal{F})\to(\Omega_i,\mathcal{F}_i)$ is measurable.

Exercise 21.

1. Let $\phi, \psi : \mathbf{R}^2 \to \mathbf{R}$ with $\phi(x, y) = x + y$ and $\psi(x, y) = x \cdot y$. Show that both ϕ and ψ are continuous.

- 2. Show that $\phi, \psi : (\mathbf{R}^2, \mathcal{B}(\mathbf{R}) \otimes \mathcal{B}(\mathbf{R})) \rightarrow (\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$ are measurable.
- 3. Let (Ω, \mathcal{F}) be a measurable space, and $f, g : (\Omega, \mathcal{F}) \to (\mathbf{R}, \mathcal{B}(\mathbf{R}))$ be measurable maps. Using the previous results, show that f+g and f, g are measurable with respect to \mathcal{F} and $\mathcal{B}(\mathbf{R})$.